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Computer investigation of long-range correlations and local order in random packings of spheres
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Random packings containing 8192 hard spheres in three dimensions have been built with an efficient
computer algorithm for various packing fractions upcte 0.643, a value close to the upper linsi{=0.649.
Long-range correlations and local order have been investigated via the calculation of the two-point correlation
functiong(r) and the Voronoi tessellation, respectively. Tg(@) curve exhibits large-damped oscillations
characterized by a correlation lengghthat increases witle and whose extrapolation far>cy, diverges at
Co=0.754, which would be the volume fraction of an ideal icosahedral order. When they are extrapolated in
the same manner, most of the geometrical characteristics of the Voronoi cells converge to their corresponding
values for the perfect dodecahedron circumscribed around a spBa63-651X96)01012-4

PACS numbd(s): 05.40:+j, 61.43.Bn, 61.20.Ja, 61.72y

I. INTRODUCTION given sphere center than to any other. Apart from a few
studies[26—28, the Voronoi tessellation was not performed
Random packings of hard spheres in three dimensiongery often on three-dimensional random packings. A recent
have been used throughout the past decades to represent therk, however, reports on a study of Voronoi cell statistics
structure of liquids, amorphous solids, or glasgks6]; to  for a few random packings of limited volume fractiofus to
provide structural models to investigate phenomena such as=0.58) [29].
electrical conductivity 7—9), fluid flow [10-12, and stress In this paper, we have built random packings containing
distribution[13]; and to investigate processes such as sinterg192 spheres, in a wide range of concentrations, up to vol-
ing [9,14,19 or particle-size segregatidi6,17. One of the  yme fractions very close to the upper lintf, using the
most fascinating features of random packings is that there igfficient Jodrey-ToryJT) algorithm[20]. For each computer
an upper limit of the volume fraction, that cannot be sur- generated packing we have calculated the pair-correlation
passed and is significantly smaller than the ope=0.7405  function and performed a complete Voronoi tessellation. An
of the ordered close packingsexagonal-closed-packed and important result of our paper is that all the calculated char-
face-centered-cubjc Since the pioneering work of Bernal acteristics vary withc in such a way that when they are
[1], who realized a close random packing with real spheres ixtrapolated above, , they apparently approach their corre-
a laboratory, much effort has been devoted by both experisponding values for a perfect tetrahedral local order, with
mentalists and theorists to obtain the most compact randoodecahedra as Voronoi cells, for the ideal packing fraction
packing[18,19. To our knowledge, the best efficient algo- ¢,=0.754; this value corresponds to the ratio of the volume
rithm to build random close packings on a computer remaingf a sphere over the volume of its circumscribed perfect
the one of Jodrey and Tof20], which leads toc,=0.649.  dodecahedron. Our results strongly suport the idea that the
We have used it in the present work. It is now believed thaperfect tetrahedral ordéwith fivefold symetry would be an
the existence of an upper limit for the volume fraction is ynreachable fixed point as postulated in a recent theory for
related to the degeneracy between hexagonal-closed-packggk glass transitiof30]. In Sec. Il we provide a short de-
and face-centered-cubic structures leading to the so-callegtription of the algorithm used to build the packings, in Sec.
geometrical “frustration” associated with the impossibility ||| we give the results on the pair-correlation function, and in

to tile the space with perfect tetrahedra of#2—24. Sec. IV we present the numerical results for the Voronoi cell
One of the most widely used tools to investigate the struccharacteristics.

ture of isotropic random packings is the pair-correlation

function g(r), which is the Fourier transform of the experi-

mentaj wavelength—dgpenden_t x—r;(w neutron)_scqttering Il. ALGORITHM USED TO BUILD THE PACKINGS
intensity I (g) [21]. This quantity gives interesting informa-

tion on the sphere correlations, but is too much average to be Since we have reproduced the JT algoritf2@] with only

able to describe in detail the topology of the local structureslight differences, we will not provide too many details here.
A powerful way to get local information is to determine the The algorithm proceeds by an iterative sequential resorption
Voronoi cells, a method that was initiated by Finj@yand  of overlaps of imagined spheres, which consists of succes-
has a wide range of applications, especially for studyingsive displacements of pairs of nearest-neighboring points
froths and foam$22,25. A Voronoi cell is the generaliza- (sphere centeysstarting at iteration =0 from a set ofN

tion of a Wigner-Seitz cell for disordered structures. It is thepoints randomly located in a cubic box of edge length
polyhedron that contains the ensemble of points closer to Beriodic boundary condition€PBC’s) are used at the box
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edges. At each iterationthe set of pointgthe sphere cen- ~ TABLE I. Packing fractionc and box edge length (in diam-
ters is characterized by the list of coordinates and also by #ter units as a function of the input parameferdefined in the text.
list of distancegbetween pairs of pointsn increasing order

together with some other tables necessary to identify the R c b

points in the list. A minimum packing fraction_'m:N(n-/ 0.1 0.4235 21.64
6)(d,/B)* corresponds to the minimum distandg. Along 0.05 0.4850 20.68
the iterative procedure, one also carries a maximum distance 0.033 0.5177 20.23
dy related to a maximum packing fractiooy=N(7/ 0.020 0.5512 19.82
6)(dy/B)*, which is set tody =B(6/7N)*° (i.e., cpy=1) at 0.010 0.5850 19.43
i=0. After the identification of the pair of.poimrsil'l and 0.004 0.6130 19.13
M}, realizing the minimum distanad,,= M} M, these points 0.002 0.6260 18.99
are spread apart symmetrically along &M, line to new 0.001 0.6336 18.92
positionsM{** andM}"* such thatv}"*M5 t=d},. Then, 0.0005 0.6392 18.86
before going to the next iteration, the list of distances and the 0.0002 0.6430 18.82

related tables are updated, the new minimum distalhiteis

determined, and the maximum distance is set to a lower o 3 ) . .
value given by center inside a volumeé®r at a distancer from a given

sphere center. Consequently, for an isotropic packing, the

number of sphere centeriN located between distances

and r+dr from a given sphere center is proportional to

i g(r)4mr2dr. Knowing that, on average, the number of

where the “rate” R and the exponent are two :)nput Pa-  gsphere centers per unit volume is/ér, one can normalize

rameters of the algorithm in addition & N, anddy, . Note  g(y) to unity whenr goes to infinity by writing

that formula(l) is slightly different from(simpler than the

original one used by Jodrey and Tdi30] and consequently 6¢c ) )

our definition of the rateR is different. The process stops at dN=—g(r)4mr=dr=_24cg(r)r=dr. @

iterationn when one findsly,<d. Then the final minimum

distanced?, is taken as the particle diameter for the resultingWe have used this formula to compugér) in all the pack-

packing. ings listed in Table I. For each sphere in the box, we counted
Note that the value taken for the box edge lenBtdoes the number of sphere centers located between distarmed

not play any role as it only fixes the unit of length. In prac-r +dr from its center, taking care of PBC’s when investigat-

tice, B has been set to an integer valBe= 20 because we ing regions outside of the box. Then we averaged the results

have used an underlying cubic lattice of 8000 cells to labepver theN particles in the box and divided it by 2#°dr. In

the spheres in order to accelerate the search for their neigidll the calculations, we have takedr=0.05. We have

bors. The numbeN of spheres has been set hb=8192, checked that oulg(r) curves exhibit all the well-known

almost an order of magnitude larger than the JT valueshort-range featurg®1]. In particular, a double peak, char-

N=1000[20]. We have checked on a few othirvalues acteristic of close packings, appears in the range 1.7-2 for

that the results are size insensitive. Reaching l&tge in- € larger than about 0.6. But here we would like to focus on

teresting here in our attempt to get information about correthe behavior for larger distances. Such behavior is well re-

lations on distances larger than previously reported. Whildlected in Fig. 1, where we have plotted |gg(r)—1| versus

the parameted}, is not very importaniit should be taken I for two packing fractionsc=0.551 andc=0.643. The

sufficiently large, howeverthe remaining parameteRand ~ curves have been limited to the maximum valyg=b/2

a are essential not only to fix the final packing fraction, butSince correlations due to artifacts from PBC's appear for

also to determine the overall speed to reach it. Here we have>"wv - The dashed curves correspond to the pair-correlation

taken «=0.33 and we have varied ong. We provide in function calculated in the same manner, but for the same

Table | the values oR considered with the resulting packing humber of points distributed randomiwithout taking care

fractions. When extrapolating these packing fractions tof hard core conditionsin the same box. When the solid

R=0, we obtainc,=0.645, in good agreement with previ- curve _reaches.the dashed curve, this means that the mterpar-

ous estimates. To build the most dense packing, of volumécle distance is so large that the two particles of the.palr

fraction c=0.643, we used a few days of IBM RISC 6000/ become uncorrelated. It clearly can be seen on these figures

580 computer time. that the range of values where the spheres are significantly
As soon as they are built, all the packings are rescaled tgorrelated increases with concentration. More quantitatively,

get a particle diameter of 1 and, consequently, in the followfor ¢>0.4, our data can be well fitted by

ing, the distances will be expressed in diameter units. To . ;

give an idea of the linear sizes of our packings we have listed g(r)=1+A ex;{ - _) sin( 27.,_> , 3)

the rescaled box edge lengthsB/dj, in Table . 3

ll. PAIR-CORRELATION EUNCTION whereA is an amplitude parametea, is twice the period of

the oscillations seen in Fig. 1, ardis a typical correlation
The pair-correlation functiorg(r) is defined such that length inversely proportional to the slope of the straight-line
g(r)d®r is proportional to the probability of finding a sphere fit of the maxima. From a standard nonlinear fitting proce-

. . R . '
dy ' =dyy = (m—Cm)®, (1)
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FIG. 2. Parameters of the fit @f(r) to Eq.(3), £~ ! (squares
anda™! (circles, as a function ofc. The filled symbols indicate
their expected extrapolations for=c, (see the text

by 12 spheres all at a diameter distance, forming a perfect
icosahedral arrangement. The Voronoi cell, which is the
polyhedron whose faces are the bisector planes of the seg-
ments joining the central sphere to all its neighbors, would
then be a perfect dodecahedron with faces tangent to the
sphere. The corresponding value of the volume fraction is
obtained by dividing the volume of the sphere of diameter 1,
which is 7/6, by the volume of a dodecahedron such that the
center-to-face distance is equal to a half unit. Knowing, from
a geometry textbook32], the expressions for the volume
V4 and the center-to-face distankk; as a function of the
edge lengtH for a perfect tetrahedron

r 15+7V5
Va=—7p— 1%

1+45

2

(4a)
FIG. 1. Pair-correlation function presented as a linear log plot of

|g(r)—1| versusr for (8) c=0.551 and(b) c=0.643. The dashed

curve corresponds to the same number of points randomly disposed

512
in the box. 2

Hg= 5Tz 5 (4b)

dure performed in the range 2% <ry, we have found that one findsl=0.449 andc,=0.754, a value slightly larger
A (=1.7) is roughly independent or, while a decreases than the one of the most compact packing of equal spheres
and ¢ increases when increases. The numerical results for ¢,,= m/3\2=0.7405.

Land&™ 1! are reported as a function ofin Fig. 2. These The larger oscillations ofg(r) are due to a pseudoperi-
results do not depend much on the fitting procedure. Wedic arrangement of the spheres around a given one. Since
have checked that the same results can be obtained frothe correlation is more effective the denser the packing is,
estimations of the position and the width of the Fourier transone expects that the period of the oscillations should be as-
form S(q) of g(r), but we prefer to perform a direct fit of sociated with the smallest distance. Aside from the hard-
g(r) to get better control on the error bars on batit and  sphere radiul in our unit3 one can look for what we call
&1, which turn out to be smaller than the thickness of thethe most compact parallel planes locally. The most compact
symbols used in the figure. plane closest to a given sphere is defined by the centers of its

The data of Fig. 2 can be analyzed as the functional dethree nearest neighbors. Therefore, in the ideal arrangement
pendence thag would diverge at some valuecy larger than  described above, this peri@should be identified with the
Cp - One can determine this particular valuecah coherence distance between the center of the icosahedron and the center
with the analysis of the Voronoi cells, which will be done in of one of its faces, knowing that the distance from the center
Sec. IV. We suppose that in such an ideal packing of voluméo a vertex is here equal to unity. Getting, again from a
fractioncg, a given sphere would be surrounded isotropicallygeometry textbook32], the expressions of the center-to-face
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and center-to-vertex distanckls andL; as a function of the 15.0 ; .
edge lengtH for a perfect icosahedron,
Lt 1+5\%1 .
i_ﬁ 5 5 (5a
/ 100 1
1+5\ "%
gyl 2T NT
L;=5 ( 5 ) > (5b) ]

=

one getsag=H,;/L;=0.7946. The corresponding point
a, ') is shown by a filled circle in Fig. 2. It is remarkably 50 L
located on the straight-line fit of the data far*.

IV. VORONOI CELLS

We have recently written a code able to perform a
Voronoi tessellation in three dimensions given a set of points 003
in a cubic box with periodic boundary conditions at the box
edgeq31]. The algorithm first determines the Delaunay tet-
rahedral simplicial cells, which are, among all the tetrahedra
involving four arbitrary sphere centers, the ones where the
four centers are chosen such that no other sphere center lies
inside their circumscribed sphefiee., the sphere whose sur-
face is defined by the four centgr§hen all the elements,
vertices, edges, and faces of a Voronoi cell of a given sphere
are determined, knowing that the vertices are the centers of 00 L
the circumscribed spheres of all the tetrahedra sharing the
given sphere. For each cell, not only have the number of
verticesV, the number of faceB, and the number of edges
E been determined, but also the total volume of the gell
the areas for each face, the lengthfor each edge, as well as 1.0
the total surface are@ for the cell(sum of the face areas

In Fig. 3(@ we report the distribution functioh, for the
cell volumes defined such théat,(v)dv is the fraction of
cells with a volume lying between andv +dv. In Fig. 3b) 0.0
we report the distribution functiohg for the cell surfaces 4.0
defined similarly. Both histograms become more and more
peaked as the concentration increases. As a measure of their
width we have calculated the standard deviatiensand FIG. 3. (a) Cell volumeh, (v) and(b) cell surfacehs(S) distri-
os of h,(v) andhg(S), which have been reported as a func- bution functions. Dot-dashed, dashed, dotted, and solid lines corre-
tion of ¢ in Fig. 4(a). The filled circle on the horizontal axis SPond toc=0.424,0.518,0.585, and 0.634, respectively.
represents the concentratiopdefined in Sec. Ill. This point
lies nicely on the extrapolations of both curves as if both thebut also, since the system is disordered, there are always
surface and the volume of the cell would be well defined athree edges meeting at a given cell vertex and therefore
Co- As a measure of the positions of the peaks we havE=3V. Other situations, which occur in some regular
calculated the averages, and S,,. We have verified that packings, correspond to the existence of degenerated zero-
vm=Db3/N=m/6c. In Fig. 4b) we have reported the dimen- area faces and have no chance to occur in the presence of
sionless quantity '¥/SY? as a function ot. The filled circle  randomness. Hence boEhandV are related to the number
corresponds to the value of that ratio for a perfect dodecahef faces, or coordination numbénumber of nearest neigh-
dron atc,. Here again the point is well located on the ex-bors, F,
trapolated curve suggesting that the packing develops to-
wards a pure icosahedral order, with dodecahedra as Voronoi E=3(F-2) (7a)
cells, as the concentration increases. The same anahgis '
reported herehas been done for the distribution functions
hs andh, for the face areas and the edge lengths and leads to V=2(F-2). (7b)
the same conclusion.

Concerning the quantities, V, andE, it is not necessary ] - )
to study all of them since they are related. They not onlyThese relations have been verified on our numerical results.

verify the well-known Euler relationshif22,25 Another interesting quantity characterizing a given face is its
number of edge®. A relationship exists between its mean
V-E+F=2, (6)  value(e) and the mean coordinanee- (F) [22]:

30
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12
2= 6—(e)’ ®  Unless one accepts a very slow convergence, there is no

clear evidence for an extrapolation ze- 12 (dodecahedron
In Figs. 5a) and 3b) we report the quantitie§ and f,, for c—c,. In fact, all the results reported in Figs. 5 and 6 are
which are the fraction of cells witk faces and the fraction not incompatible with recovering a dodecahedronderc,
of faces withe edges, respectively. On these figures the tenbecause extra faces might persist whose areas vanish only at
dency to build mostly dodecahedra esincreases is less c=c,. In that casez might be discontinuous at=c,. The
clear than with the other quantities previously reported. Thesame kind of behavior occurs when disturbing any degener-
fraction of cells with 14 faces increases withalso, but less  ate regular structure, for example, when including an infini-
quickly, the fraction of cells with 13 and 15 faces increasestesimal temperature in a fcc crystal.
while the fraction of cells withF>15 decreases. Surpris-
ingly, the fraction of cells with 12 faces stays almost con-
stant. Note that in the present work the faces are not
weighted by their areas, which is probably the main reason We have built large random packings of hard spheres with
for the misleading occurrence of large valuesFobr e. In  volume fractions very close to the upper limit and we have
Fig. 5b) the situation is slightly better since the fraction of systematically studied some of their structural characteristics
pentagons is always in the majority and increases wiBut  as a function of the volume fraction. From a quantitative
also the fraction of hexagons increases. In Fig. 6 we repornalysis of both the pair-correlation function and some
the mean coordination number=(F) as a function ofc. = Voronoi cell characteristics, we conclude that the system ap-

V. DISCUSSION AND CONCLUSION
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[34]. Their aim was to contrast their numerical results with
some analytical conjectures on the statistics of the Voronoi
cells. When comparing both studies, it appears that the nu-
merical results are remarkably close. For example, we get
z=14.56 for ¢=0.585, while they getz=14.53 for
c=0.58. Such agreement might be surprising if one knows
that any curve giving a structural characteristic as a function
of the volume fraction is not universal. The detailed structure
of a random packing depends not only on its volume frac-
tion, but also on the procedure used to build it. In particular,
the Bennet packing is anisotrodi@4] while the JT packings
are isotropic. Hence the nice agreement between both studies
suggests that a quasiuniversality exists for random packings,
at least for very large packing fractiorirger than about
0.55.

Extensions of this study to the thermodynamics of soft
spheres are in progress and some preliminary results have
been obtained in connection with glass transitid@4].
When the temperature decreases from the liquid phase, the
system behaves the same way as it does here when increas-
ing its density, i.e., it tries to reach a local icosahedral order.
All these results appear to be in agreement with a recent

proaches icosahedral order when increasing the density tgheory of glass transitions that also invokes an unreachable

wardscg, but it stops at the upper limit=c, due to geo-
metrical frustration. We plan to fill the gap by building

critical point[30].

sphere packings in curved space, but the extension of the JT

algorithm to curved space is a difficult task.
Although the motivation is different, our work on the
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