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The stochastic Bernoulli equation with nonlinearly coupled dichotomous noise is exactly solved by direct
averaging. The similar system driven by the periodic perturbation with a random phase is also considered. The
results concerning the kinetic and stationary properties in both cases are compared. The evolution of the mean
value from the initial states located close to the equilibrium state is found to be nonmonotonic.
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I. INTRODUCTION

The Bernoulli equation~Verhulst-type model!

ẋt5ax2bxm11 ~1!

is an important example of a nonlinear kinetic equation,
which can be exactly solved even if its coefficientsa5a(t)
andb5b(t) are time dependent. The sufficient condition for
the existence of the solution

xt5x0e
a~ t !F11mx0

mE
0

t

dsema~s!b~s!G2n

, ~2!

wherea(s)5*0
sdua(u), x05xt50.0, andn51/m, is

mb~ t !.0 . ~3!

Considering the influence of~external! noise on such a
system, we usually assume that the coefficients of~1! are
‘‘deterministically’’ constant, but one of them fluctuates
around its average value. The case of~so-called! linearly
coupled noisea(t)5a1j t , b(t)5b5const was investi-
gated for different types of noisej t : Gaussian white noise
@1#, white shot noise@2,3#, and the dichotomous Markov
~DM! process@4#. Several properties~both stationary and
time dependent! of such systems were examined. In contrast,
the second case~of nonlinearly coupled noise!, when
a(t)5a5const andb(t)5b1j t , was touched upon only
occasionally@2#. The reason seems to be that the condition
~3! cannot be satisfied for Gaussian and for many other types
of the noise. The system~1! with nonlinearly coupled Gauss-
ian noise is unstable, and, in particular, no stationary state
exists. However,~3! can be satisfied if noise is bounded from
below. Then, for each realization of the noise, the solution
~2! is well defined and we can~at least in principle! perform
the averaging, thus obtaining the transient behavior of the
mean valuê xt& and of the higher moments as well. Taking
the limit t→`, we may examine stationary solutions. In this
paper we follow this way to discuss the properties of the
model ~1! for two types of noise

b~ t !5b@11sI t#, a~ t !5a5const, ~4!

where I t561 is a DM process @4–6# with
^I tI s&5e22lut2su and I t5cos(vt1f) with random phasef.

II. TIME-DEPENDENT SOLUTION
IN THE CASE OF DICHOTOMOUS NOISE

Writing ~2! as a Laplace-type integral

xt5eatE
0

`

ds
sn21

G~n!
e2sLexpF2smbsE

0

t

dzemazI zG , ~5!

whereL5x0
2m1b(emat21)/a, we notice that in order to

perform the averaging one needs an expression for

F~ t ![K expFbE
0

t

dseasI sG L . ~6!

Introducing

C~ t ![K I texpFbE
0

t

dseasI sG L ,
we have

Ḟ5beatC, Ċ522lC1beatF,

where the equation forĊ results from Shapiro-Loginov for-
mula @7#. Introducing the new variablez52beat/a, we ob-
tain

F8~z!5C~z!, C8~z!1
2l

az
C~z!5F~z!,

soF(z) obeys

F91
2l

az
F82F50 . ~7!

The solution of ~7! satisfying the initial conditions
F(z5z052b/a)51 andF8(z0)50 is given by modified
Bessel functions@8#

F~z!5
pz0

d11z2d

2sinpd
@ I d11~z0!I2d~z!2I2d21~z0!I d~z!#,

~8!

where
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d5
l

ma
2
1

2
.

Equations~5!, ~6!, and~8! and the integration formula@8#

2u1vA2uB2vPqG~v11!E
0

`

I u~At!I v~Bt!e
2Pttw21dt

5(
i50

`
G~q12i !~A2/4P2! i

i !G~u1 i11! 2F1S 2 i ,2u2 i ;v11;
B2

A2D ,
whereq[u1w1v.0 andP.uAu1uBu, allow one to cal-
culate the transient mean value

^xt&5Qn(
i50

`
$n%2i~gQ!2i

i ! $11d% i
2F1~2 i ,2d2 i ;2d;j2!

1
Qnj2d12

d~d11!(i50

`
$n%2i12~gQ!2i12

i ! $12d% i

32F1~2 i ,d2 i ;21d;j2!, ~9a!

where j5e2mat, Q5(jL)21, g5bs/2a, and
$c% j[c(c11)•••(c1 j21)5G(c1 j )/G(c). Using Kum-
mer’s relations for hypergeometric functions@8#, Eq. ~9a!
may be written as

^xt&5Qn(
i50

`
$n%2i
~2i !!

~gQz!2i2F1~ i ,2d1 i ;2i11;z!,

~9b!

wherez512j2.
Note that Eq.~1! has the property that its general form is

conserved if the ‘‘new variable’’yt5xt
v is introduced. The

only change is that coefficientsa, b, and n[1/m and the
initial valuex0 are replaced byva, vb, vn, andx0

v , respec-
tively. Thus Eqs.~9! describe not only the evolution of a
mean value, but the evolution of higher moments. The
‘‘composite parameters’’ such asd, g, Q, L, andj or z, are
invariant under the above-mentioned transformation, so in
order to obtain the expression for^xt

v& we should only re-
placen by vn in ~9!. Therefore, Eq.~9! gives a complete
~one-point! characterization of a stochastic processxt .

A. Some properties of the solution„9…

In a number of special cases the series~9! may be
summed up. First observe that fort50 we haveQ5x0

m and
z50, so we recover correctly the initial value^x0&5x0. In a
second limitt→` we haveQ5a/b, z51,

2F1~ i ,2d1 i ;2i11;1!5
~2i !!

i ! $11d% i
,

and thus

^x&st5xst(
i50

`
$n%2i

i ! $11d% i
~s/2!2i

5xst 2F1~n/2,n/211/2;11d;s2!, ~10!

wherexst5(a/b)n is a ‘‘deterministic’’ stationary state. To
obtain the second equality in~10! we have used the relation
$n%2i522i$n/2% i$n/211/2% i . The stationary mean value ex-
ists if s2,1, i.e., when the condition~3! is satisfied. In the
case ofs2.1 the mean value grows infinitely for finite
times.

Let d521/2. Then, the right-hand side~rhs! of Eq. ~10!
takes a simple form

^x&st5xst@~11s!2n1~12s!2n#/2

5
1

2 S a

b~11s! D
n

1
1

2 S a

b~12s! D
n

.

This result may be easily understood. The condition
d521/2 means thatl50, so there is no switching between
the two states of the DM process during the evolution. For
all t, I t5I 0511 or21 with the equal probability 1/2. Thus
the ^x&st is simply an arithmetical average of two stationary
values obtained for deterministic Verhulst systems with pa-
rametersb(11s) andb(12s), respectively. The same re-
lation should be true for allt. To verify this we insert the
identity @9#

2F1~ i ,1/21 i ;2i11;z!5@~11A12z!/2#22i

522i~11j!22i

into Eq. ~9b!, thus obtaining

^xt&5x~ t;b1sb!/21x~ t;b2sb!/2[X~s!, ~11!

where

x~ t,b!5@x0
2me2mat1b~12e2mat!/a#21/m ~12!

is the solution of~1! for constanta andb parameters.
The less trivial example is that ford51/2, which is when

l5ma. Using the identity@9#

2F1~ i ,i21/2;2i11;z!522i~11j!22iFj1
12j

2i11G ,
the rhs of~9b! may be summed up to the form

^xt&5jX~s!1
12j

s E
0

s

ds8X~s8!

5e2matX~s!1
a

2bs

3H 1

12n
@x12m~ t;b1sb!2x12m~ t;b2sb!# if nÞ1

ln@x~ t;b2sb!/x~ t;b1sb!# if n51

~13!

@we use the notation of Eqs.~11! and~12!#. Taking the limit
t→`, we obtain

^x&st5xst
~11s!12n2~12s!12n

2~12n!s
~nÞ1!

5xst
1

2s
ln
11s

12s
~n51!,

which are the particular results of~10! @9#.
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B. Transient behavior: Numerical results and simulation

The explicit time dependence of^xt& can be easily com-
puted by truncating the infinite series~9a! or ~9b! after ap-
proaching the required level of accuracy. For small and ‘‘in-
termediate’’t ~whenz&0.8–0.9! it is better to use Eq.~9b!,
whereas for larget the representation~9a! is the more appro-
priate one@10#. When the initial valuex0 is far from the
stationary onê x&st the relaxation of̂ xt& turns out, like for
the deterministic solution~12!, to be monotonic. A more
interesting effect is observed if the initial state is close to the
equilibrium value. Such a situation is presented in Fig. 1,
namely, we observe that the relaxation is nonmonotonic. A
local minimum, followed usually by a local maximum, ap-
pears on the plot̂xt& vs t. The appearance of the local mini-
mum in some cases may be easily explained as follows.
From Eq.~10! we know that the equilibrium state of a noisy
system is located higher than the deterministic one
(^x&st.xst). On the other hand,̂ẋt501&5ax02bx0

m11, so in

the case ofx0.xst the first derivative of̂ xt& at t50 is nega-
tive. Thus, at the beginning of evolution the system is forced
down, which may be against the global trendx0→^x&st.

In order to confirm the analytical results we have done the
digital averaging of~2!. For each realization of the dichoto-
mous Markov processI t , tP(0,T) @whereT is an arbitrarily
given ending time#, the value ofxt is given elementarily by

xt~$t i%!5x0e
atH 11bx0

m(
i50

i ~ t !

@11~21! isI 0#

3~emati112emati !/aJ 21/m

,

where$t i% is a sequence of random points on the time inter-
val (0,T) governed by Poisson process with parameterl;
t050 andt i (t)115t<T. I 0511 or21 with the probability
1/2.

The ^xt& is then calculated as the arithmetical average of
several thousand values, obtained for different sample real-
izations values. A comparison of analytical results and digi-
tal simulation is given in Fig. 1.

III. PERIODIC PERTURBATION WITH RANDOM PHASE

Now consider the case when the nonlinearly coupled per-
turbation is given byI t5cos(vt1f), wheref is a random
phase uniformly distributed on (0,2p). This process and the
previously considered DM process have some common prop-
erties: both are stationary, their values are bounded in be-
tween21 and11, and both depend on a single parameter of
frequency units. Therefore a natural suggestion follows to
compare the properties of Verhulst-type systems driven by
both types of noise.

The mean value ofxt is simply given by an integral
^xt&5(2p)21*0

2pdfxt(f), where xt(f) is a deterministic

FIG. 1. Comparison of analytical results and digital simu-
lation. Plots of ^xt& vs t ~rescaled, dimensionless time;l51)
@Eq. ~9!# for a50.08, b50.001, m53, s50.8, and
x054.27,4.31,4.33,4.35,4.40, respectively. Each mark represents
the arithmetical average overN5107 values obtained for different
sample realizations.

FIG. 2. Plots^x&st /xst vs l/ma in the case of a DM process
~dashed lines! or vs v/ma in the case of a periodic perturbation
~solid lines!. m51 ands50.3 ~lower curves!, or s50.6 ~upper
curves!.

FIG. 3. Plots of ^xt& vs t ~rescaled, dimensionless time;
l5v51) for different initial statesx0. The solid lines correspond
to the kinetics driven by periodic perturbation@Eq. ~14!#, the dotted
lines correspond to the case of dichotomous noise@Eq. ~9!#, and the
dashed lines correspond to the deterministic system@Eq. ~12!#, re-
spectively.m53, a58, b50.1,s50.7, andx054.2,4.6,5.1.
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solution obtained for fixed but otherwise arbitraryf. The
identity

E
0

2pdf

2p
@11bcosf2gsinf#2n52F1S n

2
;
n11

2
;1;b21g2D

allows one to obtain

^xt&5Qn
2F1S n

2
,
n11

2
;1;

~bsQ!2

a2
@122jcosvt1j2#

11~v/ma!2 D ,
~14!

where the notation of Sec. II is being used. Thus, for the
stationary state we have

^x&st5xst 2F1S n

2
,
n11

2
;1;

s2

11~v/ma!2D . ~15!

If vÞ0 the convergence of~15! is possible even for some
values ofs2.1. However, in order to keep the solution~14!
finite for any time and for an arbitrary initial statex0, the
conditions2,1 is again required. In Fig. 2 we plot the rhs
of ~10! and ~15! as a function of dimensionless frequency
parameterl/ma (5v/ma). We see that dichotomous noise
shifts the^x&st to higher values than the periodic noise does.
In both cases the effect is strong if the external~noisy! time
scaleText;l215v21 is greater than or of the order of the
system’s time scaleTint;a21. In the case ofText!Tint the
stationary value changes are relatively small.

Figures 3–5 show the relaxation of the deterministic sys-
tem (s50) and of two related stochastic systems driven by
the DM process or periodic perturbation, respectively. We
see that for any initial statex0 and for an arbitraryt.0 the
deterministic state~12! is located below the mean value~9!
obtained for the dichotomous noise case and in between lies
the corresponding mean value of~14! ~the case of periodic
perturbation!. The same picture was observed for different
values of the system’s parameters and seems to be a general
rule. In Fig. 5 we may observe a periodic modulation on the
plot of ~14!.

IV. FINAL REMARKS

We have solved exactly the stochastic Verhulst model
with nonlinearly coupled dichotomous noise. The rather
simple formula ~9b! describes the evolution of the mean
value ~in fact, it gives the full one-point characterization of
xt , namely, its transient Mellin function! for any determin-
istic initial statex0. The evolution of other states may be
obtained by a simple integration of~9! over the initial prob-
ability density distributionP(x0). It was found that the re-
laxation may be nonmonotonic; compare Figs. 1 and 3–5.
The analytical results have been confirmed by computer
simulation~Fig. 1!.

We have compared~Figs. 3–5! the kinetics of the deter-
ministic case~12! with the kinetics driven by periodic per-
turbation with a randomly distributed phase@Eq. ~14!# and
with the kinetics driven by dichotomous noise@Eq. ~9!#. The
mean value ofxt was the greatest in the case of the dichoto-
mous process, the lowest for the deterministic system, and in
between for the system driven by periodic noise.
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