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Kinetics of a Verhulst-type system with nonlinearly coupled noise
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The stochastic Bernoulli equation with nonlinearly coupled dichotomous noise is exactly solved by direct
averaging. The similar system driven by the periodic perturbation with a random phase is also considered. The
results concerning the kinetic and stationary properties in both cases are compared. The evolution of the mean
value from the initial states located close to the equilibrium state is found to be nonmonotonic.
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I. INTRODUCTION Il. TIME-DEPENDENT SOLUTION
IN THE CASE OF DICHOTOMOUS NOISE
The Bernoulli equatior{Verhulst-type modgl Writing (2) as a Laplace-type integral
X,=ax—bx#*+1 1)
: : : i . , 5
is an important example of a nonlinear kinetic equation,
which can be exactly solved even if its coefficieats a(t)
andb=D(t) are time dependent. The sufficient condition for where A =x, *+b(e*®'—1)/a, we notice that in order to
the existence of the solution perform the averaging one needs an expression for

. Sv—l t
— qat —sA _ az
X;=€ fo ds—r(v)e ex;{ s,ubofodze“ I,

t v t
X, = Xoe®V 1+,ungodse““(s’b(s) , ) q>(t)z<exp[ﬁf dse™s| > (6)
0
wherea(s)= [gdua(u), Xo=X;-o>0, andv= 1/, is Introducing
ub(t)>0. (3) t
\If(t)s<|texp{,8f dsé“slsb,
Considering the influence dExternal noise on such a 0

system, we usually assume that the coefficient§1pfare

“deterministically” constant, but one of them fluctuates We have

around its average value. The case (sb-called linearly _ .

coupled noisea(t)=a+¢&,, b(t)=b=const was investi- d=pe, V=-2\V¥+BedP,

gated for different types of nois§: Gaussian white noise

[1], white shot noise[2,3], and the dichotomous Markov here the equation fo¥ results from Shapiro-Loginov for-
(DM) process[4]. Several propertiegboth stationary and myja[7]. Introducing the new variable= — Be®'/ a, we ob-
time dependentof such systems were examined. In contrast5ip,

the second casdof nonlinearly coupled noige when

a(t)=a=const andb(t)=b+ ¢, was touched upon only 2N

occasionally{2]. The reason seems to be that the condition ®'(2)=V(2), ¥'(2)+ E‘I’(Z)=¢(Z),

(3) cannot be satisfied for Gaussian and for many other types

of the noise. The systefd) with nonlinearly coupled Gauss- so®(2) obeys

ian noise is unstable, and, in particular, no stationary state
exists. However(3) can be satisfied if noise is bounded from
below. Then, for each realization of the noise, the solution "+ —P'-d=0. @)
(2) is well defined and we cafat least in principlg perform az
the averaging, thus obtaining the transient behavior of th
mean valugx;) and of the higher moments as well. Taking
the limit t— o, we may examine stationary solutions. In this
paper we follow this way to discuss the properties of the
model (1) for two types of noise S0+,

P(z)=

ﬁ'he solution of (7) satisfying the initial conditions
d(z=2p=—-Bla)=1 andd’(z,) =0 is given by modified
Bessel function$8]

[1s+1(Zo)1 - 5(2) =1 _5-1(20)1 5(2) ],

8

b(t)=b[1+0cl,], a(t)=a=const, (4) 2sinré

where I,=*=1 is a DM process [4-6] with
(Ily=e~2=3 and|,=cos@t+¢) with random phasep.  where

1063-651X/96/566)/59645)/$10.00 54 5964 © 1996 The American Physical Society



54 KINETICS OF A VERHULST-TYPE SYSTEM WITH ...

A1

,ua 2°

Equationg5), (6), and(8) and the integration formulg8]

2”*vA*“B*qur(u+1)f l(ADI,(Bt)e PW~idt
0

< T(g+2i)(A%4p?) , - B2
& Timuriry 2| Thoutherligl

whereq=u+w+v>0 andP>|A|+|B|, allow one to cal-
culate the transient mean value

o 1112(9Q)
(X = Qvizo {”}fl(—f(g}zlzl( —i;— 8,8
Q 525”2 {v}ai2(9Q)% 2
5(5+1) i{1- 6}
X F(—i,8—1;2+ 8,&?), (93
where ¢=e #3  Q=(¢A)Y, g=bo/2a, and
{c}j=c(c+1)---(c+j—1)=T(c+j)/T(c). Using Kum-

mer’s relations for hypergeometric functiofi8], Eq. (93
may be written as

{v}a
(%)= QE (2|2

(9QY)Z,Fy(i,— 8+i;2i+1;¢),
(9b)

wheref=1- £,

Note that Eq(1) has the property that its general form is
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wherex,= (a/b)” is a “deterministic” stationary state. To
obtain the second equality {10) we have used the relation
{v},i=2%{v/2}{v/2+1/2}; . The stationary mean value ex-
ists if 02<1, i.e., when the conditiofB) is satisfied. In the
case ofg?>1 the mean value grows infinitely for finite
times.

Let 6= —1/2. Then, the right-hand sidehs) of Eq. (10)
takes a simple form

<X>st:Xst[(l+0')_V+(1—U)_V]/Z
_1 a Vo1
~2lb(ire] T2

14

a
b(l-o0)

This result may be easily understood. The condition
6= —1/2 means thak =0, so there is no switching between
the two states of the DM process during the evolution. For
all't, I,=19=+1 or — 1 with the equal probability 1/2. Thus
the (X)¢ is simply an arithmetical average of two stationary
values obtained for deterministic Verhulst systems with pa-
rametersb(1+ o) andb(1— o), respectively. The same re-
lation should be true for all. To verify this we insert the
identity [9]

LF1(i,1/2+0:2i+1;0)=[(1+ 1= ¢)/2] 2
=2%(1+¢ 2

into Eqg. (9b), thus obtaining
(X)=x(t;b+ab)2+x(t;b—ob)2=X(o), (1)
where
X(t,b) =[x, “e #*+b(1-e */a] U (12

is the solution of(1) for constanta andb parameters.
The less trivial example is that fat=1/2, which is when

conserved if the “new variable’y,=x? is introduced. The A =pua. Using the identity 9]

only change is that coefficients, b, and v=1/u and the

1-¢

initial valuex, are replaced bwa, wb, wv, andxy , respec- oF (i — E+o5—
tively. Thus EQs.(9) describe not only the evolution of a 2i+1]

mean value, but the evolution of higher moments. Thene rhs of(9b) may be summed up to the form
“‘composite parameters” such a% g, Q, A, and¢ or ¢, are

1/2;2i+1;0)=2%(1+¢) 2

invariant under the above-mentioned transformation, so i X(o d X(o
order to obtain the expression f¢x;”y we should only re- Xi) = EX( g
place v by wv in (9). Therefore, Eq(9) gives a complete
(one-poinj characterization of a stochastic procass — e HatY () 4 — 2b
A. Some properties of the solution(9)
In a number of special cases the seri® may be 1= [Xl “(t;b+ob)—x'"#(t;b—ob)] if v#1

summed up. First observe that for 0 we haveQ=x4 and

{=0, so we recover correctly the initial valgey)=x,. In a In[x(t;b—ob)/x(t;b+ob)] if v=1

second limitt—o we haveQ=a/b, {=1, (13
_ - _ (2i)! [we use the notation of Eq&ll) and(12)]. Taking the limit
2F1(|,—5+|,2|+1,1):m, t—oo, we obtain
1+ "—(1-0o)t
and thus (X)s= Xt 20-v)o (v#1)
(x) xi Wy oI (=
S=X2y {111+ o), X, M, (=L

=Xg oF1(VI2,v/2+ 1/2;1+ 8;07), (100  which are the particular results ¢£0) [9].
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FIG. 1. Comparison of analytical results and digital simu-

lation. Plots of(xt>_vs ¢ (resc_aled, dimegsionlesi tima;=1) N=w=1) for different initial statex,. The solid lines correspond
[Eq_. (9)] for a=0.08, b_0'001‘, pn=3, 0=08, and (e kinetics driven by periodic perturbatifiq. (14)], the dotted
Xg=4.27,4.31,4.33,4.354.40, resgectlvely. Each mark represenig,os correspond to the case of dichotomous nffe (9)], and the
the arithmetical average ovél=10" values obtained for different j5shed lines correspond to the deterministic syg&m (12)], re-

sample realizations. spectively.u=3,a=8, b=0.1, 0=0.7, andx,=4.2,4.6,5.1.

FIG. 3. Plots of (x) vs t (rescaled, dimensionless time;

B. Transient behavior: Numerical results and simulation . . .
the case oky> x4 the first derivative ofx,) att=0 is nega-

The explicit time dependence ok;) can be easily com-  tive. Thus, at the beginning of evolution the system is forced
puted by truncating the infinite seri¢8a) or (9b) after ap-  gown, which may be against the global trexg- (X) .
proaching 'f,he required level of accuracy. For small and “in- | order to confirm the analytical results we have done the
termediate”t (when{=0.8-0.9 it is better to use Eq9b),  gijgital averaging of2). For each realization of the dichoto-
whereas for large the representatio(®a) is the more appro-  mous Markov procesk , te (0.T) [whereT is an arbitrarily

priate one[10]. When the initial valuex, is far from the  given ending timg the value ofx, is given elementarily by
stationary on€Xx), the relaxation ofx;) turns out, like for

the deterministic solutior(12), to be monotonic. A more i ‘

interesting effect is observed if the initial state is close to the Xt({ti})=Xoeat[ 1+bxs >, [1+(—1)'olg]

equilibrium value. Such a situation is presented in Fig. 1, 1=0

namely, we observe that the relaxation is nonmonotonic. A —u

local minimum, followed usually by a local maximum, ap- x(el‘ati+1—el‘ati)/a] ,

pears on the plotx,) vst. The appearance of the local mini-

mum in some cases may be easily explained as follows.

From Eq.(10) we know that the equilibrium state of a noisy

system is located higher than the deterministic onevhere{t;} is a sequence of random points on the time inter-

((X)s=>Xs). On the other hand,kt:m):axo—bxg”, soin Vval (O,T) governed by Poisson process with paramg_ter
to=0 andtj, 1 =t<T. ly=+1 or — 1 with the probability

1/2.
(@) /et The (x;) is then calculated as the arithmetical average of
several thousand values, obtained for different sample real-
1.3 1 ‘ izations values. A comparison of analytical results and digi-

tal simulation is given in Fig. 1.

lll. PERIODIC PERTURBATION WITH RANDOM PHASE

Now consider the case when the nonlinearly coupled per-
turbation is given byl;=cost+ ¢), where ¢ is a random
phase uniformly distributed on (0. This process and the
previously considered DM process have some common prop-
erties: both are stationary, their values are bounded in be-
Mpa (w/pa) tween—1 and+ 1, and both depend on a single parameter of
frequency units. Therefore a natural suggestion follows to

FIG. 2. Plots(x)s/Xs VS M ua in the case of a DM process Compare the properties of Verhulst-type systems driven by
(dashed lingsor vs w/ua in the case of a periodic perturbation both types of noise.
(solid lines. =1 and o=0.3 (lower curve$, or o=0.6 (upper The mean value ok; is simply given by an integral
curves. (x)=(2m) L[ 2"dpx(¢), Wherex,(¢) is a deterministic




FIG. 4. Same as Fig. 3, but fon=3, a=0.8, b=0.01,
0=0.8, andxy=4.2,4.8,5.1.

solution obtained for fixed but otherwise arbitragy The
identity

27Td¢

. _ v v+l
. z[l+ﬂcos¢—ysm¢] ”=2F1(

z. 1.p20 2
2; 2 ylaﬁ+y)

allows one to obtain

, v v+l _(ba’Q)2 [1—2&coswt+ £2]
<Xt>:Q2F1(§’ 2 VT A 1t (wlpa)?

(14
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FIG. 5. Same as Fig. 3, but for=3, a=0.08, b=0.001,
0=0.6, andxy=4.15,4.29,4.35.

Figures 3—5 show the relaxation of the deterministic sys-
tem (c=0) and of two related stochastic systems driven by
the DM process or periodic perturbation, respectively. We
see that for any initial state, and for an arbitrart>0 the
deterministic staté12) is located below the mean val(@)
obtained for the dichotomous noise case and in between lies
the corresponding mean value {f4) (the case of periodic
perturbation. The same picture was observed for different
values of the system’s parameters and seems to be a general
rule. In Fig. 5 we may observe a periodic modulation on the
plot of (14).

IV. FINAL REMARKS

where the notation of Sec. Il is being used. Thus, for the We have solved exactly the stochastic Verhulst model

stationary state we have

v V+1_ _ o?
2" 2 "1+ (wlua)?

. (15

(X)st=Xst2F 1

If w#0 the convergence dfL5) is possible even for some
values ofa>>1. However, in order to keep the soluti¢iv)
finite for any time and for an arbitrary initial statg, the
conditiono?<1 is again required. In Fig. 2 we plot the rhs

with nonlinearly coupled dichotomous noise. The rather
simple formula(9b) describes the evolution of the mean
value (in fact, it gives the full one-point characterization of
X;, hamely, its transient Mellin functigrfor any determin-
istic initial statex,. The evolution of other states may be
obtained by a simple integration ¢3) over the initial prob-
ability density distributionP(xg). It was found that the re-
laxation may be nonmonotonic; compare Figs. 1 and 3-5.
The analytical results have been confirmed by computer
simulation(Fig. 1).

of (10) and (15) as a function of dimensionless frequency  \ye have compare¢Figs. 3-5 the kinetics of the deter-
parameten/ua (=w/ua). We see that dichotomous noise ministic case(12) with the kinetics driven by periodic per-
shifts the(x)s; to higher values than the periodic noise does.tyrbation with a randomly distributed phafgq. (14)] and

In both cases the effect is strong if the exterralisy) time
scaleTq~ N t=w "1 is greater than or of the order of the
system’s time scal@;;~a 1. In the case of o< Ty the
stationary value changes are relatively small.

with the kinetics driven by dichotomous noiggq. (9)]. The

mean value ok; was the greatest in the case of the dichoto-
mous process, the lowest for the deterministic system, and in
between for the system driven by periodic noise.
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