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Riemannian theory of Hamiltonian chaos and Lyapunov exponents
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A nonvanishing Lyapunov exponeRt, provides the very definition of deterministic chaos in the solutions
of a dynamical system; however, no theoretical mean of predicting its value exists. This paper copes with the
problem of analytically computing the largest Lyapunov exponenfor many degrees of freedom Hamil-
tonian systems as a function ef=E/N, the energy per degree of freedom. The functional dependence
\1(e) is of great interest because, among other reasons, it detects the existence of weakly and strongly chaotic
regimes. This aim, the analytic computation\af(¢), is successfully reached within a theoretical framework
that makes use of a geometrization of Newtonian dynamics in the language of Riemannian differential geom-
etry. An alternative point of view about the origin of chaos in these systems is obtained independently of the
standard explanation based on homoclinic intersections. Dynamical instdbiiips is here related to cur-
vature fluctuations of the manifolds whose geodesics are natural motions and is described by means of the
Jacobi-Levi-Civita equatiofJLCE) for geodesic spread. In this paper it is shown how to derive from the
JLCE an effective stability equation. Under general conditions, this effective equation formally describes a
stochastic oscillator; an analytic formula for the instability growth rate of its solutions is worked out and
applied to the Fermi-Pasta-Ulap model and to a chain of coupled rotators. Excellent agreement is found
between the theoretical prediction and numeric values(¢) for both models[S1063-651X96)11611-1

PACS numbd(s): 05.45+4b, 02.40-k, 05.20-y

I. INTRODUCTION ized by the largest Lyapunov exponext that, if positive,
measures the mean instability rate of nearby trajectories av-
During the past two decades or so, there has been growirgraged along a sufficiently long reference trajectory. The ex-
evidence of the independence of the two propertiededér-  ponent\; also measures the typical time scale of memory
minismandpredictability of classical dynamics. In fact, pre- loss of the initial conditions.

dictability for arbitrarily long times requires also tiseability Let us recall that if
of the motions with respect to variations, however small, of i uig N
the initial conditions. X'=X(X- - xT) 1)

With the exception of integrable systems, the generic Situ?s a given dynamical system, i.e., a realization in local coor-
ation of classical dynamical systems describing, daypar- di tg f y i y i P £ diff hi f
ticles interacting through physical potentialsinistability of inates of a one: paranlfa er group of drfreomorphisms of a
the trajectories in the Lyapunov sense. Nowadays such aWameId M, that is, of¢":M—M, and if we denote by
instability is called intrinsic stochasticity, or chaoticity, of B=Tx(t)]E )
the dynamics and is a consequence of nonlinearity of the k

equations of motion. , B o _ the usual tangent dynamics equation, i.e., the realization of
Like any other kind of instability, dynamical instability he mappingd¢: TM—TM, where TM is the tangent

brings about the exponential growth of an initial perturba-p n4ie ofm and[ 7] is the Jacobian matrix dfx'], then
tion; in this case it is the distance between a reference trap o largest Lyapunokv exponeNt is defined by ’

jectory and any other trajectory originating in its close vicin-
ity that locally grows exponentially in time. Quantitatively, 1 e
the degree of chaoticity of a dynamical system is character- A =lim—in EQ ()

t—o

- ; T Toe ¢ Ty eTe_
*Also at INFN, Sezione di Firenze, ltaly. Electronic address:?nd’ by se%tlng/\[x(t),g(t)]—f JIXV]ele e=¢ ¢l '§
casetti@sns.it s(d/dt)In(¢'€), this can be formally expressed as a time av-
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Italy. Electronic address: clementi@sissa.it 1 [t
*Also at INFM, Unitadi Firenze, and INFN, Sezione di Firenze, A =lim Z_J drA[X(7),&(7)]. (4)
Italy. Electronic address: pettini@arcetri.astro.it 1= 2tJo

1063-651X/96/546)/596916)/$10.00 54 5969 © 1996 The American Physical Society



5970 LAPO CASETTI, CECILIA CLEMENTI, AND MARCO PETTINI 54
Even though\; is the most important indicator of chaos of tation of\ ; in the Fermi-Pasta-Ulan8 model and in a chain
classical 1] dynamical systems, it is used only as a diagnos-of coupled rotators. Some concluding remarks are presented
tic tool in numerical simulations. With the exception of a few in Sec. V.

simple discrete-time systenisaps of the intervaj no theo-

retical method exists to compute, [2]. This situation re- [l. GEOMETRIZATION OF NEWTONIAN DYNAMICS

veals that a satisfactory theory of deterministic chaos is still

lacking, at least for systems of physical relevance. phrased in the language of Riemannian geometry. We shall

In the conventional theory of chaos, dynamical instabilitydeal with standard autonomous systems, i.e., described by
is caused by homoclinic intersections of perturbed separgpq Lagrangian function

trices; however, this theory has some limitatiofislt needs

action-an_gle coord_inate(aii) It Works_@n conditions of weak L=T-V=1 aijquJ‘_V(q1, gy, (5)
perturbation of an integrable systefii) To compute quan-

tities such as Mel'nikov integrals one needs the analytic exso that the Hamiltonian functiokl =T+ V=E is a constant
pressions of the unperturbed separatrices: at Iarghis is  of motion.

hopeless; moreover, the generalization of the Poircare According to the principle of stationary action, in the
Birkhoff theorem is still problematic ali>2. (iv) Finally, ~ form of Maupertuis, among all the possible isoenergetic
there is no computational relationship between homoclinid?@thsy(t) with fixed end points, the paths that make the first
intersections and Lyapunov exponents. Therefore this theoryariation of the action functional

seems to be inadequate to treat chaos in Hamiltonian systems

with many degrees of freedom at arbitrary degree of nonlin- A= idqi:J Eqidt (6)
earity, with potentials that can be hardly transformed in Q) ¥ dQ;

action-angle coordinates, not to speak of accounting for phe- ) o )

nomena such as the transition from weak to strong chaos ikanish are natural motions. As the kinetic enefigis a ho-
Hamiltonian system§3,4]. Motivated by the need of under- mogeneous function of degree 2, we have=x); 9L/ 3q; and
standing this transition from weak to strong chaos, we havélaupertuis’s principle reads

recently proposed5—10Q to tackle Hamiltonian chaos in a

different theoretical framework. This method makes use of SA= 5[ 2Tdt=0. )
the well-known possibility of formulating Hamiltonian dy- ¥(1)

namics in the language of Riemannian geometry so that they,, configuration spach! of a system withN degrees of

stability or instability of a geodesic flow depends on curva-freedom is arN-dimensional differentiable manifold and the

ture properties of some suitably defined manifold. Lagrangian coordinatesgt, . .. ,qV) can be used as local
In the early 1940s, Krylov already got a hold of the po- coordinates onM. The manifoldM is naturally given a

tential interest of this differential-geometric framework to proper Riemannian structure. In fact, let us consider the ma-
account for dynamical instability and hence for phase-spacgix

mixing [11]. The followup of his intuition can be found in

abstract ergodic theofy12] and in a very few mathematical gij=2[E— V()& (8)
works concerning the ergodicity of geodesic flows of physi-
cal interes{13,14. However, Krylov's work did not entail
anything useful for a more general understanding of chaos in o

nonlinear Newtonian dynamics, because one soon runs into 5f 2Tdt= 5f (gija'a)*dt=6| ds=0, (9
unsurmountable mathematical obstacles. By filling certain 7o 7 7o
mathematical gaps with numerical investigations, these obxhus natural motions are geodesicawf provided we define
stacles have been overcome and a rich scenario emergea as its arc length. The metric tensgy of M is then de-

Let us briefly recall how Newtonian dynamics can be re-

so that(7) becomes

about the relationship between stability and curvature. fined by

Based on the so-obtained information, the present paper : j
aims at bringing a substantial contribution to the develop- 9,=g;dqedd, (10
ment of a Riemannian theory of Hamiltonian chaos. TheWhere dqt, ... da") is a natural base ngM, the cotan-

contribution consists of a method to analytically compute the T 1 N
largest Lyapunov exponent; for physically meaningful gent space at the poird, In the Ipcal chart § oo ):
Hamilton ¢ ¢ b'tl | ber of d his is known as a Jacokor kinetic-energy metric. Denot-

amilionian systems ot arbitrary large number of degrees Ong by V the canonical Levi-Civita connection, the geodesic
freedom. A preliminary and limited account of the results

equation
presented here can be found in Réf]. quat

The paper is organized as follows. Section Il is a sketchy V.y=0 (12)
presentation of the geometrization of Newtonian dynamics. ’
Section Il contains the derivation of an effective stability becomes, in the local chartf, . .. gV,
equation from the Jacobi—Levi-Civita equation for geodesic o —_
spread and an analytic formula fag. Section IV contains d_q+ri. d_qd_qzo (12)
the application of the general result to the practical compu- ds® k'ds ds '
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where the Christoffel coefficients are the component¥ of ll. GEOMETRIC DESCRIPTION
defined by OF DYNAMICAL INSTABILITY

The actual interest of the Riemannian formulation of dy-
namics stems from the possibility of studying the instability
of natural motions through the instability of geodesics of a
suitable manifold, a circumstance that has several advan-
tages. First of all, a powerful mathematical tool exists to
d2q 1 AE-V) dd dg investigate the stability or instability of a geodesic flow: the
a2 + 4(E—V)[ aq ds ds Jacobi—Levi-Civita(JLC) equation for geodesic spread. The

JLC equation describes covariantly how nearby geodesics
_I(E-V) dg* dg™ locally scatter and it is a familiar object in both Riemannian
—-g" g7 %mgs gs | © (14)  geometry and theoretical physitisis of fundamental inter-
q est in experimental general relativityMoreover, the JLC

and, usingds?=4(E—V)2dt?, we can easily verify that €quation relates the stability or instability of a geodesic flow

ijk:<dqirvjek>: 5 9"™(3;9km+ Gmj— ImTj), (13

where g;=a/dq'. Without loss of generality consider
gij=2[E—V(q)]5;;; from Eq.(12) we get

these equations yield with curvature properties of the ambient manifold, thus
. opening a wide and largely unexplored field of investigation,
d?q’ amv as far as physical systems are concerned, of the connections
——=——1i=1,... N, (15 | d desic i bility. h
a2 o among geometry, topology, and geodesic instability, hence
chaos.

which are Newton equations. ) o ] )

As already discussed elsewh§ge6], there are other pos- A. Jacobi-Levi-Civita equation for geodesic spread
sibilities to associate a Riemannian manifold to a standard A congruence of geodesiés defined as a family of geo-
Hamiltonian system. Among the others we mention a strucdesics {y,(s)=y(s,7)|7e R} that, originating in some
ture, defined by Eisenhaf15], that will be used in the fol- neighborhood of any given point of a manifold, are differ-
lowing .for computational reasons. In this case trzle gmbienéntiab|y parametrized by some parameteChoose a refer-
space Is an enlargoed lconﬂguhrlanmllspaqe-tmiﬁR , W',Eh ence geodesig(s, o), denote byy(s) the field of vectors
local cgordw']atesc(.,q R ke Y W'ﬂ‘ (@%---.97)  tangent ats to v, and denote byl(s) the field of vectors
€M, g°c R is the time coordinate, angf' “*< R is a coor- tangent atr, to the curvesy(r) at fixed s. The field

dinate closely related to the action; Eisenhart defines ?Jz(ay/ar) is known asgeodetic separation fieldnd it
seudo-Riemannian non-degenerate mejrion M X R? as 70 . . o
P 9 ! has the property’,J=0, where, is the Lie derivative. Lo-

_ u VA i 0 0 cally we can measure the distance between two nearby geo-
dsﬁ 9. d9*®@dq’=a;dgedg -2V(g)dg @dg desics by means af.
+dePedgV i +dgN e dgC. The evolution of the geodetic separation fidl&onveys

information about the stability or instability of the reference
(16 geodesicy. In fact, if [ J]| exponentially grows witrs then

Natural motions are now given by the canonical projectionf[he geodesic is unstable in the sense of Lyapunov; otherwise

. ! . it is stable.
o of the geodesics ofNM X R%,gg) on configuration space- . . .
time 7:M X R?>—M X R. However, among all the geodesics The evolution of] is described by19]

of gg we must consider only those for which the arc length is v2J(s) ) )
positive definite and given by i +R(y(s),J(s))v(s)=0, (20
— v_ 2442
dsz—gl“,dq/‘dq =2Cdt 17) known as Jacobi—Levi-Civita equation. Herel(s)

or, equivalently, we have to consider only those geodesics T_V(S)M; ROXCY)=VuVy = VyVx=Vixy s Fhe R|emanr1-
such that the coordinag"** evolves according to Christoffel curvature tensory=dvy/ds; V/ds is the covari-
ant derivative andy(s) is a normal geodesic, i.e., such that
s is the length. In the following we assume thi{s) is

normal, i.e.,(J,y)=0. This equation relates the stability or
instability of nearby geodesics to the curvature properties of
whereC andC, are real constants. Since the values of thesehe ambient manifold. If the ambient manifold is endowed
constants are arbitrary, we fiC?=1/2 in order that with a metric(e.g., Jacobi or Eisenhartlerived from the
ds’=dt? along a physical geodesic. For a diagonal kinetic-Lagrangian of a physical system, then stable or unstable
energy matrixa;; = §; , the nonvanishing components of the (chaotig motions will depend on the curvature properties of

t
qN+1=c2t+c§—J Ldr, (18)
0

connectionV are simply the manifold. Therefore it is reasonable to guess that some
i Ni1 averageglobal geometric property will provide information,
o= Lo "=V, (19 at least, about aaveragedegree of chaos of the dynamics

o ) independently of the knowledge of the trajectories that is
therefore it is easy to check that also the geodesicg of jngependently of the numerical integration of the equations
yield Newtonian equations together with the differential ver-of motion.
sions of Eq(18) and ofq°=t (details can be found if5,6]). In local coordinates the JLC equati¢20) reads
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V2Ji+R dg kdql—o 21
o TRiags Y gs =0 @D
whereR}kI = (dqi,R(e(k) €(1))€(j)) are the.compone'nts 'of the
curvature tensor and the covariant derivative

(VJ'/ds)=dJ/ds+T}Jdg/ds. There areO(N*) of such
componentsN=dimM; therefore, even if this number can
be considerably reduced by symmetry considerations,

largeN Eq. (21) appears untractable already at rather smal
N. It is worth mentioning that some exception exists. Such i

the case ofsotropic manifolds for which(21) can be reduced
to the simple form

2qi

Ez—+KJi=o, i=1,... N,

(22
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described by the Heon-Heiles model9] or for quartic os-
cillators[10]. AV<O0 is only possible if the potential has
inflection points.

Recent detailed analyses of two degrees of freedom sys-

istems[9,10] have shown that chaos can be producegéna-

metric instability due to a fluctuating positive curvature
along the geodesics. Let us recall that parametric instability
E a generic property of dynamical systems with parameters
fhat are periodically or quasiperiodically varying in time,
ven if for each value of the varying parameter the system
as stable solutiord.7]. A harmonic oscillator with periodi-
cally modulated frequency, described by the Mathieu equa-
tion, is perhaps the prototype of such a parametric instability
mechanism.

Numerical simulations have shown that all the informa-
tions about order and chaos obtained by standard means

whereK is the constant value assumed throughout the maniLyapunov exponent and Poincaeection$ are fully re-

fold by the sectional curvature.
The sectional curvature of a manifold is

trieved by using Eq(26). As in the case of tangent dynam-

the ics, EQ.(26) has to be computed along a reference geodesic

N-dimensional generalization of the Gaussian curvature oftrajectory.

two-dimensional surfaces &f. Consider two arbitrary vec-
torsX,Y e T,M, wherex e M is an arbitrary point oM, and
define

IXAY] = IXIPIYIE= (X, Y) 2 (23

If || X/\Y]||#0 the vectorsX,Y span a two-dimensional plane
7CT,M; then the sectional curvature atrelative to the
plane is defined by

K(X,Y)=K(x,) (RY.X)X.Y) (24)
1 = X17T = —!
[XAYT?

which is only a property oM at x independently oiX,Y
e 7 (Gauss'’s theorema egregiunfror an isotropic manifold
K(x,) is also independent of the choice af and thus,
according to Schur’s theorerK, turns out also independent
of xe M.

Unstable solutions of Eq22) are of the form

J(s)=w(0)(—K) Y%sinh(y/-Ks),

once the initial conditions are assigned #0)=0 and
dJ(0)/ds=w(0) andK<O0. In abstract ergodic theory geo-

(29

Let us now cope with the larg-case. It is convenient to
rewrite the JLC equatiof21) in the form

Vi) 1 . . s ,
g2 TN LRIC(H(9), %(8)I(s) ~Ric(¥(5),(s)) ¥()]

+W(y(s),d(s))y(s)=0, (27)

whereW is the Weyl projective curvature tensor whose com-
ponentsWj,, are given by{18]

. ) 1 i :
Wiy = ;kl__N_l(leéL_Rjk5i)! (28)
and Ric is the Ricci curvature tensor of components
Rij :Ri”,‘nj. Weyl's projective tensokV (not to be confused
with Weyl's conformalcurvature tensgmeasures the devia-
tion from isotropy of a given manifold. For an isotropic

manifoIdW}k,=0 and we recognize if27) Eq. (22). In fact,
in this case,R;q'g'/(N—1) is just the constant value of
sectional curvature. Recall that the Ricci curvature atv

. i | —

IS KR(x(b)) = RJI I(b)x(b): Eg:%K(X(b) ,X(a)), where
X1y, - - - X(ny form an orthonormal basis af,M. Hence we

desic flows on compact manifolds of constant negative curlnderstand that Eq27) retains the structure of E¢22) up

vature have been considered in classical wdd. In this

to its second term, which now has the meaning of a mean

case the quantity/—K, uniform on the manifold, measures sectional curvature averaged, at any given point, over the

the degree of instability of nearby geodesics.

independent orientations of the planes spanneXQy and

While Eq. (22) holds true only for constant curvature X(b): this mean sectional curvature is no longer constant
manifolds, a similar form of general validity can be obtained@long ¥(s). The last term of27) accounts for the local de-

for JLC equation alN=2.
In this low-dimensional case E1) is exactly rewritten
as

&) 3R(8)J=0 26
g2 T 2R(8)3=0, (26)
where a parallel transported frame is used & @) is the
scalar curvature. Using a Jacobi metric one finbls=@):
R=AVIW?+(VV)2 /W8, with W=E-V, so that for
smooth and binding potential® can be negative only where

AV<O0, i.e., nowhere for nonlinearly coupled oscillators as

gree of anisotropy of the ambient manifold.
Let us now consider the decomposition for the Jacobi
field J

J(s)=2 Ji(s)ei(s), (29)

where {e()- - -y} is an orthonormal system of parallel
transported vectors. In this reference frame it is

V2]
e

d?J;

@e(i)(s) (30)
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and the last term of27) is local loss of isotropy; thus a reasonable approximation of the
averagevariation §K(s) along a geodesic may be given by
L Y he variation of Ricci curvature.
W(%J)7=; (W(y,3)7.e)e) the variation of Ricci curvature

Next let us modebK(s) along a geodesic by a stochastic
process. In factkK(s) is obtained by summing a large num-
_ : oA _ ber of terms, each one depending on different combinations
; <W( 7/’Ei J'e(')) y,e(])> e of the components af and on the coordinateg. Moreover,
unless we tackle an integrable model, the dynamics is always
=2 <W(-7:e(i)):)’ue(j)>‘]ie(j); (31) chaotic and the functiong (s) behave irregularly. By invok-
] ing a central-limit-theorem argument, at larje SK(s) is
. ) ) expected to behave, in a first approximation, as a Gaussian
the same decomposition applies to the third term of(Bd),  stochastic process. More generally, the probability distribu-

which is finally rewritten as tion P(SK) may be other than Gaussian and in practice it
423 could be determined by computing its cumulants along a
d_szl+kR(S)Jj+E (wij+r1j)Ji=0, (32)  geodesicy(s).
I

Now we make quantitative the previous statement, about
) , using the variation of Ricci curvature along a geodesic to
where kg=Kg/(N—1), w;=(W(7y,e;))v.€j) and estimatesK(s), by setting
rij=(Ric(v.€q) v.€;))/(N—1). Of coursekg is indepen-
dent of the coordinate system. The elememjsstill depend P(6K)=P(5KR). (35
on the dynamics and on the behavior of the vecegg(s). o )
Thus, in order to obtain a stability equation, for the geodesi®0th oK and 6Kg are zero mean variations, so the first mo-
flow, that depends only on average curvature properties di€nts vanish. According t@5) the following relation for
the ambient manifold, we try to conveniently approximate!n® second moments will hold:
thew;; . To this purpose define at any poig M the trilin- - 1
ear mappinR": TyM XT,MXT,M—T,M by ([K(s)—K1?)s= m([KR(S)_<KR>s]2>51 (36)
(RIXY,U).2) =X UKY.Z)=(V, U)X 2) (33 where ()¢ stands for proper-time average along a geodesic
for all X,Y,U,Ze T,M. Itis well known[19] that if and only ~ ¥(S). Let us comment about the numerical factor on the
if M is isotropic thenR=K,R’, whereR is the Riemann fight-hand-side of(36), where a factor M might be ex-
curvature tensor oM andKj is the constant sectional cur- Pected. At increasing\ the mean-square fluctuations lo
vature. drop to zero as N becauseky is the mean of independent
Let us now assume that the ambient manifolcdjisasi- ~ quantities; however, this cannot be the case of the mean-
isotropig, i.e., that it looks like an isotropic manifold after a square fluctuations d{. In fact, out of the sunir, of all the
coarse graining that smears out all the metric fluctuationssectional curvatures, in E¢34) only one sectional curvature
and let us formulate this assumption by settRgK(s)R’  is “picked up” from point to point by 6K so thatéK re-
and Rie=K(s)g althoughK(s) is no longer a constant. Now mains finite with increasingl. Therefore, as the second cu-

: o~ Lo ) N o mulant of 5K does not vanish witiN, we have to keep finite
we use(33) to find wi; =K (S)[{ v, v) (€. &)~ (&), ) the second cumulant afKr, which is simply achieved by
properly adjusting the numerical factor in E&6).

The lowest-order approximation of a cumulant expansion

x<7,e(j)>], then we use Rieg andg(y,J)=0 to findrj; =0,
thus Eq.(32) becomes

dZJj of the stochastic proces¥K(s) is the Gaussian approxima-
F-FKR(S)JJ-‘F&K(S)J]:O. (34 tion
By 6K(s)=K(s)—K_we denote the local deviation of sec- SK(s)= <52KR §/27,(5), (37
tional curvature from its coarse-grained vallé thus yN-1

5K (s) measures the fluctuation of sectional curvature along/vhere (s) is a random Gaussian process with zero mean
a geodesic due to the local deviation from isotropy. The 7 P

. . . and unit variance. Finally, in order to decouple the stability

problem is thatsK(s) still depends on a moving plane . ! ; ;
) ) ) _ equation from the dynamics, we replace time averages with
7(s) determined byy(s) andJ(s). In order to getrid of this  g¢atic averages computed with a suitable ergodic invariant

dependence, remember thatxE M is an isotropic point  measuren. As we deal with autonomous Hamiltonian sys-
then the components of the Ricci tensor aréiems a natural choice is the microcanonical measure on the

Rr=(N—-1)K(x)g;, and the scalar curvature is cgonstant energy surface of phase spia
R=N(N—1)K(x). With these quantities one constructs the

Einstein tenso6,,= R, — 39;,R whose divergence vanishes pnxd(H—E), (39
identically (Gyp;=0), so it is immediately found that if a

manifold consists entirely of isotropic points, then SO that Eq(37) becomes

IK(x)/x'=0 and sodKg(x)/dx'=0, i.e., the manifold is a

space of constant curvatuk&chur's theoren{19]). Con- SK(s :L< 52KR>,£/277(S)- (39)
versely, the local variation of the Ricci curvature detects the VN—-1
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Similarly, kg(s) in Eq. (34) is replaced bykg), . In fact, at [see Eq.(64) of [5] and Eq.(27) of [9]]. Note that
large N the fluctuations ofkg, as already noticed above, d/dt=qi(d/dq'). Being interested in the larg¥-limit, we
vanish as M because the coarse-grained manifold is isotroreplacedN — 1 with N in Egs.(43) and(44). Of course, Ricci

pic, so that we finally have curvature has different expressions according to the metric
used.
d?y 1 The stochastic proce$3(t) is not completely determined

210 \1/2 —
g2 T{ke) ¥t #N—lw Kr)p 7(8)¢=0, (40 yness its time correlation functiofiq(ty,t,) is given. We
consider a stationary andl-correlated proces€(t) so that

where ¢ stands for any of the components, since all of La(tyt) =Ta(|t2—tu]) and

them now obey the same effective equation of motion. The 2

instability growth rate ofyy measures the instability growth Lo(t)=706(1), (45)

rate of|J||? and thus provides the dynamical instability ex- _ o

ponent in our Riemannian framework. Equatiéf0) is a whergr is a characteristic time scale of the process. In order
scalar equation thatndependently of the knowledge of dy- to estimater, let us note that for a geo_desw flow on a smooth
namics provides a measure of the average degree of instdn@nifold the assumption o correlation of)(t) will be
bility of the dynamics itself through the behavior ¢{s). rgasona_ble only down to some time _scale_ below which the
The peculiar properties of a given Hamiltonian system enteflifferentiable charact_er of the geod_e5|cs will be felt. In other
Eq. (40) through the global geometric propertides) , and Word§, we have to think t.hat in reality the power spectrum of
<52KR>M of the ambient Riemannian manifolshose geo- _Q(t) is flat up to some hlgh—frequc_ancy cutoff. Let us denote
desics ‘are natural motionand are sufficient to determine 't PY v.. Therefore, by representing the function as the
the average degree of chaoticity of the dynamics. Moreovefimit for v—o of §,(t)=sin(ut)/nt, a more realistic repre-
according t0(38), (kg),, and<52KR># are functions of the Sentation (3f the azutocorre!atlon functidiy (t) in Eq. (45
energyE of the system, or of the energy density= E/N,  could bel's,(t) = o (LUm)[sin@.b/v.tl=7.09,3, (1), whence
which is the relevant parameter Ns-, so that from(40) ~ 7,=1/v,. Notice that [,-T'o(t)dt=705, and/,-I';(t)dt

we can obtain the energy dependence of the geometric insta-{ , ¢2 : thusr= ,/2. For practical computational reasons

bility exponent. it is convenient to us& ,(t) in the form given by Eq(45)
(with the implicit assumption that, is sufficiently large;
B. An analytic formula for the largest Lyapunov exponent however, sincev, is finite, the definitionT=7,/2 will be

. . .- kept. To estimater, we proceed as follows. A first time
By transforming Eq(20) into Eq. (40), the original com- ) * ) ) i
plexity of the JLC equation has been considerably reduce .cale, which we will refer to as, is associated with the

from a tensor equation we have worked out an effective scameé needed to cover the average distance between wo suc-

lar equation formally representing a stochastic oscillator. Inggstswe conjugljlatethpon][:]s' alonq[ha geogéﬁ'ﬂ:]. In fac.t,' atl d
fact, (40), with a self-evident notation, is in the form IStances smaller than this one the geodesics are minimal an
far from looking like random walks, whereas at each cross-
d?y ing of a conjugate point the separation vector field increases
—= TQ(s)y=0, (41)  as if the geodesics in the local congruence were kidkiaid
ds’ . h M .
is what happens when parametric instability is agtivgom
Rauch’s comparison theore9] we know that if sectional
curvatureK is bounded as @€L<K<H, then the distance
d between two successive conjugate points is bounded by

ml\JH<d< /L. We need the lower bound estimate that,

where()(s) is a Gaussian stochastic process.
Now, passing from proper timg to physical timet, Eq.
(41) simply reads

d2y for strongly convex domain§22], is slightly modified to
Gz HUy=0, (42 d>=/2\H.
Hence we define; through
h
wnere <dt>d <dt> 7 o
T1=\ 5= *—\ 3= ’
Q k 1 2 1/2 ( ) ' ds ds 2 Qo+0-9
t)= +—=(6K t 43
(D) =(kr)p JN< R ()

where(dt/ds) is the average of the ratio between proper and

if the Eisenhart metric is usetbecause of the affine param- Physical time (dt/ds)=1 if Eisenhart metric is usgdand
etrization of the arc length with time, Eq17)]. If Jacobi  the upper boundi of K is replaced by thé\th fraction of a

metric is used, we haveN=E—V) typical peqk value of Ricci curvature,. which is, in turn, esti-
mated as its averag8, plus the typical valuesK of the
SN2 : (positive) fluctuation, i.e., in a Gaussian approximation
1w 1d(W o ;
Q) =(ke)+{ — = | +5 52| K=o, . This time scale is expected to be the most relevant
AW 2dti\w u only as long as curvature is positive and the fluctuations,

1 compared to the average, are small.
+—— (%K) (1) (44) Another time scale, referred to as, is related to local
YN a curvature fluctuations. These will be felt on a length scale of
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the order of at least=1/\/o,, (the average fluctuation of tions made above, Eq§51) provide an analytic formula to
curvature radius The scald is expected to be the relevant compute the largest Lyapunov exponent independently of the
one when the fluctuations are of the same order of magnitudeumerical integration of the dynamics and of the tangent
as the average curvature. When the sectional curvature thynamics.

positive (negative, lengths and time intervals, on a scéle

are enlargedshorteneiiby a factor (?K/6) [23], so that the 1. Lyapunov exponent and Eisenhart metric

period 27/\/Q, has a fluctuation amplitudel, given by Let us consider dynamical systems described by the La-
d,= (12K /6)(27/\/Q). ReplacingK by its most probable grangian function5) with a diagonal kinetic energy matrix,
value (), one gets i.e., a;=4;;, and let us choose as ambient manifold the

enlarged configuration space-time equipped with the Eisen-
_/dt doe dt\ 1?0, 27 NQélz dt hart metric (16). Trivial algebra givesl'h,=(JV/dq;) and
727\ ds/ 727 \ds 6 0, o, \ds/’ @7 ') *1=(—aVI/aq') as the only nonvanishing Christoffel co-
efficients and hence the Riemann curvature tensor has only

Finally, 7 in Eq. (45) is obtained by combining, with 7, as  the nonvanishing components

“1_o —1_ -1, -1 92V
T 27, 7 =2(1, "t 7157). (49 Roio; = e s (52)
The present estimate ofis very close, though not equal, to
the one of Ref[7]. The JLC equatior§20) is thus rewritten in local coordinates
WheneveK)(t) in Eq.(42) has a nonvanishing stochastic as

component the solutiogs(t) has an exponentially growing

envelope[24] whose growth rate provides a measure of the z ZJO+ RO _d_quod_qj 0 d_qOJi d_quo (533
degree of chaos. Let us call this quantity Lyapunov exponent dsds 0 ds™ ds Ol ds ™ ds
and denote it by. In Sec. Il B 1 we shall make more pre- A ,
cise the relationship of\ with the conventional largest V V JiR doP ZJJ- R quJO dg’ LR dg' _ do’
Lyapunov exponent. Our exponentis defined as dsds 0j0| gs 0 gs*” ds ' 1%ds” ds
1 A1)+ YAt =0, (53b)
\ = lim zm%, (49)
e + i ' 0
' ¥H(0)+47(0) ZXJN+1+RNT1d_q|J0d_qJ N+1_qIJJ_q:
dsds 0 ds” ds 10 ds” ds

where ¢(t) is solution of Eq.(42).

The ratio [ $2(t) + (1) /[ #2(0)+ 4%(0)] is computed
by means of a technique, developed by Van Kampen ands I'} =0 impliesVJ%ds=dJ%ds and asR}}, =0, we find
sketched in the Appendix, which is based on the possibilityhat Eq.(53a reads
of computing analytically the evolution of the second mo-

(530

ments ofy and ¢, averaged over the realizations of the sto- d23° -0 (54)
. SZ ]
chastic process, from d
(¢?) 0 0 2 (%) hencel® does not accelerate and, without loss of generality,
d @A | =| 2027 0 —20, || (1 we can set .J?(O)=J°‘(O_)=O, yielding  (using
dt . A VJi/ds=dJ/ds+ T, g3+ T ,qv%
(v % 1 0 (i) R
(50) vay  d2y
a9 " dg 9

where(}, and o, are, respectively, the mean and the vari-

?hnce_ O;?rgt) 3bq(\j/e defé)ned. ny (jjia?onalizingl the ma_ltrix ?n Equation (53b) gives, for the projection in configuration
e right-hand side of50) one finds two complex conjugate srPace of the separation vector,
eigenvalues and one real eigenvalue related to the evolutio

of 2((¢?)+(4?)). According to(49) the exponenh is half d2) 52V [dq\? _
the real eigenvalue. Simple algebra leads to the final expres- Fraal 9990, \ ds J=0, i=1...N. (56
sion
Equation (53¢ describes the passive evolution al*?,
NQg,0q,7) = E(A— 4_90) (519 which does not contribute the norm of because
B 2 3A )’ On+in+1=0, so we can disregard it.
As already mentioned in Sec. Il, along the physical geo-
, 40,\° ) o desics ofgg, ds?=(dq®)2=dt? therefore Eq.(56) is ex-
A=|2047+ \| 3| +(2047) (51b  actly the usual tangent dynamics equation reported in the

Introduction, provided that the obvious identification

All the quantities()y, o, and 7 can be computed astatic ~ £=(§q ,gp)E(J,J) is made. This clarifies the relationship
averages. Therefore, within the validity limits of the assump-between the geometric description of the instability of a geo-
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desic flow and the conventional description of dynamicalBy replacingf with the explicit expression for Ricci curva-

instability. It has been recently show8,10] that the solu- turekg=(1/N)K we can work out,. Notice that Eq(623

tions of Egs.(56) and (26) (whereR is computed with Ja- is strictly valid in the thermodynamic limit; at finitd it is

cobi metrig are strikingly close to one another in the case of(f) ,(8)=(f)®(8)+O(LN).

two degrees of freedom systems. This result is reasonable At variance with the computation dff), which is insen-

because the geodesics &l & R?,gg) which are natural mo-  sitive to the choice of the probability measure in thes«

tions, project themselves onto the geodesicshbfd;), and  limit, computing the fluctuations of f, i.e., of

as the extra coordinateg andgq™** do not contribute to the  (52f)=(1/N){(f —(f))?), by means of the canonical or mi-

instability of the geodesic flow, both local and global insta-crocanonical measures yields different results. The relation-

bility properties must be the same with either Jacobi orship between the canonical, i.e., computed with the Gibbsian

Eisenhart metrics, independently df weighte #%, and the microcanonical fluctuations is given by
With the Eisenhart metric the only nonvanishing compo-the well-known formulg27]

nent of the Ricci tensor iRyg= AV, whereA is the Euclid-

ean Laplacian in configuration space. Hence the Ricci curva- 52 —(52)C _,3_2 H(f)e(B)]? 63
ture iskg(gq)=AV/(N—1) (remember that we choose the (670 u(e)=(5°F)"(B) Cy JB ’
constantC such thatds?’=dt? along a physical geodesic
and the stochastic proce€qt) in (42) is specified by where

1 B? &E)

1 1 is the specific heat at constant volume gévd 8(¢) is given
ol= N<52KR>M=N[<(AV)2)M—(AV>i], (570 in implicit f(Z)rm by Eq.(62b). By replacingf with kg we can
work out o, .

™0,

27= (570 IV. APPLICATIONS

2\/Q(Qot o ) +mo,

2. Averages of geometric quantities

In this section the Riemannian approach to Hamiltonian
chaos described above is practically used to compui(e)
for two different models: the Fermi-Pasta-UlaRPU) B

Let us now sketch how to compute the mean and thenodel and a chain of coupled rotators. The choice of these
variance of any observable functid(q), a geometric quan- models is motivated by the possibility of analytically com-
tity of the chosen ambient manifold, by means of the micro-puting, in theN—cc limit, the geometric quantities needed
canonical measuresg), i.e., and by their interest as mentioned in the following subsec-
tions.

1
<f(q)>”:w_5f f(@o(7i(a.p) -~ E)dadp (58) A. The Fermi-Pasta-Ulam 8 model

where The FPUB model is defined by the Hamiltonid@5]

N N
we=f S(H(q,p)—E)dqdp 89 ~ Mpa)=2 zp+2 %(qi+1—qi)2+%(qi+1—qi)4-
(65

d=(Q9:---qy), andp=(p;---pn). By using the configura- o , . . .
tional partition functionZ.(8), given by This is a paradigmatic model of nonlinear classical many-

body systems that has been extensively studied over the past
decades and that stimulated remarkable developments in
Zc(B)ZJ dge AV, (600 nonlinear dynamics, one example is the discovery of soli-
tons. For a recent review we refer[i@6]. Also the transition
wheredq=HiN:1dqi , we can compute the Gibbsian averageb‘?twee” weak and strong chaos has been first disc_overed in
(f)C of the observabld as this model[3,4] and then the effort of understanding the
origin of such a threshold has stimulated the development of
the geometric theory presented here.
<f>G=[Zc(,3)]_lf dgf(q)e AV, (61 Let us now compute the average Ricci curvat(¥gand
its fluctuationSUQ. We have seen above that, using the

Whenever this average is known, we can obtain the microEisenhart metrickR is given by
canonical average df [27] in the parametric form
18 2V(q)
(DB =(H°(B) (623 KN a2
i= i
(f)u(e)— 1 19
= 62b)
=25 NaplnZeB]. 6 e FPUB model this reads

(66)



N
6u
ke=2-+ 172 (A1 )% (67)
Note thath is always positive.
In order to compute the Gibbsian averagekgfand its
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(73

The final result in parametric form of the average Ricci
curvature of MxXR?,g ) with the constant energy con-

fluctuations, we rewrite the configurational partition function giaint, is(details can be found if6))

as
~ N N a
Zc(a)=J_m 11 dq.exp| B2 {E(qu_qi)z

M
+z(Qi+1_Qi)

N ] : (68)

which, in terms of the arbitrary parameterand onC, is
expressed agc(a)=zc(aﬁ,,u/a) and leads to the identity

(ke) (B) =2~ ;,(,‘Zl 2 Ze(a) IR
Thus we have to compute
N2 2 Zet) :N[_|nzc(a) o
using
Ze(a)=[Ze()]M(a), (7D)

wheref(a) is a quantityO(1), Zc(«) is the single-particle
partition function[28]

’ZC(CY)ZF<%)('B7M) exp(; @?0?)D_yfaf), (72

I' is the Euler functionD _4;, is a parabolic cylinder func-
tion, and

0

(ke)(6) =2+ G#jgi
fhole) = 13 1D_36) (79

3/2

=(0)= [EZ+ 6D_ 1/2(9)}
Let us now compute
2 1 2 1 2

UQ(S):N<5 KR>M(8):N((KR_<KR>) ) (79

According to Eq.(63), first the Gibbsian average of this
quantity,( 5%kg)¢(8) = (UIN){(Kr— (Kr))2)¢(B), has to be
computed and then the correction term must be added. Now
define

N
Z Q|+l i (76)
after Eq.(67),
1 36u°
(KR C(B) = {(Kr—(Kp))?)%= N”((Q—<Q>)2>G.
(7

TTTTTT] T T T 11T T T T 11111 T T T 11117

10!

<kg>

IIIIIII Il IIIIIIII 1 IIIII|I| 1 IIIIlIll

FIG. 1. Average Ricci curvaturékg) vs en-
ergy densitye for the FPU model: comparison
between analytic computation with Ed74)
(solid line) and the outcome of numerical simu-
lations (time averages with N=128 (solid
circles andN=512 (solid squares u=0.1.

10-2 10-t 1 10t

€

10?2
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102 e =
M 100F E
B 1 ;_ _; FIG. 2. Fluctuation of Ricci curvature
vV E 3 (8°Kg)/N vs energy densitys for the FPU
C N model: comparison between analytic computation
10‘-1 - - with Eq. (82) (solid line) and numerical results.
E 3 Symbols and parameters are as in Fig. 1.
107 g E
10—3_II 1 I|I|II| 1 1 IIIIlIl 1 Il IIIIII_
10-t 1 10! 102
€
Hence, using Eq(68), P 62 D_3x60) [D_gx60)]?
—Inze(a) =—12—26 - ;
a9 -~ da w1 4 D_1A0) |[D_10)
(Q=(QNA°="3| > —=InZc(a) (78) (80)
B da
o« so that from Eq(79) we obtain
and finall
' (5K >G(0)=3(2—20 D3’2(0)—[D3’2(6)ﬂ
R v Ve N R 0° D_12(6) [D-yA0)] |
N (KR =g 52 NZc(@) (79 (81)
a=1
According to the prescription of E¢63), the final result for
Simple algebra gives the fluctuations of Ricci curvature is
|
1 1 B> [ Hkp)(0))\?
T2 — (52K \G( gy — AN
ah(e)— (82)
1|3 1D_30
e(0)=— _2+_L2()}
Bul6° 6 D_1(0)

where( 5K g)C(6) is given by(81), the derivative part of the correction term is

a(Ke)(0) 3 ODZ5,(60)+2(6°~1)D 1, 0)D _g5(6) —26D2 ()
B Bub’ D2 1(6) ’

(83

and the specific heat per partiatg is found to be are integrated using a third-order bilateral symplectic algo-
rithm [29], which is a high-precision numerical scheme.
Though microcanonical averages are computed in the ther-

c (0)= 124+262)D2. (0 modynam[c limit, the agreement between time and ensemble
W9 16D2% ,,,(6) { )D=1A6) averages is excellent already N 128.
+260D _ 1/ 0)D _ 51 0) — 6°D 5, )[ 26D _ 1, 6) Analytic result for A;(£) and its comparison
with numeric results
+D 3 0)]}. (84)

Now we use(74) and (82) to computer according to its
The microcanonical averages in E@g4) and(82) are com-  definition in (570. Then we substitut€)y(e), Ué(s), and
pared in Figs. 1 and 2 with their corresponding time averages(e) into Eq. (51) to obtain the analytic prediction for
computed along numerical trajectories of the mo@) at  \,(e) in the limit N—. In Fig. 3 this analytic result is
N=128 andN=512 with x=0.1. The equations of motion compared to the numeric values)of computed by means of
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10t g
10t E
102
— u FIG. 3. Lyapunov exponemnt; vs energy den-
< 107 ¢ sity ¢ for the FPU model: comparison between

E theoretical prediction of Eq51) (solid line) and

104 = numerical estimates &= 256 (solid circles and
c N=2000(solid squares u=0.1.
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the standard algorithmi30] at N=256 andN=2000 with  Let us observe that for this model a relation exists between
©=0.1 and at different. The agreement between analytic the potential energy and Ricci curvaturéy:
and numeric results is strikingly good.

Kr
V(q)=JIN— —-. 88
B. Chain of coupled rotators () 2 (89)

Let us now consider the system described by the HamllTh|s relation binds the fluctuating quantity that enters the
tonian analytic formula forn ;. This constraint does not exist for the
N sectional curvature; thua priori it may be expected that
H(p,q) :2 _+J[1 cogqis,—0;)]t. (85  some problem will arise.
= The configurational partition function for a chain of
coupled rotators is
If the canonical coordinateg andp; are given the meaning
of angular coordinates and momenta, this Hamiltonian de-
scribes a linear chain df rotators constrained to rotate ona Zc(8)= H dqleXP[ -2 J[l—COS(QiH—Qi)]]
plane and coupled by a nearest-neighbor interaction. T =t

N

This model can be formally obtained by restricting to one
spatial dimension the classical Heisenberg model whose po- =exp(— BIN) H dwiex ,BJE Cow;
tential energy isV=—J% S-S, where the sum is ex- mmi=l
tended only over nearest-neighbor pailsis the coupling =exp( - BIN)[1o( B IN(2m)Ng(@), (89)

constant, and each has unit module and rotates on a plane.

To each “spin” S=(cogy,sing) the velocity herely(x)=(1/m)f "e**%d@is the modified Bessel func-

(d/dt)S§=[—(dg;/dt)sing;,(dg /dt)cosy] is associated SO iign _of index zero; w=q;1—q;, ie(l,...N-1),

that (85) follows from H=3N 1232 IZiinS-§. on=0—(qy, andg= o depend on the initial condltions. The
The Hamiltonian(85) has two mtegrable Ilmlts In the functiong(w) contributes a term o®(1/N), thus vanishing

limit of vanishing energy it represents a chain of harmonicthe thermodynamic limit.
oscillators In order to computé), and o3, we follow the same pro-

cedure adopted for the FPU model, i.e., we define

N 2
H(p,q)=2, J(q; —q-)z], (86) = .
= o Ze(e)= | H dgeexpl — B3, [1-acosd,1—0)]
whereas in the limit of indefinitely growing energy a system —exp( — BIN)[1o( BIa) INg(@)(2m)N, (90)
of freely rotating objects is found because of potential
boundedness. and by observing that

The expression of Ricci curvatuiég, computed with
Eisenhart metric, is

) (k) (B)= ,3{

—ZJE cogqi1—q). (87

INZc( @) (91)

a=1

Naz()
e 3, V(g

we find Qq(e) in parametric form
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FIG. 4. Average Ricci curvaturékg) vs energy density for FIG. 5. Fluctuation of Ricci curvaturges?Kg)/N vs energy den-

the coupled rotators model: comparison between analytic computsity £ for the FPU model: comparison between analytic computa-
tion with Eq. (92) (solid line) and the outcome of numerical simu- tion with Eq. (97) (solid line) and numerical results. Symbols and
lations (time averageswith N= 150 (solid circleg; J=1. parameters are as in Fig. 4.

2 2
(BJ) 1 _ BIING(BI) = 11(BI1o(BI)—BIILBI)
(k) (B)=2 °(§ 5 N (TRRT=4T BIZ(BI) |
Qole) (92) (59
1 11(8J) The computation of the correction terf(kg)(8)/981%
8('8)__,3+‘] 1- o(BY)] [9e(B)/dB] involves the derivatives
In order to work out the average of the square fluctuations of de(B) - i_ 2[ 1_i 11(8J) _[Il(ﬁ‘])r]
Ricci curvature we use the identity B 2B BI 1o(BI)  [1o(BI) 95
1 2K \G— & 2
(KR =22 | - —InZe(a)| (93 KKr)(B) :232[ 1 11(BJ) 1(/83)} ] 96
a=1 B BI1o(BY) [1o(BI)] |
whence Finally, putting together the different terms, we obtain
|
1 < 2= BIIG(BI) ~1o(BI)I1(BI) — BIIL(BI)
R B 15(BIH[1+2(B8I)*]—2B311(BI)Io(8I)—2[ BII1(BI)]
oh(e)— () (97)
1(BJ
()= 55+ {1_ o(ﬁJ)}'

In Figs. 4 and 5 the comparison between analytic and nutations performed with the standard algorith&®]. Figure 6
meric results is provided for the average Ricci curvature anghows that there is agreement between analytic and numeric
its fluctuations. The agreement between ensemble and timelues of the largest Lyapunov exponent only at low- and
averages is very good. Time averages are computed alonggh-energy densities. Like the FPU case, at low energy, in
numerical trajectories of the model HamiltonidB5 at the quasiharmonic limit, we finN;(e)=e2. Whereas at high
N=150 andJ=1. The already mentioned high-precision energy \,(¢)xe =6, here \4(¢) is a decreasing function
symplectic algorithm has been used also in this case. because ak — the systems is integrable. In an intermedi-
ate energy range our theoretical prediction underestimates
the actual degree of chaos of the system. It is worth mention-
ing that this energy range coincides with a region of fully
By inserting into Eq.(51) the analytic expressions of developed(strong chaos detected in this model by a com-
Qo(e) and o3 (e) given in Egs.(92 and (97), and also pletely different approach in Ref31]. In this case, as al-
7(e) which is a function of the latter quantities, we find ready mentioned above, there waapriori a reason to expect
N1(g). In Fig. 6 the comparison is given between the ana-an inadequacy of the analytic prediction in some energy
lytic result so obtained and the outcome of numeric compu¥ange. In fact, using the Eisenhart metric, the explicit expres-

Analytic result for A4(g) and its comparison
with numeric results
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FIG. 6. Lyapuov exponenk, vs energy densitye for the FIG. 7. Estimate of the probability(¢) of occurrence of nega-

coupled rotators model: comparison between theoretical predictiofive sectional curvatures in the coupled rotators model according to
of Eq. (51) (solid line) and numerical estimates &t=150 (solid ~ Ed.(101); J=1.
circles, N=1000 (solid diamonds and N= 1500 (solid squarg
J=1. of kg(s) to adequately modé{(s). This will be achieved by

_ _ _ suitably “renormalizing” (), or o, to obtain aneffective
sion of the sectional curvatuit(v, £), relative to the plane  Gassian procesfor the behavior of the sectional curvature.
spanned by the velocity vector and a generic vectaf L v From Eg.(99) we see thaN directions of the vectog
(here we useéf to denote the geodesic separation vector in

. fusi . S ) exist such that the sectional curvatures, relative to Khe
order_to avoid confusion withl, which is the notation for the planes spanned by these vectors together withare just
coupling constanf is

cos@i1—0)- Hence the probability?(e) of occurrence of a
de® & dqP & 2V gk negative value of the cosir_1e is used to estimate the probabil-
K(v,8)=Roiok—a 1o —+ Tor = ——x r=r5,  (98) ity of occurrence of negative sectional curvatures along the
dt [ dt &l aa'oq* €] geodesics. This probability function has the simple expres-

sion
hence we get
J N T 3 3m/2 3
K(0,6)= 22, 0080 - A€ 1= €1 (99) fw@(—m)e" "odx L,z e dx
- P(e)= - ,
" BIcos 277'0(,8\])
for the coupled rotators model. We realize, by simple inspec- . dx

tion of Eq. (99), thatK can take negative values with non-
vanishing probability regardless of the valuesgfwhereas,

as long ag <J, this possibility is lost in the replacement of
K by Ricci curvature that we adopted in our theory. In fact, Where®(x) is the Heaviside unit step function.

because of the constraif88), at each point of the manifold ~ The functionP(¢), reported in Fig. 7, begins to increase
it is ate=0.2, just where the analytic prediction in Fig. 6 begins

to fail, and when it approaches its asymptotic valuejof
kr(e)=2(J—¢). (100 around the end of the knee, good agreement is again found
between theory and numeric results. The simplest way to
Thus our approximation fails in accounting for the presenceaccount for the existence of negative sectional curvatures is
of negative sectional curvatures at small values on Eq.  to shift the peak of the distributioR( 5K ) toward the nega-
(99 the cosines have different and variable weightstive axis. This is achieved by the replacement
[£+1—¢72 that in principle make it possible to find some-
where along a geodeskK<0 also with only one negative
cosine. This is not the case flr, where all the cosines have (kg(&))—

the same weight. Therefore the probability of findikeg 0
along a geodesic must be related to the probability of finding
an angular difference greater tham2 between two nearest- This correction neither has influence whege)=0 (below
neighbor rotators. If the energy is sufficiently low this evente=0.2) nor when P(g)=1/2 [because in this case
will be very unlikely, but we can guess that it will become (kg(g))—0]. The value of the parameterin (102 must be
considerable where the theoretical prediction is not satisfacestimateda posterioriin order to obtain the best agreement
tory, i.e., when chaos is strong. Note that the frequent occubetween numerical and theoretical data over the whole range
rence ofK <0 along a geodesic adds to parametric instabilityof energies. The result shown in Fig. 8 is obtained with
another instability mechanism that enforces chéaag (25)]. a=150; no particularly fine tuning is necessary to obtain

Our strategy is to modify the model fd€(s) in some very good agreement between theory and numerical experi-
effectiveway that takes into account the mentioned difficulty ment.

(101

<kR(8)>

1+aP(e)’ (102
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V. CONCLUDING REMARKS

TTTTTT T T TTTTTT T T T T T

This paper presents substantial progress along the lines of

the research initiated in Ref5], where it was proposed to 1071
tackle Hamiltonian chaos using the Riemannian geometriza-
tion of Newtonian dynamics. This work renewed an old in- 10-2

tuition that dates back to Krylop 1] that spawned new ideas <
in abstract ergodic theorj12,16), whereas it did not give

rise to any useful method to describe chaos in physical geo-
desic flows, despite many attempts and with remarkable ex-
ceptiong 13,14]. The obstacle was always the same: in anal- 10~
ogy with Anosov flows that exist on hyperbolic manifolds,

chaos has been invariably thought of as a consequence R~ 1(;1 ‘1 : 151 : 11)2 I
mainly of negative scalar curvature. So the first obvious c

check against any typical model that undergoes a stochastic

transition, say, the H®n-Heiles model, gives a puzzling  FIG. 8. Lyapunov exponenk; vs energy density for the

surprise: the scalar curvature ofi(g ) is always positive coupled rotators model: comparison between theoretical prediction
J

[9] independently of the energy value, i.e., of regular or Cha_and numerical estimates are as in Fig. 6, but here the average cur-

otic behavior of the dynamics. vature(kg) that enters Eq(51) is corrected according to EL02)

. . with @=150. Numerical values of; are obtained di= 150 (solid
T_he difference _Of the approach _started |n_F{6ﬂ. was _to circles, at N=1000 (solid diamondgs and at N=1500 (solid
conjugate theoretical arguments with numerical experlmentgquare'

in order to shine some light on the following two poin(s.

Does the geometry of the “mechanical” manifolds contain, shows that this geometric approach is effective and useful,

though in some hidden way, the relevant information con+y,s deserving further improvements and developments.
cerning stability and instability of their geodesics? In the

affirmative caseii) how is the strength of chaos quantified
and how are the weakly and strongly chaotic regimes char-
acterized? During the long preparation of this paper we have profited
Actually positive answers to these questions have beeof several discussions with S. Caracciolo, R. Livi, M. Ra-
given in [5-10, where, among other things, it has beensetti, and G. Vezzosi. A particularly warm acknowledgment
shown that if the geodesics feel a positive nonconstant cuiis addressed to L. Caiani for his helpful criticism. The final
vature of the underlying manifold thggarametric instability ~ stage of this work was partially supported by ISI Foundation
can be activated. Though a rigorous proof is not yet at ouand by EU HC&M Network ERBCHRX-CT940546.
disposal, parametric instability appears as the source of
chaos on manifolds of positive nonconstant curvature. APPENDIX: SOLUTION OF THE STOCHASTIC
In addition, we can mention that also in the case of inte- OSCILLATOR EQUATION
grable systems, whose geodesics are therefore stable, the cur-
vature of the underlying manifold can be wildly fluctuating  In the following we will briefly describe how to cope with
along the geodesics, but in this case the parametric instabilitie stochastic oscillator problem that we encountered in Sec.
mechanism is inactive. It is found that these integrable geolll B. The discussion follows closely Reff24], where all the
desic flows have very special hidden symmetries, mathematletails can be found.
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cally defined through Killing tensor field82], which make A stochastic differential equation can be put in the general
them peculiar. form

For geodesic flows on constant negative curvature mani-
folds, the instability exponent is knowfEq. (25)]. If the F(x,Q)=0, (A1)

curvature is negative and nonconstant then simple averaginvghere F is an assigned function and the varialfieis a

algorithms can be devised, but what can we do with a POSTandom process, defined by a mean, a standard deviation
tive and fluctuating curvature? The challenge now is to com- P L y i ; '
nd an autocorrelation function. A functigti(l) is a solu-

pute the average instability exponent for geodesic flows of. . o
physical relevance. This is a crucial test of the effectivenesgOn of th_|s gquatlon if for a'!Q.E 5(9)’ F(£(Q),0)=0. If
of the Riemannian theory of chaos with respect to the con- 9. (A1) is linear of ordem, it is written as
ventional explanation based on homoclinic intersections. U=A(t,Q)u (A2)
Moreover, as no analytic method was available to compute ' '
Lyapunov exponents, it was worth making an effort in this\yhere ue R" and A is a nxn matrix whose elements are
direction. _ , _randomly dependent on time.

Under reasonable hypotheses, which obviously restrict the ko the purposes of our work we are interested in studying
domain of validity of the analytic formulé51) for Ay, this  the evolution of the average carried over all the realizations

paper provides analytic computations of the largesiyf the procesqu(t)). Let us consider the matrid as the
Lyapunov exponent in dynamical systems described by ordig,y,

nary differential equations. Though several points need a
deeper understanding, we hope that our work convincingly A(t,Q)=Aq(t) + aA(t,Q), (A3)



54 RIEMANNIAN THEORY OF HAMILTONIAN CHAOS AND ... 5983

where the first term i§) independent and the second one is (xz(t)> (x2(0)>

randomly fluctuating with zero mean. Let us also assume that CH t Sy

A, is time independent. If the parametat which deter- x4) | = <eXP( f A(t’)dt')> (x=(0)) |,

mines the fluctuation amplitude, is small we can treat Eq. (x(t)k(t)) 0 <x(0)5<(0)>

(A2) by means of a perturbation expansion. It is convenient (A11)

to use the interaction picture; thus we set

u(t)=exp(Agt)v(t), (A4) where the brackefs] stand for a chronological product. Ac-
cording to Wick’s procedure we can rewrite E&11) as a
Ax(t) =exp(Agt)v(t)exp(—Agt). (A5)  cumulant expansion, and when the cumulants of order higher

. . . than the second vanidlas is the case of interest to)usne
Formally one is led to a Dyson expansion for the solution., easily show that EGA6) is exact.

v(t). Then, returning to the previous variables and averaging, | ke in Eq. (A3), the matrixA splits as
the second-order approximation gives ’

d +oo At)=Agto_n(t)A;
grlumy= Ao+a2f (A(t)exp(Agr)AL(t— 1)) @
o 0o 0 2 0 0 O
xexp(—AOT)dT]w(t)). (A6) =| 0 0 —=2Q|+a 9| O 0 —2};
-0y, 1 O -1 0 0
Following the same procedure one can find also the evolu- (A12)

tion of the second momentand by iterating also the evolu-
tion of higher momenys In fact, with the components af  therefore the equation for the averages becomes
e R" we can maken? quantitiesu,u,, that obey the differ-

ential equation (x2)
d ~ d %2\ | = 2 [*7
G =2 A (D (Uy), (A7) gil &9 | ={Acten | (nn(t=n)B(nd7
“ (xX)
where (x2)
Avu,k)\ = Avké\u)\ + 5va,u)\ . (AS) X <X2> , (A13)
The above presented averaging method can be now applied (xk)

to this new equation.

Now, if we consider a random harmonic oscillator, Eq.
(A2) has the form 9 where B(7)=A.exp@or)Aexp(-Agr). As (n(t)n(t
—17))=748(7), with 7 a characteristic time scale of the pro-

d (x) ( 0 1) (x) cess, we obtain
—.|= . (A9)
dt -0 0
’ " () (?)
: _ d . )
Wlth. the random §quared fr'equencf.y QO—I—O'“n(t). In il VN Z{AO+O'&2)TB(O)} x| . (A14)
particular, we are interested in working out the second mo- dt . :
ments equation when the procesét) is Gaussian and (Xx) (XX)

correlated. Using EqA8) one finds that

) From the definition ofB(7) it follows that B(0)=AZ; then

2 2

q X o o0 2 X X by easy calculations we find

—| x®|=l 0o 0 —20|| x®|=A] x*].

dt| . : : o o 2

XX -0 1 0 XX XX ,
(A10) AgtodmAi=| 20q7 0 —2Q4|,  (Al5)

Because of our assumptions for this system,(B§,) is more -0 1 0
than a second-order approximation, it is exact. In fact, the
Dyson series can be written in compact form as which is the result used in Sec. Il B.
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