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We investigate noise-induced transitions in coupled oscillator systems with higher harmonic pinning force
subject to a fluctuating interaction and a thermal additive noise. It is shown that the thermal additive noise
induces a symmetry-breaking transition at a critial thermal noise intensity that does not depend on the strength
of the fluctuating interaction. The critical line is found analytically in the parameter space of the pinning force
and thermal noise intensity. The fluctuating interaction brings about bifurcations of a stationary probability
distribution leading to the clustering of oscillators at its critical strengths, which depend on the thermal noise
intensity and the strength of the pinning force. The cooperation of the thermal noise, the fluctuating interaction,
and the pinning force provides the rich structure of phase diagrams such as a reentrant transition. The nature of
the transitions is also discussed in detail.@S1063-651X~96!01112-9#

PACS number~s!: 02.50.Ey, 05.70.Fh

I. INTRODUCTION

The effect of noise on a dynamical system has been stud-
ied extensively in the context of equilibrium and nonequilib-
rium phenomena. The study of phase transitions, originally
limited to equilibrium systems, was extended to nonequilib-
rium systems@1#. While a thermal additive noise provides
equilibrium phenomena such as a disordering effect and a
symmetry-breaking transition, a multiplicative noise coupled
to the state of the system induces nonequilibrium phenomena
such as a change of the stability of the system. In some cases,
new stable states appear under the influence of strong multi-
plicative noise. One may find examples in models of biology
@2#, chemical reactions@3#, optics @4#, plasma physics@5#,
etc., which have phenomenological justifications@6#. Transi-
tions induced by the multiplicative noise in low-dimensional
dynamical systems are by now a familiar phenomena@1#, but
the multiplicative noise in spatially distributed and/or high-
dimensional systems remains the focus of current research
@7#. The question of the interplay between multiplicative and
additive noises in the systems has been raised continuously
@8#.

Coupled phase oscillators have been studied extensively
as a model system to understand the dynamics of a variety of
systems ranging from Josephson-junction arrays@9# to
chemical reactions@10# to charge-density waves@11#. In neu-
ronal signal processing, the synchronous oscillations found
in the visual cortex have been modeled and understood via
coupled phase oscillators@12#. Recently, the system with a
pinning force has been provided as a model system to study
the interplay between the multiplicative and additive noises
in the spatially distributed system@13,14#. In the system the
additive noise induces a transition from a moving state to a
stationary state and the multiplicative noise induces a transi-
tion from a one-cluster state to a two-cluster state both in
stationary and moving phases showing a route to the cluster-
ing phenomenon. It has also been shown that there is a re-

entrant transition induced by the interplay of the multiplica-
tive and additive noises.

In this paper we study extensively the nonequilibrium
phenomena of the globally coupled oscillator systems with a
higher harmonic pinning force subject to a fluctuating inter-
action and a thermal additive noise. It is shown that the ther-
mal additive noise induces a symmetry-breaking transition at
a critical thermal additive noise intensity that does not de-
pend on the strength of the fluctuating interaction. The criti-
cal line is found analytically in the parameter space of the
pinning force and thermal noise intensity. The fluctuating
interaction brings about noise-induced transitions forming
clusters at its critical strengths, which depend on the thermal
noise intensity and the strength of the pinning force. The
cooperation of the thermal noise, the fluctuating interaction,
and the pinning force provides the rich structure of phase
portraits such as a reentrant transition. The nature of the
transitions is also discussed in detail.

In the following section we describe the coupled oscillator
model with a higher harmonic pinning force. In Sec. III we
derive a formal solution of the Fokker-Planck equation. In
Sec. IV the interplay between the nonequilibrium transitions
due to the multiplicative noise and the symmetry-breaking
transition due to the thermal noise are studied in detail. The
noise-induced transition and the symmetry-breaking transi-
tion of the system are studied in Sec. IV, showing the rich
structure of the phase portraits. The nature of the phase tran-
sitions is also discussed with summarized results in Sec. V.

II. MODEL

A ~noiseless! model ofN coupled oscillators with amth
harmonic pinning force under study is expressed by the
equation of motion

df i

dt
5v i2bisin~mf i !2(

j51

N

Ki jsin~f i2f j ! , ~1!

wheref i andv i , i51,2, . . . ,N, are the phase and the in-
trinsic frequency of thei th oscillator, respectively. On the
right-hand side of Eq.~1! the second term is amth harmonic*Electronic address: skim@logos.etri.re.kr
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pinning force and the third term describes global coupling
that depends on the phase difference of two oscillators. In the
absence of the pinning force the system has been studied
extensively in the context of entrainment of population and
synchronization of oscillators. The pinning force has been
introduced to mimic the dynamics of stochastic limit cycle
oscillators or excitable elements@15#.

In the uniform frequencyv i5v, if the coupling is exci-
tatory, i.e.,Ki j.0, then the global coupling gives perfect
synchrony, which meansf i(t)5f(t) for all i . The steady
state of Eq.~1! is the ground state of the system with the
Hamiltonian

H5(
i

S v if i2
b

m
cos~mf i ! D2(

~ i j !
Ki jcos~f i2f j ! , ~2!

where the (i j ) summation is taken over all pairs~each pair
counted only once!. For the case of uniform frequency and
excitatory coupling, everyf i dwells on one of them11
phases. Whenub/vu.1, the Hamiltonian Eq.~2! hasm local
minima at

f i5fn[
1

m
sin21S v

b D1
2pn

m
, n50,1, . . . ,m21, ~3!

and all elements are at the same stable fixed pointfn . When
ub/vu,1, Eq. ~2! has no local minimum, implying that the
system is in the moving phase, i.e., eachf i is a rotator with
frequencyAv22b2. The pinning force of Eq.~1! generates
them stationary states and characterizes the system whether
it is in the stationary state or the moving state.

Now we assume the uniform frequency and excitatory
interaction, i.e.,v i5v and Ki j5K/N.0. If the system is
coupled to a fluctuating environment, the coupling strength
then may be assumed to be a stochastic quantity, which im-
plies

K

N
→

1

N
@K1sMh i~ t !# , ~4!

whereh i(t) is a Gaussian white noise characterized by

^h i~ t !&50 , ^h i~ t !h j~ t8!&52d i jd~ t2t8! ~5!

andsM measures the strength of the fluctuating interaction.
This multiplicative noise has been introduced to provide a
route to clustering phenomena without introducing higher
Fourier mode interactions@13#. It has been shown in Ref.
@13# that in the presence of the multiplicative noise the sys-
tem shows a bifurcation from a one-cluster state to a multi-
cluster state in both stationary and moving phases, which
cannot be seen in the deterministic case or in the system with
a simple additive noise.

For small multiplicative noise intensity the perfect syn-
chrony of the system persists, leading to the singularity of
the probability distribution of the Fokker-Planck equation
corresponding to the equation of motion of the system@14#.
To remove the singularity we introduce an additive noise
j i(t) to the system. The interplay between the additive and
multiplicative noises also induces interesting nonequilibrium
phenomena such as a reentrant transition@14#. Thus, in the

presence of the additive noise as well as the multiplicative
noise, Eq.~1! is replaced by the stochastic differential equa-
tion

df i

dt
5v2b sin~mf i !2

1

N
@K1sMh i~ t !#(

j51

N

sin~f i2f j !

1sAj i~ t ! , ~6!

where j i(t) is a Gaussian white noise independent of
h i(t)’s. j i(t) is characterized by

^j i~ t !&50 , ^j i~ t !j j~ t8!&52d i jd~ t2t8! , ~7!

^j i~ t !h j~ t8!&50 ~8!

and sA measures the intensity of the additive noise.
Throughout this paper we setK51 using a suitable time
unit.

Equation~6! is invariant under the global finite transla-
tions

f i→f i1
2pn

m
, n51,2, . . . ,m21, ~9!

for all f i ’s. Whenv50 Eq. ~6! is also invariant under the
global inversion

f i→2f i ~10!

for all f i ’s. Numerical simulations form51, 2, and 3 with
v50 show that the global inversion symmetry persists re-
gardless of the additive and multiplicative noise intensities.
However, the global finite translation symmetry is broken at
small additive noise intensity, which is shown in the follow-
ing section.

III. FORMAL SOLUTION
OF THE FOKKER-PLANCK EQUATION

The macroscopic behavior of the system can be described
by the probability distributionP(f,t) of f i at timet, whose
evolution is governed by the Fokker-Planck equation@16#. In
the large-N limit, the stochastic differential equation~6!
yields the Fokker-Planck equation

]P

]t
52

]

]f F H v2b sin~mf!2E
0

2p

df8sin~f2f8!n~f8,t !

1nsM
2 E

0

2p

df8sin~f2f8!n~f8,t !

3E
0

2p

df9cos~f2f9!n~f9,t !J P~f,t !G
1

]2

]f2 F H sA
21sM

2 S E
0

2p

df8sin~f2f8!n~f8,t ! D 2J
3P~f,t !G , ~11!

with n51 for the Stratonovich interpretation andn50 for
Itô interpretation@17#. In Eq. ~11! n(f,t), the normalized
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number density of the oscillators with phasef at time t, is
given by

n~f,t !5
1

N(
i51

N

d„f i~ t !2f… . ~12!

Since thef i ’s are statistically independent for the uniform
interaction,n(f,t) may be identified withP(f,t). In this
paper we will analyze the steady-state probability distribu-
tion P(f) achieved ast→`.

Assuming the stationary state, i.e.,]P/]t50, the steady
state of Eq.~11! is given by

P~f!5expF E
0

f

f ~f8!df8G H P~0!2JE
0

f

df8

3expF2E
0

f8
f ~f9!df9Gg~f8!J , ~13!

where

f ~f!5
@v2b sin~mf!2D sin~f2a!2~22n!sM

2 D2sin~f2a!cos~f2a!#

@sA
21sM

2 D2sin2~f2a!#
, ~14!

g~f!5
1

sA
21sM

2 D2sin2~f2a!
~15!

with D5AC21S2 anda5sin21(S/C). HereC andS are ob-
tained by the self-consistent equations

C5E
0

2p

cosfP~f!df , S5E
0

2p

sinfP~f!df .

~16!

In Eq. ~13!, J is the constant probability current that is im-
posed by the boundary condition

P~f12p!5P~f! . ~17!

Whenv50, since the Fokker-Planck equation~11! is in-
variant under the global inversion~10! we can assume
P(f) to be an even function, i.e.,P(2f)5P(f). This
symmetry is confirmed for smallm, i.e.,m51, 2, and 3, by
extensive numerical simulations leading toS50. Since
*0
2p f (f)50 with S50 the boundary condition~17! results
in J50. Then the stationary probability distribution is writ-
ten as

P~f!5
1

Z
expF E

0

f

f ~f8!df8G , ~18!

where

f ~f!5
2b sin~mf!2D sinf@11~22n!sM

2 D cosf#

sA
21sM

2 D2sin2f
,

Z5E
0

2p

expF E
0

f

f ~f8!df8Gdf , ~19!

with the self-consistent equation

D5E
0

2p

cosfP~f!df . ~20!

In Eq. ~18!, if and only if D50, P(f) has the transla-
tional symmetries~9! and thus nonzeroD means that the

translational symmetries are broken. ThusD plays the role of
an order parameter for the symmetries. For smallD expand-
ing P(f) as a power series ofD, we obtain the self-
consistent equation~20! as

D5Am
~0!1Am

~1!D1Am
~2!D21Am

~3!D31O~D4! , ~21!

where

Am
~0!5

C1S b

sA
2 D

C0S b

sA
2 D dm,1 ,

Am
~1!5

1

2sA
2 F 11H C2S b

sA
2 D

C0S b

sA
2 D 22J dm,11

C1S b

2sA
2 D

C0S b

2sA
2 D dm,2G ,

~22!

Am
~2!5A1

~2!dm,11A3
~2!dm,3 ,

with

Cm~x![E
0

2p

cos~mf!exp@x cosf#df . ~23!

In Eqs.~21! and~22!, A1
(2) , A3

(2) , andAm
(3) are very compli-

cated functions ofsA , sM , and b. When m51 nonzero
A1
(0) provides finiteD for all parameter values, implying that

the system withm51 has no translational symmetry. Thus,
for m51 there is no symmetry-breaking transition at finite
parameter values.
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For m.1, Am
(0)50 means that, assuming a continuous

transition, there is a symmetry-breaking transition at
Am
(1)51: ForAm

(1).1, D.0, implying a symmetry-breaking
phase, and forAm

(1),1, D50, implying a symmetric phase.
Whenm52, the critical lineA2

(1)51 is given by

sAc5A1

2 S 11
C1~x!

C0~x! D , b5xsAc , ~24!

with xP(0,̀ ) for all sM . The solid line in Fig. 4~b! sepa-
rating asymmetric one-cluster (Ss) and two-cluster (Sd)
phases from a symmetric (D) phase shows the critical line,
which is independent ofsM . Whenm.2, the critical point
is given bysAc51/A2 for all sM andb. SinceAm

(2) is non-
zero only form51 and 3, the scaling exponent, defined by

D;~Am
~1!21!b ~25!

whenAm
(1) approaches to 1 from above, is given by

b5H 1 for m53

1
2 for m52, m.3.

~26!

The critical lines and the scaling exponents do not depend on
the multiplicative noise intensity. The multiplicative noise
only changes the mulitplicative factor of the scaling equation
~25!. Since the interaction between oscillators in Eq.~6! de-
pends on the phase difference of two oscillators, the multi-
plicative noise coupled to the interaction does not restore the
translational symmetry broken by the pinning force, imply-
ing thatsAc is independent ofsM .

The noise-induced transitions are characterized by the
change of the number of peaks in the stationary probability
distributionP(f). P(f) has extrema at zeros off (f) given
by Eq. ~19!. Using the identity

sin~mf!5sinf (
k50

m21

coskf cos@~m212k!f# , ~27!

the zeros off (f) are given by the roots of

sinfFb(
k50

m21

coskf cos@~m212k!f#1D

1~22n!sM
2 D2cosfG50 . ~28!

Whenb5sM50, Eq.~28! has zeros atf50 andp, leading
to P(f), which has a peak atf50. As b andsM increase
the number of roots of Eq.~28! and thus the number of peaks
of P(f) increase at critical values ofb andsM , leading to
the noise-induced transition. We identify multiple peaks in
the distribution as corresponding to multiple clusters of like-
phased oscillators. That is, we interpret the distribution as the
instantaneous distribution of oscillator phases rather than as
the distribution over time of the average phase. These are
two physically distinct interpretations; which one is correct
can be~and was! checked in actual direct simulations of the
globally coupled system. We found that the cluster interpre-

tation is valid. We present the phase diagrams form51, 2,
and 3 in the following section.

IV. PHASE TRANSITIONS

A. µ51

Whenm51, it has been shown in Sec. III that there is no
symmetry-breaking transition due to the additive thermal
noise. Performing the integration in Eq.~18! with m51 we
obtain

P~f!5Z21~11A cosf!g2~22n!/2~12A cosf!2g2~22n!/2 ,
~29!

where

g5
b1D

2sMDAsA
21sM

2 D2
, A5

sMD

AsA
21sM

2 D2
~30!

with a self-consistent equation~20!. For given values ofg
andA, D can be obtained from Eq.~20! together with Eq.
~29! andsA , sM , andb are related by

sM5
A

D~A,g!A12A2
sA , b5

2Ag

12A2sA
22D~A,g! .

~31!

For all sets ofsM , sA , andb satisfying Eq.~31!, P(f) is
given by Eq.~29!. P(f) has a maximum atf50 or 2p.
With a definition ofG[2g/(22n)A, Eq. ~29! shows that
for G.1, P(f) has a minimum atf5p, and for G,1,
P(f) has a local maximum atf5p and a minimum at
f5cos21(2G). The critical point where a bifurcation
Ss→Sd occurs is given by Eq.~31! with g5(22n)A/2 for
AP@0,1#.

In Fig. 1 we show the phase portraits in the Stratonovich
interpretation with n51. In the Itô interpretation with
n50, the phase portraits show a similar structure to those in
the Stratonovich interpretation@14#. Figure 1~a! shows the
phase diagrams in thesM-sA plane for various values of
b. For a givensA , anSs state exists at smallsM . An Sd
state appears at a critical value ofsM , sMc , at which the
transition induced by the multiplicative noise occurs. The
phase realization of the system is affected by the additive
noise intensity for fixedsM.sMc , which is not the case
when the system has only additive noise.sMc increases as
sA increases, implying that the additive noise suppresses the
effect of the multiplicative noise, which tends to split the
oscillators into clusters. In the limitsA→`, sMc

52sA /Ab(22n). As sA goes to zero,sMc approaches to
A(b11)/(22n). Whenb50, in the limitsM→`, a critical
value ofsA , sAc , at which the bifurcationSs→Sd occurs,
goes to 1/A2.

Figure 1~b! shows the phase diagrams in thesA-b plane
for various values ofsM . WhensA50 there is a transition
Ss→Sd at a critical value ofb, bc , asb increases. The struc-
ture of the phase portraits persists up to some value ofsA ,
sAr , above which the reentrant transition occurs. At large
b the system is in theSs phase, asb decreases the system
goes to theSd phase, and asb decreases further the system
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reentersSs phase. Because the pinning force (b.0) forces
the system toward pinning atf50 and depinning at
f5p, it suppresses the multiplicative noise effect on the
system. The additive noise also suppresses the effect of the
pinning force as well as the multiplicative noise. Thus the
effects of additive and mulitplicative noises and the pinning
force frustrate the clustering tendency and lead to the reen-
trant transition. Figure 1~c! shows the phase diagrams in the

sM-b plane for various values ofsA . For smallsA , sMc
increases monotonically asb increases. For largesA there is
a reentrant transitionSs→Sd→Ss asb increases. This is also
an illustration of the counteracting effects of additive versus
multiplicative noise and the pinning force.

B. µ52

When m52, performing the integration in Eq.~18! we
obtain

P~f!5Z21~11A cosf!b/22g2~22n!/2

3~12A cosf!2b/22g2~22n!/2 , ~32!

where

b5
1

sMAsA
21sM

2 D2
,

g5
b

sM
2 D2, ~33!

A5
sMD

AsA
21sM

2 D2

with the self-consistent equation~20!. For given values of
b, g, andA, D can be obtained from Eq.~20! together with
Eq. ~32! andsA , sM , andb are related by

sM5A A

bD~A,b,g!
,

sA5A~12A2!D~A,b,g!

bA
, ~34!

b5
gAD~A,b,g!

b
.

Whenb50, there is no symmetry-breaking transition be-
cause of the absence of the pinning force. As discussed in

FIG. 1. Phase diagrams form51: ~a! sM versussA for various
values ofb, ~b! sA versusb for various values ofsM , and ~c!
sM versusb for various values ofsA . Ss andSd represent one-
cluster and two-cluster phases, respectively.

FIG. 2. Plot ofP(f) as a function off for m52: solid line,
sM50.5,sA50.6, andb50.2 in the one-cluster (Ss) phase; dotted
line, sM51, sA50.7, andb51.0 in the two-cluster (Sd) phase;
and dashed line,b52sA

2 in the symmetric two-cluster (D) phase.
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Sec. III, for finite b, P(f) shows the symmetry-breaking
transition at a critical additive noise intensitysAc(b) given
by Eq. ~24!. sAc(b) is independent ofsM . In Fig. 4~b! we
show the critical line that separates the symmetric (D) phase
from the asymmetric (Ss andSd) phases. For smallsA , the
system is in the asymmetric phases, and assA increases, the
transition to the symmetric phase occurs atsAc(b). As b
goes to zero,sAc(b) approaches 1/A2, and asb increases,
sAc(b) also increases monotonically.

P(f) has a maximum atf50 or 2p and extrema at the
roots of the equation

sinf@~2g122n!A cosf1b#50 . ~35!

With a definition ofG[b/(2g122n)A, Eq. ~32! shows
that for G.1, P(f) has a minimum atf5p, and for
G,1, P(f) has a local maximum atf5p and a minimum
atf5cos21(2G). The critical pointG51 at which there is a
bifurcationSs→Sd is given by Eq.~34! with

b5~2g122n!A ~36!

for AP@0,1# andgP@0,̀ #. Figure 2 showsP(f)’s in Ss ,
Sd , andD states.

For givenb andsM the critical line ~36! with Eq. ~34!
givesD in terms ofb andsM as

D5
16A128~22n!sM

2

2~22n!sM
2 [D6 . ~37!

Since D is an average of cosf with a weight function
P(f), it has the restrictionuDu,1. This restriction with Eq.
~37! divides theb-sM plane into three domains, in which
satisfyingD is given by

D55
D6 for b,

1

4
, A122b

22n
,sM,A 1

8~22n!b

D2 for b,
1

2
, sM,A122b

22n

0 otherwise.
~38!

In the domain withD5D6 , there are two transition points
sAn
(6) at which the noise-induced transition occurs. This im-

plies that there is a reentrant transition. In the domain with
D5D2 , there is a single transition pointsAn . In the domain
in which there is no satisfyingD, the noise-induced transi-
tion does not occur assA increases. The three domains are
shown in Fig. 3 forn51.

In the domains Eq.~38! with Eqs. ~20!, ~32!, ~34!, ~36!,
and ~37!, we obtain the phase diagrams in the parameter
space spanned bysA , sM , and b. Figure 4~a! shows the
phase diagrams in thesA-sM plane for various values ofb
with n51. In the limitb→0 @the solid line in Fig. 4~a!#, for
sA50 the transitionSs→Sd occurs atsM5sMc[1. For
sM,sMc , the system is on theSs state, and for
sM.sMc , it is on theSd state. This is a bifurcation induced
by the multiplicative noise. AssA increases, the phase struc-
ture persists up tosAc[1/A2, increasingsMc , which im-
plies that the additive noise suppresses the effect of the mul-

tiplicative noise in the system. AtsA5sAc , there is a
symmetry-breaking transition for all values ofsM leading to
theD state.

As b increases up to 1/4@the dotted line in Fig. 4~a! for
b50.1#, for small sA the phase structure persists, i.e., at
sA50 there is a transitionSs→Sd at sMc(b),sMc(b50),
and assA increases up to some valuesA1 , sMc(b) in-
creases. AssA increases abovesA1 up to sA2, sMc(b) de-
creases vanishing atsA2,sAc(b). This leads to the reen-
trant transitionSd→Ss→Sd assA increases for intermediate
values ofsM . This reentrant transition comes from the role
of sA that restores the translational symmetry broken by the
pinning force leading to the two-cluster state. For
sA.sAc(b) given by Eq.~24!, the system is on theD state
regardless of the value ofsM . As b increases further, the
Ss phase reduces and vanishes atb51/2. For 1/4,b,1/2
@the dashed line in Fig. 4~a! for b50.3#, as sA increases
sMc decreases, vanishing atsA2 without the reentrant tran-
sition. Forb.1/2, there is no noise-induced transition ex-
cept for the symmetry-breaking transitionSd→D at
sAc(b). This comes from the pinning force, which tends to
pin the system at two pointsf50 andp.

Figure 4~b! shows the phase diagrams in thesA-b plane
for various values ofsM with n51. WhensM50, Eq.~32!
is reduced to

P~f!5Z21expF 1sA
2 ~D cosf1b cos2f!G . ~39!

With the self-consistent equation~20!, the transition
Ss→Sd occurs at the transition points

b5
1

2

E
0

2p

cosf exp@x~2 cosf1cos2f!#df

E
0

2p

exp@x~2 cosf1cos2f!#df

,

~40!

sA5Ab

x

FIG. 3. Domains in theb-sM plane characterized by the solu-
tion of the self-consistent equation~domain!: While theD50 do-
main represents no noise-induced transition, in theD5D2 domain
there is a noise-induced transition. In theD5D6 domain there is a
reentrant transition.
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for xP(0,̀ ). The solid line in Fig. 4~b! represents the tran-
sition points. For smallb there are two transition points
sA2 andsAc , sA2,sAc , at which the noise-induced transi-
tion Ss→Sd and the symmetry-breaking transitionSd→D
occur, respectively. Asb increases the phase structure per-
sists up tobc151/5, increasingsAc andsA2 . As b increases
further up tob51/5, sA2 begins to decrease, leading to a

small reentrant region insA , and vanishes atb51/2. For
b.1/2, there is noSs phase and only the symmetry-breaking
transitionSd→D exists.

As sM increases, the phase structure persists up to
sM51/A2, reducing theSs phase@the dotted line in Fig. 4~b!
for sM50.5#. For 1/A2,sM,1 @the dashed line in Fig. 4~b!
for sM50.9#, a reentrant transitionSd→Ss→Sd occurs as
sA increases for a given intermediateb. For sA.sAc(b),
the system is on theD phase. ForsM.1 @dot-dashed line in
Fig. 4~b! for sM51.1#, in the limit b→0, there are two tran-
sition points at which the noise-induced transitionSd→Ss
and the symmetry-breaking transitionSs→D occur assA
increases. Asb increases, the reentrant transition occurs up
to some value ofb, above which there is no noise-induced
transition except the symmetry breaking transition.

Figure 4~c! shows the phase diagrams in thesM-b plane
for various values ofsA with n51. WhensA50 @solid line
in Fig. 4~c!#, for small b there is a critical value ofsM ,
sMc , at which the transition Ss→Sd occurs. For
sM,sMc , the system is on theSs state, and for
sM.sMc , it is on theSd state. The phase structure persists
up to some value ofb, bc51/2, decreasingsMc . At
b5bc , sMc vanishes, and abovebc , the system is on the
Sd phase for all values ofsM . As sA increases the phase
structure persists up tosAc51/A2, decreasingbc and in-
creasingsMc @see the dotted and dashed lines in Fig. 4~c! for
sA50.5 and 0.7, respectively#. At sA5sAc , the symmetry-
breaking transition occurs, leading to theD phase for
sA.sAc for all values ofsM andb.

C. µ53

When m53, performing the integration in Eq.~18! we
obtain

P~f!5Z21exp@2g cosf#~11A cosf!b2~22n!/2

3~12A cosf!2b2~22n!/2 , ~41!

where

FIG. 4. Phase diagrams form52: ~a! sM versussA for various
values ofb, ~b! sA versusb for various values ofsM , and ~c!
sM versusb for various values ofsA . Ss , Sd , andD represent
one-cluster, two-cluster, and symmetric two-cluster phases, respec-
tively.

FIG. 5. Plot ofP(f) as a function off for m53: solid line,
sM51, sA50.5, andb50.4 in the one-cluster (Ss) phase; dotted
line, sM510, sA50.5, andb50.4 in the two-cluster (Sd) phase;
dashed line,sM53, sA50.7, andb50.4 in the three-cluster (St)
phase; and dot-dashed line,b53sA

2 in the symmetric three-cluster
(D) phase.
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b5
~D13b!sM

2 D214bsA
2

2sM
2 D2AsA

21sM
2 D2

,

g5
4b

sM
2 D2 , ~42!

A5
sMD

AsA
21sM

2 D2
,

with the self-consistent equation~20!. For given values of
b, g, andA, D can be obtained from Eq.~20! together with
Eq. ~41! andsM , sA , andb are related by

sM5A 4A

~8bA1gA224g!D~A,b,g!
,

sA5A4~12A2!D~A,b,g!

A~8bA1gA224g!
, ~43!

b5
AgD~A,b,g!

8bA1gA224g
.

Whenb50, there is no symmetry-breaking transition be-
cause of the absence of the pinning force. As discussed in
Sec. III, for finite b, P(f) shows the symmetry-breaking
transition at a critical additive noise intensitysAc51/A2 in-
dependent ofsM and b. In Fig. 7~b! we show the phase
portrait that separates the symmetric (D) phase from the

asymmetric (S) phase. For smallsA , the system is in the
asymmetric phase and assA increases the transition to the
symmetric phase occurs atsAc .

P(f) has a maximum atf50 or 2p and extrema at the
roots of the equation

sinf~cosf2G1!~cosf2G2!50, ~44!

with

G65
2~22n!A6A~22n!2A214g~g22bA!

2gA
. ~45!

When uG1u.1, P(f) has a peak atf50 leading to theSs
phase, and whenuG1u,1 anduG2u.1, P(f) has two peaks
at f50 and p leading to theSd phase. WhenuG2u,1,
P(f) has three peaks atf50, cos21(G2), and
2p2cos21(G2) leading to the three-cluster (St) phase. Thus
there are bifurcationsSs→Sd and Sd→St at the critical
points uG1u51 and uG2u51, respectively. Figure 5 shows
theP(f)’s in theSs , Sd , St , andD phases.

IntroducingX, Y, andZ defined by

X5
D

b
, Y5

sM
2 D2

b
, Z5

sA
2

4b
, ~46!

Eq. ~44! is reduced to

sinfF S cosf1
22n

8
YD 21 X21

4
2S 22n

8
YD 2G50, ~47!

leading to the following phase separations:

St phase for ~22n!Y23,X,
~22n!2

16
Y211, X,Y.0 ,

Sd phase for 0,X,~22n!Y23 ,

Ss phase otherwise .

~48!

The phase separations are independent ofZ. The phase por-
traits in theX-Y plane forn51 are shown in Fig. 6.

With Eqs.~20!, ~41!, ~43!, and~46! the phase separations
~48! give the phase portraits in the parameter space spanned
by sA , sM , andb. Figure 7~a! shows the phase diagrams in
sA-sM plane for various values ofb with n51. When
b50 @solid line in Fig. 7~a!# the phase portrait is the same as
that discussed in Sec. IV B. For smallb @dotted line in Fig.
7~a! for b50.2#, when sA50 there is a critical value of
sM , sMc , at which the transitionSs→Sd occurs assM in-
creases. This is a bifurcation induced by the multiplicative
noise.

As sA increases, the phase structure persists up to some
value of sA , sA1, increasingsMc , which implies that the
additive noise suppresses the effect of the multiplicative
noise on the system. AtsA5sA1 theSt state appears and as
sA increases abovesA1 there are two transition points
sMc1 andsMc2 at which the transitionsSs→St andSt→Sd
occur, respectively. The existence of theSt state results from

the symmetry of the pinning force, which tends to pin the
system atf50, 2p/3, and 4p/3. As sA increases further
the phase structure persists up to some value ofsA , sA2,
increasingsMc1 andsMc2 and expanding theSt phase. As
sA increases abovesA2, sMc1 decreases and vanishes at
sA3, shrinking theSs phase. For a given intermediatesM , as
sA increases the reentrant transitionSd→St→Ss→St occurs.
This reentrant transition comes from the fact that the additive
noise restores the symmetry broken by the pinning force. At
sA5sAc the symmetry-breaking transition occurs leading to
theD state abovesAc for all values ofsM andb.

As b increases the phase structure persists up to some
value of b, bc1, increasingsMc and sMc2 and decreasing
sMc1 , sA1, andsA2, i.e., expanding theSt phase and shrink-
ing the Ss and theSd phases. Asb increases abovebc1
@dashed line in Fig. 7~a! for b50.7#, whensA50 there are
two transition pointssMc1 andsMc2 at which the transitions
Ss→St andSt→Sd occur, respectively. AssA increases the
phase structure persists up to some value ofsA , sA3, in-
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creasingsMc2 and decreasingsMc1 . At sA5sA3 , sMc1
vanishes and abovesA3 there is noSs phase. Asb increases
the phase structure persists up to some value ofb, bc251,
shrinking theSs phase and theSd phase and expanding the
St phase. Forb.bc2 @dot-dashed line in Fig. 7~a! for
b51.1#, there is noSs phase, and for smallsA there is a
transition pointsMc of St→Sd assM increases. AssA in-
creasessMc also increases. WhensA5sAc , the symmetry-
breaking transition occurs.

Figure 7~b! shows the phase diagrams in thesA-b plane
for various values ofsM with n51. WhensM50, Eq.~41!
is reduced to

P~f!5Z21expF 1sA
2 $D cosf1b cos~3f!%G . ~49!

With the self-consistent equation~20!, the transitionSs→St
occurs at the transition points

b5

E
0

2p

cosf exp@x cos3f#df

E
0

2p

exp@x cos3f#df

, sA5A4b

3x
~50!

for xP(0,̀ ). The solid line in Fig. 7~b! represents the tran-
sition points. For smallb there are two critical pointssAn
andsAc , sAn,sAc , at which the noise-induced transition
Ss→St and the symmetry-breaking transitionSt→D occur,
respectively. Asb increases the phase structure persists de-
creasingsAn and vanishing atb5bc51. Forb.bc , there is
no Ss phase and only the symmetry-breaking transition
St→D exists.

As sM increases, the phase structure persists up to some
value ofsM , sMc51, decreasingbc @see the dotted line in
Fig. 7~b! for sM51#. WhensM.1, theSd phase appears for
smallb andsA . For smallb, there are three transition points
sA1 , sA2 , and sAc at which the transitionsSd→Ss ,
Ss→St , andSt→D occur, respectively. The phase structure
persists up to some value ofb, bc1 , decreasingsA1 and
sA2 . As b increases abovebc1, four transition pointssA1 ,
sA2 , sA3 , and sAc of Sd→St , St→Ss , Ss→St , and
St→D exist, leading to the reentrant transition. Asb in-

creases, the phase structure persists up to some value ofb,
bc2 , decreasingsA1 and sA3 and increasingsA2. At
b5bc2, sA1 vanishes, shrinking theSd phase, and at
b5bc3, sA2 andsA3 coincides shrinking theSs phase. As
b increases further, the system undergoes a single transition
St→D, the symmetry-breaking transition, atsA5sAc . As
sM increases further,bc2 increases andbc3 decreases, ex-
panding theSd phase and reducing theSs phase.

FIG. 6. Phase diagrams form53 in X-Y plane, whereX and
Y are defined by Eq.~46!.

FIG. 7. Phase diagrams form53: ~a! sM versussA for various
values ofb, ~b! sA versusb for various values ofsM , and ~c!
sM versusb for various values ofsA . Ss , Sd , St , andD represent
one-cluster, two-cluster, three-cluster, and symmetric three-cluster
phases, respectively.
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Figure 7~c! shows the phase diagrams in thesM-b plane
for various values ofsA with n51. WhensA50 @solid line
in Fig. 7~c!#, for b50 there is a critical value ofsM ,
sMc51, at which the transitionSs→Sd occurs. For
sM,sMc , the system is on theSs state, and for
sM.sMc , it is on theSd state. Asb increases, the phase
structure persists up to some critical value ofb, bc1, increas-
ing sMc . At b5bc1, the St phase appears. Asb increases
abovebc1 up to some value ofb, bc251, there are two
transition pointssMc1 and sMc2, at which the transitions
Ss→St and St→Sd occur, respectively. Atb5bc2, sMc1
vanishes, shrinking theSs phase. Forb.bc2, only the tran-
sitionSt→Sd exists atsMc2, which increases asb increases.
As sA increases the phase structure persists up to
sAc51/A2, increasingsMc , sMc1, andsMc2 and decreasing
bc1 andbc2 @see the dotted and dashed lines in Fig. 7~c! for
sA50.3 and 0.5, respectively#. At sA5sAc , the symmetry-
breaking transition occurs, leading to theD phase for
sA.sAc for all values ofsM andb.

V. CONCLUSION

In this paper we have investigated the symmetry-breaking
transition and the noise-induced transitions in coupled oscil-
lator systems with the first, second, and third harmonic pin-
ning forces subject to the fluctuating interaction with
strengthsM and the thermal additive noise with intensity
sA . The system has a global inversion symmetry and global
finite translation symmetry. While the inversion symmetry is
not broken by the pinning force, the finite translation sym-
metry is broken by the pinning force. Since the additive
noise restores the broken symmetry there is a critical inten-
sity of the additive noise at which the symmetry-breaking
transition occurs. The critical intensity of the additive noise
does not depend on the intensity of the multiplicative noise,
coupled to the phase differences of the oscillators. We have
also obtained the critical exponent of the order parameter
D.

In addition to the symmetry-breaking transition there are
the noise-induced transitions due to the multiplicative noise
characterized by the change of the number of peaks in the
stationary probability distribution of the system. Each peak
in the distribution has been identified as a cluster of like-
phased oscillators. That is, we have interpreted the distribu-
tion as the instantaneous distribution of oscillator phases
rather than as the distribution over time of the average phase.

We found by the direct simulations of the globally coupled
system that the cluster interpretation is valid.

In the system with the first harmonic pinning force, the
multiplicative noise induces the noise-induced transition at
the critical intensity of the multiplicative noisesMc . For
sM,sMc the system is in the one-cluster state and for
sM.sMc it is in the two-cluster state. Since the first har-
monic pinning force tends to pin the system atf50 and to
depin the system atf5p, it suppresses the effect of the
multiplicative noise on the system. The additive noise also
suppresses the effects of both the multiplicative noise and the
pinning force, leading to the frustration among the additive
and the multiplicative noises and the pinning force. The frus-
tration induces the reentrant transitions in thesA-b and
sM-b planes.

In the system with the second harmonic pinning force,
since the pinning force tends to pin the system atf50 and
p, both the pinning force and the multiplicative noise induce
the bifurcation from the one-cluster state to the two-cluster
state. The additive noise suppresses both effects of the mul-
tiplicative noise and the pinning force and tends to restore
the translation symmetry broken by the pinning force, lead-
ing to the symmetric two-cluster state. These conflicting
roles of the additive noise lead to the reentrant transitions in
thesM-sA andsA-b planes.

In the system with the third harmonic pinning force, since
the pinning force tends to pin the system atf50, 2p/3, and
4p/3, there exist three clustered phases, one-cluster, two-
cluster, and three-cluster phases leading to the three kinds of
noise-induced transitions between two of them. The conflict-
ing roles of the additive and the multiplicative noises and the
pinning force lead to the very rich structure of the phase
portraits including the reentrant transition in thesA-sM ,
sA-b, andsM-b planes.

In conclusion, we have studied the phase transitions in the
globally coupled oscillators with the additive and the multi-
plicative noises and the higher harmonic pinning force to
understand the interplay of them. Their conflicting and frus-
trated roles have showed the very rich structure of phase
portraits.
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