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Random packings containing 8192 hard spheres in three dimensions have been built with an efficient
computer algorithm for various packing fractions up toc50.643, a value close to the upper limitcb.0.649.
Long-range correlations and local order have been investigated via the calculation of the two-point correlation
functiong(r ) and the Voronoi tessellation, respectively. Theg(r ) curve exhibits large-r damped oscillations
characterized by a correlation lengthj that increases withc and whose extrapolation forc.cb diverges at
c050.754, which would be the volume fraction of an ideal icosahedral order. When they are extrapolated in
the same manner, most of the geometrical characteristics of the Voronoi cells converge to their corresponding
values for the perfect dodecahedron circumscribed around a sphere.@S1063-651X~96!01012-4#

PACS number~s!: 05.40.1j, 61.43.Bn, 61.20.Ja, 61.72.2y

I. INTRODUCTION

Random packings of hard spheres in three dimensions
have been used throughout the past decades to represent the
structure of liquids, amorphous solids, or glasses@1–6#; to
provide structural models to investigate phenomena such as
electrical conductivity@7–9#, fluid flow @10–12#, and stress
distribution@13#; and to investigate processes such as sinter-
ing @9,14,15# or particle-size segregation@16,17#. One of the
most fascinating features of random packings is that there is
an upper limit of the volume fractioncb that cannot be sur-
passed and is significantly smaller than the onecm50.7405
of the ordered close packings~hexagonal-closed-packed and
face-centered-cubic!. Since the pioneering work of Bernal
@1#, who realized a close random packing with real spheres in
a laboratory, much effort has been devoted by both experi-
mentalists and theorists to obtain the most compact random
packing@18,19#. To our knowledge, the best efficient algo-
rithm to build random close packings on a computer remains
the one of Jodrey and Tory@20#, which leads tocb.0.649.
We have used it in the present work. It is now believed that
the existence of an upper limit for the volume fraction is
related to the degeneracy between hexagonal-closed-packed
and face-centered-cubic structures leading to the so-called
geometrical ‘‘frustration’’ associated with the impossibility
to tile the space with perfect tetrahedra only@22–24#.

One of the most widely used tools to investigate the struc-
ture of isotropic random packings is the pair-correlation
function g(r ), which is the Fourier transform of the experi-
mental wavelength-dependent x-ray-~or neutron-! scattering
intensity I (q) @21#. This quantity gives interesting informa-
tion on the sphere correlations, but is too much average to be
able to describe in detail the topology of the local structure.
A powerful way to get local information is to determine the
Voronoi cells, a method that was initiated by Finney@2# and
has a wide range of applications, especially for studying
froths and foams@22,25#. A Voronoi cell is the generaliza-
tion of a Wigner-Seitz cell for disordered structures. It is the
polyhedron that contains the ensemble of points closer to a

given sphere center than to any other. Apart from a few
studies@26–28#, the Voronoi tessellation was not performed
very often on three-dimensional random packings. A recent
work, however, reports on a study of Voronoi cell statistics
for a few random packings of limited volume fractions~up to
c50.58) @29#.

In this paper, we have built random packings containing
8192 spheres, in a wide range of concentrations, up to vol-
ume fractions very close to the upper limitcb , using the
efficient Jodrey-Tory~JT! algorithm@20#. For each computer
generated packing we have calculated the pair-correlation
function and performed a complete Voronoi tessellation. An
important result of our paper is that all the calculated char-
acteristics vary withc in such a way that when they are
extrapolated abovecb , they apparently approach their corre-
sponding values for a perfect tetrahedral local order, with
dodecahedra as Voronoi cells, for the ideal packing fraction
c050.754; this value corresponds to the ratio of the volume
of a sphere over the volume of its circumscribed perfect
dodecahedron. Our results strongly suport the idea that the
perfect tetrahedral order~with fivefold symetry! would be an
unreachable fixed point as postulated in a recent theory for
the glass transition@30#. In Sec. II we provide a short de-
scription of the algorithm used to build the packings, in Sec.
III we give the results on the pair-correlation function, and in
Sec. IV we present the numerical results for the Voronoi cell
characteristics.

II. ALGORITHM USED TO BUILD THE PACKINGS

Since we have reproduced the JT algorithm@20# with only
slight differences, we will not provide too many details here.
The algorithm proceeds by an iterative sequential resorption
of overlaps of imagined spheres, which consists of succes-
sive displacements of pairs of nearest-neighboring points
~sphere centers! starting at iterationi50 from a set ofN
points randomly located in a cubic box of edge lengthB.
Periodic boundary conditions~PBC’s! are used at the box

PHYSICAL REVIEW E DECEMBER 1996VOLUME 54, NUMBER 6

541063-651X/96/54~6!/6035~7!/$10.00 6035 © 1996 The American Physical Society



edges. At each iterationi the set of points~the sphere cen-
ters! is characterized by the list of coordinates and also by a
list of distances~between pairs of points! in increasing order
together with some other tables necessary to identify the
points in the list. A minimum packing fractioncm

i 5N(p/
6!(dm

i /B)3 corresponds to the minimum distancedm
i . Along

the iterative procedure, one also carries a maximum distance
dM
i related to a maximum packing fractioncM

i 5N(p/
6!(dM

i /B)3, which is set todM
0 5B(6/pN)1/3 ~i.e., cM

0 51) at
i50. After the identification of the pair of pointsM1

i and
M2

i realizing the minimum distancedm
i 5M1

i M2
i these points

are spread apart symmetrically along theM1
i M2

i line to new
positionsM1

i11 andM2
i11 such thatM1

i11M2
i115dM

i . Then,
before going to the next iteration, the list of distances and the
related tables are updated, the new minimum distancedm

i11 is
determined, and the maximum distance is set to a lower
value given by

dM
i115dM

i 2
R

N
~cM

i 2cm
i !a, ~1!

where the ‘‘rate’’R and the exponenta are two input pa-
rameters of the algorithm in addition toB, N, anddM

0 . Note
that formula~1! is slightly different from~simpler than! the
original one used by Jodrey and Tory@20# and consequently
our definition of the rateR is different. The process stops at
iterationn when one findsdM

n ,dm
n . Then the final minimum

distancedm
n is taken as the particle diameter for the resulting

packing.
Note that the value taken for the box edge lengthB does

not play any role as it only fixes the unit of length. In prac-
tice, B has been set to an integer valueB520 because we
have used an underlying cubic lattice of 8000 cells to label
the spheres in order to accelerate the search for their neigh-
bors. The numberN of spheres has been set toN58192,
almost an order of magnitude larger than the JT value
N51000 @20#. We have checked on a few otherN values
that the results are size insensitive. Reaching largeN is in-
teresting here in our attempt to get information about corre-
lations on distances larger than previously reported. While
the parameterdM

0 is not very important~it should be taken
sufficiently large, however! the remaining parametersR and
a are essential not only to fix the final packing fraction, but
also to determine the overall speed to reach it. Here we have
takena50.33 and we have varied onlyR. We provide in
Table I the values ofR considered with the resulting packing
fractions. When extrapolating these packing fractions to
R50, we obtaincb.0.645, in good agreement with previ-
ous estimates. To build the most dense packing, of volume
fraction c50.643, we used a few days of IBM RISC 6000/
580 computer time.

As soon as they are built, all the packings are rescaled to
get a particle diameter of 1 and, consequently, in the follow-
ing, the distances will be expressed in diameter units. To
give an idea of the linear sizes of our packings we have listed
the rescaled box edge lengthsb5B/dm

n in Table I.

III. PAIR-CORRELATION FUNCTION

The pair-correlation functiong(rW) is defined such that
g(rW)d3r is proportional to the probability of finding a sphere

center inside a volumed3r at a distancerW from a given
sphere center. Consequently, for an isotropic packing, the
number of sphere centersdN located between distancesr
and r1dr from a given sphere center is proportional to
g(r )4pr 2dr. Knowing that, on average, the number of
sphere centers per unit volume is 6c/p, one can normalize
g(r ) to unity whenr goes to infinity by writing

dN5
6c

p
g~r !4pr 2dr524cg~r !r 2dr. ~2!

We have used this formula to computeg(r ) in all the pack-
ings listed in Table I. For each sphere in the box, we counted
the number of sphere centers located between distancesr and
r1dr from its center, taking care of PBC’s when investigat-
ing regions outside of the box. Then we averaged the results
over theN particles in the box and divided it by 24cr2dr. In
all the calculations, we have takendr50.05. We have
checked that ourg(r ) curves exhibit all the well-known
short-range features@21#. In particular, a double peak, char-
acteristic of close packings, appears in the range 1.7–2 for
c larger than about 0.6. But here we would like to focus on
the behavior for larger distances. Such behavior is well re-
flected in Fig. 1, where we have plotted log10ug(r)21u versus
r for two packing fractionsc50.551 andc50.643. The
curves have been limited to the maximum valuer M5b/2
since correlations due to artifacts from PBC’s appear for
r.r M . The dashed curves correspond to the pair-correlation
function calculated in the same manner, but for the same
number of points distributed randomly~without taking care
of hard core conditions! in the same box. When the solid
curve reaches the dashed curve, this means that the interpar-
ticle distance is so large that the two particles of the pair
become uncorrelated. It clearly can be seen on these figures
that the range ofr values where the spheres are significantly
correlated increases with concentration. More quantitatively,
for c.0.4, our data can be well fitted by

g~r !511A expS 2
r

j D sinS 2p
r

aD , ~3!

whereA is an amplitude parameter,a is twice the period of
the oscillations seen in Fig. 1, andj is a typical correlation
length inversely proportional to the slope of the straight-line
fit of the maxima. From a standard nonlinear fitting proce-

TABLE I. Packing fractionc and box edge lengthb ~in diam-
eter units! as a function of the input parameterR defined in the text.

R c b

0.1 0.4235 21.64
0.05 0.4850 20.68
0.033 0.5177 20.23
0.020 0.5512 19.82
0.010 0.5850 19.43
0.004 0.6130 19.13
0.002 0.6260 18.99
0.001 0.6336 18.92
0.0005 0.6392 18.86
0.0002 0.6430 18.82
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dure performed in the range 2.5,r,r M , we have found that
A (.1.7) is roughly independent onc, while a decreases
andj increases whenc increases. The numerical results for
a21 andj21 are reported as a function ofc in Fig. 2. These
results do not depend much on the fitting procedure. We
have checked that the same results can be obtained from
estimations of the position and the width of the Fourier trans-
form S(q) of g(r ), but we prefer to perform a direct fit of
g(r ) to get better control on the error bars on botha21 and
j21, which turn out to be smaller than the thickness of the
symbols used in the figure.

The data of Fig. 2 can be analyzed as the functional de-
pendence thatj would diverge at somec valuec0 larger than
cb . One can determine this particular value ofc in coherence
with the analysis of the Voronoi cells, which will be done in
Sec. IV. We suppose that in such an ideal packing of volume
fractionc0, a given sphere would be surrounded isotropically

by 12 spheres all at a diameter distance, forming a perfect
icosahedral arrangement. The Voronoi cell, which is the
polyhedron whose faces are the bisector planes of the seg-
ments joining the central sphere to all its neighbors, would
then be a perfect dodecahedron with faces tangent to the
sphere. The corresponding value of the volume fraction is
obtained by dividing the volume of the sphere of diameter 1,
which isp/6, by the volume of a dodecahedron such that the
center-to-face distance is equal to a half unit. Knowing, from
a geometry textbook@32#, the expressions for the volume
Vd and the center-to-face distanceHd as a function of the
edge lengthl for a perfect tetrahedron

Vd5
1517A5

4
l 3, ~4a!

Hd5
1

51/4S 11A5
2 D 5/2 l2 , ~4b!

one finds l50.449 andc050.754, a value slightly larger
than the one of the most compact packing of equal spheres
cm5p/3A250.7405.

The large-r oscillations ofg(r ) are due to a pseudoperi-
odic arrangement of the spheres around a given one. Since
the correlation is more effective the denser the packing is,
one expects that the period of the oscillations should be as-
sociated with the smallest distance. Aside from the hard-
sphere radius~1 in our units! one can look for what we call
the most compact parallel planes locally. The most compact
plane closest to a given sphere is defined by the centers of its
three nearest neighbors. Therefore, in the ideal arrangement
described above, this perioda should be identified with the
distance between the center of the icosahedron and the center
of one of its faces, knowing that the distance from the center
to a vertex is here equal to unity. Getting, again from a
geometry textbook@32#, the expressions of the center-to-face

FIG. 1. Pair-correlation function presented as a linear log plot of
ug(r )21u versusr for ~a! c50.551 and~b! c50.643. The dashed
curve corresponds to the same number of points randomly disposed
in the box.

FIG. 2. Parameters of the fit ofg(r ) to Eq. ~3!, j21 ~squares!
and a21 ~circles!, as a function ofc. The filled symbols indicate
their expected extrapolations forc5c0 ~see the text!.
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and center-to-vertex distancesHi andLi as a function of the
edge lengthl for a perfect icosahedron,

Hi5
1

A3
S 11A5

2 D 2 l2 , ~5a!

Li551/4S 11A5
2 D 1/2 l2 , ~5b!

one getsa05Hi /Li50.7946. The corresponding point (c0,
a0

21) is shown by a filled circle in Fig. 2. It is remarkably
located on the straight-line fit of the data fora21.

IV. VORONOI CELLS

We have recently written a code able to perform a
Voronoi tessellation in three dimensions given a set of points
in a cubic box with periodic boundary conditions at the box
edges@31#. The algorithm first determines the Delaunay tet-
rahedral simplicial cells, which are, among all the tetrahedra
involving four arbitrary sphere centers, the ones where the
four centers are chosen such that no other sphere center lies
inside their circumscribed sphere~i.e., the sphere whose sur-
face is defined by the four centers!. Then all the elements,
vertices, edges, and faces of a Voronoi cell of a given sphere
are determined, knowing that the vertices are the centers of
the circumscribed spheres of all the tetrahedra sharing the
given sphere. For each cell, not only have the number of
verticesV, the number of facesF, and the number of edges
E been determined, but also the total volume of the cellv,
the areas for each face, the lengthl for each edge, as well as
the total surface areaS for the cell ~sum of the face areas!.

In Fig. 3~a! we report the distribution functionhv for the
cell volumes defined such thathv(v)dv is the fraction of
cells with a volume lying betweenv andv1dv. In Fig. 3~b!
we report the distribution functionhS for the cell surfaces
defined similarly. Both histograms become more and more
peaked as the concentration increases. As a measure of their
width we have calculated the standard deviationssv and
sS of hv(v) andhS(S), which have been reported as a func-
tion of c in Fig. 4~a!. The filled circle on the horizontal axis
represents the concentrationc0 defined in Sec. III. This point
lies nicely on the extrapolations of both curves as if both the
surface and the volume of the cell would be well defined at
c0. As a measure of the positions of the peaks we have
calculated the averagesvm andSm . We have verified that
vm5b3/N5p/6c. In Fig. 4~b! we have reported the dimen-
sionless quantityvm

1/3/Sm
1/2 as a function ofc. The filled circle

corresponds to the value of that ratio for a perfect dodecahe-
dron atc0. Here again the point is well located on the ex-
trapolated curve suggesting that the packing develops to-
wards a pure icosahedral order, with dodecahedra as Voronoi
cells, as the concentration increases. The same analysis~not
reported here! has been done for the distribution functions
hs andhl for the face areas and the edge lengths and leads to
the same conclusion.

Concerning the quantitiesF, V, andE, it is not necessary
to study all of them since they are related. They not only
verify the well-known Euler relationship@22,25#

V2E1F52, ~6!

but also, since the system is disordered, there are always
three edges meeting at a given cell vertex and therefore
2E53V. Other situations, which occur in some regular
packings, correspond to the existence of degenerated zero-
area faces and have no chance to occur in the presence of
randomness. Hence bothE andV are related to the number
of faces, or coordination number~number of nearest neigh-
bors!, F,

E53~F22!, ~7a!

V52~F22!. ~7b!

These relations have been verified on our numerical results.
Another interesting quantity characterizing a given face is its
number of edgese. A relationship exists between its mean
value ^e& and the mean coordinancez5^F& @22#:

FIG. 3. ~a! Cell volumehv(v) and~b! cell surfacehS(S) distri-
bution functions. Dot-dashed, dashed, dotted, and solid lines corre-
spond toc50.424,0.518,0.585, and 0.634, respectively.
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z5
12

62^e&
. ~8!

In Figs. 5~a! and 5~b! we report the quantitiesf F and f e ,
which are the fraction of cells withF faces and the fraction
of faces withe edges, respectively. On these figures the ten-
dency to build mostly dodecahedra asc increases is less
clear than with the other quantities previously reported. The
fraction of cells with 14 faces increases withc; also, but less
quickly, the fraction of cells with 13 and 15 faces increases,
while the fraction of cells withF.15 decreases. Surpris-
ingly, the fraction of cells with 12 faces stays almost con-
stant. Note that in the present work the faces are not
weighted by their areas, which is probably the main reason
for the misleading occurrence of large values ofF or e. In
Fig. 5~b! the situation is slightly better since the fraction of
pentagons is always in the majority and increases withc. But
also the fraction of hexagons increases. In Fig. 6 we report
the mean coordination numberz5^F& as a function ofc.

Unless one accepts a very slow convergence, there is no
clear evidence for an extrapolation toz512 ~dodecahedron!
for c→c0. In fact, all the results reported in Figs. 5 and 6 are
not incompatible with recovering a dodecahedron forc5c0
because extra faces might persist whose areas vanish only at
c5c0. In that casez might be discontinuous atc5c0. The
same kind of behavior occurs when disturbing any degener-
ate regular structure, for example, when including an infini-
tesimal temperature in a fcc crystal.

V. DISCUSSION AND CONCLUSION

We have built large random packings of hard spheres with
volume fractions very close to the upper limit and we have
systematically studied some of their structural characteristics
as a function of the volume fraction. From a quantitative
analysis of both the pair-correlation function and some
Voronoi cell characteristics, we conclude that the system ap-

FIG. 4. ~a! Standard deviationssv andsS and~b! dimensionless
ratio vm

1/3/Sm
1/2 ~b! as a function ofc. The filled circle indicates their

expected extrapolations forc5c0.

FIG. 5. ~a! Fraction f F of cells with F faces and~b! fraction
f e of faces withe edges. Crosses, open squares, open circles, and
filled circles correspond toc50.424, 0.518, 0.585, and 0.634, re-
spectively.
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proaches icosahedral order when increasing the density to-
wardsc0, but it stops at the upper limitc5cb due to geo-
metrical frustration. We plan to fill the gap by building
sphere packings in curved space, but the extension of the JT
algorithm to curved space is a difficult task.

Although the motivation is different, our work on the
Voronoi cells is complementary to the recent one by Oger
et al. @29#. These authors have considered packings built by
random sequential addition and therefore are bounded to the
so-called jamming limitcj50.385@33#, to which they have
added a Bennet-like packing of volume fractionc50.58

@34#. Their aim was to contrast their numerical results with
some analytical conjectures on the statistics of the Voronoi
cells. When comparing both studies, it appears that the nu-
merical results are remarkably close. For example, we get
z514.56 for c50.585, while they get z.14.53 for
c50.58. Such agreement might be surprising if one knows
that any curve giving a structural characteristic as a function
of the volume fraction is not universal. The detailed structure
of a random packing depends not only on its volume frac-
tion, but also on the procedure used to build it. In particular,
the Bennet packing is anisotropic@34# while the JT packings
are isotropic. Hence the nice agreement between both studies
suggests that a quasiuniversality exists for random packings,
at least for very large packing fractions~larger than about
0.55!.

Extensions of this study to the thermodynamics of soft
spheres are in progress and some preliminary results have
been obtained in connection with glass transitions@31#.
When the temperature decreases from the liquid phase, the
system behaves the same way as it does here when increas-
ing its density, i.e., it tries to reach a local icosahedral order.
All these results appear to be in agreement with a recent
theory of glass transitions that also invokes an unreachable
critical point @30#.
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