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Sheet structure is found in a global bifurcation diagram ofRah-diode circuit driven by a sinusoidal
voltage sourcéE sin27rft. Bifurcations of a driverR-L-diode circuit have three interesting featuréb: The
alternate appearance of large periodic windows and chaotic bands, where the period of each window increases
exactly by one ag is increased(2) The repeated appearance of period-1 attractors and chaotic baBds as
increased(3) The existence of two different windows, each of period 2, 3, and 4. This paper attempts to
provide a complete understanding of the global nature of the above features. Comprehending global bifurca-
tions of systems, including chaotic behavior, naturally necessitates understanding the nature ainstable
unstable periodic orbits, the latter being essential in most situationsRTlhaliode circuit is no exception.
This paper accomplishes such a task(bhyperforming extensive measurements of bifurcations in th&)
plane,(ii) simplifying the dynamics of the circuit without losing essential features of the observed bifurcations,
and (iii) carefully analyzing the simplified dynamics from a global perspective. An analytical method in this
paper is in(iii), where exact bifurcation equations are derived then the bifurcation diagrams are drawn in the
(f,E,S/T) space instead of on thé,E) plane. Herd andE are the frequency and the amplitude of the driving
voltage source, an®/T will be precisely defined. This three-dimensional picture reveals the properties of
stable and unstable periodic orbits, and makes many of the global bifurcation mechanisms involved almost
transparent. In particular, the following are fourtd} All the period-1 attractors and their associated unstable
period-1 orbits constitute a sheet structure in thd&e(S/T) space, and hence belong to the same faniy.
Other periodic attractors of the same period and their associated unstable periodic orbits form a sheet structure
in (f,E,S/IT) space, and therefore belong to the same respective families. A very good correspondence
between the numerical and experimental results is obtained. The global structure revealed will also clarify
the global bifurcation mechanisms of other systems, e.g., the gear meshing and the offshore compliant systems
described by equations similar to the present sysf&h063-651X96)14111-§

PACS numbd(s): 05.45+b

I. INTRODUCTION 0<E=<5.0 V. [Figure Zb) will be explained later when we

verify the experimental and analytical resultblote that a
Consider theR-L-diode circuit given in Fig. 1 driven by bandlike region indicates a chaotic response. One of the first
the sinusoidal voltage sourdesin(27ft). The dynamics is questions is the following: What is responsible for the cha-
described by otic behavior when the circuit is so simple and natural? The
answer is the nonlinearity of the parasitic capacitor associ-

. ated with the diod¢15]. It has been pointed o{i15] that the
at ! —9(f(@)), nonlinearity of the diode capacitor dominates other factors.
(1) The resulting model consists of a two-segment, piecewise

di
L &=—Ri—f(q)+Eb+Esin(wt),

linear capacitor connected in series with a linear resistor and
a linear inductor. The simulation reproduces the experimen-

tal results surprisingly well. Thiénode) circuit still appears
whereq is the charge stored in thiparasiti¢ capacitor of the  to be the simplest nonautonomous circuit which exhibits cha-
diode,i is the current through the circuiR andL are the otic behavior. o _
series resistor and the inductor, d&glis a dc bias. Function The next natural question is the following: How are the
g is the well known exponential characteristic of a diode,chaotic attractors formed? The answer is that a significant
while f represents the nonlinear characteristic of the capacidifference in the vector fields in each of the two regions of

tive part of the diode. Details af andf will be discussed in the piecewise linear capacitor characteristic gives rise to a
Sec. lll. “folding mechanism,” which in turn is responsible for the

This circuit exhibits a rich variety of bifurcations, includ-
ing cascade of period doubling, chaotic attradtb}; inter-
mittency[2], and crisid 3] and many works have reported on
this particular circuif4—25]. Figure Za) shows a one param-
eter bifurcation diagram. The horizontal axis is the amplitude
E of the voltage source, and the vertical axis is the current of
the circuit sampled at a particular phase of the voltage
source. The circuit parameters aRe=75 (), L=2.5 mH,
Diode: 3CC13, dc bias voltage,=0.0 V, f=140 kHz, and
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FIG. 1. A drivenR-L-diode circuit.
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FIG. 2. One parameter bifurcation diagrafa) Experimental FIG. 3. Another one parameter bifurcation diagram with a dif-

observation. The horizontal axis is the amplitude of the voltageferent setting(a) Experimental observation. The source frequeficy
sourceE (0.5 V/div), the vertical axis is the inductor curreipt(2.0 i 28 kHz, and dc biag&, is —1.0 V. The horizontal axis is the
mA/div), and the source frequendyis 140 kHz.(b) Schematic ~amplitude of the voltage sourde (0.4 V/div), while the vertical
bifurcation mechanismA, and B, indicate two different period-2  axis is the inductor current (2.0 mA/div). (b) Schematic bifurca-
attractors. SimilarlyA; andB; (A, andB,) indicate two different ~ tion mechanism.

period-3(period-4 windows.

] . . ~ observed. How are they related to each other, if indeed they
chaotic attractor formatiofi21]. Reduction of the dynamics gre related?

to a two dimensional discrete dynamical system was a very (jij) what global bifurcation picture incorporates Figs.
effective means of analyzing the bifurcations. 2(a) and 3a), including (i)?

The third question is the following: Why does the period  comprehending global bifurcations including chaotic be-
of the large periodic window increase by exactly 1? This alstayvior naturally necessitates understanding the natures of
is answered if21]. o . _ stableand unstable periodic orbits, the latter being essential

At lower values ofE andf, qualitatively different bifur-  jn most situations. The&k-L-diode circuit is no exception.

cations are observed. That is, instead of the increase of thenis paper accomplishes such a task(ly extensive mea-
period by 1, a repeated appearance of period-1 attractors are

observed sandwiched between chaotic baffeig. 3(@)],
where parameters are the dc bias voltgge- —1.0Vf=28
kHz, and 0<E<4.0 V. [Fig. 3(b) will be explained latek It
was found that the “multifolding” mechanisri23] is re-
sponsible for this phenomenon. Multifolding is due in turn to L
the fact that with loweE andf values, the trajectory spends = sof
a much longer time in a regioff the state spagavhere the @
vector field is fast so that the trajectory rotates more fre- 20r
quently than with largeE and f values. Reduction of the
dynamics to a discrete dynamical system is again very use-
ful. ‘ . .

There are at least two more questions which need to be 100 @ 200 500
answered: f[kiz]

(i) InFig. 2, two different period-2 windows denoted by  FIG. 4. Observed two parameter bifurcation diagram. The hori-
A, andB, are discernible. Similarly, two different period-3 zontal axis isf:0—400 kHz. The vertical axis i&:0.0—5.0 V(0.0—
(period-4 windows denoted byA; andB; (A, andB,) are  10.0 V).

Period 2 Period 3 Period 4 Period 5 Period |
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FIG. 5. Another two parameter bifurcation diagram with a different setting. The horizontal aiis(s 110 kHz. The vertical axis is
E:0.5-1.0 V(0.0-8.0 V,y). Red: period-1 attractor. Pink: period-2 attractor. Black: period greater than 2 or chaotic attractor.

suring of the bifurcations in thef (E) plane,(2) simplifying  what was responsible for the chaotic behavior of R -
the dynamics of the circuit without losing essential featuregliode circuit. Azzouz, Duhr, and Hasl¢t0,14], indepen-
of the observed bifurcations, ari#) carefully analyzing the dently of the present authors, proposed a diode model con-
simplified dynamics in a global perspective. sisting of a piecewise linear resistor and piecewise-linear
In (3), exact bifurcation equations are derived by takingcapacitor and reproduced, by simulation, a bifurcation dia-
full advantage of the piecewise linearity with only one breakgram similar to the observed data. It appeared difficult, how-
point of the dynamic$24,2€. These bifurcation equations ever, to perform a detailed analysis because of the two non-
are effectively used to draw bifurcation diagrams in thelinear elements. Experimental observations similar to our
(f,E,S/T) space instead of on thé ,E) plane, wheréSand  Fig. 2 were reported by Bronson, Dewey, and Lin$ay;
T are the times the trajectory spends in each of the subrefoon et al. [16], Jeffries[17], and Pere9]. Many discrete
gions of the piecewise-linear dynamitsee Sec. IV C for a mapping models were proposed to reproduce the observed
precise definition As will be shown in Sec. V {,E,S/T) bifurcations(Yoon et al.[16], Jeffries[17], and Pere£19]).
diagrams reveal the properties of stable and unstable periodin most of these models, correspondence between circuit pa-
orbits, and make global bifurcation structures almost transrameters and the parameters of the mapping were not clear.
parent. Our goal is to explain Figs. 2 and 3 via Fig. 23, aThe repeated appearance of period-1 attractors was discussed
global bifurcation diagram with a sheet structure. by Bocko and co-workergl3,22.
Our results in this paper elucidate several important glo- We would like to point out that th&®-L-diode circuit is
bal bifurcation structures associated with fRe_-diode cir-  not the only one system which is described by an equation of
cuit. In particular, the following are found1) The repeat- type (1). The first class of problems is the gear meshing
edly observed period-1 attractors and associated unstablgbrations described b}27,28
period-1 orbits constitute a sheet structure in th&=(S/T)
space and hence belong to the same fany.Other peri- d2x
odic attractors of the same periods and their associated un-
stable periodic orbits form a sheet structure and belong to the

same respective families. ) . . . . .
To the best of our knowledge, the first work BaL -diode wherex is a dimensionless variable representing the relative

bifurcations was by Linsaj4], where period doubling cas- angle between the driving and driven gearss the damping
cade and chaotic attractors were observed. Testa, Perez, aff'Stént, anch representsiasymmetri¢ restoration force
Jeffries[5] then reported a measured Feigenbaum constarVen by

which agrees well with the theoretical value 4.869 .,

thereby giving evidence of the universality of the Feigen- h(x)=
baum scenario. Rollins and Huh®] paid attention to the -1, x<-1.

reverse recovery time of the diode, and proposed an exactly

solvable model. Their model, however, cannot be describeBy settingx, : =X, x,: =dx/dt, one sees that EqR) is trans-
by a differential equation. It was not still completely clear formed into

X
P a+h(x)= Bcw sin(wt) + Bw?cod wt), (2)

X, x=-1

(©)
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FIG. 6. Orbits of the period-1 attractors. The horizontal axis is

the diode voltagey (5.0 V/div), and the vertical axis is the inductor
currenti; (2.0 mA/div). Since the origin is not located at the center
of each figure, the axes are indicated by arrofvs30 kHz. (a)
E=19V.(b)E=2.4V.(c) E=29 V.

dxy

at 2

(4)

dx,

gt =S¥~ h(x1)+Bew sin(wt) + Bo’cog wt).

The nature of functio is very similar to that of in Eq. (1)
(see Sec. Il for detai)s Bifurcations similar to those of Eq.
(1) are observed in Ed4), in fact, the “multifolding” found
in [24] is also observed for Ed4), although global bifurca-
tion mechanisms are not well studied[&7,28.
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FIG. 7. Equivalent circuit of djunction) diode.

The second class of problems which are described by
equations similar to Eq(l) is that of compliant off shore
structured29], where the dynamics is given by

2

2 0 e &y =sint
Ul nga B(X)x=sint,

(5
[ Ja)dda, x>0

A=V (14 Ja)a, x<o0.

)

Herex is the displacement is the damping ratio with re-
spect to an undamped bilinear frequency obtained by aver-
aging the periodic timey is the ratio of the forcing fre-
quency to this bilinear frequency, ardis the ratio of the
two linear stiffnesses.

That Eq.(1) is similar to those describing other systems is
not surprising because tleL-diode circuit involves no ar-
tificial ingredient such as particular nonlinear elements syn-
thesized by engineers; it is a simple series connection of the
three extremely natural elements. This appears to be one of
the main reasons for the fact that not only engineers
[10,14,15,18,21,23—-25but also physicists are interested in
this circuit[4-9,11-13,16,17,19,20,22 BO0We suspect that
there will be many more natural systems as well which are
described by equations similar to Eg,).

We close this section by pointing out that the global bi-
furcation analysis given in this paper is also helpful for pos-
sible applications to controlling chaos and chaotic masking
systems using the driveR-L-diode circuits[30,31].

Il. EXPERIMENTAL OBSERVATIONS
OF THE (f,E) PLANE

Figure 4 is a two parameter bifurcation diagram observed
on the §,E) plane. The one parameter bifurcation diagram
given in Fig. 2 corresponds t@), wheref=140 kHz and
0.0<E=<5.0 V. Observe the shaded areas for the periodic
orbits which, explain the large periodic windows of Fig. 2,
where the period increases by 1. Note that in Fig. 4, details
of the bifurcation structures in the smallErvalues are not
clearly discernible. This is due to the fact that whenis
small, the probed signal is small and the signal-to-noise ratio
of the desired signal will deteriorate. Our experience tells us
that this is particularly true wheh is also small. It will be
shown in Sec. IV that adding a negative dc bias has the same
effect as decreasing without deteriorating the signdkee
Fig. 1.

Figure 5 shows another observed two parameter bifurca-
tion diagram on thef(,E) plane where 10 kHzf=<110 kHz,
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and 0.5 \«E<4.0 V (1.0-8.0 V,;, where \j, stands for number of rotations is larger for largérvalues. This means
peak to peak voltageThe following color code is used: red, that the period-1 attractors which are divided by chaotic
period-1 attractor; pink, period-2 attractor; and black, periocbands in Fig. 3 have orbits of different types.

greater than 2 or chaotic attractor. It is readily observed that
the pink regions at the lowerf (E) values have essentially
the same bananalike shape. The bifurcation diagram in Fig. 3
has dc bias voltage,= —1.0 V, f=28 kHz, and GsE=<4.0 In order to carry out a detailed bifurcation analysis, we
V. It intersects the bananalike regions of Fig. 5, which ex-will simplify the dynamics(1) without losing the essential
plains the alternate appearance of the period-1 attractor arigiatures of the observed bifurcation structures. As shown in
the chaotic band. In order to see the differences of the orbitbig. 7, a very accurate equivalent circuit ofjanction) diode

in different regions, let us observe the trajectories in thds given by a parallel connection of three nonlinear elements
vg—i plane, wherevy stands for the diode voltage and [32]: (1) nonlinear resistor

indicates the current. Figure 6 shows these orbits in the three
different red regions. Note that all of them are period 1 with
respect to the driving sourde sin27ft. However, each tra-
jectory has different “rotations” in theiy,i) plane, and the (2) junction capacitoC;(») due to the depletion region,

Ill. SIMPLIFICATION OF THE DYNAMICS

l4=Ils(exp(q’ v/kT)—1), (6)

C]O(l_ V/Vjo)_llz

Cj(V): C]O
2Vjo

when v<Vj;
2Vjp—3Vj;
2(Vjo—Vj1)

@)

(1_Vj1/Vj0)_3/2V+ Cjo(l—le/Vjo)_llz when V>le;

and (3) diffusion capacitorC4(v)

Cy(v)=Cyqo exp(q’ v/KT), (8)

wherelg, 9', k, T, Vjo, Cjo, Cq4o, andV, are the saturation
current, electron charge, Boltzmann constant, absolute tem-
perature, potential voltage of then junction, junction ca-
pacitance at zero bias, diffusion capacitance at zero bias, and
turnover voltage between two models of the junction capaci-
tor, respectively.

Cio(1—v/Vjp) ¥ in Eq. (7) is a well known model of
the junction capacitor. Observe, however, that this function
has a singularity av=Vj,, i.e., C; becomes infinite. This
model is based on the abrupt space charge edge approxima-
tion, and is adequate only for large reverse bias voltages.
Thus this model cannot incorporate the forward bias region.
Experimental measurements show that, in the forward bias
region, the junction capacitance behaves in a rather compli-
cated(nonlineaj manner33,34]. The second part of Eq7)
is a reasonable linear approximation in the forward bias re-

gion, although it is less well known in device physics and  FiG. 9. Schematic of an orbit on th€)(l) plane. The horizontal
circuit simulations. Since the diffusion capacitance given byaxis is|; the vertical axis i€Q. B, indicates boundary lin@=1.
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Eq. (8) is dominant foryr=V,, the model given at the bot- dQ
tom of Eq.(7) preserves the essential features of the charac- ar L,
teristics.
By measurements, the capacitance is found to be 90 nF at 1
0.5 V (a positive biasand 235 pF at-1.0 V (a negative —Q if Q<1
biag. Note that the difference in the capacitance values is ﬂ: —Kl— G
more than two orders of magnitude. The diode also exhibits dt 1 11 it 0=1
the well known rectification characteristic given by Ef). Cq Q+ Cq EJ Q=
That is, in the reverse bias region the resistance is almost
infinite, whereas in the forward bias region the resistance is n E M
very small. For example, at 0.5 V the resistance is Q0By Cyq(Ep—Ey)
carefully measuring the impedance of the capacitors and the (10
resistor over a frequency range of more than 25 kHz, we dMm
found that the impedance of the capacitors is much smaller E:N'
than that of the resistor. Therefore the diode characteristic
can be simplified and can be modeled by a two segment dN
piecewise linear capacitdd5] (see Fig. 8 so that the dy- ar M,
namics of theR-L-diode circuit can be accurately described
by where
2 1 ol )
dq_, CoE Bt TR T
dt '
(9 R 1 1 _
k=T G- w?CL (x=d,j),
_— =
di e Mo M2+ N?=1.
LaZ—RI— 1 —E4+Ep
c q if q<0 SinceEy<0, it follows from Eq.(10) that adding a negative
j biaskE, has the effect of decreasing the magnitud& oNote
+E sin(wt), that the sinusoidal voltage source has been converted into a

harmonic oscillatordM/d7=N, dN/d7=-M. Equation
(10) is a two region piecewise linear vector field &,

whereCy is the diffusion capacitance at 0.5-V bi&; is the which is most conveniently recast as

junction capacitance at1.0-V bias,E4=0.5 V is the break
point voltage at which the capacitance value changes be- e
tween the junction capacitance and the diffusion capacitance, dr
i is the circuit current, and is the charge stored in the

capacitor. Note that the bigg, is also included. One can Where

explain Fig. 6 in terms o€y andC; : with a smallerE, the

dx_|AX (Q=1)

Bx+p (Q<1), (1)

T
trajgctory :_spepds more time in ti& region than in theCd. x=(Q,I,M,N)T, p= Qi_ i,0,0>
region. This, in turn, explains the larger number of rotations Ca G
with a smallerE, because the resonant frequency of @e o
region is higher than that of th@, region. (T indicates the transpose of a vegtor
r 0 1 0 07
IV. EXACT BIFURCATION EQUATIONS B i _ E
A= CJ CJ(Eb_ Ed) ,
In this section, we will derive the exact bifurcation equa- 0 0 0 1
tions of the simplified dynamic®) by taking full advantage
of the piecewise linearity, i.e., that the dynamics consists of L 0 0 -1 0]
two linear differential equations connected at the boundary i i
g=0. Using these equations, one cannot only identify vari- 0 1 0 0
ous bifurcation sets but can also construct a three dimen- 1 E
sional bifurcation diagram of periodic. orpits,.which clarifies B— - C_d - C,(Ep—Eg)
the local and global structures of periodic windows.
We first rescale the dynamid®) and convert it into a 0 0 0 1
fourth order autonomous system as follows: | O 0 -1 0
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We will use Eq.(11) extensively to perform various bifurca-
tion analyses in the next section.

A. Characterization of periodic orbits

Figure 9 shows a schematic of an orbit on thg,l(
plane. Consider a poiX lying on the boundarB, defined

by Q=1. LetY and Z be the points where the trajectory

starting fromX hits B, again at positive timg; and negative
time —t,. Similarly, letW be the point where the trajectory
starting fromY hits B, again at a positive tima; . Since the
system is linear in each region, we have

Y =ePsiX,
Z=ge AuX,
W=ty =ettigPsix,
where
D=A"1BA,

ande A stands for the matrix exponential efAt,. Other
symbols have similar meanings. Sin€eY, andW all lie on
the boundanB,,
(a,Xy=1, (a,€”1X)=1,
(a,eA1X)=1, (a,eM1eP51X)=1,

where (, ) denotes the ordinary inner product é&f and
«=(1,0,0,0. Therefore
X=(ga"+ea'ePs1+eaTe A
+egaTefePs) "1(1,1,1,9, (12
where
e,=(1,0,007, &=(0,10,0", =(0,01,0",
e,=(0,0,0,2".

If the trajectory starting fronZ hits pointV on the bound-
ary B, at a negative time-s,, thenV is given by

V=g PS2z=¢ Ds2g~Aly,
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FIG. 11. E,S/T) diagram for a period-1 orbit &t=30 kHz.
If this orbit is periodic, thenV =V, which is equivalent to
(eM1gPs1— g Ps2e Al X =,
Consequently, a periodic orbit is characterized by

(eMePs1— e Ds2e Atk (s, ty,Up)h=0, (13

{esk(sy,ty,up) 2+ {esk(sy, ty,up)h}2=1,

where [see Eq. (12)] K(sp,t;,uq)=(ga’+ea'ePs
+eya’e it ga’eePs) ! and h=(1,1,1,1. Note that
there are only thre€out of fourn independent equations in
Eq. (13) because the third and fourth componentd\bfand
V are dependent through E@.4).

(14

B. Exact bifurcation equations of periodic orbits

Referencd 26] rigorously shows that eigenvalues of the
Poincare return map oB, are given by the eigenvalues of
the 4xX4 matrix

O = eMigPs2ettighst,

One of the four eigenvalues df is always 1 becaudd and

N constitute a harmonic oscillatdsee Eq.(10)]. If X is a
periodic point, one of the remaining three eigenvalues is also
1. Note that a saddle node bifurcatigmeriod doubling bi-
furcation is characterized by the fact that one of the remain-
ing two eigenvalues is 1—1). Therefore, saddle node and
period doubling bifurcations are characterized, by the fol-
lowing: saddle node bifurcation,

3—Tr(®)+Det(d)=0,

(eMagPsi— g DS Atk (s t;,u;)h=0, (15)
{esk(sy,ty,up)h}+{ek(sy,ty,up)ht?=1,
and period doubling bifurcation,
—1-Tr(d)+Det(®)=0,
(eM1ePs1— e Ps2e Ak (s ,t;,u;)h=0, (16)

{esk(sy,ty,up)ht2+{esk(sy,ty,up)h}2=1,

where T(®) is the trace ofd, and Detd) is the determina-
tion of ®.



54 SHEET STRUCTURE IN GLOBAL BIFURCATIONS ORA . .. 6021

[ 15 07 S2.83 St S}
200.04 Bo c

——2110 O 10 ]|88 Cs
0.5

—200.01 0 : . ;
Si 10 30 50 100 150 200
(a) fkHz]
/ FIG. 13. (f,E) diagram for period-1 orbits.
200.0fyBo

saddle type periodic orbits cannot be captured by the Runge-
Kutta formula.

Of course, saddle node as well as period doubling bifur-
cations cannot be completely characterized solely by eigen-
value conditions. In most experiment@umerica) studies,

j;/ 0 égQ however, eigenvalue conditions suffice.

-21.0

N

C. New variable S/T

Even with the exact bifurcation equations derived in Sec.
—200.0 IV B, it is still difficult to explain the structures in the ob-
S2 served bifurcation diagrams, Figs. 2, 3, 4, and 5. A crucial
(b) step here is to choose another variable for bifurcation dia-
grams, in addition td andE. In Ref.[26], one of the state
I variables is chosen as the third variable. In fRd_-diode
200.0-} Bo circuit, however, our extensive simulations indicate that the
state variables are not suitable for explaining the bifurcations
of interest because the resulting bifurcation curves give rise
to many self-intersection points. This appears to be attribut-
ﬁf able_ tolthe fact that the coordinates of (’;he state variables at a
' articular cross section “move around” as parameters are
—21|.O &5‘/ l.éSQ \earied_ P
As was pointed out at the end of Sec. Ill, the time which
a trajectory spends in th€; region plays an important role
in characterizing a trajectory. In order to account for this, let
—200.01 S be the time a trajectory spends in ti&; region (i.e.,
’ N Q=1), letT be the time a trajectory spends in t@¢region
3 (Q<1), and conside®/T (S+T=2). It turns out that this
FIG. 12. Period-1 orbits on theQ(,!) plane.(a) Orbit corre- IS @ very good choice for the third variable. Figure 10 shows
sponding toS; in Fig. 11.(b) Orbit corresponding t&, in Fig. 11. @ one parameter bifurcation diagram for period-1, -2, -3, and
(c) Orbit corresponding t&; in Fig. 11. -4 orbits obtained by solving the exact equations. The circuit
parameters are

Other types of periodic orbits can be characterized simi- R=214 0, L=2.5 mH, C;=235 pF, C4=51.4 nF,
larly. These exact bifurcation equations will be used exten-
sively and will play fundamental roles in the rest of this
paper. We should emphasize that no integration formula f=150 kHz, E,=-1.0 V.
(e.g., the Runge-Kutta formulavill be used in obtaining the

bifurcation diagrams. The bifurcation diagrams will be ob-The horizontal axis is the voltage source amplité&jevhile
tained simply by solving Eq¢15) and(16) (via Eule). This  the vertical axis isS/T. The solid curvegbroken curves
method is particularly powerful when we compute an un-indicate that the orbits are stablenstablg. In Sec. V, we
stable(saddle typg periodic orbit with many rotations, be- will perform a detailed bifurcation analysis on each of the
cause the error incurred by the Runge-Kutta formula signifi-periodic orbits given in Fig. 10, and then elucidate a global
cantly deteriorates accuracy. In fact, some of the complicategicture.



6022 TANAKA, HIGUCHI, AND MATSUMOTO 54

FIG. 14. A schematicf(,E,S/T) diagram for period-1 orbits.

V. BIFURCATION STRUCTURE cations take place repeatedly 86T increases: saddle node
IN (f,E,S/T) SPACE bifurcation (S,)—stable period-1 orbitsolid line)—period

With exact bifurcation equations at hand, this section iquUb“ng bifurcation D) —unstable period-1 orbitoroken

devoted to a detailed bifurcation analysis. Particular attentiofin€)—reverse period doubling bifurcationDg ) —stable
is paid to those properties of unstable periodic orbits that argeriod-1 orbit(solid line)—saddle node bifurcationS;).
related to the sheet structure. The goal of this section is to The nature of the period-1 orbits, however, variesSe6

explain Figs. 2 and Fig. 3 using Fig. 23. varies. Specifically, the number of rotations increaseS/as
decreases, as shown in Fig. 12, where the trajectories are
A. Period-1 orbits shown on th&)-I plane. The negativ® axis has a different

Figure 11 shows one parameter bifurcation diagrams for gcale from that of the positiv@ axis. This is to avoid draw-

, . . : large “semicircles” on the half plan@<0. The orbit in
eriod-1 orbit that are obtained by solving Eq§3) and "9 C < .
514)_ The circuit parameters are y g Eqs3 Fig. 12@) correspond tc5; in Fig. 11. Similarly, Fig. 1)
corresponds t&, in Fig. 11. Note that a periodic orbit be-

R=214 O, L=2.5 mH, C;=235 pF, comes more complicated as the time which the orbit spends
in the C; region increases. However, there is a limit to this. If
Cyq=514 nF, E,=—-1.0 V, f=30 kHz. SIT is very small, the orbit stays in th@; region all the time

_ o _ [at least in the piecewise linear model E§)], and it is not
The horizontal axis is the amplitude of the voltage source complicated at all.

while the vertical axis i$S/T. A solid (broken line indicates Compared with the trajectories on tgel plane(see Fig.
that the period one orbit is stablanstablg. SymbolS, as- 1) the experimentally observed trajectories in thgi
sociated with a black circleD is associated with a white pjane are strongly compressed againstitasis (see Fig. 6,
circle), indicates a point where saddle ndgeriod doubling pecausec, is much larger tha; . However, the correspon-
bifurcation takes place. Subscripts 1, 2, and 3 are only fofjence between Figs. 6 and 12 is clear. The stability interval
distinguishing the bifurcation points. The distinction bet""ee”betweerD’g andS} is extremely narrow; therefore, it is very
S, andS; is that, atS,, a pair of periodic orbits is born & fficult to observe the period-1 attractor in this particular
is increased, while, aB; , a pair of periodic orbits disap- interval in an experiment. In contrast, the stability interval
pears asE is increased. The distinction betwe@y, and  betweenS, andD, is so large that the period-1 attractor in
D: lies in the fact thaD , is associated witls,,, while D: is this interval can easily be observed in an experimeee
associated witl8} . The bifurcation structures of interest are Fig. 3).

clearly captured: all the period-1 orbits belong to the same Figure 13 shows saddle node bifurcation sets in fhE)
family in the parameter space. In Fig. 11, for example, bifur-two parameter plane. The vertical axis is the frequehand
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20.0 30.0
period 3 2 period 3
* saddle-node
o period-doubling
stable 20.0-
-------- unstable
LT >
5 100 R z
Slo\/o-- 10.04
0.0 , . 0.0 . . , :
0.0 10.0 20.0 30.0 0.0 1000 2000 3000  400.0 500.0
EIV] fIkHzZ)
(@)
FIG. 16. (f,E) diagram for period-3 orbits.
200 period 3
+ saddle-node bling bifurcation setD,, which is clear from Fig. 11. Note
°  period-doubling that, in Fig. 5, a boundary between the pink and black re-
_______ i‘;‘sb[;eble gions signifies period doubling bifurcations of period-2 or-
~ 100 bits. Note also that a boundary between the black and red
@ regions signifies saddle node bifurcations of period one or-
---------------------------------- bits.
S,(P”' ______________________________________ Even though Fig. 13 explains why one observes Fig. 5
\siisi‘s’i --------------------- experimentally, it still does not explain how the periodic or-
D:D) bits of interest are connected with each other. In order to
0'%,0 10.0 20.0 30.0 observe this more transparently, all the information concern-
E[V] ing the period-1 orbits obtained so far are combined, and a
® schematic three dimensional bifurcation diagram consistent
with the data is shown in Fig. 14. However, some of the
20.0 reriod 3 values ofS, andD,, shown in Figs. 11 and 13 are not shown
« saddle-node in Fig. 14 since the picture becomes too complicated to
o period-doubling draw. The sheetlike object is the set of periodic orbits in the
stable (f,E,SIT) space together with stability information. The
N unstable shaded region of the sheet indicates the stable period-1 orbit;
& 1007 the nonshaded regions indicate an unstable period-1 orbit. It
can be observed that all the period-1 attractors belong to the
________________________________________ wavy sheet. Thus it is clear that all the period-1 attractors
SI(Q_L _______________________________________________________________ belong to the same family in thd ) parameter plane.
0.0 . .
0.0 100 V) 200 300 B. Period-3 orbits
© The bifurcation structure of period-2 orbits is rather com-

plicated, so let us explain the bifurcation structures of
period-3 and -4 orbits before explaining the bifurcation
structure of the period-2 orbits. Figure 15 shows one param-
eter bifurcation diagrams for a period-3 orbit computed by
the horizontal axis is the amplitude of the voltage source. solving the bifurcation equations described in Sec. IV. The
In Fig. 13, curvesS, andS;; indicate saddle node bifurcation frequencies arda) f=150 kHz, (b) f=200 kHz, and(c)
sets that correspond to those in Fig. 11. The straight dotteti=300 kHz. Other circuit parameters are the same as those
line at 30 kHz corresponds to Fig. 11. TBg and S} pair for period-1 orbits. The horizontal axis is the amplitug®f
meets and vanishes at poirls, and C¥ . Those points are the voltage source, and the vertical axisSiS. A solid line
often called the cusp poinf&6]. (broken ling represents that the period-3 orbits are stable
Now let us compare Fig. 13 with the experimental data in(unstablg; S, and Sy (black circleg indicate saddle node
Fig. 5. First recall the color code: pink, period 1; red, periodbifurcations, andD, and Dy (white circles indicate period
2; and black, period greater than 2 or chaotic. Since in amloubling bifurcations. Contrary to the bifurcation diagrams
experiment we can observe attractors only, we note that af the period-1 orbits, the bifurcation diagram is not mono-
boundary between the pink and the red regions signifies pgone with respect t&/T. There is a self-intersecting point.
riod doubling bifurcations, while Fig. 13 shows saddle nodeHowever, this singular point does not have any special
bifurcation sets. Still we observe the bananalike regions iphysical meaning.
both figures. This is attributable to the fact that each saddle Three periodic windowsS;-D,, S,-D,, and D3-S},
node bifurcation se§, always accompanies a period dou- can be observed in Fig. 1&. The windowsS,-D, and

FIG. 15. (E,S/T) diagram for period-3 orbitda) f=150 kHz,
(b) f=200 kHz, andc) f=300 kHz.
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f[kHz] | stable

FIG. 17. A schemati¢f,E,(S/T)") diagram for period-3 orbits.

D%-S' are small, compared with the windoBy-D,. Recall ~ rameter bifurcation diagrams with the frequendi@sf = 150

Fig. 2, in which the two different period three attractors in-KHZ and (b) f=300 kHz. Atf=150 kHz, there are three
dicated byA, and B, are discernible. We observe thag periodic windows. Ag increases, two small windov&;-D,
andB; correspond to the windowS,-D, andS;-D; . As f andD3-S} become smaller and closer to each other. Finally,
is increased, the two small windov&-D, andD3-S; be-

come smaller and closer to each othsee Fig. 18)]. Fi- 20.0
nally, these two windows collide and vanigee Fig. 1&c)]. period 4
Let us next check how these saddle node bifurcation sets +  saddle-node -

look in the (f,E) two parameter plan€Fig. 16). The vertical > period-doubling

axis is the frequency, and the horizontal axis is the ampli- Stablebl _________________
tude E of the voltage source. Note that there are two cusp |~ unstadle ‘/DJ -------------

points where two saddle node bifurcation sets merge. Now “ ™ S

we realize that Fig. 15, which is arE(S/T) diagram, to-
gether with Fig. 16, which is anf(E) diagram, still do not S
sufficiently clarify the bifurcation structure. If we look at Ds
these bifurcations in thef(E,S/T) space, however, then

they are almost transparent. Before explaining th& (S/T) 0.0+ o0 360 0.0
diagram, let us recall that there are self-intersection points in ' ’ EV] ' '
Figs. 18a) and 1%b) and that they do not have any signifi- ®

cant physical meaning. Figure 17 is a schematic bifurcation

diagram consistent with the above data. This schematic dia- 200 period 4
gram “unfolds” the self-intersection points in order to make +  saddle-node

the picture more transparent. The new coordinate is called o period-doubling

(SIT)’ instead of §/T). The (f,E,(S/T)") diagram again stable

consists of a two-dimensional, sheetlike object where the N unstable

shaded area indicates stable period-3 orbits. The windows ¢ 10.01
S,-D, and D3-S} are omitted from Fig. 17 since they are

too small to draw. It is seen immediately that all period-3 D

windows S,-D,, S;-D;, and D3-S} belong to the same ST
family. In particular, the windows corresponding Aa and
B3 observed in Fig. 2 belong to this family. 005 00 50 0.0
E[V)
C. Period-4 orbits (v

The bifurcation structures of the period four orbits are FIG. 18. €,S/T) diagram for period-4 orbitga) f=150 kHz.
similar to those of period-3 orbits. Figure 18 shows one pa<b) f=300 kHz.
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S2 period 4
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10.01
0.0 T y ; T
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FIG. 19. (f,E) diagram for period-4 orbits.

they collide and vanispsee Fig. 1&)]. Figure 19 shows the

30.0 -
period 2
20.04
>
S5
10.04
3CI
3

0.0 100.0 200.0 300.0 400.0 500.0
FIkHz)

FIG. 21. (f,E) diagram for period-2 orbits.

Figure 20 shows one parameter bifurcation diagrams of

saddle node bifurcation sets on tHe) plane. We omitthe the period-2 orbits. The frequencies @ f =150 kHz, (b)
schematic model since it is basically the same as that in Fig.— 200 kHz, and(c) f=300 kHz. Other circuit parameters
17. We can see that the two period-4 windows in Fig. 2/ the same as those for the period one orbits. The horizon-

indicated byA, andB, correspond t&,-D, andS,;-D [Fig.

18a)].

D. Period-2 orbits

tal axis is the amplitudé&e of the voltage source and the
vertical axis isS/T. A solid line (broken ling represents the
fact that the period-2 orbits are stablenstable, and S,
(Sh) (black circles and D, (D}) (white circles indicate
points where period-2 saddle node bifurcation and period

The bifurcation structures of the period-2 orbits have sevdoubling bifurcation take place. The symb®), (the white
eral features which are very different from those of othercjrcles with do} stands for a point where period doubling
periodic orbits. While all other periodic orbits are born out of pifyrcation of the period-1 orbit occur®; is the same set
saddle node bifurcations, some of the period-2 orbits argnat is symbolized aB, in Fig. 11. Note that there are three
born out of period doubling bifurcations of period-1 orbits. stable regions of period-2 orbits in Fig. @@ S,-D;,

20.0 :
o saddle-node period 2
o period-doubling
o period-doubling of period one
stable
--------- unstable
S 10,01
I
SIC
P R
'B>"Ds
0.0 , .
0.0 10.0 20.0 30.0
E[V]
(a)
20.0 —
* saddle-node perio
o period-doubling
o period-doubling of period one
stable
B~ 1 unstable
& 10.0
Sl/]:g-l— ———————————————
0.0 eI '
0.0 P 10.0 20.0 30.0

ElV]
®

FIG. 20. E,S/T) diagram for period-2 orbitga) f=150 kHz.

(b) =300 kHz.

P,-D,, andD%-S} . RegionsP;-D, andD3-S; are small
compared with the windov$,-D,. As f increases, the two
small regionsP;-D, andD}-S} become smaller and move
closer to each othdrsee Fig. 2(b)]. However, they never
collide with each other. Finally, the regiorSs;-D; and
D%-S; collide with each othefinstead of the pailP;-D,
andD3-S}) and vanish. Figure 21 shows the situation on the
(f,E) plane where the horizontal axis is the frequency and
the vertical axis is the amplitude of the voltage source. At the
cusp pointsC, and C}, the saddle node bifurcation sets
S} andS; become tangent to each other and vanish. In the
area around the cusp poi@Y , the bifurcation structure is
rather complicated. Figure 22 shows a schematic
(f,E,(SIT)") diagram of the period-2 orbits. Note that the
period doubling bifurcation set of period-1 orbig is not
tangent to the saddle node bifurcation se€at It is clearly
shown that two types of period-2 orbits which have different
origins are in the same family on th& E) plane. In terms of
Fig. 2, the stable period-2 interval, is born out of period
doubling (of a period-1 orbix, while window B, is result of

a saddle node bifurcation, and yet they belong to the same
family of period-2 orbit.

E. Global bifurcation structure

We are now ready to see all the bifurcation structures
explained above in a single picture. Figure 23 is a schematic
(f,E,(SIT)") diagram of global bifurcation structure. The
color code is as follows: green, period 4; purple, period 3;
yellow, period 2; and blue, period 1. The light colored region
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FIG. 22. A schematic moddf,E,(S/T)’) diagram for period-2 orbits.

2
S/T) S+

E[V]

J[kHz]

FIG. 23. A schematic mod€F,E,(S/T)") diagram for all the periodic orbits. The following color code is used. Blue: period 1. Yellow:
period 2. Purple: period 3. Green: period 4.
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indicates stable periodic orbits; the dark colored region VI. CONCLUSION
stands for unstable periodic orbitRue to the color printing
process, the dark yellow and light yellow may not be distin—di

guishable. The. large .Wh'te circles are the cusp pomts of thebifurcation structure observed in the circuit by deriving exact
saddle nod_e blfurcatlpn sets. The small bléakite) C|r_cles _ bifurcation equations then drawing the diagrams firE(S/
on_the section of the_ flgur_es sh(_)w the_saddle node b|furcat|0ﬁr) space instead of on thd ,E) plane. The major findings
points (period doubling bifurcation pointsThe small white  5re as follows.
circle with a dot shows period doubling bifurcation point of  (j) The repeatedly observed period-1 attractors and their
period 1. These pictures completely clarify those points exassociated unstable period-1 orbits constitute a sheet struc-
plained in Sec. I. In particular, the following are true. ture in (f,E,S/T) space, and hence belong to the same fam-
(1) The period-1 attractors which are repeatedly observedly of period-1 orbits.
constitute a sheet structure ii,E,S/T) space, and hence (i) The two different period three window#; andB; in
their associated unstable period-1 orbits belong to the sanfég. 2) are born out of two different saddle node bifurcations,
(blue) family. and yet they belong to the same family of period-3 orbits.
(2) Other periodic attractors of the same periods and their (iii) The same is true foh, andB, in Fig. 2, i.e., the two
associated unstable periodic orbits form a sheet structurgifferent period-4 windows.
and therefore belong to the same familigseen, purple, or (iv) The situation is different foA, andB, in Fig. 2, i.e.,
yellow). the two different period-2 intervals. The stable period-2 in-
Let us now check how well this global picture capturesterval A, is born out of a period doubling bifurcation of a
the experimentally observed data in terms of Figs. 2, 3, angeriod-1 orbit, while windowB,, is the result of a saddle
23. The experimental result in Fig(é) corresponds to the node bifurcation, and yet they belong to the same family of
cross section of Fig. 23 indicated Iby: f, , which is redrawn  period-2 orbits.
in Fig. 2(b) in order to make the correspondence transparent. (v) A global perspective which is consistent with the ex-
In Fig. 2(a) the stable orbits are indicated by the thick lines; perimentally observed data is clarified. Very good correspon-
in Fig. 23, stable orbits are indicated by lighter colors. Figuredence between the numerical and experimental results is ob-
3(a) corresponds to the part of the cross section of Fig. 23ained.
indicated byf =f,, where the wavy blue sheet is seen at the
small E values. In Fig. &), the stable orbits are drawn as
thick lines. Also indicated in Fig. (®) are the saddle node The authors would like to thank M. Komuro from Teikyo
bifurcation pointsblack dotg and the period doubling bifur- Science University, R. Tokunaga from Tsukuba University
cation sets(white circles. These bifurcation sets are not and J. Noguchi from Waseda University for many construc-
drawn at thef =f, cross section of Fig. 23 in order to avoid tive discussions. Thanks are also due to M. Nakai of Kyoto
complication. The correspondence between the experimentalniversity for bringing to our attention a similarity between

A global bifurcation analysis was made of a drivierL-
ode circuit. This paper has clarified most of the global
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