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Dynamics of a system consisting of a van der Pol oscillator coupled to a Duffing oscillator
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This paper studies the dynamics of a system consisting of a van der Pol oscillator coupled to a Duffing
oscillator. Analytic solutions are obtained in both the resonant and nonresonant cases. Chaotic behavior is
observed using the Shilnikov theorem and from a direct numerical simulation of the coupled equations of
motion.[S1063-651X96)13610-2

PACS numbd(s): 05.45+b

I. INTRODUCTION cuits, Josephson junctions, optical bistability, plasma oscilla-
tions, buckled beam, ship dynamics, vibration isolators, to
In recent years, particular interest has been devoted to theame a few(see Refs[1,21,29). In this autonomous state,
dynamics of coupled oscillatofd—20]. This is due to the Eq. (1b) shows damped vibrationg, being the damping
fact that coupled oscillators provide fundamental models focoefficien) (see Refs[1,22]). An example of a physical sys-
the dynamics of various physical, electromechanical, chemitem with practical interest that E¢L) can describe is a non-
cal, and biological systems. Among these coupled oscillalinear oscillator functioning under the action of a self-
tors, the most intensively studied are the coupled van der Palustained electrical oscillator.
or self-sustained oscillatofd—8] and the coupled Duffing Among problems related to the dynamics of systems de-
oscillators[1,6,11,17-20 To the best of our knowledge, scribed by Eq(1), globally autonomous, we concentrate in
less has been done in a system consisting of a self-excitdtlis paper on the analysis of the oscillatory states in the reso-
oscillator coupled to an anharmonic oscillator of the Duffingnant and nonresonant cases and on the question of a possible
type. Our aim in this paper is to consider the dynamics ofappearance of chaotic behavior.
such a system described by the following set of equations: The structure of the paper is as follows. In Sec. I, we
give an analytic treatment of Eg€l). The method of mul-

X—e1F(X)X+G(X)=C1y+Cyy, (18 tiple scaleq1] is used to find approximate solutions of the
. ) : oscillatory states. We end the section by giving the criterion
y+ezy+H(y)=cix+cpX, (1D of chaotic motion following Shilnikov’s theoref, 26]. Sec-

tion 11l is concerned with a direct numerical integration of

whereF, G, andH are polynomial functions of the form the coupled systems. We conclude in Sec. IV.

F(x)=1-x2, (2a)
Il. ANALYTIC TREATMENT
— W2 3
G(x)=Wix+cx, (2b) We seek approximate solutions of Ed) by using the
a2 3 method of multiple scales described in REf]. In general,
H (%) =WoX+ Cox°. (29 \e considex(t) andy(t) in the form
g1 ande, are positive parametersc andc, are some non- X(t,e)=Xo(To,T1) +&X1(To,T1), (38
linearity coefficients. ¢, andc, are, respectively, the elastic
and the dissipative coupling parameter§V,; andW, are the y(t,e)=Yo(To, Ty +ey1(To, T1), (3b)

natural frequencies of the oscillators.

The set of Eqs(1) is a mathematical description of the whereTy=t is a fast scale andl;=«¢t is a slow scale char-
time evolution of various coupled autonomous systems. Inacterizing the modulation in the amplitudes and phases
deed when the coupling parameters are set equal to zero, thaused by nonlinearity, coupling, and resonances. The time
system(1) turns into two classical, rich, and well-studied derivatives(single overdot isd/dt and double overdot is
oscillators. Namely, the first equatioha) reduces to the van d?/dt?) become
der Pol oscillator, which serves as a basic model for self-
excited oscillators in physics, mechanics, and electronics i:D gDt e (4a)
[1,21-24. The final state of this oscillator is a sinusoidal dt ° ! ’
limit cycle whene; is small, but leads to relaxation oscilla-
tions whene; becomes largésee the above referenge$he 2 5
second equatiolilb) in its part reduces to the autonomous W:DOJFS(ZDODlH'” ' (4b)
Duffing oscillator[25], which describes the motion of vari-
ous physical systems such as the pendulum, electrical ciwhereD,,=d/JT,,.
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Substituting Egs(3) and (4) into Egs.(1) with Egs. (2)

and equating coefficients of like powers gfand assuming

that the system parameters are in the same order; ofe
obtain

D3xo+Wixo=0, (5a)
D3Yo+W3yo=0, (5b)
Dax,+W2x;=g(1—x3)DoXo— CX3— 2D D 1Xg+ C1Yo
+¢2DoYo, (5¢0)
D3y1+W3y:=—£,D0Y0— Coyg—2DoD 1Yo+ C1Xg
+CoDgXg- (5d)

The general solutions of Eqg&ba) and(5b) can be written
in the form

Xo(To,e)=Ay(Ty)e1To+c.c,, (6a)

Yo(To.8)=Ay(T,)eW2To+c.c., (6b)

dal Slal
at,~ 2 (1-3ad), (103
da2 &Eoay
an,- 2 (10b)
d¢ 3(c , Co ,
d_'l'1_§(W1al_W2a2 , (109

where ¢=06,—6,.

In its general form, Eqg10) show that in the nonresonant
case, both oscillators are uncoupled and the time evolution of
the amplitudes is given by

2

4 )
\/1_(1_ _2) exq—elTl)
a

01

ay(To,e)= (11a

az(To ,8) = aozeXF( - % Tl) y (11b)

where c.c. stands for the complex conjugate of each prece@orresponding to the amplitudes of the classical van der Pol

ing term. The quantitie®\,(T;) and A,(T;) are arbitrary,
complex functions which are determined from E@) and

(5d) by imposing solvability or secular conditions. Substitut-

ing Egs.(6a and(6b) into (5¢) and (5d), we obtain
D2x +W2x; ={— 2IW; DA, +ie WiA; (1— AsA)
—3cA A2 eWiTo— A3[Cc+ie, W, e/ 3WaTo
+{c+ic,WylAeWaTot g, (7a)
DEy1+ W3y, ={~2iW,D 1A, ~iz,W,A,— 3C0A_2A§}eiW2T°
—CoAde 3WaTo+ [¢) +ic,W, A eWiTo

+c.c., (7b)

WhereA_1 andA_2 are, respectively, the complex conjugates of

A; andA,.

A. The nonresonant case
Here we analyze the cad¥,#W,. The conditions for

elimination of the secular term&olvability condition$ in
Eqgs.(7) are
2iW,D1A; —ie WA (1—AjA;) +3cAA2=0, (8a)
2iW,D 1A, +i 8, WAy + 3CoA,AZ=0. (8b)
ExpressingA1(Ty,e) andA,(Tg,¢) in the polar form
A(To,e)=3a1(To,e)exfi61(To,e)], (93
Ax(To,8)=385(To,e)exflif2(To,e)], (9b)

where a;(Ty,e) and 6,(Ty,e), respectively,a,(Ty,e) and

0,(T,e) are the amplitudes and the phases of the fundamen-
tal solutions. We thus obtain the following set of first-order

differential equations for the amplitudes and phases:

oscillator and the autonomous Duffing oscillat@s t in-
creasesa;—2 anda,—0).

B. The resonant case and the Shilnikov criterion for chaos

It follows from Eqgs.(7) that only the primary resonance
can be observed in our system. To express quantitatively the
nearness oW, to W,, we introduce a detuning parameter
according to

W,=W,+eo. (12
The new solvability conditions in Eq$7) become
—2IW,D A +ie, WA (1—AA;)
—3CAAZ+ (Cy+iCoWp)Ane 7T, (133
— 2IW,D 1A — i £, WoA,— 3CoALAS
+(cytic,Wy)Ae 9T, (13b

ExpressingA;(Ty,e) and A,(Tq,e) in the polar form as
above defined and substituting into E¢53), we obtain the
following set of first-order differential equations for the am-
plitudes and phases:

1

co,W,
2W;

da.l _ 81a1
at, 2

2

a,Sinv+ ——— a,cow,

(143

2wl

da2 Eo Cc

1
T, =— 5 & our W, a,;cos, (14b

coW;
als|nv+ 2W

C1
_l’_

2

dV_3 CO
dT, 8w, 27w,

Wia; W, a

W,a, Wia

> Slnv+ o, (140
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FIG. 1. (a) The stationary solution®\y;, vs the detuningo
(dashed lines forc,=0.05; full lines for c,=0.07) with W,=1,
£1=8,=0.01,¢,=0.0125,c=0.0250, anc:,=0. (b) The stationary
solutionsAg, Vs the detuningr (dashed lines foc,=0.05; full lines
for ¢,=0.07) with W,=1, £;=£,=0.01,c7=0.0125,c=0.0250, and
C]_:O.

wherev=0,—6,+0oT,.

The equilibrium states;=Ag;, a,=Ag, and v=y, of
Eqgs.(14) are defined by the following set of nonlinear alge-
braic equations foA,; and Ay, [v, can be obtained after
substitution ofAy; and Ay, into Eq. (140)]:

166 5W5AS W1AG, + W5AS,) 2+ OWTAT A WoC A,
—W;CoA3,)2— 16c5WAAS (WAAZ +W3A3,)?=0,
(15a

where

2
€ 1W1
A2 g 02 ot Ao 4). (15D

3
T

LA,

01

o v v o b Lo e 0 e s b 0
o} 0.05 041 0.15 0.2 0.25

¢

FIG. 2. The stationary solutionsy; andAg, vs ¢, (same value
for the system parameters as in Fig. 1 but with0).

where we have considered only the dissipative coupling.
Equations (14) also have a ftrivial equilibrium point
Ag1=Ag,=0 andy, undefined.

The stability of each fixed point can be determined by
calculating the eigenvalues of systdf¥), linearized about
the steady valued\y;, Ay, and yy. Substituting Eq(15b
into Eq. (153, we obtain the following tenth-order nonlinear
algebraic equation:

b10AG+ boAGy+ DeAd;+ baAG DA+ be=0, (159

with the coefficientd; defined in the Appendix.

Equation(15¢ is solved using the Newton-Raphson algo-
rithm. Figures 1 and 2 show the response curves, respec-
tively, in terms of the detuning parameterand the dissipa-
tive coupling constant,(c=0) for some selected values of
the system paramete@V,=1; &,=¢,=0.01; c,=0.0125;
€¢=0.0250; andc;=0). Figures 1 and 2 show hysteresis do-
mains and we have found that only the lower branches cor-
respond to stable solutions. It can also be found that when
the detuning increases;—2 anda,—0, leading to the non-
resonant(or uncoupled motion as analyzed above. To find
the criterion for chaotic behavior in our model, we have used
Shilnikov’s theorenj4,26]. The theorem states that for chaos
to occur within a third-order autonomous system such as that
described by Eqs14), the eigenvalues of thexX3 matrix,
formed from the Jacobian derivative of the system at an
equilibrium state Agq,Ago vo), Mmust be— 4, and y*iw with
6>v>0. By varying the coupling coefficient,, we have
found after solving numerically the eigenvalue equation that
Shilnikov’s criterion is satisfied for 0.04%%,<0.5100. We
have also analyzed the system by considering the elastic cou-
pling c; and no range of chaos has appeared. In the next
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FIG. 3. (8) The phase spacea{,a,) for c,=0.4. This corre-
sponds to a limt cycle with a modulation of the
amplitudes. (W;=W,=1, ¢;=¢,=0.01, ¢,=0.0125, c=0.0250,
andc,;=0.) (b) The phase spaceyf,a,) for c,=0.04. This corre-
sponds to a chaotic state(W;=W,=1, e;=¢,=0.01,¢(,=0.0125,
¢=0.0250, andc;=0.) (c) The phase spaceag,a,) for c,=0.04.
This corresponds to a chaotic stasgame value for the system pa-
rameters as itib)].
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FIG. 4. Phase portrait of the first oscillator with the parameters
of Fig. 3b).

section, we verify Shilnikov’s criterion by solving numeri-
cally the set of differential Eqg.14) and the original Egs.
1.

Ill. NUMERICAL COMPUTATION

We solve numerically Eqg1) and(14) to find the range
of chaos. We use the fourth-order Runge-Kutta algorithm
[27]. The time step is alwayAt=0.04 and the calculations
are performed using reals in extended mode. The integration
time is always greater thah=10". To characterize the de-
gree of chaos, we calculate the largest Lyapunov exponent
and draw phase portraits. The Lyapunov exponent is defined
ash=(11)In(|xq|+|X4|+|y1| +]y1]), wherex; andy; are so-
lutions of the variational equatiofisbtained from Eq(1) by
settingx—x+x; andy—y+y; and linearizing around the
solutionsx andy]. The same can be done for Eq§4).

Considering first the amplitude equatisee Eqs(14)], it
is seen thag;(t) always depend on time: a sort of beating
oscillation is generated because of the coupling. The phase
spaces &; ,a;) shows the existence of limit cycles with pe-
riodic variations of the amplitudes and the phaseg, [see
Fig. 3(@]. Whenc,[0.0399,0.298% the amplitudes; vary
chaotically as it appears in Figsk3 and 3c). For Figs. 3b)
and 3c), the largest Lyapunov exponent computed from Eq.
(14) is \pax=0.0014,

In view of verifying the results from the analysis of Egs.
(14) obtained by the method of multiple scales, we have also
computed numerically the original Eq&l). We first note
that in general, the coupling generates, as mentioned here
before, a modulation of the amplitudes. For the param-
eters of Figs. @) and 3c), the phase portrait for the first
oscillator is shown in Fig. 4. Here the largest Lyapunov ex-
ponent[computed from Eqs1)] is \pa=0.0012. It follows
from the numerical integration of Eq&l) that(for the values
of the system parameters used for Figs. 3 anthé chaotic
behavior occurs when, e[0.0400,0.2460D

The difference between the rangeffor the occurrence
of chaos obtained from Shilnikov’s theorem and those of the
direct numerical simulations of Eqgl) and(14) can be ex-
plained by the fact that the application of Shilnikov’s theo-
rem required small values of the system paramgd(tbis as-
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6.005 kov’'s theorem is used to define the range of the coupling
E L coefficient leading to chaotic behavior. In view of verifying
the results obtained from Shilnikov’s theorem, we have car-
ried out a direct numerical simulation of the coupled equa-
tions of motion. A difference between the range of chaos
following Shilnikov’s theorem and that obtained from the
numerical simulation is found. This can be explained by the
fact that the analytic prediction required small values of the
system parameters and is obtained from the approximate
method. Our numerical computation has also shown that in
our model, chaos arises suddenly.
a.00 6.t 6oz | 0.03 | 0.04 | 0.05 An interesting question under investigation is that of find-
ing the analytic solution of the system described by Eijs.
in the case where the coupling coefficients are not small.
Another problem under consideration is that of analyzing the
oscillatory states and chaotic behavior of our system when an
external sinusoidal force is added to E¢B.

FIG. 5. Bifurcation diagram showing the first coordinateof
the attractor in the Poincaneoss section vs the coupling coefficient
C2. (W1:W2:1, 81282:0.01, C0:0.0125, C:00250, and

C]_:O).
sumption used to establish Eq4.4) from the approximate APPENDIX
method. bi=9 10
. . . . =9c2e3w
An interesting question related to the problem of chaos is 10~ 9%0%1
the way the chaos appears in the system. It follows from our be=— 10&:§st}°— 720008%82\,\,1\,\,3,

numerical simulation that the transition to chaos is abrupt.
:Ne ha}ve drawn in Fig. 5 the plfurcanon .d|ag.ram showing be 168182\,\/6\,\/6_|_43281C0W10+ 5765182c0cW1W2
ransition to chaos as the coupling coefficient increases. The
bifurcation diagram shows the first coordinatef the attrac- +144s 1£5C2°WIW5,
tor in the Poincareross section versus the coupling coeffi-
cient ¢, that has been increased in small steps. After eac}m4_1288182v\/6w6 64C28182W6W6 1152008182W1W2
step the last solution has been used as new initial conditions.
— 19236 3WSW5 — 576036 SW10— 576c% 1 6 3WI WS,

IV. CONCLUSION b,=512:2¢,c5WSW5 — 102426 SWEWS + 768 3 SWEWS

This paper has dealt with the study of a self-sustained + 2566 AWEWE — 512 . £.2C W6W6
oscillator (van der Pol coupled to a nonlinear oscillator of ! 1#2%2 '
the Duffing type. The coupling is elastic and dissipative. Theb _ —10249 %\/\/6\/\/6 10249281\A,6W6+20489182W6W6
multiple scale technique has been used to derive analytlc
solutions both in the resonant and nonresonant cases. It is  — 10242 ,cAWSWS+ 2048 ;£ 3c2WSWS
seen that the coupling generates the modulation of the am-

i . T . e 6\ /6

plitudes and a sort of beating oscillation is obtained. Shilni- ~ — 1024 183WSW5.
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