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Sheet structure is found in a global bifurcation diagram of anR-L-diode circuit driven by a sinusoidal
voltage sourceE sin2p f t. Bifurcations of a drivenR-L-diode circuit have three interesting features:~1! The
alternate appearance of large periodic windows and chaotic bands, where the period of each window increases
exactly by one asE is increased.~2! The repeated appearance of period-1 attractors and chaotic bands asE is
increased.~3! The existence of two different windows, each of period 2, 3, and 4. This paper attempts to
provide a complete understanding of the global nature of the above features. Comprehending global bifurca-
tions of systems, including chaotic behavior, naturally necessitates understanding the nature of stableand
unstable periodic orbits, the latter being essential in most situations. TheR-L-diode circuit is no exception.
This paper accomplishes such a task by~i! performing extensive measurements of bifurcations in the (f ,E)
plane,~ii ! simplifying the dynamics of the circuit without losing essential features of the observed bifurcations,
and ~iii ! carefully analyzing the simplified dynamics from a global perspective. An analytical method in this
paper is in~iii !, where exact bifurcation equations are derived then the bifurcation diagrams are drawn in the
( f ,E,S/T) space instead of on the (f ,E) plane. Heref andE are the frequency and the amplitude of the driving
voltage source, andS/T will be precisely defined. This three-dimensional picture reveals the properties of
stable and unstable periodic orbits, and makes many of the global bifurcation mechanisms involved almost
transparent. In particular, the following are found:~1! All the period-1 attractors and their associated unstable
period-1 orbits constitute a sheet structure in the (f ,E,S/T) space, and hence belong to the same family.~2!
Other periodic attractors of the same period and their associated unstable periodic orbits form a sheet structure
in ( f ,E,S/T) space, and therefore belong to the same respective families. A very good correspondence
between the numerical and experimental results is obtained. The global structure revealed will also clarify
the global bifurcation mechanisms of other systems, e.g., the gear meshing and the offshore compliant systems
described by equations similar to the present system.@S1063-651X~96!14111-8#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Consider theR-L-diode circuit given in Fig. 1 driven by
the sinusoidal voltage sourceEsin(2p f t). The dynamics is
described by

dq

dt
5 i2g„f ~q!…,

~1!

L
di

dt
52Ri2 f ~q!1Eb1Esin~vt !,

whereq is the charge stored in the~parasitic! capacitor of the
diode, i is the current through the circuit,R andL are the
series resistor and the inductor, andEb is a dc bias. Function
g is the well known exponential characteristic of a diode,
while f represents the nonlinear characteristic of the capaci-
tive part of the diode. Details ofg and f will be discussed in
Sec. III.

This circuit exhibits a rich variety of bifurcations, includ-
ing cascade of period doubling, chaotic attractor@1#, inter-
mittency@2#, and crisis@3# and many works have reported on
this particular circuit@4–25#. Figure 2~a! shows a one param-
eter bifurcation diagram. The horizontal axis is the amplitude
E of the voltage source, and the vertical axis is the current of
the circuit sampled at a particular phase of the voltage
source. The circuit parameters areR575 V, L52.5 mH,
Diode: 3CC13, dc bias voltageEb50.0 V, f5140 kHz, and

0<E<5.0 V. @Figure 2~b! will be explained later when we
verify the experimental and analytical results.# Note that a
bandlike region indicates a chaotic response. One of the first
questions is the following: What is responsible for the cha-
otic behavior when the circuit is so simple and natural? The
answer is the nonlinearity of the parasitic capacitor associ-
ated with the diode@15#. It has been pointed out@15# that the
nonlinearity of the diode capacitor dominates other factors.
The resulting model consists of a two-segment, piecewise
linear capacitor connected in series with a linear resistor and
a linear inductor. The simulation reproduces the experimen-
tal results surprisingly well. This~model! circuit still appears
to be the simplest nonautonomous circuit which exhibits cha-
otic behavior.

The next natural question is the following: How are the
chaotic attractors formed? The answer is that a significant
difference in the vector fields in each of the two regions of
the piecewise linear capacitor characteristic gives rise to a
‘‘folding mechanism,’’ which in turn is responsible for the

FIG. 1. A drivenR-L-diode circuit.
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chaotic attractor formation@21#. Reduction of the dynamics
to a two dimensional discrete dynamical system was a very
effective means of analyzing the bifurcations.

The third question is the following: Why does the period
of the large periodic window increase by exactly 1? This also
is answered in@21#.

At lower values ofE and f , qualitatively different bifur-
cations are observed. That is, instead of the increase of the
period by 1, a repeated appearance of period-1 attractors are
observed sandwiched between chaotic bands@Fig. 3~a!#,
where parameters are the dc bias voltageEb521.0Vf528
kHz, and 0<E<4.0 V. @Fig. 3~b! will be explained later#. It
was found that the ‘‘multifolding’’ mechanism@23# is re-
sponsible for this phenomenon. Multifolding is due in turn to
the fact that with lowerE and f values, the trajectory spends
a much longer time in a region~of the state space! where the
vector field is fast so that the trajectory rotates more fre-
quently than with largerE and f values. Reduction of the
dynamics to a discrete dynamical system is again very use-
ful.

There are at least two more questions which need to be
answered:

~i! In Fig. 2, two different period-2 windows denoted by
A2 andB2 are discernible. Similarly, two different period-3
~period-4! windows denoted byA3 andB3 ~A4 andB4! are

observed. How are they related to each other, if indeed they
are related?

~ii ! What global bifurcation picture incorporates Figs.
2~a! and 3~a!, including ~i!?

Comprehending global bifurcations including chaotic be-
havior naturally necessitates understanding the natures of
stableand unstable periodic orbits, the latter being essential
in most situations. TheR-L-diode circuit is no exception.
This paper accomplishes such a task by~1! extensive mea-

FIG. 2. One parameter bifurcation diagram.~a! Experimental
observation. The horizontal axis is the amplitude of the voltage
sourceE ~0.5 V/div!, the vertical axis is the inductor currenti L ~2.0
mA/div!, and the source frequencyf is 140 kHz. ~b! Schematic
bifurcation mechanism.A2 andB2 indicate two different period-2
attractors. Similarly,A3 andB3 ~A4 andB4! indicate two different
period-3~period-4! windows.

FIG. 3. Another one parameter bifurcation diagram with a dif-
ferent setting.~a! Experimental observation. The source frequencyf
is 28 kHz, and dc biasEb is 21.0 V. The horizontal axis is the
amplitude of the voltage sourceE ~0.4 V/div!, while the vertical
axis is the inductor currenti L ~2.0 mA/div!. ~b! Schematic bifurca-
tion mechanism.

FIG. 4. Observed two parameter bifurcation diagram. The hori-
zontal axis isf :0–400 kHz. The vertical axis isE:0.0–5.0 V~0.0–
10.0 Vpp!.
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suring of the bifurcations in the (f ,E) plane,~2! simplifying
the dynamics of the circuit without losing essential features
of the observed bifurcations, and~3! carefully analyzing the
simplified dynamics in a global perspective.

In ~3!, exact bifurcation equations are derived by taking
full advantage of the piecewise linearity with only one break
point of the dynamics@24,26#. These bifurcation equations
are effectively used to draw bifurcation diagrams in the
( f ,E,S/T) space instead of on the (f ,E) plane, whereS and
T are the times the trajectory spends in each of the subre-
gions of the piecewise-linear dynamics~see Sec. IV C for a
precise definition!. As will be shown in Sec. V (f ,E,S/T)
diagrams reveal the properties of stable and unstable periodic
orbits, and make global bifurcation structures almost trans-
parent. Our goal is to explain Figs. 2 and 3 via Fig. 23, a
global bifurcation diagram with a sheet structure.

Our results in this paper elucidate several important glo-
bal bifurcation structures associated with theR-L-diode cir-
cuit. In particular, the following are found:~1! The repeat-
edly observed period-1 attractors and associated unstable
period-1 orbits constitute a sheet structure in the (f ,E,S/T)
space and hence belong to the same family.~2! Other peri-
odic attractors of the same periods and their associated un-
stable periodic orbits form a sheet structure and belong to the
same respective families.

To the best of our knowledge, the first work onR-L-diode
bifurcations was by Linsay@4#, where period doubling cas-
cade and chaotic attractors were observed. Testa, Perez, and
Jeffries @5# then reported a measured Feigenbaum constant
which agrees well with the theoretical value 4.6692 . . . ,
thereby giving evidence of the universality of the Feigen-
baum scenario. Rollins and Hunt@6# paid attention to the
reverse recovery time of the diode, and proposed an exactly
solvable model. Their model, however, cannot be described
by a differential equation. It was not still completely clear

what was responsible for the chaotic behavior of theR-L-
diode circuit. Azzouz, Duhr, and Hasler@10,14#, indepen-
dently of the present authors, proposed a diode model con-
sisting of a piecewise linear resistor and piecewise-linear
capacitor and reproduced, by simulation, a bifurcation dia-
gram similar to the observed data. It appeared difficult, how-
ever, to perform a detailed analysis because of the two non-
linear elements. Experimental observations similar to our
Fig. 2 were reported by Bronson, Dewey, and Linsay@7#,
Yoon et al. @16#, Jeffries@17#, and Perez@9#. Many discrete
mapping models were proposed to reproduce the observed
bifurcations~Yoon et al. @16#, Jeffries@17#, and Perez@19#!.
In most of these models, correspondence between circuit pa-
rameters and the parameters of the mapping were not clear.
The repeated appearance of period-1 attractors was discussed
by Bocko and co-workers@13,22#.

We would like to point out that theR-L-diode circuit is
not the only one system which is described by an equation of
type ~1!. The first class of problems is the gear meshing
vibrations described by@27,28#

d2x

dt2
1C

dx

dt
1h~x!5Bcv sin~vt !1Bv2cos~vt !, ~2!

wherex is a dimensionless variable representing the relative
angle between the driving and driven gears,c is the damping
constant, andh represents~asymmetric! restoration force
given by

h~x!5H x, x>21

21, x,21.
~3!

By settingx1 :5x, x2 :5dx/dt, one sees that Eq.~2! is trans-
formed into

FIG. 5. Another two parameter bifurcation diagram with a different setting. The horizontal axis isf :10–110 kHz. The vertical axis is
E:0.5–1.0 V~0.0–8.0 Vpp!. Red: period-1 attractor. Pink: period-2 attractor. Black: period greater than 2 or chaotic attractor.
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dx1
dt

5x2 ,

~4!

dx2
dt

52cx22h~x1!1Bcv sin~vt !1Bv2cos~vt !.

The nature of functionh is very similar to that off in Eq. ~1!
~see Sec. III for details!. Bifurcations similar to those of Eq.
~1! are observed in Eq.~4!, in fact, the ‘‘multifolding’’ found
in @24# is also observed for Eq.~4!, although global bifurca-
tion mechanisms are not well studied in@27,28#.

The second class of problems which are described by
equations similar to Eq.~1! is that of compliant off shore
structures@29#, where the dynamics is given by

h2
d2x

dt2
12hj

dx

dt
1b~x!x5sin t,

~5!

b~x!5H ~11Aa!2/4a, x.0

~11Aa!2/4, x,0.

Here x is the displacement,j is the damping ratio with re-
spect to an undamped bilinear frequency obtained by aver-
aging the periodic time,h is the ratio of the forcing fre-
quency to this bilinear frequency, anda is the ratio of the
two linear stiffnesses.

That Eq.~1! is similar to those describing other systems is
not surprising because theR-L-diode circuit involves no ar-
tificial ingredient such as particular nonlinear elements syn-
thesized by engineers; it is a simple series connection of the
three extremely natural elements. This appears to be one of
the main reasons for the fact that not only engineers
@10,14,15,18,21,23–25#, but also physicists are interested in
this circuit @4–9,11–13,16,17,19,20,22,30#. We suspect that
there will be many more natural systems as well which are
described by equations similar to Eq.~1!.

We close this section by pointing out that the global bi-
furcation analysis given in this paper is also helpful for pos-
sible applications to controlling chaos and chaotic masking
systems using the drivenR-L-diode circuits@30,31#.

II. EXPERIMENTAL OBSERVATIONS
OF THE „f ,E… PLANE

Figure 4 is a two parameter bifurcation diagram observed
on the (f ,E) plane. The one parameter bifurcation diagram
given in Fig. 2 corresponds to~a!, where f5140 kHz and
0.0<E<5.0 V. Observe the shaded areas for the periodic
orbits which, explain the large periodic windows of Fig. 2,
where the period increases by 1. Note that in Fig. 4, details
of the bifurcation structures in the smallerE values are not
clearly discernible. This is due to the fact that whenE is
small, the probed signal is small and the signal-to-noise ratio
of the desired signal will deteriorate. Our experience tells us
that this is particularly true whenf is also small. It will be
shown in Sec. IV that adding a negative dc bias has the same
effect as decreasingE without deteriorating the signal~see
Fig. 1!.

Figure 5 shows another observed two parameter bifurca-
tion diagram on the (f ,E) plane where 10 kHz<f<110 kHz,

FIG. 6. Orbits of the period-1 attractors. The horizontal axis is
the diode voltagend ~5.0 V/div!, and the vertical axis is the inductor
currenti L ~2.0 mA/div!. Since the origin is not located at the center
of each figure, the axes are indicated by arrows.f530 kHz. ~a!
E51.9 V. ~b! E52.4 V. ~c! E52.9 V.

FIG. 7. Equivalent circuit of a~junction! diode.
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and 0.5 V<E<4.0 V ~1.0–8.0 Vpp, where Vpp stands for
peak to peak voltage!. The following color code is used: red,
period-1 attractor; pink, period-2 attractor; and black, period
greater than 2 or chaotic attractor. It is readily observed that
the pink regions at the lower (f ,E) values have essentially
the same bananalike shape. The bifurcation diagram in Fig. 3
has dc bias voltageEb521.0 V, f528 kHz, and 0<E<4.0
V. It intersects the bananalike regions of Fig. 5, which ex-
plains the alternate appearance of the period-1 attractor and
the chaotic band. In order to see the differences of the orbits
in different regions, let us observe the trajectories in the
nd2 i plane, wherend stands for the diode voltage andi
indicates the current. Figure 6 shows these orbits in the three
different red regions. Note that all of them are period 1 with
respect to the driving sourceE sin2p f t. However, each tra-
jectory has different ‘‘rotations’’ in the (nd ,i ) plane, and the

number of rotations is larger for largerE values. This means
that the period-1 attractors which are divided by chaotic
bands in Fig. 3 have orbits of different types.

III. SIMPLIFICATION OF THE DYNAMICS

In order to carry out a detailed bifurcation analysis, we
will simplify the dynamics~1! without losing the essential
features of the observed bifurcation structures. As shown in
Fig. 7, a very accurate equivalent circuit of a~junction! diode
is given by a parallel connection of three nonlinear elements
@32#: ~1! nonlinear resistor

I d5I s„exp~q8n/kT!21…, ~6!

~2! junction capacitorCj (n) due to the depletion region,

Cj~n!5H Cj0~12n/Vj0!
21/2 when n<Vj1

Cj0

2Vj0
~12Vj1 /Vj0!

23/2n1
2Vj023Vj1

2~Vj02Vj1!
Cj0~12Vj1 /Vj0!

21/2 when n.Vj1;
~7!

and ~3! diffusion capacitorCd(n)

Cd~n!5Cd0 exp~q8n/kT!, ~8!

whereI s , q8, k, T, Vj0, Cj0, Cd0, andVj1 are the saturation
current, electron charge, Boltzmann constant, absolute tem-
perature, potential voltage of thepn junction, junction ca-
pacitance at zero bias, diffusion capacitance at zero bias, and
turnover voltage between two models of the junction capaci-
tor, respectively.

Cj0(12n/Vj0)
21/2 in Eq. ~7! is a well known model of

the junction capacitor. Observe, however, that this function
has a singularity atn5Vj0, i.e., Cj becomes infinite. This
model is based on the abrupt space charge edge approxima-
tion, and is adequate only for large reverse bias voltages.
Thus this model cannot incorporate the forward bias region.
Experimental measurements show that, in the forward bias
region, the junction capacitance behaves in a rather compli-
cated~nonlinear! manner@33,34#. The second part of Eq.~7!
is a reasonable linear approximation in the forward bias re-
gion, although it is less well known in device physics and
circuit simulations. Since the diffusion capacitance given by

FIG. 8. Simplified equivalent
circuit of anR-L-diode circuit.

FIG. 9. Schematic of an orbit on the (Q,I ) plane. The horizontal
axis is I ; the vertical axis isQ. B0 indicates boundary lineQ51.
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Eq. ~8! is dominant forn>Vj1, the model given at the bot-
tom of Eq.~7! preserves the essential features of the charac-
teristics.

By measurements, the capacitance is found to be 90 nF at
0.5 V ~a positive bias! and 235 pF at21.0 V ~a negative
bias!. Note that the difference in the capacitance values is
more than two orders of magnitude. The diode also exhibits
the well known rectification characteristic given by Eq.~6!.
That is, in the reverse bias region the resistance is almost
infinite, whereas in the forward bias region the resistance is
very small. For example, at 0.5 V the resistance is 100V. By
carefully measuring the impedance of the capacitors and the
resistor over a frequency range of more than 25 kHz, we
found that the impedance of the capacitors is much smaller
than that of the resistor. Therefore the diode characteristic
can be simplified and can be modeled by a two segment
piecewise linear capacitor@15# ~see Fig. 8!, so that the dy-
namics of theR-L-diode circuit can be accurately described
by

dq

dt
5 i ,

~9!

L
di

dt
52Ri2H 1

Cd
q if q>0

1

Cj
q if q,0

J 2Ed1Eb

1E sin~vt !,

whereCd is the diffusion capacitance at 0.5-V bias,Cj is the
junction capacitance at21.0-V bias,Ed50.5 V is the break
point voltage at which the capacitance value changes be-
tween the junction capacitance and the diffusion capacitance,
i is the circuit current, andq is the charge stored in the
capacitor. Note that the biasEb is also included. One can
explain Fig. 6 in terms ofCd andCj : with a smallerE, the
trajectory spends more time in theCj region than in theCd

region. This, in turn, explains the larger number of rotations
with a smallerE, because the resonant frequency of theCj

region is higher than that of theCd region.

IV. EXACT BIFURCATION EQUATIONS

In this section, we will derive the exact bifurcation equa-
tions of the simplified dynamics~9! by taking full advantage
of the piecewise linearity, i.e., that the dynamics consists of
two linear differential equations connected at the boundary
q50. Using these equations, one cannot only identify vari-
ous bifurcation sets but can also construct a three dimen-
sional bifurcation diagram of periodic orbits, which clarifies
the local and global structures of periodic windows.

We first rescale the dynamics~9! and convert it into a
fourth order autonomous system as follows:

dQ

dt
5I ,

dI

dt
52kI2H 1

Cj
Q if Q,1

1

Cd
Q1

1

Cd

1

Cj
if Q>1

J
1

E

Cd~Eb2Ed!
M ,

~10!
dM

dt
5N,

dN

dt
52M ,

where

Q[
v2L

Cj~Eb2Ed!
q11, I[

vL

Cj~Eb2Ed!
i , t[vt,

k[
R

vL
,

1

Cx
[

1

v2CxL
~x5d, j !,

M21N251.

SinceEd,0, it follows from Eq.~10! that adding a negative
biasEb has the effect of decreasing the magnitude ofE. Note
that the sinusoidal voltage source has been converted into a
harmonic oscillatordM/dt5N, dN/dt52M . Equation
~10! is a two region piecewise linear vector field onR4,
which is most conveniently recast as

dx

dt
5HAx ~Q>1!

Bx1p ~Q,1!,
~11!

where

x5~Q,I ,M ,N!T, p5S 0, 1Cd
2

1

Cj
,0,0D T

~T indicates the transpose of a vector!,

A5F 0 1 0 0

2
1

Cj
2k

E

Cj~Eb2Ed!
0

0 0 0 1

0 0 21 0

G ,
B5F 0 1 0 0

2
1

Cd
2k

E

Cj~Eb2Ed!
0

0 0 0 1

0 0 21 0

G .
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We will use Eq.~11! extensively to perform various bifurca-
tion analyses in the next section.

A. Characterization of periodic orbits

Figure 9 shows a schematic of an orbit on the (Q,I )
plane. Consider a pointX lying on the boundaryB0 defined
by Q51. Let Y and Z be the points where the trajectory
starting fromX hitsB0 again at positive times1 and negative
time2t1 . Similarly, letW be the point where the trajectory
starting fromY hitsB0 again at a positive timeu1 . Since the
system is linear in each region, we have

Y5eDs1X,

Z5e2At1X,

W5eAu1Y5eAu1eDs1X,

where

D5A21BA,

ande2At1 stands for the matrix exponential of2At1 . Other
symbols have similar meanings. SinceX, Y, andW all lie on
the boundaryB0 ,

^a,X&51, ^a,eDs1X&51,

^a,e2At1X&51, ^a,eAu1eDs1X&51,

where ^ , & denotes the ordinary inner product onR4 and
a5(1,0,0,0)T. Therefore

X5~e1a
T1e2a

TeDs11e3a
Te2At1

1e4a
TeAu1eDs1!21~1,1,1,1!, ~12!

where

e15~1,0,0,0!T, e25~0,1,0,0!T, e35~0,0,1,0!T,

e45~0,0,0,1!T.

If the trajectory starting fromZ hits pointV on the bound-
ary B0 at a negative time2s2 , thenV is given by

V5e2Ds2Z5e2Ds2e2At1X.

If this orbit is periodic, thenW5V, which is equivalent to

~eAu1eDs12e2Ds2e2At1!X50.

Consequently, a periodic orbit is characterized by

~eAu1eDs12e2Ds2e2At1!k~s1 ,t1 ,u1!h50, ~13!

$e3k~s1 ,t1 ,u1!h%21$e4k~s1 ,t1 ,u1!h%251, ~14!

where @see Eq. ~12!# k(s1 ,t1 ,u1)5(e1a
T1e2a

TeDs1
1e3a

Te2At11e4a
TeAu1eDs1)21 and h5~1,1,1,1!. Note that

there are only three~out of four! independent equations in
Eq. ~13! because the third and fourth components ofW and
V are dependent through Eq.~14!.

B. Exact bifurcation equations of periodic orbits

Reference@26# rigorously shows that eigenvalues of the
Poincare return map onB0 are given by the eigenvalues of
the 434 matrix

F5eAt1eDs2eAu1eDs1.

One of the four eigenvalues ofF is always 1 becauseM and
N constitute a harmonic oscillator@see Eq.~10!#. If X is a
periodic point, one of the remaining three eigenvalues is also
1. Note that a saddle node bifurcation~period doubling bi-
furcation! is characterized by the fact that one of the remain-
ing two eigenvalues is 1~21!. Therefore, saddle node and
period doubling bifurcations are characterized, by the fol-
lowing: saddle node bifurcation,

32Tr~F!1Det~F!50,

~eAu1eDs12e2Ds2e2At1!k~s1 ,t1 ,u1!h50, ~15!

$e3k~s1 ,t1 ,u1!h%21$e4k~s1 ,t1 ,u1!h%251,

and period doubling bifurcation,

212Tr~F!1Det~F!50,

~eAu1eDs12e2Ds2e2At1!k~s1 ,t1 ,u1!h50, ~16!

$e3k~s1 ,t1 ,u1!h%21$e4k~s1 ,t1 ,u1!h%251,

where Tr~F! is the trace ofF, and Det~F! is the determina-
tion of F.

FIG. 10. (E,S/T) diagram.
FIG. 11. (E,S/T) diagram for a period-1 orbit atf530 kHz.
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Other types of periodic orbits can be characterized simi-
larly. These exact bifurcation equations will be used exten-
sively and will play fundamental roles in the rest of this
paper. We should emphasize that no integration formula
~e.g., the Runge-Kutta formula! will be used in obtaining the
bifurcation diagrams. The bifurcation diagrams will be ob-
tained simply by solving Eqs.~15! and~16! ~via Euler!. This
method is particularly powerful when we compute an un-
stable~saddle type! periodic orbit with many rotations, be-
cause the error incurred by the Runge-Kutta formula signifi-
cantly deteriorates accuracy. In fact, some of the complicated

saddle type periodic orbits cannot be captured by the Runge-
Kutta formula.

Of course, saddle node as well as period doubling bifur-
cations cannot be completely characterized solely by eigen-
value conditions. In most experimental~numerical! studies,
however, eigenvalue conditions suffice.

C. New variableS/T

Even with the exact bifurcation equations derived in Sec.
IV B, it is still difficult to explain the structures in the ob-
served bifurcation diagrams, Figs. 2, 3, 4, and 5. A crucial
step here is to choose another variable for bifurcation dia-
grams, in addition tof andE. In Ref. @26#, one of the state
variables is chosen as the third variable. In theR-L-diode
circuit, however, our extensive simulations indicate that the
state variables are not suitable for explaining the bifurcations
of interest because the resulting bifurcation curves give rise
to many self-intersection points. This appears to be attribut-
able to the fact that the coordinates of the state variables at a
particular cross section ‘‘move around’’ as parameters are
varied.

As was pointed out at the end of Sec. III, the time which
a trajectory spends in theCj region plays an important role
in characterizing a trajectory. In order to account for this, let
S be the time a trajectory spends in theCd region ~i.e.,
Q>1!, let T be the time a trajectory spends in theCj region
(Q,1), and considerS/T (S1T52p). It turns out that this
is a very good choice for the third variable. Figure 10 shows
a one parameter bifurcation diagram for period-1, -2, -3, and
-4 orbits obtained by solving the exact equations. The circuit
parameters are

R5214 V, L52.5 mH, Cj5235 pF, Cd551.4 nF,

f5150 kHz, Eb521.0 V.

The horizontal axis is the voltage source amplitudeE, while
the vertical axis isS/T. The solid curves~broken curves!
indicate that the orbits are stable~unstable!. In Sec. V, we
will perform a detailed bifurcation analysis on each of the
periodic orbits given in Fig. 10, and then elucidate a global
picture.

FIG. 12. Period-1 orbits on the (Q,I ) plane. ~a! Orbit corre-
sponding toS1 in Fig. 11.~b! Orbit corresponding toS2 in Fig. 11.
~c! Orbit corresponding toS3 in Fig. 11.

FIG. 13. (f ,E) diagram for period-1 orbits.
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V. BIFURCATION STRUCTURE
IN „f ,E,S/T… SPACE

With exact bifurcation equations at hand, this section is
devoted to a detailed bifurcation analysis. Particular attention
is paid to those properties of unstable periodic orbits that are
related to the sheet structure. The goal of this section is to
explain Figs. 2 and Fig. 3 using Fig. 23.

A. Period-1 orbits

Figure 11 shows one parameter bifurcation diagrams for a
period-1 orbit that are obtained by solving Eqs.~13! and
~14!. The circuit parameters are

R5214 V, L52.5 mH, Cj5235 pF,

Cd551.4 nF, Eb521.0 V, f530 kHz.

The horizontal axis is the amplitudeE of the voltage source
while the vertical axis isS/T. A solid ~broken! line indicates
that the period one orbit is stable~unstable!. SymbolS, as-
sociated with a black circle~D is associated with a white
circle!, indicates a point where saddle node~period doubling!
bifurcation takes place. Subscripts 1, 2, and 3 are only for
distinguishing the bifurcation points. The distinction between
Sn andSn* is that, atSn , a pair of periodic orbits is born asE
is increased, while, atSn* , a pair of periodic orbits disap-
pears asE is increased. The distinction betweenDn and
Dn* lies in the fact thatDn is associated withSn , whileDn* is
associated withSn* . The bifurcation structures of interest are
clearly captured: all the period-1 orbits belong to the same
family in the parameter space. In Fig. 11, for example, bifur-

cations take place repeatedly asS/T increases: saddle node
bifurcation (S2)→stable period-1 orbit~solid line!→period
doubling bifurcation (D2)→unstable period-1 orbit~broken
line!→reverse period doubling bifurcation (D2* )→stable
period-1 orbit~solid line!→saddle node bifurcation (S1* ).

The nature of the period-1 orbits, however, varies asS/T
varies. Specifically, the number of rotations increases asS/T
decreases, as shown in Fig. 12, where the trajectories are
shown on theQ-I plane. The negativeQ axis has a different
scale from that of the positive-Q axis. This is to avoid draw-
ing large ‘‘semicircles’’ on the half planeQ,0. The orbit in
Fig. 12~a! correspond toS1 in Fig. 11. Similarly, Fig. 12~b!
corresponds toS2 in Fig. 11. Note that a periodic orbit be-
comes more complicated as the time which the orbit spends
in theCj region increases. However, there is a limit to this. If
S/T is very small, the orbit stays in theCj region all the time
@at least in the piecewise linear model Eq.~9!#, and it is not
complicated at all.

Compared with the trajectories on theQ-I plane~see Fig.
12!, the experimentally observed trajectories in thend- i
plane are strongly compressed against thei axis ~see Fig. 6!,
becauseCd is much larger thanCj . However, the correspon-
dence between Figs. 6 and 12 is clear. The stability interval
betweenD2* andS1* is extremely narrow; therefore, it is very
difficult to observe the period-1 attractor in this particular
interval in an experiment. In contrast, the stability interval
betweenS2 andD2 is so large that the period-1 attractor in
this interval can easily be observed in an experiment~see
Fig. 3!.

Figure 13 shows saddle node bifurcation sets in the (f ,E)
two parameter plane. The vertical axis is the frequencyf and

FIG. 14. A schematic (f ,E,S/T) diagram for period-1 orbits.
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the horizontal axis is the amplitudeE of the voltage source.
In Fig. 13, curvesSn andSn* indicate saddle node bifurcation
sets that correspond to those in Fig. 11. The straight dotted
line at 30 kHz corresponds to Fig. 11. TheSn andSn* pair
meets and vanishes at pointsCn andCn* . Those points are
often called the cusp points@26#.

Now let us compare Fig. 13 with the experimental data in
Fig. 5. First recall the color code: pink, period 1; red, period
2; and black, period greater than 2 or chaotic. Since in an
experiment we can observe attractors only, we note that a
boundary between the pink and the red regions signifies pe-
riod doubling bifurcations, while Fig. 13 shows saddle node
bifurcation sets. Still we observe the bananalike regions in
both figures. This is attributable to the fact that each saddle
node bifurcation setSn always accompanies a period dou-

bling bifurcation setDn , which is clear from Fig. 11. Note
that, in Fig. 5, a boundary between the pink and black re-
gions signifies period doubling bifurcations of period-2 or-
bits. Note also that a boundary between the black and red
regions signifies saddle node bifurcations of period one or-
bits.

Even though Fig. 13 explains why one observes Fig. 5
experimentally, it still does not explain how the periodic or-
bits of interest are connected with each other. In order to
observe this more transparently, all the information concern-
ing the period-1 orbits obtained so far are combined, and a
schematic three dimensional bifurcation diagram consistent
with the data is shown in Fig. 14. However, some of the
values ofSn andDn shown in Figs. 11 and 13 are not shown
in Fig. 14 since the picture becomes too complicated to
draw. The sheetlike object is the set of periodic orbits in the
( f ,E,S/T) space together with stability information. The
shaded region of the sheet indicates the stable period-1 orbit;
the nonshaded regions indicate an unstable period-1 orbit. It
can be observed that all the period-1 attractors belong to the
wavy sheet. Thus it is clear that all the period-1 attractors
belong to the same family in the (f ,E) parameter plane.

B. Period-3 orbits

The bifurcation structure of period-2 orbits is rather com-
plicated, so let us explain the bifurcation structures of
period-3 and -4 orbits before explaining the bifurcation
structure of the period-2 orbits. Figure 15 shows one param-
eter bifurcation diagrams for a period-3 orbit computed by
solving the bifurcation equations described in Sec. IV. The
frequencies are~a! f5150 kHz, ~b! f5200 kHz, and~c!
f5300 kHz. Other circuit parameters are the same as those
for period-1 orbits. The horizontal axis is the amplitudeE of
the voltage source, and the vertical axis isS/T. A solid line
~broken line! represents that the period-3 orbits are stable
~unstable!; Sn and Sn* ~black circles! indicate saddle node
bifurcations, andDn andDn* ~white circles! indicate period
doubling bifurcations. Contrary to the bifurcation diagrams
of the period-1 orbits, the bifurcation diagram is not mono-
tone with respect toS/T. There is a self-intersecting point.
However, this singular point does not have any special
physical meaning.

Three periodic windows,S1-D1 , S2-D2 , and D2* -S1* ,
can be observed in Fig. 15~a!. The windowsS2-D2 and

FIG. 15. (E,S/T) diagram for period-3 orbits.~a! f5150 kHz,
~b! f5200 kHz, and~c! f5300 kHz.

FIG. 16. (f ,E) diagram for period-3 orbits.
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D2* -S1* are small, compared with the windowS1-D1 . Recall
Fig. 2, in which the two different period three attractors in-
dicated byA3 andB3 are discernible. We observe thatA3
andB3 correspond to the windowsS2-D2 andS1-D1 . As f
is increased, the two small windowsS2-D2 andD2* -S1* be-
come smaller and closer to each other@see Fig. 15~b!#. Fi-
nally, these two windows collide and vanish@see Fig. 15~c!#.
Let us next check how these saddle node bifurcation sets
look in the (f ,E) two parameter plane~Fig. 16!. The vertical
axis is the frequencyf , and the horizontal axis is the ampli-
tudeE of the voltage source. Note that there are two cusp
points where two saddle node bifurcation sets merge. Now
we realize that Fig. 15, which is an (E,S/T) diagram, to-
gether with Fig. 16, which is an (f ,E) diagram, still do not
sufficiently clarify the bifurcation structure. If we look at
these bifurcations in the (f ,E,S/T) space, however, then
they are almost transparent. Before explaining the (f ,E,S/T)
diagram, let us recall that there are self-intersection points in
Figs. 15~a! and 15~b! and that they do not have any signifi-
cant physical meaning. Figure 17 is a schematic bifurcation
diagram consistent with the above data. This schematic dia-
gram ‘‘unfolds’’ the self-intersection points in order to make
the picture more transparent. The new coordinate is called
(S/T)8 instead of (S/T). The „f ,E,(S/T)8… diagram again
consists of a two-dimensional, sheetlike object where the
shaded area indicates stable period-3 orbits. The windows
S2-D2 andD2* -S1* are omitted from Fig. 17 since they are
too small to draw. It is seen immediately that all period-3
windows S2-D2 , S1-D1 , and D2* -S1* belong to the same
family. In particular, the windows corresponding toA3 and
B3 observed in Fig. 2 belong to this family.

C. Period-4 orbits

The bifurcation structures of the period four orbits are
similar to those of period-3 orbits. Figure 18 shows one pa-

rameter bifurcation diagrams with the frequencies~a! f5150
kHz and ~b! f5300 kHz. At f5150 kHz, there are three
periodic windows. Asf increases, two small windowsS2-D2

andD2* -S1* become smaller and closer to each other. Finally,

FIG. 17. A schematic„f ,E,(S/T)8… diagram for period-3 orbits.

FIG. 18. (E,S/T) diagram for period-4 orbits.~a! f5150 kHz.
~b! f5300 kHz.
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they collide and vanish@see Fig. 18~b!#. Figure 19 shows the
saddle node bifurcation sets on the (f ,E) plane. We omit the
schematic model since it is basically the same as that in Fig.
17. We can see that the two period-4 windows in Fig. 2
indicated byA4 andB4 correspond toS2-D2 andS1-D1 @Fig.
18~a!#.

D. Period-2 orbits

The bifurcation structures of the period-2 orbits have sev-
eral features which are very different from those of other
periodic orbits. While all other periodic orbits are born out of
saddle node bifurcations, some of the period-2 orbits are
born out of period doubling bifurcations of period-1 orbits.

Figure 20 shows one parameter bifurcation diagrams of
the period-2 orbits. The frequencies are~a! f5150 kHz,~b!
f5200 kHz, and~c! f5300 kHz. Other circuit parameters
are the same as those for the period one orbits. The horizon-
tal axis is the amplitudeE of the voltage source and the
vertical axis isS/T. A solid line ~broken line! represents the
fact that the period-2 orbits are stable~unstable!, and Sn
(Sn* ) ~black circles! and Dn (Dn* ) ~white circles! indicate
points where period-2 saddle node bifurcation and period
doubling bifurcation take place. The symbolPn ~the white
circles with dot! stands for a point where period doubling
bifurcation of the period-1 orbit occurs.P1 is the same set
that is symbolized asD1 in Fig. 11. Note that there are three
stable regions of period-2 orbits in Fig. 20~a!: S1-D1 ,
P1-D2 , andD2* -S1* . RegionsP1-D2 andD2* -S1* are small
compared with the windowS1-D1 . As f increases, the two
small regionsP1-D2 andD2* -S1* become smaller and move
closer to each other@see Fig. 20~b!#. However, they never
collide with each other. Finally, the regionsS1-D1 and
D2* -S1* collide with each other~instead of the pairP1-D2

andD2* -S1* ! and vanish. Figure 21 shows the situation on the
( f ,E) plane where the horizontal axis is the frequency and
the vertical axis is the amplitude of the voltage source. At the
cusp pointsC1 and C1* , the saddle node bifurcation sets
S1* andS1 become tangent to each other and vanish. In the
area around the cusp pointC1* , the bifurcation structure is
rather complicated. Figure 22 shows a schematic
„f ,E,(S/T)8… diagram of the period-2 orbits. Note that the
period doubling bifurcation set of period-1 orbitsP1 is not
tangent to the saddle node bifurcation set atC1* . It is clearly
shown that two types of period-2 orbits which have different
origins are in the same family on the (f ,E) plane. In terms of
Fig. 2, the stable period-2 intervalA2 is born out of period
doubling ~of a period-1 orbit!, while windowB2 is result of
a saddle node bifurcation, and yet they belong to the same
family of period-2 orbit.

E. Global bifurcation structure

We are now ready to see all the bifurcation structures
explained above in a single picture. Figure 23 is a schematic
„f ,E,(S/T)8… diagram of global bifurcation structure. The
color code is as follows: green, period 4; purple, period 3;
yellow, period 2; and blue, period 1. The light colored region

FIG. 19. (f ,E) diagram for period-4 orbits.

FIG. 20. (E,S/T) diagram for period-2 orbits.~a! f5150 kHz.
~b! f5300 kHz.

FIG. 21. (f ,E) diagram for period-2 orbits.
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FIG. 22. A schematic model„f ,E,(S/T)8… diagram for period-2 orbits.

FIG. 23. A schematic model„f ,E,(S/T)8… diagram for all the periodic orbits. The following color code is used. Blue: period 1. Yellow:
period 2. Purple: period 3. Green: period 4.
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indicates stable periodic orbits; the dark colored region
stands for unstable periodic orbits.~Due to the color printing
process, the dark yellow and light yellow may not be distin-
guishable.! The large white circles are the cusp points of the
saddle node bifurcation sets. The small black~white! circles
on the section of the figures show the saddle node bifurcation
points ~period doubling bifurcation points!. The small white
circle with a dot shows period doubling bifurcation point of
period 1. These pictures completely clarify those points ex-
plained in Sec. I. In particular, the following are true.

~1! The period-1 attractors which are repeatedly observed
constitute a sheet structure in (f ,E,S/T) space, and hence
their associated unstable period-1 orbits belong to the same
~blue! family.

~2! Other periodic attractors of the same periods and their
associated unstable periodic orbits form a sheet structure,
and therefore belong to the same families~green, purple, or
yellow!.

Let us now check how well this global picture captures
the experimentally observed data in terms of Figs. 2, 3, and
23. The experimental result in Fig. 2~a! corresponds to the
cross section of Fig. 23 indicated byf5 f 1 , which is redrawn
in Fig. 2~b! in order to make the correspondence transparent.
In Fig. 2~a! the stable orbits are indicated by the thick lines;
in Fig. 23, stable orbits are indicated by lighter colors. Figure
3~a! corresponds to the part of the cross section of Fig. 23
indicated byf5 f 2 , where the wavy blue sheet is seen at the
small E values. In Fig. 3~b!, the stable orbits are drawn as
thick lines. Also indicated in Fig. 3~b! are the saddle node
bifurcation points~black dots! and the period doubling bifur-
cation sets~white circles!. These bifurcation sets are not
drawn at thef5 f 2 cross section of Fig. 23 in order to avoid
complication. The correspondence between the experimental
and analytical results is clear.

VI. CONCLUSION

A global bifurcation analysis was made of a drivenR-L-
diode circuit. This paper has clarified most of the global
bifurcation structure observed in the circuit by deriving exact
bifurcation equations then drawing the diagrams in (f ,E,S/
T) space instead of on the (f ,E) plane. The major findings
are as follows.

~i! The repeatedly observed period-1 attractors and their
associated unstable period-1 orbits constitute a sheet struc-
ture in (f ,E,S/T) space, and hence belong to the same fam-
ily of period-1 orbits.

~ii ! The two different period three windows~A3 andB3 in
Fig. 2! are born out of two different saddle node bifurcations,
and yet they belong to the same family of period-3 orbits.

~iii ! The same is true forA4 andB4 in Fig. 2, i.e., the two
different period-4 windows.

~iv! The situation is different forA2 andB2 in Fig. 2, i.e.,
the two different period-2 intervals. The stable period-2 in-
terval A2 is born out of a period doubling bifurcation of a
period-1 orbit, while windowB2 is the result of a saddle
node bifurcation, and yet they belong to the same family of
period-2 orbits.

~v! A global perspective which is consistent with the ex-
perimentally observed data is clarified. Very good correspon-
dence between the numerical and experimental results is ob-
tained.

ACKNOWLEDGMENTS

The authors would like to thank M. Komuro from Teikyo
Science University, R. Tokunaga from Tsukuba University
and J. Noguchi from Waseda University for many construc-
tive discussions. Thanks are also due to M. Nakai of Kyoto
University for bringing to our attention a similarity between
theR-L-diode circuit and the gear meshing vibration.

@1# M. J. Feigenbaum, Los Alamos Sci.1, 4 ~1980!.
@2# Y. Pomeau and P. Manneville, Commun. Math. Phys.74, 189

~1980!.
@3# C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett.48, 1507

~1982!.
@4# P. S. Linsay, Phys. Rev. Lett.47, 1349~1981!.
@5# J. Testa, J. Perez, and C. Jeffries, Phys. Rev. Lett.48, 714

~1982!.
@6# R. W. Rollins and E. R. Hunt, Phys. Rev. Lett.49, 1295

~1982!.
@7# S. D. Bronson, D. Dewey, and P. S. Linsay, Phys. Rev. A28,

1201 ~1983!.
@8# H. Ikezi, J. S. deGrassie, and T. H. Jenson, Phys. Rev. A28,

1207 ~1983!.
@9# J. Cascais, R. Dilao, and A. Norondacosta, Phys. Lett.93A,

213 ~1983!.
@10# D. Azzouz, R. Duhr, and M. Hasler, IEEE Trans. CAS30, 913

~1983!.
@11# E. R. Hunt and R. W. Rollins, Phys. Rev. A29, 1000~1984!.
@12# T. Klinker, W. M. Ilse, and W. Lauterborn, Phys. Lett.101A,

371 ~1984!.
@13# M. F. Bocko, D. H. Douglass, and H. Frutchy, Phys. Lett.

104A, 388 ~1984!.

@14# D. Azzouz, R. Duhr, and M. Hasler, IEEE Trans. CAS31,
1155 ~1984!.

@15# T. Matsumoto, L. O. Chua, and S. Tanaka, Phys. Rev. A30,
1155 ~1984!.

@16# T. H. Yoon, J. W. Song, S. Y. Shin, and J. W. Ra, Phys. Rev.
A 30, 3347~1984!.

@17# C. D. Jeffries, Phys. Scr.T9, 11 ~1985!.
@18# S. Tanaka, T. Matsumoto, and L. O. Chua, Proc. IEEE ISCAS,

851 ~1985!.
@19# J. M. Perez, Phys. Rev. A32, 2990~1985!.
@20# J. Mevissen, R. Seal, and L. Waters, Phys. Rev. A32, 2990

~1985!.
@21# S. Tanaka, T. Matsumoto, and L. O. Chua, Physica D28, 317

~1987!.
@22# J. H. Baxter, M. F. Bocko, and D. H. Douglass, Phys. Rev. A

41, 619 ~1990!.
@23# S. Tanaka, T. Matsumoto, J. Noguchi, and L. O. Chua, Phys.

Lett. 157A, 37 ~1991!.
@24# S. Tanaka, J. Noguchi, S. Higuchi, and T. Matsumoto, IEICE

Trans.74, 1406~1991!.
@25# S. Higuchi, S. Tanaka, M. Komuro and T. Matsumoto, inAd-

vanced Series in Dynamical Systems, edited by H. Kawakami

54 6027SHEET STRUCTURE IN GLOBAL BIFURCATIONS OFA . . .



~World Scientific, Singapore, 1991!, Vol. 10, pp. 119–138.
@26# T. Matsumoto, M. Komuro, H. Kokubu, and R. Tokunaga,

Bifurcations: Sights, Sounds and Mathematics~Springer-
Verlag, Tokyo, 1993!.

@27# M. Kuroda, T. Hikawa, and M. Nakai, Trans. JSME61, 815
~1995!.

@28# M. Kuroda, Y. Matsui, and M. Nakai, Trans. JSME61, 808
~1995!.

@29# J. M. T. Thompson, Proc. R. Soc. London Ser. A387, 407

~1983!.
@30# E. R. Hunt, Phys. Rev. Lett.67, 1953~1991!.
@31# T. Matsumoto and N. Nishi~unpublished!.
@32# E. S. Yang, Fundamentals of Semiconductor Devices

~McGraw-Hill, New York, 1987!.
@33# H. C. Poon, and H. K. Gummel, Proc. IEEE57, 2181~1969!.
@34# B. R. Chawla and H. K. Gummel, IEEE Trans. Electron De-

vicesED-18, 178 ~1971!.

6028 54TANAKA, HIGUCHI, AND MATSUMOTO


