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Noise-induced transitions in coupled oscillator systems with a pinning force
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We investigate noise-induced transitions in coupled oscillator systems with higher harmonic pinning force
subject to a fluctuating interaction and a thermal additive noise. It is shown that the thermal additive noise
induces a symmetry-breaking transition at a critial thermal noise intensity that does not depend on the strength
of the fluctuating interaction. The critical line is found analytically in the parameter space of the pinning force
and thermal noise intensity. The fluctuating interaction brings about bifurcations of a stationary probability
distribution leading to the clustering of oscillators at its critical strengths, which depend on the thermal noise
intensity and the strength of the pinning force. The cooperation of the thermal noise, the fluctuating interaction,
and the pinning force provides the rich structure of phase diagrams such as a reentrant transition. The nature of
the transitions is also discussed in detE#1063-651X%96)01112-9

PACS numbeps): 02.50.Ey, 05.70.Fh

I. INTRODUCTION entrant transition induced by the interplay of the multiplica-
tive and additive noises.

The effect of noise on a dynamical system has been stud- In this paper we study extensively the nonequilibrium
ied extensively in the context of equilibrium and nonequilib- phenomena of the globally coupled oscillator systems with a
rium phenomena. The study of phase transitions, originallypigher harmonic pinning force subject to a fluctuating inter-
limited to equilibrium systems, was extended to nonequilib-action and a thermal additive noise. It is shown that the ther-
rium systemg1]. While a thermal additive noise provides mal .a.ddltlve noise mdypes a_sym_metry—_breaklng transition at
equilibrium phenomena such as a disordering effect and & critical thermal additive noise intensity that does not de-
symmetry-breaking transition, a multiplicative noise coupledpe”d on the strength of the fluctuating interaction. The criti-

to the state of the system induces nonequilibrium phenomen%f'jll line is found analytically in the parameter space of the

such as a change of the stability of the system. In some case@nmng force and thermal noise intensity. The fluctuating

new stable states appear under the influence of strong mulfir-])[(:“"’mtlon .b””9$ about n0|se—|nd_uced transitions forming
S . ' . . Clusters at its critical strengths, which depend on the thermal
plicative noise. One may find examples in models of biology

. . ; X noise intensity and the strength of the pinning force. The
(2], chem ical reactiont3], opt|c§ [4]’. plggmg phy5|c$5]', cooperation of the thermal noise, the fluctuating interaction,
etc., which have phenomenological justificati¢fg Transi-

. : S o : ! and the pinning force provides the rich structure of phase
tions induced by the multiplicative noise in low-dimensional 5, aits such as a reentrant transition. The nature of the
dynamical systems are by now a familiar phenomidiabut  t5nsitions is also discussed in detail.

the multiplicative noise in spatially distributed and/or high- | the following section we describe the coupled oscillator

dimensional systems remains the focus of current researghodel with a higher harmonic pinning force. In Sec. Il we

[7]. The question of the interplay between multiplicative andderive a formal solution of the Fokker-Planck equation. In

additive noises in the systems has been raised continuousf§ec. IV the interplay between the nonequilibrium transitions

(8]. due to the multiplicative noise and the symmetry-breaking
Coupled phase oscillators have been studied extensivelyansition due to the thermal noise are studied in detail. The

as a model system to understand the dynamics of a variety ofoise-induced transition and the symmetry-breaking transi-

systems ranging from Josephson-junction arrg9$ to  tion of the system are studied in Sec. IV, showing the rich

chemical reactiongl0] to charge-density wavg41]. In neu-  structure of the phase portraits. The nature of the phase tran-

ronal signal processing, the synchronous oscillations founditions is also discussed with summarized results in Sec. V.

in the visual cortex have been modeled and understood via

coupled phase oscillatofd2]. Recently, the system with a Il. MODEL

pinning force has been provided as a model system to study i ) i

the interplay between the multiplicative and additive noises A (noiselessmodel of N coupled oscillators with qth

in the spatially distributed systefd3,14). In the system the harmonic pinning force under study is expressed by the

additive noise induces a transition from a moving state to £duation of motion

stationary state and the multiplicative noise induces a transi-

tion from a one-cluster state to a two-cluster state both in d, : . .
stationary and moving phases showing a route to the cluster- ar @i bisin(ed) 121 Kijsin(di=¢y) (1)
ing phenomenon. It has also been shown that there is a re-
where ¢; and w;, i=1,2,...N, are the phase and the in-
trinsic frequency of thath oscillator, respectively. On the
*Electronic address: skim@logos.etri.re.kr right-hand side of Eq(1) the second term is ath harmonic
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pinning force and the third term describes global couplingpresence of the additive noise as well as the multiplicative
that depends on the phase difference of two oscillators. In theoise, Eq.(1) is replaced by the stochastic differential equa-
absence of the pinning force the system has been studidibn
extensively in the context of entrainment of population and ; N
synchronization of oscillators. The pinning force has been d¢; . 1 .
introduced to mimic the dynamics of stochastic limit cycle H:“’_bs'n(/“bi)_ N[K+"M ”i(t)]jzl sin(¢i— ;)
oscillators or excitable elemenit$5].

In the uniform frequency; = w, if the coupling is exci- +opéi(t) (6)
tatory, i.e.,K;;>0, then the global coupling gives perfect . . . . .
synchrony, which meang,(t)= 4(t) for all i. The steady where &;(t) is a Gauss_lan white noise independent of
state of Eq.(1) is the ground state of the system with the 7i(t)’s- &(t) is characterized by

Hamiltonian (&(1))=0, (&D&))=28;8(t—t"), (7)

H=2 wi¢i_5005(#«¢i) —(Z:) Kijcodi—¢)) , (2 (&) m(t))=0 (8)
i 0

and o, measures the intensity of the additive noise.
where the {j) summation is taken over all paifsach pair Throughout this paper we s&=1 using a suitable time
counted only once For the case of uniform frequency and unit.

excitatory coupling, everyp; dwells on one of theu+1 Equation(6) is invariant under the global finite transla-
phases. Whefb/w|>1, the Hamiltonian Eq(2) hasu local  tions
minima at
2mn
1 (o) 2mn ¢i—>¢i+7, n=12,...,u—1, 9)
i=¢p=—sin | —| +—— =01,...,u—
b=y Msm (b Pk n=0,1,...,u—1, (3

for all ¢;'s. Whenw=0 Eq. (6) is also invariant under the

and all elements are at the same stable fixed ppjntwhen  global inversion

|b/w|<1, Eq.(2) has no local minimum, implying that the b — b (10)

system is in the moving phase, i.e., eafshis a rotator with ! :

frequencyw”—b?. The pinning force of Eq(1) generates for all ¢;’'s. Numerical simulations fop=1, 2, and 3 with

the u stationary states and characterizes the system whethgy=0 show that the global inversion symmetry persists re-

it is in the stationary state or the moving state. gardless of the additive and multiplicative noise intensities.
Now we assume the uniform frequency and excitatoryHowever, the global finite translation symmetry is broken at

interaction, i.e.,wj=w andK;;=K/N>0. If the system is small additive noise intensity, which is shown in the follow-
coupled to a fluctuating environment, the coupling strengthng section.

then may be assumed to be a stochastic quantity, which im-

plies IIl. FORMAL SOLUTION
OF THE FOKKER-PLANCK EQUATION

N N[K"' omm(D] 4) The macroscopic behavior of the system can be described
by the probability distributiorP(¢,t) of ¢; at timet, whose
where 7;(t) is a Gaussian white noise characterized by ~ €volution is governed by the Fokker-Planck equafib@l. In
the largeN limit, the stochastic differential equatio(6)
(7i(1))=0, (7i(t)n;(t")=28;6(t—t") (5) vields the Fokker-Planck equation

and oy measures the strength of the fluctuating interactionP _ ¢ bsi fz” . Nl g

. R . . ) — = —bsi - d¢'sin(¢— n(¢’,t
This multiplicative noise has been introduced to provide adt d¢ @ (ue) 0 ¢'sin(é =" )n(¢".1)
route to clustering phenomena without introducing higher
Fourier mode interactiongl3]. It has been shown in Ref. 2

27 )
tvon fo d¢’sin(¢—¢')n(¢’' 1)

[13] that in the presence of the multiplicative noise the sys-

tem shows a bifurcation from a one-cluster state to a multi-

cluster state in both stationary and moving phases, which
cannot be seen in the deterministic case or in the system with
a simple additive noise.

27
<, d¢"cog ¢~ ¢>”)n(¢>”,t)] P((b.t)}

For small multiplicative noise intensity the perfect syn- 7 2, 2 JZW ) , NG
chrony of the system persists, leading to the singularity of * (9752 [0A+UM 0 de’sin(¢=")n(¢".1)
the probability distribution of the Fokker-Planck equation
corresponding to the equation of motion of the sys{édi. X P(b t)} (11)
To remove the singularity we introduce an additive noise i

(1) to the system. The interplay between the additive and
multiplicative noises also induces interesting nonequilibriumwith »=1 for the Stratonovich interpretation and=0 for
phenomena such as a reentrant transifibfl. Thus, in the Ito interpretation[17]. In Eqg. (11) n(¢,t), the normalized
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number density of the oscillators with phageat timet, is
given by

1 N
n(¢,0=12 AH(D-¢). (12)

Since theg;'s are statistically independent for the uniform

interaction,n(¢,t) may be identified withP(¢,t). In this
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Assuming the stationary state, i.@P/dt=0, the steady
state of Eq(11) is given by

¢ ¢
P(¢>=exp[ fo f(¢'>d¢'HP(o>—Jfo d’

paper we will analyze the steady-state probability distribu-

tion P(¢) achieved ag— .

f(¢)

xexp[ - f¢'f(¢">d¢"}g<¢')] SNCE!
0
where
|

_ [w—bsin(ug)—Asin(¢—a)—(2—v) oy A’sin(¢— a)cog $—a)]

- [oa+ouAZsit(¢—a)] ’ 19
1

9(¢)= (15

with A= /C?+S? anda=sin"Y(SC). HereC andS are ob-
tained by the self-consistent equations

2m 2m
C:jo coxpP(p)ddp, S= J'o singP(¢)d¢ .
(16)

In Eq. (13), J is the constant probability current that is im-
posed by the boundary condition

P(¢+2m)=P(¢) . 7

Whenw=0, since the Fokker-Planck equatiii) is in-
variant under the global inversiofil0) we can assume
P(¢) to be an even function, i.eR(—¢)=P(¢). This
symmetry is confirmed for smalt, i.e., u=1, 2, and 3, by
extensive numerical simulations leading ®=0. Since
J2™f(¢)=0 with S=0 the boundary conditiofil7) results
in J=0. Then the stationary probability distribution is writ-
ten as

1 ¢
P<¢>=zexp[ ! f(¢'>d¢'} , 18

where

—bsin(u¢)—Asing[1+(2— v) oA cosp]
O'i‘f‘ afAAzsin2¢ '

f(¢)=

2m '
z- | exp[ | toas }M) , 19
with the self-consistent equation
2
Azf cospP(¢p)de . (20
0

oat oyASi(dp—a)

translational symmetries are broken. Thuglays the role of
an order parameter for the symmetries. For smadixpand-
ing P(¢) as a power series oA, we obtain the self-
consistent equatiof20) as

— A0 A(D) (2)A24 A3 4
A=A +ATA+ATATHATA+O(AY) (2D
where
b
(0F] ‘T_/zx
0)_
AY o O
Co(a—z)
C b C b
(1) 1 2 ;Z ! %,{
" :ZT.% 1+ b _2 5M’1+ b 5M12 y
Co(:z) “o m)
(22
AP =APs, 1 +AYS, 5,
with
2
CM(X)EJO cod ud)exgxcospldg . (23

In Egs.(21) and(22), A?, A, andAl>) are very compli-
cated functions ofs,, oy, andb. When u=1 nonzero
A(lo) provides finiteA for all parameter values, implying that

the system withu=1 has no translational symmetry. Thus,
for u=1 there is no symmetry-breaking transition at finite
parameter values.

In Eq. (18), if and only if A=0, P(¢) has the transla-
tional symmetries(9) and thus nonzer@& means that the
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For u>1, Aﬁf):o means that, assuming a continuoustation is valid. We present the phase diagramsgder1, 2,

transition, there is a symmetry-breaking transition atand 3 in the following section.

A=1: ForAlV>1, A>0, implying a symmetry-breaking

phase, and foA(”<1, A=0, implying a symmetric phase. IV. PHASE TRANSITIONS

When =2, the critical lineA{"=1 is given by

A p=1
1 C.(X) Whenu =1, it has been shown in Sec. Il that there is no
oac= V3 1+ c (x)) , b=Xoac, (24)  symmetry-breaking transition due to the additive thermal
0 noise. Performing the integration in EQ.8) with =1 we

with x e (0) for all oy, . The solid line in Fig. &) sepa- ©Ptain

rating asymmetric one-clusterS{) and two-cluster $;) _ -1 y—(2=v)I2( 1 _ —y—(2-v)I2
phases from a symmetri®( phase shows the critical line, P(¢)=2""(1+Acosp) (1-Acosf) (Zé)
which is independent ofry, . Whenu>2, the critical point
is given byoa.=1/y/2 for all oy, andb. SinceAf) is non-  where
zero only foru=1 and 3, the scaling exponent, defined by

b+A A omA 30
20yAN T+ oyA? Voz+ oy A2 (30

A~ (AP -1)# (25) y

whenAE}) approaches to 1 from above, is given by ) . . )
with a self-consistent equatiaf20). For given values ofy

1 for u=3 andA, A can be obtained from Eq20) together with Eq.
B= (260 (29 andoya, oy, andb are related by
3 for u=2, wu>3.

N ) ) A 2Ay
The critical lines and the scaling exponents do not depend on oy =

—————=0a, b=r—"704"A(Ay).
the multiplicative noise intensity. The multiplicative noise A(AYINI-A 1=A
only changes the mulitplicative factor of the scaling equation (3D
(25). Since the interaction between oscillators in E).de- o .
pends on the phase difference of two oscillators, the multi-':.Or allbsetEs O{gg)l’ SA’ aﬂdb sat|sfy_|ng Eq.(3E)bP(¢; 'S
plicative noise coupled to the interaction does not restore th “iltehna )éefiﬂ.ition.ofl(“(i)zﬁ?zi g?lgzm(gg_shoevrs tqr:ét
translational symmetry broken by the pinning force, |mply—for I'>1, P(¢) has a minimum ai—, and for T<1,

ing thato,. is independent ofry, . . - o
The noise-induced transitions are characterized by th€ (_‘ﬁgog,a{?_?)loc_?:]emiﬂgg;rr sg)i;twwigea ;mg'iml:g;ﬂitn

change of the number of peaks in the stationary probabilit L . B
distributionP(¢). P(¢) has extrema at zeros 6f¢) given S5— Sg OceUrs is given by Eq31) with y=(2—»)A/2 for

: ; : Ae[0,1].
Eq.(19). th tit !
by Eg.(19). Using the identity In Fig. 1 we show the phase portraits in the Stratonovich
u-1 interpretation with v=1. In the Ifo interpretation with

sin(w¢) = sing E cospcog(u—1-K¢], (27 v=0, the pha_se p_ortraits sh_ow a similar structure to those in
k=0 the Stratonovich interpretatiofi4]. Figure 1a) shows the

) phase diagrams in the-o, plane for various values of
the zeros off (¢) are given by the roots of b. For a giveno,, an S state exists at smatry, . An Sy
state appears at a critical value ®f;, oy, at which the
transition induced by the multiplicative noise occurs. The
phase realization of the system is affected by the additive
noise intensity for fixedoy> oy, which is not the case
when the system has only additive noisg,. increases as
=0. (28) o increases, implying that the additive noise suppresses the

effect of the multiplicative noise, which tends to split the

Whenb=o,=0, Eq.(28) has zeros aip=0 and, leading oscillators into clusters. In the limitop—®©, oy

to P(#), which has a peak ap=0. Asb and oy, increase =20a/Yb(2—v). As o5 goes to zeropy. approaches to
the number of roots of Eq28) and thus the number of peaks V(b+1)/(2—v). Whenb=0, in the limitoy—, a critical

of P(¢) increase at critical values &f and oy, , leading to ~ Vvalue ofoa, oac, at which the bifurcatiorS;— Sy occurs,
the noise-induced transition. We identify multiple peaks ingoes to 12.

the distribution as corresponding to multiple clusters of like- Figure Xb) shows the phase diagrams in thg-b plane
phased oscillators. That is, we interpret the distribution as th&r various values ofry, . Wheno,=0 there is a transition
instantaneous distribution of oscillator phases rather than d— Sy at a critical value ob, b, asb increases. The struc-
the distribution over time of the average phase. These arwre of the phase portraits persists up to some valueQf
two physically distinct interpretations; which one is correcto,,, above which the reentrant transition occurs. At large
can be(and wa$ checked in actual direct simulations of the b the system is in th&, phase, ad decreases the system
globally coupled system. We found that the cluster interpregoes to theS; phase, and ak decreases further the system

u—1

sin¢[bk§_‘,0 cofpcog (u—1—Kk)p]+A

+(2—v)ogA%cosp
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P(9)

FIG. 2. Plot of P(¢) as a function of¢ for u=2: solid line,
ou=0.5,0,=0.6, andb=0.2 in the one-clusters;) phase; dotted
line, oy=1, 0,=0.7, andb=1.0 in the two-cluster %;) phase;
and dashed lindy=2073 in the symmetric two-clusterY) phase.

om-b plane for various values of 5. For smalloy, oy
increases monotonically &sincreases. For large, there is

a reentrant transitioB,— Sy— S, asb increases. This is also
an illustration of the counteracting effects of additive versus
multiplicative noise and the pinning force.

B. u=2

When =2, performing the integration in Eq18) we
obtain

P(¢)=Z"Y(1+Acosp)P?-r-(2-nP2
X (1—Acosp) AR-r-2=wiz. (32

where

(33

=R

U'MA
\/0'A2+0'2MA2

(c) with the self-consistent equatiof20). For given values of
B, v, andA, A can be obtained from Eq20) together with
FIG. 1. Phase diagrams fpr=1: (a) oy versuso, for various  EQ.(32) andop, oy, andb are related by
values ofb, (b) o, versusb for various values ofry, and (c)

A=

oy versusb for various values ofr,. Sg and Sy represent one- ] A

cluster and two-cluster phases, respectively. oM BA(A,B,y)’

reentersS, phase. Because the pinning forde<0) forces o \/(1—A2)A(A,,3.7) (34
the system toward pinning ath)=0 and depinning at A BA '

¢=r, it suppresses the multiplicative noise effect on the

system. The additive noise also suppresses the effect of the YAA(A,B,7)

pinning force as well as the multiplicative noise. Thus the b= B

effects of additive and mulitplicative noises and the pinning
force frustrate the clustering tendency and lead to the reen- Whenb=0, there is no symmetry-breaking transition be-
trant transition. Figure (t) shows the phase diagrams in the cause of the absence of the pinning force. As discussed in
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Sec. lll, for finite b, P(¢) shows the symmetry-breaking
transition at a critical additive noise intensits(b) given
by Eq. (24). oac(b) is independent ofry, . In Fig. 4b) we
show the critical line that separates the symmetfiy phase
from the asymmetric%s andS;) phases. For smait, , the
system is in the asymmetric phases, andrgsncreases, the
transition to the symmetric phase occursog,(b). As b
goes to zeroga(b) approaches 12, and asb increases,
oac(b) also increases monotonically.
P(¢) has a maximum a$=0 or 27 and extrema at the
roots of the equation
sing[(2y+2—wv)Acosp+ B]=0. (35
With a definition of '=g/(2y+2—v)A, Eg. (32) shows
that for I'>1, P(¢) has a minimum at¢=m, and for
I'<1, P(¢) has a local maximum ap= 7 and a minimum
at ¢=cos }(—T). The critical pointl’=1 at which there is a
bifurcationS;— S is given by Eq.(34) with
B=2y+2—-v)A (36
for A€[0,1] and ye[0pe]. Figure 2 shows(¢)'s in S,
Sq, andD states.
For givenb and o, the critical line(36) with Eq. (34)
givesA in terms ofb and o), as

1++1-8(2— 2
A= ( V)U'M

2(2— V)O'f,,

=A.. (37)

Since A is an average of c@s with a weight function
P(¢), it has the restrictiofA|<1. This restriction with Eq.
(37) divides theb-o), plane into three domains, in which
satisfyingA is given by

1 1-2b / 1
Ai f0r b<Z, ZT<O'M< m
A= 1 1-2b
A_ for b<§, om<\ 5,

0 otherwise.
(39

In the domain withA=A_ , there are two transition points
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0.6

FIG. 3. Domains in thé-o, plane characterized by the solu-
tion of the self-consistent equatigdomain: While the A=0 do-
main represents no noise-induced transition, inAkeA _ domain
there is a noise-induced transition. In the= A . domain there is a
reentrant transition.

tiplicative noise in the system. Aba=o0,c, there is a
symmetry-breaking transition for all values @f, leading to
the D state.

As b increases up to 1/&he dotted line in Fig. @) for
b=0.1], for small o5 the phase structure persists, i.e., at
oa=0 there is a transitio’s;— Sy at oy (b)) <oy(b=0),
and aso, increases up to some valuey,, oyc(b) in-
creases. Asr, increases above; Up to o, oy(b) de-
creases vanishing atp,<oac(b). This leads to the reen-
trant transitionSy;— S;— Sy as o, increases for intermediate
values ofay, . This reentrant transition comes from the role
of o, that restores the translational symmetry broken by the
pinning force leading to the two-cluster state. For
oa>oac(b) given by Eq.(24), the system is on thD state
regardless of the value afy,. As b increases further, the
S phase reduces and vanishesbhat1/2. For 1/4b<1/2
[the dashed line in Fig.(4) for b=0.3], as o, increases
omc decreases, vanishing afy, without the reentrant tran-
sition. Forb>1/2, there is no noise-induced transition ex-
cept for the symmetry-breaking transitiosy—D at
oac(b). This comes from the pinning force, which tends to
pin the system at two point$=0 and.

Figure 4b) shows the phase diagrams in thig-b plane

o' at which the noise-induced transition occurs. This im-for various values ofry with v=1. Wheno =0, Eq.(32)
plies that there is a reentrant transition. In the domain witHS reduced to

A=A _, there is a single transition pointy,. In the domain
in which there is no satisfying\, the noise-induced transi-

tion does not occur as, increases. The three domains are

shown in Fig. 3 forv=1.
In the domains Eq(38) with Egs. (20), (32), (34), (36),

1
P(¢) =Z‘1ex;{;§(A cosp+bcose)| . (39
A

With the self-consistent equatior{20), the transition

and (37), we obtain the phase diagrams in the parameteBs— Sy occurs at the transition points

space spanned by,, oy, andb. Figure 4a) shows the
phase diagrams in the,-o plane for various values df
with »=1. In the limitb— 0 [the solid line in Fig. 4a)], for
oa=0 the transitionS,—S; occurs atoy=oy.=1. For
ou<omc, the system is on theS; state, and for
om>ome, it is on theS; state. This is a bifurcation induced

by the multiplicative noise. As, increases, the phase struc-

ture persists up tar,.=1/\/2, increasingoy., which im-

plies that the additive noise suppresses the effect of the mul-

fzwcos(b exf x(2 cosp+cogP)]ded
1Jo

2 Jozwexp:x(z cosp+cosp)]ded

b
op= ;

(40
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1.2
b=0 — _
b=0.1 D w=2
b=0.3-
0.8l
s | ~
04} 4
SS IIl
0 L
0 0.5

(a)

(b)
0.6

(c)

FIG. 4. Phase diagrams fpr=2: (a) oy versuso, for various
values ofb, (b) o, versusb for various values ofo,, and (c)
o\ versusb for various values ofr,. Sg, Sy, andD represent

0.8
h=3
S: —
0.6} o —
St ----
Y D -
£ 041}
]y \ i
3 FA . 7
W i A i
0.2¢ \'\:\“\‘ /I [N | \'\ ,’:/"/l 1
SN e RN, \ i
A et < ey
\\ N \\:__:—/ ________ \os '//
0 n .
0 2 4 6
¢

FIG. 5. Plot of P(¢) as a function of¢ for w=3: solid line,
om=1, 04,=0.5, andb=0.4 in the one-clusterS;) phase; dotted
line, oy=10, 04=0.5, andb=0.4 in the two-cluster §;) phase;
dashed linegy, =3, 0,=0.7, andb=0.4 in the three-clusterS)
phase; and dot-dashed lines 30,% in the symmetric three-cluster
(D) phase.

small reentrant region iwr,, and vanishes av=1/2. For
b>1/2, there is n&g phase and only the symmetry-breaking
transitionSy— D exists.

As oy increases, the phase structure persists up to
om=1/\/2, reducing thes, phasdthe dotted line in Fig. é)
for oy =0.5]. For 1A/2< oy <1 [the dashed line in Fig.(8)
for o)y=0.9], a reentrant transitiols;— S;— Sy occurs as
o increases for a given intermedidte For oa> o ac(b),
the system is on thB phase. Forry,>1 [dot-dashed line in
Fig. 4b) for oy=1.1], in the limitb—0, there are two tran-
sition points at which the noise-induced transitiSg— Sq
and the symmetry-breaking transitidh— D occur asop
increases. Ad increases, the reentrant transition occurs up
to some value ob, above which there is no noise-induced
transition except the symmetry breaking transition.

Figure 4c) shows the phase diagrams in thig-b plane
for various values otr, with v=1. Wheno,=0 [solid line
in Fig. 4(c)], for small b there is a critical value ofry,,
omc, at which the transition Sc—Sy occurs. For
ou<ome, the system is on theS; state, and for
om> oM, It is on theS; state. The phase structure persists
up to some value ofb, b.=1/2, decreasingoy.. At
b=Db., oy, vanishes, and above., the system is on the
Sq phase for all values ofry, . As o, increases the phase
structure persists up te-,.=1/\/2, decreasing, and in-
creasingo . [see the dotted and dashed lines in Fig) for
o,=0.5 and 0.7, respectivelyAt oa= 0., the symmetry-
breaking transition occurs, leading to tHe phase for

one-cluster, two-cluster, and symmetric two-cluster phases, respe€-a~ 9 ac for all values ofory andb.

tively.

for xe (0,,). The solid line in Fig. 4b) represents the tran-

C.u=3
When uw=3, performing the integration in Eq18) we

sition points. For smalb there are two transition points obtain

opp ANd o, 0p2<0ac, at which the noise-induced transi-
tion S;—S; and the symmetry-breaking transitid®y— D
occur, respectively. Ab increases the phase structure per-
sists up tdb;, =1/5, increasingra. andop,. Asb increases

P(¢)=Z'exd — ycosp](1+Acosp)P~ (272
X (1—Acosp) F~2=— 2 (41)

further up tob=1/5, o, begins to decrease, leading to a where



54 NOISE-INDUCED TRANSITIONS IN COUPLB . .. 6049

(A+3b)02MA2+4b02A asymmetric §) phase. For smaltr,, the system is in the
= 5 — , asymmetric phase and as, increases the transition to the
205 A2\ oa+ aiyA2 symmetric phase occurs &ty .
P(¢) has a maximum a#h=0 or 27 and extrema at the
4b roots of the equation
Y= oZaT 42 .
M sing(cosp—T', )(cosp—T _)=0, (44
A O'MA with
Voa+oyA® — (2= v)A= (2= 1)2AZT 4y(y—2BA)
r.= 5A . (45

with the self-consistent equatiof20). For given values of
B, v, andA, A can be obtained from E¢20) together with  \when|T", |>1, P(¢$) has a peak a=0 leading to theS,

Eq. (41) andoy,, oa, andb are related by phase, and whefi', |<1 and|I'_|>1, P(¢) has two peaks
A at =0 and 7 leading to theS; phase. WhenT'_|<1,

o= \/ 5 P(¢) has three peaks at¢=0, cosi(I'_), and

(8BA+ YA =4y)A(AB,y) ' 27— cos YI'_) leading to the three-clusteB() phase. Thus

there are bifurcationsS,—S; and S;—S; at the critical
B \/4(1—A2)A(A,ﬁ,7) 43 Points|T.[=1 and|T"_|=1, respectively. Figure 5 shows
A7 N A(8BA+ yAT—4y) 43 the P(¢)'sintheS;, Sy, S, andD phases.

IntroducingX, Y, andZ defined by

AyA(A,B,
YA(A,B,y) A _afAAZ o2

T 8BA+yAT—4y " _2 _ _%a
BA+yA -4y Xb’Yb’Z4b’ (46)

(44) is reduced to

Whenb=0, there is no symmetry-breaking transition be-
cause of the absence of the pinning force. As discussed -

Sec. lll, for finite b, P(¢) shows the symmetry-breaking 2—p \2 X—=1 [2—p \2
transition at a critical additive noise intensity,=1/\2 in-  Sing (C05¢+ 3 Y) +t —( 8 Y) =0, (47
dependent ofoy, and b. In Fig. 7(b) we show the phase
portrait that separates the symmetrid)( phase from the leading to the following phase separations:
(2-v)?
S, phase for(2—v)Y—3<X<TY2+1, X,Y>0,
Sy phase for GXX<(2—»)Y—-3, (48

S, phase otherwise .

The phase separations are independerzt.dofhe phase por- the symmetry of the pinning force, which tends to pin the
traits in theX-Y plane forv=1 are shown in Fig. 6. system at$p=0, 27/3, and 4r/3. As o, increases further
With Egs.(20), (41, (43), and(46) the phase separations the phase structure persists up to some value 0of oo,
(48) give the phase portraits in the parameter space spannéucreasingoy.; and oy, and expanding th&, phase. As
by oa, oy, andb. Figure {a) shows the phase diagrams in o, increases above,,, oy, decreases and vanishes at
oa-oy plane for various values ob with v=1. When a3, shrinking theS; phase. For a given intermediatg, , as
b=0 [solid line in Fig. 7a)] the phase portrait is the same as o, increases the reentrant transitisp— S;— S.— S; occurs.
that discussed in Sec. IV B. For small[dotted line in Fig.  This reentrant transition comes from the fact that the additive
7(a) for b=0.2], when o,=0 there is a critical value of noise restores the symmetry broken by the pinning force. At
oM, Ome, at which the transitiors;— Sy occurs asoy, in- oa= 0. the symmetry-breaking transition occurs leading to
creases. This is a bifurcation induced by the multiplicativethe D state abover, for all values ofoy, andb.
noise. As b increases the phase structure persists up to some
As o, increases, the phase structure persists up to somalue of b, b, increasingo),. and oy, and decreasing
value of os, o1, inCcreasingoy ., Which implies that the  oyc1, oa1, andoga,, i.€., expanding th&; phase and shrink-
additive noise suppresses the effect of the multiplicativeng the S; and theSy phases. Asb increases abové.;
noise on the system. At,=op; the S; state appears and as [dashed line in Fig. & for b=0.7], wheno,=0 there are
op increases abover,; there are two transition points two transition pointsry.; andoy, at which the transitions
ome1 @nd oo at which the transition§;— S, andS—S;  Sc— S, and S,— Sy occur, respectively. Ag, increases the
occur, respectively. The existence of fhestate results from phase structure persists up to some valuergf ops, in-
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FIG. 6. Phase diagrams far=3 in X-Y plane, whereX and

Y are defined by Eq46).

creasingoy ., and decreasin@ryci- At 0a=0a3, Opmct
vanishes and abowe,; there is noS; phase. Ad increases
the phase structure persists up to some valub, df.,=1,
shrinking theS; phase and th&, phase and expanding the
S; phase. Forb>b., [dot-dashed line in Fig. (@ for
b=1.1], there is noS; phase, and for smalr, there is a

transition pointoy,. of S— Sy as oy, increases. Asry, in-
creasesr,. also increases. Wham,= o, the symmetry-

breaking transition occurs.

Figure 1b) shows the phase diagrams in thg-b plane
for various values ofry with v=1. Wheno),=0, Eq.(41)

is reduced to

1
P(¢)=Zlexp{—2{A co&ﬁ+bcos{3¢)}} . (49 ;
(s / w=3
With the self-consistent equatiq20), the transitionS;— S;
occurs at the transition points
[ Sa
2 :"
f cosp exg xcos ¢]de
b 0 __[4b 50 /
= o r OAT V3¢ (50 S 620 —
exg xcos’¢]de Ga= 0.3 v
0 64= 0.5 ----
6

for xe (0,,). The solid line in Fig. T) represents the tran-

sition points. For smalb there are two critical points,,
and oac, oan<oac, at which the noise-induced transition

Sc— S, and the symmetry-breaking transiti&— D occur,
respectively. Ad increases the phase structure persists de-
creasingoa, and vanishing ab=b.=1. Forb>b,, there is

(c)

FIG. 7. Phase diagrams fer=3: (a) o versuso, for various

oy versusb for various values ofp . Sg, Sy, S;, andD represent

no S, phase and only the symmetry-breaking transitionvalues ofb, (b) o versusb for various values ofry , and (c)

Si—D exists.

e-cluster, two-cluster, three-cluster, and symmetric three-cluster

As o), increases, the phase structure persists up to sonPeEases respactivel
value of oy, oy:=1, decreasind. [see the dotted line in P » Tesp y:

Fig. 7(b) for oy=1]. Whenoy, > 1, theS, phase appears for creases, the phase structure persists up to some valoig of
smallb ando, . For smallb, there are three transition points b_,, decreasingo,; and o,; and increasingop,. At
oa1, Op2, and o, at which the transitionsS;—S;, b=b., oa; vanishes, shrinking thes; phase, and at
Sc—S;, andS;— D occur, respectively. The phase structureb=Db.3, op» and oa3 coincides shrinking th&, phase. As
b increases further, the system undergoes a single transition
Si—D, the symmetry-breaking transition, af\=o .. AS
oy increases furtherh., increases andh.; decreases, ex-

persists up to some value &f b.;, decreasings,; and
panding theS; phase and reducing tH& phase.

oar- As b increases abovb,q, four transition pointsray,
Op2, Op3, and ope Of S4—S, S—S, S—S, and
Si—D exist, leading to the reentrant transition. Asin-
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Figure 7c) shows the phase diagrams in tg-b plane  We found by the direct simulations of the globally coupled
for various values ofr, with v=1. Wheno,=0 [solid line  system that the cluster interpretation is valid.
in Fig. 7(c)], for b=0 there is a critical value otr,, In the system with the first harmonic pinning force, the
ome=1, at which the transitonSc—S,; occurs. For Multiplicative noise induces the noise-induced transition at
ou<omc, the system is on theS, state, and for the critical intensity of the multiplicative noisey. For
onm>oye, it is on theS, state. Asb increases, the phase 9M<0wmc the system is in the one-cluster state and for
structure persists up to some critical valuebgby,, increas-  IM> 9w It iS in the two-cluster state. Since the first har-
ing oye. At b=bg,, the S, phase appears. As increases monic pinning force tends to pin the systemdat 0 and to
aboveb,, up to some value ob, b,=1, there are two UJEPIN the system ap=, it suppresses the effect of the
transition pointso and o at which the transitions multiplicative noise on the system. Th_e .addlitive noise also

Mcl Mc2: = suppresses the effects of both the multiplicative noise and the

S S and S—S¢ oceur, respectively. AD=bc,, o1 pinning force, leading to the frustration among the additive
vanishes, shrinking th&; phase. Fob>Dc,, only the tran- 5,4 the multiplicative noises and the pinning force. The frus-
sition S;— Sy exists atoyc,, which increases ds increases.  yation induces the reentrant transitions in thg-b and
As o, Iincreases the phase structure persists up t%M_b planes.
oac=1/\2, increasingryc, owcs, anday, and decreasing i the system with the second harmonic pinning force,
bey andbe, [see the dotted and dashed lines in Fi@) Tor  gjnce the pinning force tends to pin the systembatO and
ox=0.3 and 0.5, respectivelyAt oa=oc, the symmetry- . hoth the pinning force and the multiplicative noise induce
breaking transition occurs, leading to th2 phase for {he pifurcation from the one-cluster state to the two-cluster

op> oy for all values ofoy andb. state. The additive noise suppresses both effects of the mul-
tiplicative noise and the pinning force and tends to restore
V. CONCLUSION the translation symmetry broken by the pinning force, lead-

In this paper we have investigated the symmetry-breakin g to the sym_rr_ietric _two-cluster state. These COUf_"C“”Q
transition and the noise-induced transitions in coupled OSCiI_oles of the additive noise lead to the reentrant transitions in
the oy-05 and o 5-b planes.

lator systems with the first, second, and third harmonic pin- In th ¢ ith the third h i pinning f .

ning forces subject to the fluctuating interaction with th n e_sysf em V;" d f Ir tharmortiic pinn(i)n% (;;ce, s&nce

strengthoy, and the thermal additive noise with intensity € pinning force tends to pin h€ sys emyat 0, 27/3, an
aﬁlﬂ'/& there exist three clustered phases, one-cluster, two-

o . The system has a global inversion symmetry and glob X .
fir?ite translation symmetry. While the inversion symmetry isCIu,Ster' and three-cllu.ster phases leading 1o the three klncis of
noise-induced transitions between two of them. The conflict-

nmoettgrc?lgeg rgl)(/ et:eb)? “:[]f? (lan%i;onri(;% igfcgfugntgnfrl%“%% jﬁlir\?ein_g rples of the additive and the multiplicative noises and the
noise restores the broken symmetry there is a critical inten"NIN9 f(_)rce I(_aad to the very rich structure of the phase
sity of the additive noise at which the symmetry-breakingportralts including the reentrant transition in tg-oy,
transition occurs. The critical intensity of the additive noise‘rA'b’ andaM.-b planes. . . .
does not depend on the intensity of the multiplicative noise, In conclusion, we _have studmd the phg_se transitions in t_he
coupled to the phase differences of the oscillators. We havaiobally coupled oscillators with the additive and the multi-

also obtained the critical exponent of the order paramete‘?“cat've n0|ses.and the higher harm_onic pinning force to
A understand the interplay of them. Their conflicting and frus-

In addition to the symmetry-breaking transition there aretrated roles have showed the very rich structure of phase

the noise-induced transitions due to the multiplicative noisdortraits.
characterized by the change of the number of peaks in the
stationary probability distribution of the system. Each peak

in the distribution has been identified as a cluster of like- This work was supported by the Ministry of Information
phased oscillators. That is, we have interpreted the distribuand Communication, Korea. We are grateful to Dr. E. H. Lee
tion as the instantaneous distribution of oscillator phasefor his support of this research. We appreciate discussions
rather than as the distribution over time of the average phas&iith Dr. C. R. Doering.
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