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Solute trapping effects in planar isothermal solidification of dilute binary alloys
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Transient rapid solidification of dilute binary alloys is addressed in the frame of the continuous growth
model, accounting for solute trapping effects. We consider the planar isothermal growth from a melt of some
uniform initial composition. The initial solute concentration in the melt is assumed to be below its equilibrium
value. An approximate solution of this problem is developed using the mass balance integral method with the
boundary-layer-type profiles for solute concentration. This solution is validated by the numerical solution of
the original moving boundary problem. The influence of solute trapping effects on the main evolution char-
acteristics of the process is discussed. The transient regime and the long-time asymptotic states are investi-
gated. The physics of the process is clarified using the Baker-Cahn diagrams for a solute concentration at the
interface.[S1063-651%96)01107-9

PACS numbgs): 05.70.Fh, 81.15.Lm, 81.10.Aj

[. INTRODUCTION models break down. Such processes might be addressed
within the phase-field mode[25-32.

Sharp interface models of solidification have been a sub- For pure substances the models of attachment kinetics via
ject of intensive research for several decafles25]. Such thermally activated atomic jumps were proposed many years
models are stated in terms of the heat and mass transport ago[33,34]. The linearized version of such models predicts
the bulk and the boundary conditions at the free boundaryinterfacial undercooling to be proportional to the growth rate.
i.e., at the solid-liquid interface. These conditions involve theThis result also follows from the approach based on the lin-
interfacial mass, momentum, and energy balance equationsarized irreversible thermodynamilck0,11].
along with the response functions, which define the interface For binary alloys the semimicroscopic models of attach-
temperature and composition. The fluid flow in the liquid ment kinetics have been considered [f2—2(0. Each of
and the deformations in the solid are often neglected. Thethem defines a kinetic phase diagram, for which both the
the interface momentum balance reduces to the mechanicliuidus and the solidus depend on the growth rate. As
equilibrium incorporating the surface tension, while the longpointed out by Baker and Cali8,7] the change of the free
range transport is governed by diffusion. The response funanergy per mole of solidified material has to be negative.
tions involve the equilibrium contribution, incorporating the This thermodynamic constraint is obeyed by the models in
Gibbs-Thompson effect, and the nonequilibrium contribu-which the chemical potentials of each species decrease upon
tion, induced by the discontinuity of the chemical potentialsincorporation into crystdll4-16|, as well as by the models
across a moving boundary. The nonequilibrium effects rein which the chemical potential of the solvent atoms de-
flect the kinetics of the attachment of the atoms to a growingreases during crystal growth, while that of the solute atoms
solid. increase$12,13,17—-20 When the equilibrium partition co-

For materials with rough solid-liquid interfacenetals efficient k* is less than unity, the former model$4—-16
and some organic materialthe thermally activated atomic imply that the partition coefficienk(V) decreases with the
jumps are very fast. Therefore one can assume a local thesolidification rateV. On the other hand, for the latter models
modynamic equilibrium at the interfacénstantaneous at- [12,13,17-20k(V) is an increasing function 0¥, so that
tachment kinetigs This assumption is adequate for veloci- the solid composition at the interface might exceed its equi-
ties that are typically smaller than 0.1-1 rfi1€]. For higher  librium value. The increase of the partition coefficient with
crystal growth rates it is mandatory to account for the departhe solidification rate is termed “solute trapping.” Existence
ture from equilibrium. Such conditions might occur in the of this phenomenon is supported by substantial experimental
directional solidification with high pulling velocities, in evidence[6,13,20. Following Refs.[18,19 we refer to the
freezing from an undercooled melt, or at regrowth fromkinetic models of solute trapping in materials with a rough
pulsed laser-induced melting. At very high growth rates thesolid-liquid interface as some particular versions of the con-
width of the diffusional boundary layer becomes of the ordettinuous growth model.
of the interface thickness. At this point the sharp interface Analytical and numerical solutions of tractable problems

of crystal growth provide a theoretical framework to study

the interfacial kinetics effects. One of the key problems of

*Also at Department of Physics, Ben Gurion University of the this sort is the planar growth of a solid germ. It mimics the
Negev, Beer Sheva, Israel. spherical growth of a solid particle when the curvature ef-
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fects are small. A pure substance growth of a solid gernvelocities, or for small solute concentratiofk0]. For such
from an undercooled melt has been addressed within thsituations the isothermal approximation for the melt might
sharp interface models with the linear attachment kineticsstill be adequate if the heat liberated at the interface is rap-
Long-time asymptotic solutions to this problem have beeridly conducted away into some appropriate siti8,3§. We
given in[21-25. For small undercooling levels these long- will return to this issue in the last section of the paper.

time solutions exhibit the diffusion-limited growti~t~? For the binary alloys the planar isothermal growth of a
(heret is time). For large undercoolinghypercooling the  solid germ has been addressedib] by ignoring the solute
growth is controlled by the interfacial kinetics. In this casetrapping effects and diffusion in the solid. It has been as-
for t—o the temperature profile in the melt is described by asumed that the initial solute concentration in the melt is be-
plane wave traveling with a constant velocity. For this solu-low its equilibrium value. The initial thickness of the solid
tion the width of the boundary layer is equallg/V. (Here  germ has been neglected. An approximate solution of this
D+ is the thermal diffusivity of the melt.The above results problem has been developed using the mass balance integral
are in agreement with the numerical solution for the spherimethod with a linear concentration profile in the boundary
cal growth[5]. At the critical level of undercooling, i.e., at layer. In spite of the highly nonlinear nature of the kinetic
the crossover between the diffusion-controlled and thenodel used irf{15], the long-time asymptotics of the above
kinetics-limited growth, the sharp interface model yieldssoution is similar to that found for the pure substance. In
V~t~*for t—o. Analysis of this problem beyond the long- particular, v~t** has been obtained at the crossover be-

time asymptotics has been recently presentef®4). It has  yeen the kinetics-controlled and the diffusion-dominated re-
been shown that for the critical undercooling the Iong't'megimes.

asymptotic state is established via a long-lived transient. No=" o ;
. . present paper attempts to extend the aforementioned
gg;t?a;;:]etﬁgaiﬁjgd mr?(?eerliotgl.tnhe ﬂ?ﬁ:&f:’,&%ug”zg works for a pure substan¢@3,24] and for the binary alloys
- : It u 0lng €l . 815]. We address the planar isothermal growth of a solid
V=const asymptotic states. Which one of them is selecte . : .
germ accounting for the solute trapping effects. This problem

g?dp:rng;rggqg[‘eerrﬁ;% of the thermal diffusivity to that of theis analyzed in the frame of the continuous growth models

Among the response functions, which determine tha?oth with and without the solute drag effe¢2,18,19. Fol-

boundary conditions at the interface of a solidifying binary'OWing Refs.[15,23,24 the initial thickness of the germ is
alloy, the growth rate is most accessible to experimental cor@SSumed to be negligibly small. The diffusion in the solid is
trol. Due to this reason the solute trapping effects have beeflisregarded, and the initial solute concentration in the melt is
studied so far mainly in the context of directional solidifica- @ssumed to be below its equilibrium value.
tion, where the constant pulling velocity might be fixed by A sufficiently simple approximate solution describing the
the externally imposed heat fluxes. This velocity, along withgerm growth is developed. It is based on the mass balance
the solute concentration far from the interface, determine théntegral method with the boundary layer-type melt concen-
temperature and the composition at the phase-change froritation profiles. The results are in agreement with the nu-
Stability of the constant velocity solutions has been ad-imerical solution of the original moving boundary problem.
dressed first within the frozen temperature approximationVe analyze the initial, the transient, and the long-time stages
[35]. In this approach the Lewis number Le, defined as theof the process. It is shown that the interface velocity is
ratio of the mass diffusivitp to the thermal diffusivityD 1, monotonically decreasing in time and the solution evolves
is assumed to be equal to zero. More recently it has beetowards the diffusion-limited, or the kinetics-limited asymp-
shown that the fraction of latent heat, released at the intertotic attractors. The emerging physical picture is clarified
face due to the velocity perturbations, might significantlyusing the Baker-Cahn diagrafi@]. Evolution of the germ
affect the dynamics of the phase-change front even if thgenerates on this diagram a trajectory, reflecting the initial
Lewis number is very small36,37). and boundary conditions, as well as the specifics of the ki-
Similar to the growth of pure materials, discussed abovenetics model. For each of the kinetic models the correspond-
the solidification of binary alloys into an undercooled melting trajectory is along the curve that defines the solid com-
offers another way to inspect the interfacial kineti€Bypi- position versus the melt composition at the interface. We
cally, for diluted binary alloys large interface velocities canshow that when the solid composition is a monotonically
be reached already for undercoolings of only a few degreesincreasing function of the melt composition at the interface,
For this setup the transient growth is controlled by the temthe long-time asymptotics is similar to that of Réi5].
perature and the composition in the liquid far from the However, for each version of the continuous growth model
phase-change front. In general, growth into an undercoolethere exists some threshold equilibrium liquid composition at
melt involves redistribution of both the impurities and the the interface, above which the corresponding curves on the
heat, liberated at the solid-liquid interface. Analysis of suchBaker-Cahn diagram are no longer monotonic. In this case
problems is very complicated. In fact, only a few solutionsthe long-time asymptotic states differ from those obtained
are known even when the local equilibrium at the interface isieglecting the solute trapping effects. We also demonstrate
assumed10]. For out-of-equilibrium conditions at the inter- that the same initial conditions might yield rather different
face it is natural to assume, as the first step, the isothermédng-time asymptotic attractors for two alternative versions
conditions in the melt. This approximation, which implies of the continuous growth model. It is shown that the long-
Le=0, is analogous to the frozen temperature assumptiolived transients are present at the crossover from the
used in the studies of the directional solidification. Obvi-diffusion-limited to the kinetics-controlled growth both for
ously, this condition might be violated for sufficiently high the monotonic, as well as for the nonmonotonic trajectories.
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Il. CONTINUOUS GROWTH SOLUTE TRAPPING MODEL ApalRT=IN[(1—ke,)(1—c*)/(1—k*c*)(1—c )]

Following Refs[18,19 we begin the analysis by summa- ~c (1—k)—c*(1—Kk*). (5b)
rizing the main results of the continuous growth solute trap-
ping model. It describes the attachment kinetics for solidifi-consequently,
cation of dilute binary alloys with a rough interface. For such

alloys the equilibrium phase diagram is given by AGpe/RT~c [1—k+k In(k/k*)]—c*(1—k*). (6)

T=To—m*c*(T), cs=k*c*, (1) Combining Eqs(3) and (6) for (AGpe/RT)<1 one obtains

where T is the temperatureT, is the melting point of the the following expression foe, for Model A:

pure solvent, and*(T) and c(T) are, respectively, the * (1—k*)— (V)
equilibrium molar concentrations of solute in the liquid ad- L= *0 _ )
jacent to the interface, and that in the solid. It is assumed that 1-k+k In(k/k*)

the equilibrium partition coefficient* and the slope of the ) ] o ]

liquidus m* are temperature independent. We also assumgduations(1), (2), and(7) define the kinetic-phase diagram,
thatm*>0. If the interface is curved the latter diagram has tol-€-» the temperature of a planar interface and the solute con-
be modified by the Gibbs-Thompson effect. The out-of-C€ntrations in the regions of the solid and liquid adjacent to
equilibrium values of the liquid and the solid concentrationsth® phase-change front. _

at the interface are denoted by andcg=kc, , respectively.  Aziz and Kaplar{18] presented a somewnhat different ver-
In the continuous growth solute trapping model for diluteSion of the continuous growth model. They allowed reduc-
binary alloyscg and ¢, are related by the nonequilibrium tOn of the free energy, driving the interface motion, by dis-

partition coefficient(V) given by sipating some of it in the solute-solvent redistribution across
the interfacgsolute drag effegt In this model, referred to as
k* +Vl/vp Model B, the crystallization free energy is
KM= T Vivg @
° AGer=CLApp+(1—c)Aun. ®)

HereVy, is the characteristic velocity scale of the solute trap- o

ping effects. Thuk(V) varies fromk* at V=0, tok=1 as The chan_ge_ of the molar free energy upon solidification,

Vo, and atV=uvp,, k=kp=1/2(1+k*). The value ofp AGpg splits into the sum of the crystallization free energy,

is usually estimated as the ratio of the diffusivity in the liquid & Gerr @nd the so called “solute drag” free energdyGp

D to the interface width, which is of the order of a few

angstroms. For metallic alloysy is typically about 5 m/s. AGpr=AGet+AGp, ©)

Smith and Aziz[20] have pointed out that such estimates o

might be insufficient:  correlations betweep andk* have ~ WhereAGp is given by

been observed, and the valuesuvgf about 36 m/s—38 m/s

have been reported for the Al-Sn and Al-In alloys. As em- AGp=(cL=Cs)(Aua—Aus). (10

phasized in Ref[20], Eq. (2) fits the experimental data sur-

prisingly well even at velocities for which one might ques-

tion the validity of the sharp interface models. . .
The continuous growth model defines also the slope of the _C (1-k*) = (V/vo)

kinetic liquidus as a function of the solidification rate. In the b 1-k+In(k/k*)

spirit of the semimicroscopic model for a pure substance

[33,34 it is postulated that the velocity of the solid-liquid The slope of the kinetic liquidus is obtained by combining

interfaceV might be expressed as Egs.(1) and(11).

From Egs.(5), (6), and(9) it follows that

11

V(T,cL.C9)=vo{l-exdAGe(T,cL,cg)/RT]}.  (3) IIl. ISOTHERMAL SOLIDIFICATION:

THE BAKER-CAHN DIAGRAM FOR CONTINUOUS

HereR is the universal gas constang is some characteris- GROWTH SOLUTE TRAPPING MODELS

tic velocity (of the order of sound velocity for metallic
melts, andAG.; is the solidification driving force. According to Baker and Cahf¥] for the physically al-
One of the versions of the continuous growth modellowed solidification processes the change of the molar free
[12,13,18§, referred to in the present paper as Model A, asenergy has to be negative. Therefore for an isothermal
sumes thal Gy is equal to the change of free energy pergrowth possible solid compositiorts; that can form from a

mole of solidified material Gy melt of varying interfacial composition<0c, <c* are repre-
sented by an area of the-c, plane, enclosed by the curve
AGe=AGpr=csAug+(1-Cs)Aun, (4 AGpe=0. In the present paper this thermodynamically al-

lowed domain is referred to as the Baker-Cahn diagram. Ac-

where Aua g) denote the difference between the chemlcalCoroling to Eq.6) its boundarycs=ci(c.) is given by

potentials of solid and liquid for solvenfA} and solute B),
respectively. For diluted alloys at some given temperalure

(1K) - b
ST Ik k In(kikF) ©sTEO 12

Apg/RT=In(k/k*), (5a)
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Thermodynamics does not restrictto be greater thak*. 0.3 [t T T
Thus, in Egs(12), k is just a parameter in the ran{@, ).
Consequentlycg is a double-valued function of, in the |
interval c* (1-k*)<c, <c*. _ k=1 kel
The functioncg=cg(c,) is essentially nonmonotonic. It !
starts from zero ac’Lzo with k=, This curve is growing
with a continuously decreasing slope and gradually reaches
its maximum atk=1. From then on this function decreases
and at c,=c* it approaches the equilibrium value
cs* =k*c*. The functioncg=cg(c,) reaches zero again at 0.1 2
ol =C*(1—K*). 3
On the Baker-Cahn diagram the kinetic models with S
k(V)<k* are represented by curves located below the 1y et

’ v
0.2 | > .
. .

cglatZCu)

straight linecg=k*c, . On the other hand, the models ac- :

counting for the solute trapping are given by curves in the 0.0 A I R T A I

domaink* <k<1. Since the sharp interface models are ill 0.1 0.2 0.3 0.4 0.5 0.6

defined for V=vp, we restrict the analysis to the .

k* <k<kp . [Herekp=k(Vp).] For this region Eqs(7) and c (atZCu)

(11) imply that c¢* is bounded from above byc..

=vp/Vo(1—k*). At c* ZC:naX, c.=0 whenV=V,,=Vp. FIG. 1. Baker-Cahn diagram for Al-Cu alloy at=0.5 at. %
Cu. (1) The curveAGp=0, defined by Eq(12); (2) cg=cg(c,)

for Model A; (3) cs=cg(c,) for Model B.

Let us consider now the functiaey=cg(c,) for the con-
tinuous growth models. As follows from Eq§,) and(11) ¢,
is a monotonically decreasing function of the solidification
rateV: ¢, =0 atV=uv,c* (1-k*) and it tends to its equilib- numerical studies performed for several metallic alloys have
rium valuec* in the limit V—>0. Sincedc /dV<0, the  shown that forc* >c, there exist one pair of roots of Eq.
sign ofdcg/dc, is determined by that adcg/dV. For Model (15) at CL=CLo1 and CL=CL02>CLq1. corresponding to the
A one obtains the maximum and the minimum, respectively.
) In order to illustrate the above considerations we present
%: Cs [ (1-k) _ 1 (13) the results for Al-Cu alloy ac*=0.5 at. % Cu. Figure 1
dvV  1-k+kIn(k/'k*) |[k(V+vp) cLvgl shows the Baker-Cahn diagram. The cuecge=cg(c,), cor-
responding to Model A, has a maximum, whereas that of
According to Eq(13) there are the following three possibili- Model B is increasing monotonically at the entire interval
ties: (@ dcgdg >0 for Osc <c*, when Os=c <c*. Figure 2 demonstrates the interface velocity at
c* <K*vplvg(1-k*)% (b) deg/de >0 for O<c <c*, and  the extremum point¥ as a function ofc*. For Model A
dcgde =0 at ¢ =c*, if c*=k*Vp/Ve(1-k*)2 (c)
Ccs=cg(c.) is nonmonotonic and has one maximum at
cL=Co<C*, if c*>k*Vp/Vo(1—k*)% At this maximum
the solid compositiorcg is above its equilibrium valueg ]
=c*k*. 4.2 —

For Model B Eq.(11) yields

19 T T

des Cs (1-K)In(k/k*) 1
dV  1-k+In(k/k*) | K(V+uvp) CLUo

. (14

As follows from Eq. (14) dcg/dc >0 when ¢, —0, or
c_—c*. Hence for Model B the functioms=cg(c,) is ei-
ther monotonically increasing for<tc, <c*, or has an equal
number of maxima and minim@vith possible saddle points 1.4 |
in the open interval @c, <c*. These extrema are reached at 1
the concentrations, =c g defined by

Vg (m/s]

CLo=K(V+vp) uel(1—K)In(k/K*)]. (15)

Equation(15) has no real roots far* below some threshold
equilibrium concentratioe %, andcg=cg(c, ) is a monotoni-
cally increasing function at the interval<@, <c*. (The

* . * * .
value Och.r can be found numerlcaUyAt ¢ - Cer there LS a FIG. 2. Interface velocity at the extremum pointscgf=cg(c,),
saddle polnt at some value of in the open interval0.c™). v, as a function of the equilibrium melt compositiafi. (Al-Cu
For c* >c,, the functioncs=cg(c,) is nonmonotonic. The alloy). Solid line—Model A, dotted line—Model B.

c*(atZCu)
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Here c is the solute concentration in the meR(t) is the

0.25 interface position at timé, andx is the spatial coordinate
along the direction normal to the solid-liquid interface. The
melt composition at the interface is defined by a particular

0.20 + kinetic model. For the continuous growth models it is given
by Eq.(7) for Model A, or by Eq.(11) for Model B, respec-
tively. Obviously, Eqs(16)—(18) have to be supplemented

= 0.5 by the initial conditions.
Q Two particular solutions of the above equations are of
'»5 special interest. The first orjd,2] assumes a local equilib-
o o0 b rium at the interfacec, =c*, k=k* and describes the
© diffusion-controlled growth

L erfd Ox/R

0.05 |- c=c.+(c*—c.) %, R(t)=2QDt.

(19

e T P S Here() is a root of the transcendental equation

0 0.3 0.6 0.9 1.2 1.5
. JmQ expQ?)erfc O=St, St=(c* —c..)/c* (1—k*).
c*lat’Cu) (20)

FIG. 3. Solid composition at the extremum points of Equation(20) admits finite solutions, when the diffusional

cs=Cs(CL), Csqas a function of the equilibrium melt composition Stefan number St is smaller than unitg..&-c*k*). For
c¢* (Al-Cu alloy). Solid line 1—Model A, solid line 2—Model B, St—1, the growth rate diverges, sin€e—.
dotted line—reference line% =k*c*. Another well known solutio4,7] describes the solidifi-

cation with a constant interface veloci®=Vt. The concen-

the solidification rate at the maximal solid composition istration profile in the melt is then given by

increasing withc*. For Model B the threshold concentration
c, is about 0.54 at. % Cu. At*>c,, the separation be-
tween the maximum and the minimum of=cg(c ) in- Consistency of this profile with the interfacial mass balance
creases withc*:  the minimum point tends to the equilib- implies

rium, whereas the maximum point moves in the opposite

direction. Figure 3 shows the solid concentration at the ex- cs=k(V)c (V)=c.. (22
tremum points otg=cg(c,), as a function ot*. The maxi- i _ o e

mal concentration ofg, as given by Model A, is greater Equation(22) determines implicitly the solidification raé.

than that defined by Model B. Similar results have been ob- The constant velocity solution represents some point on
tained for several other metallic alloys. the curve*csz cs(cy). As long as this curve is monotonic f_or
The above considerations enable one to get a better quaf:=C.=C", the maximal value of the solid concentration
tative understanding of the planar isothermal solidification of "@¢KC_} is equal toc*k™, and the plarle wave-type solu-
dilute binary alloys. Indeed, the composition at the interfacdions are allowed in the range<c..<c™k™. In this case for
at any instant of time might be represented by a point on th&ach value of.. Eq. (22) has only one real root.
curvecg=c4(c,), corresponding to some particular model of FOr nonmonotonic curvess=csg(c,) the constant veloc-
interfacial kinetics. The advance of the freezing front generlty_Solutions are permitted for Oc.<maxkc,j, and Eq.
ates, hereby, a trajectory along this curve. It depends on tH&2) has multiple roots. For such curves nieg }, depends
boundary and the initial conditions, as well as on the specifon the nature of the kinetics model: nfle, } is equal to
ics of the kinetics model. In the following sections we will kgCgQ for Model A, and to the largest amorig); ¢, o; and
thoroughly discuss the trajectories describing the isothermdf ¢~ for Model B. As pointed out irf7] the traveling wave-
growth of a solid germ, and the corresponding long-timetYP€ solutions might be diffusionally unstable for>k*c™.
asymptotic attractors. The stability of the constant velocity solutions with respect

In the present paper it is assumed that the solute concelR the planar_ pgrturbations_hz_is _been reconsidered recently
tration at infinity is maintained at a constant valgec., . [39]. The preliminary analysis indicates that the Baker-Cahn

Neglecting the diffusion in the solid, the governing equationdnStability, mentioned above, occurs only for those roots of
for the planar isothermal solidification are stated as followsEd: (22), which are located on the decreasing branch of the
Ccs=cg(c ) curve. A comprehensive analysis of this issue

will be presented in a separate paper.

C=C,t(C . —Cr)exd —(VID)(x—R(t)]. (21

dclat=Da’clox?, x>R(t), (16)

IV. ISOTHERMAL GROWTH OF A SOLID GERM:
—D(dclX)|y=ry=CL(1—K)V, V=dR/dt, (17) MASS BALANCE INTEGRAL METHOD

Let us consider now the planar isothermal growth of a
c|X:R<t)=c,_ , Clyew=Cu. (18 solid germ from a melt with the uniform initial concentration
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C,<Cc*. This problem is described by Eg&l6)—(18) with  Following Ref.[24] we assume that foc,>maxXkc, }, the
the initial condition concentration in the melt can be approximated by the
diffusion-type profile
c(x,t=0)=c,. (23

erfaQ{1+[x—R(1)]/L(1)})

Since the growth is symmetric with respect to the nucleation c=c,+(c —¢C,) oric O (25

planex=0 we restrict the analysis to the regidt=x<w.
The initial interface velocity/;,=V|,—, is defined implicitly
by c (V;)=cC,.

An approximate solution of this problem is developed
along the lines of our previous wofR4] devoted to a pure
substance. In this approach, termed “the mass balance inte- C=C.+(CL—C.)exp{ —[x—R(1)J/L(t)}. (26)
gral method,” the diffusion equation E{L6) is replaced by
its zero order moment. Furthermore, one has to assume thghe assumed profiles involve two time-dependent length
spatial dependence of the concentration field in the melt iicales: the width of the germ, equal t&2and the thick-
order to reduce the original problem to the ordinary differ-ness of the diffusion layer in the melt, measured Liy).
ential equation. The physics behind the selection of the conthe above profiles satisfy the initial conditiontat0 and are
centration profile determines the adequacy and the accurag¥ducible to the solutions given by Eq&l9)—(22) when

Here ) is a constant parameter, defined as the real root of
Eqg. (20). For c,<maxkc } the melt concentration is as-
sumed to be represented by the kinetics-type profile

of the resulting solution. L=R, or L=D/V for the diffusion-limited, or the kinetics-
Integrating Eq(16) from x=R to infinity and using Egs. limited growth, respectively.
(17)—(19) one obtains Inserting Eqs(25) and(26) into the interfacial mass bal-
d (= ance Eq(17) one obtains the following relation between the
_ f (c—c..)dx=V(c.—Kkc,). (24) _thickness_of the concentration boundary layer and the veloc-
dt Jr ity of the interface:

L) = 2Q%(D/V)c* (1—k*)(c —c.)/c (1—K)(c* —c.), c.>maxke} 5
O=1DV)(c,-cl(1-kic,,  c<maxke.) | @0
Substituting Egs(25) and(26) into the overall mass balance Eg4) yields the following equation for the interface velocity:
dv/dt=—V3(c,,—kc )/U[G—V(dG/dV)]. (28
Here
_[20%De* (1-k*)(C.—c*k*)/(c* —c.)?  c.>maxke}
“|D, c.<maxkc} (29)
|
and ing in time, providedc,,=kc, during the entire process. In-
deed, Eq(30) yields
G=(c_—c.)?(1—K)c, . (30
dG ¢ —cC. ) CL—Cu [1-(deg/d )]} dc,
- = — - — - CS C|_ -
As follows from Eq.(29), for k*c* <c,<maxkc }, one dv ¢ (1-k) cL(1=k) dV(gl)

could use either of the profild25) or (26), sinceV(t) would

be changed only by a constant factor, not affecting the quali-

tative behavior of the solidification rate. It is straightforward to show that for both Model A as well as
To summarize: the moving boundary problem, stated byModel B,

Egs.(16)—(18), has been reduced to a single ordinary differ-

ential equation Eq(28). The initial velocity \*/i has been  g<1—dcg/dc, <(1—K){1+[voc* (1—K*)/(V+vp)]}.

defined implicitly byc, (V;)=c.., with ¢ (V,c*) given by 3

Eq. (7), or Eq.(11). Due to the intrinsic nonlinearity of the

above kinetic models Eq28) has to be integrated numeri-

cally. Yet, this is much less time consuming than the full ” .

numerical solution of the original moving boundary problem Cahn diagram, where the sharp interface models are well

A . :
The accuracy of the approximate solution is discussed ificined. the parametecs, k*, vo, andup are restricted by
Sec. VI. c*(1-k*)vg<vp. Therefore

As stated in Sec. Il in the region<k<kp of the Baker-

We now prove that in the range of velocitiess¥=<uv,
the growth rate given by Ed28) is monotonically decreas- 0<1l-dcg/dc =2(1—-k)<2. (33
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Using this inequality in Eq(31) and taking into account that where
(dc /dV)<0, andc.,.=kc, it is straightforward to show

thatdG/dV<O0. It then follows from Eqs(28) and(29) that a;=(dc /dV)y—o<0, a,=3(d%c /dV?)y—o, (39
dv/dt<0,  for O<k<kp,  andc.=kc,. b;=(dcs/dV)y—g, by=3(d’cs/dV?)y_g. (39
34
(39 Consequently,

Now let us show that the condition,=kc, is satisfied - . . )
for the germ growth, so that the interface acceleration is 4V _ V¢ (1—K*)(c..—k*c* —b,V—byV?) (40)
negative uniformly in time. Obviously, this condition holds dt U(c* —c.)[1+0(V?)] '
for c,<maxkc.}. In this case EQ.(28 implies that _ -~
dVv/dt—0 whenV—O0. If ngma){kcl_}, then the interface The solutions of Eq(40) can be classified as fO”OW$1)
decelerates at the onset of the solidification process, sincg.>k*c*. (St<1) In this case the long-time solution is
c..>k(V;)c,(V;). According to Eq.(34) the deceleration of diffusion-dominated and the interface velocity decays in time
the interface continues as longlas <c... The acceleration &S
dV/dt can change its sign only when the solid composition,
at the interfacegs=kc, will reach for the first time the value _ -1
C... However, as shown below, for growth with a decelerat- V= N 1+ (cm—k*c*)\/ero(t )| @D
ing interface the statkc, =c, serves as the asymptotic at-
tractor whent—c. Thus, in this case todV/dt is negative  Consequently, both(t) andR(t) increase in time as@_ 2
during the entire solidification process, and the velocity tendg  =k*c*. (St=1.) As follows from Eq.(40) b, is either
to some constant valug; for t—-oe. negative, or equal to zero. In the latter case the coeffitignt

Whencg=cg(c,) is a monotonically increasing function has to be negative. The solution of E40) is then given by
the asymptotic stat¥/=V; is defined uniquely by Eq22),
providedc..<k*c*. The nature of the long-time asymptotic V(t)={[—Dc*(1—k*)]/3b,t}*¥1+0(t"¥¥], b;<0,
attractor forc,,=k*c* is discussed in the following section. (42)
For nonmonotonic curvess=cg(c,) the equatiorkc, =c,,
admits multiple roots. The infinite time of deceleration from V(t)={[—Dc*(1—k*)]/4bt}" [ 1+0O(t~ ],

V=V, to the asymptotic staté=V; singles out as the long-

time attractor the root with the largest value\gf. This root b;=0, b,<0. (43

is located either at the increasing branch of the curv
Cs=Cg(CL), or at its maximum.

0D b, QD

eI'he ratio of the width of the diffusional boundary layer to
the germ thickness (t)/R(t) decreases ast}f for b,<0,
and as 1{/t for b,=0.
Equations(41)—(43) demonstrate that decay of the tran-
Let us first consider the short-time asymptotics. ExpandSients is correlated with the asymptotic solidification rates.
ing the interfacial solid and liquid concentrations near theirThe maximal duration of transient corresponds/tet ™,

V. ASYMPTOTIC SOLUTIONS

initial values, up to the first order iW—V;, one obtains Let us now consider the approach to the long-time asymp-
totic attractors with the constant velocity of the interface
dV/dt=a?/2(V-V)), V;>0. These attractors are defined by E@&l) and (22)

with k;=Kk(V;), css=C., andc ;=c./K; . In the vicinity of
a?=V;%c,.[1—k(V)1AU{[dc /dV]y_vi}2. (35 C_ s andcg; one can expandg andc, in power series:

Integrating this equation yields cL=critay(V=Vp+ta(V=Vp?+--, (44

V~V;—|a|t. (36) Cs=Cot Br(V=V()+Bo(V—Vp)2+--- . (45)
SinceV(t) is decreasing in time the minus sign is selected inere
Eq. (36) According to Eq.(27), at short times the width of
the diffusion layerL(t) increases ast, whereas the size of
the germR(t) is growing ast. Notice that the short-time
asymptotics ofL(t) and R(t) is similar to that found for a
pure substancg24].

Let us now consider in detail the long-time asymptotic S
solutions of Eq.(28). We begin with the asymptotic states, For ,<0, Egs.(28)—(30) yield in the lowest order
for which the interface velocity tends to zero. Expanding the - 3 L n
liquid and the solid concentrations at the interface near their dvidt~ g,V (V=V)/D[c 1(1—ke) = Vi(ay ,31)]-(48)
equilibrium values one obtains

ay=(dc /dV)y_y <0, ap= 3(d%c, /dVZ)v:va
(46)

Br=(dcs/dV)y—y,, Bo=3(d’cs/dV?)y_y,. (47)

. 5 5 Sincedc, /dV<Q0, the coefficienty, is always negative. The
c =c* +a;V+a,vV2+0(V3), (378 solution of Eq.(48) reads

cs=k*c* +b;V+b,V2+0(V3), (37b) V~V+A exp —t/t,). (49)
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TABLE I. Input-output data for Model A. 0.7 , . .
Co=Cyj Csi Crt Cst 06 L ]
St at.% Cu at.% Cu V;/Vp at.% Cu at. Cu% V;/Vp )

0.94 0.095 0.046 0.659 0.264 0.095 0.344 0.5 1

0.92 0.102 0.049 0.645 0.348 0.102 0.216 ]

0.50 0.285 0.098 0.314 0.500 0.070 0 0.4 -

s K\ 51-0.94 ]

R | e 3

> ) i

HereA is some constant and is the relaxation time, given 03 — SL-0.92 1

by | T

0.2 | N

s ]

t,=D[ci(1—k¢)—Vi(as+B1)]/|Ba| V5. (50) ]

0.1 1

If B;=0, then3,<<0, and the constant velocity asymptotic L 5te0.50 ]

attractor is represented by the maximum of the curve P e S — . ]
cs=cCg(cL). In this case instead of the exponential decay, o 1000 2000 3000 4000 5000

V(t) decreases astl/ <

~ —+ !
VEVi (1Y, (52) FIG. 4. Dimensionless velocity//vp, as a function of dimen-
sionless time,r=tv3/D, for Model A. Al-Cu alloy atc*=0.5
at. % Cu. Solid lines—the approximate solution, E(&3), (28)—
t/=D[cy(1—k¢)— Viagl/|Ba| V3. (52)  (30). Dashed lines—the numerical solution of the original moving
boundary problem, Eq$16)—(18), (23).

where

VI. NUMERICAL RESULTS This case too demonstrates a typical solute trapping effect:

The approximate solution developed within the mass ball_he_ solute concentration in the solid is gp_p_roa_ching its equi-
ance integral method has been applied to the planar isothefPrium value from abovewhen the solidification process
mal growth of a solid germ in a dilute Al-Cu alloy. Physical €VoIves towards the diffusion-limited regime. The growth
constants for this alloy have been adopted from R&T. velocity d.rops by_two.orders of magnitude from its initial
The melting point of pure Al is 933 K. The equilibrium Vvalué during the time interval of the order T0s.
phase diagram is defined k& =0.14,m* =6.07 K/at. % Cu. The transient splldlflcatlon has also be_en inspected for
The kinetic parameters are given by=4.9 m/s,v,=1000 Model B. As mentioned above fa* =0.5 this model does
m/s, andD =4.9x10° m?/s. The equilibrium melt concen- not exhibit the s_olute_trappmg effects: the kinetics-limited
tration at the interfaceg* =0.5 at. % Cu, has been selected. 9r0Wth at long times is allowed only for St, whereas the
For this value ofc* the versionA of the continuous growth diffusion-controlled growth at long times corresponds to
model yields a nonmonotonic cun@=cs(c,). Its maxi- St<1. The input-output data for two representative cases St
mum, co=0.102 at. % Cu, is located & o=0.353 at. % =1.02 and St0.75 are given in Table Il and the velocity
Cu. On the other hand, for the above valuectfthe curve relaxation curves are depicted in Fig. 5. For=$t02 the
cs=cg(c,), corresponding to the version B of the continuousinitial \(elocny is the same as for the_case:$!t94} for Model
growth model, is monotonically increasing from zero to A. As in .Model A thgre is exponential relaxgnon of the ve-
k*c*. The curves corresponding to the above models artPCity 10 its asymptotic valu&/;=0.32Qp, . It is lower than
depicted in Fig. 1. 0.344), corresponding to Model A. For the second case,

For version A of the continuous growth model three casest=0-75, the initial velocity is the same as that for the St
have been considered. They are presented in Table | and ;0> case of Model A. The relaxation to the diffusional re-
Fig. 4. The first case corresponds to the initial melt compodime at long times is accompanied now by a monotonic in-
sition ¢, =c.. that yields fort— the constant velocity as- Créase of the solute concentration in the solid. ,
ymptotic attractor, located on the growing branch of the In order to validate the approximate solution, derived us-
curve cs=cq(c,). This asymptotic attractor exists at St INg the mass balance method, we have developed the nu-
=0.94, i.e., below the critical value St, that separates the merical solution of the original moving .bogn_dary problem as
kinetics-limited growth from the diffusion-limited regime in Stated by EQs.(16—(18). The explicit finite difference
the models without the solute trapping effects. In this cas@cheme with the fixed grid has been adopted for this purpose.
the transient is short lived, corresponding to the exponentidf S Pased on the algorithm originally designed for the clas-

relaxation to the asymptotic attractor. The second case with
St=0.92 is at the crossover between the kinetics-limited and
the diffusion-limited long-time asymptotic states. It corre- ComcL, oo, o Cor
sponds to the trajectory, Wh_lch tends_ to the_maX|mum ofSt at % Clu at. %' Cu Vi/Vp at% Cu at Cu% ViV
Cs=Cg(C ) ast—oe. The solution for this case involves the

long-lived transient that tends asymptotically to the constant.02  0.060 0.029 0659 0.174 0.060 0.320
velocity attractor. Finally, the third case with=S8.5 de- o075 0.177 0.061 0314 0.500 0070 0
scribes evolution towards the diffusion-controlled growth.

TABLE II. Input-output data for Model B.
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0.7 ; ——e able accuracy the main features of the numerical solution of
[ ] the full problem.

0.6 | B
L | VII. CONCLUDING REMARKS

0.5 | 1

] In the present paper we studied the solute trapping effects
0.4 ] in transient isothermal solidification of the dilute binary al-
\ St-1.02 ] loys. The planar growth of a germ, nucleated in a melt at a
0.3 [ ] uniform concentration, below its equilibrium value, has been
- 1 considered. Assuming the boundary layer-type melt concen-
tration profiles and replacing the diffusion equation by its
zero order moment, the original moving boundary problem

] has been reduced to an initial value problem for a single
.11 ] ordinary differential equation for the interface velocity. Evo-
I 5t=0.75 ] lution of the germ has been represented on the Baker-Cahn

0.0 —m———rt—m et T diagram by trajectory along the cun&=cg(c,), corre-
0 1000 2000 3000 4000 5000 sponding to some specific kinetics mggsel. o
T This approximate solution has been integrated numeri-
cally for the dilute Al-Cu alloy. The results are in agreement
FIG. 5. Dimensionless velocity//vp, as a function of dimen-  with the numerical solution of the original moving boundary
sionless timey=tv 3/D, for Model B. Al-Cu alloy atc*=0.5at. %  problem.

V/ v,

0.2 -

Cu. Solid lines—the approximate solution, Eq23), (28)—(30). Within the approximate solution the main evolution char-
Dashed lines—the numerical solution of the original moving acteristics of the germ growth are reduced to the width of the
boundary problem, Eq$16)—(18), (23). solid germR(t) the thickness of the boundary layer in the

melt L(t) and the interfacial concentrations of the liquid

sical Stefan problems with constant temperature or concerand the solidcg. These quantities are uniquely determined
tration at the moving boundanyQ]. This scheme uses the by the solidification rate/(t) the kinetics model, the equi-
Taylor series expansions which result in a polynomial fit forlibrium phase diagranic* (T),k*), and the initial concentra-
forward interpolation of the concentration or temperaturetion of the meltc...
fields at the nodal points, located in the vicinity of the inter-  For both versions of the continuous growth model we
face. This scheme successfully handles the nonlinearities dfave shown that the growth rate of the germ is monotoni-
the Stefan problem and yields accurate and stable solutiorglly decreasing in time. Simultaneously the rejection of the
with relatively low CPU time in a wide range of the Stefan impurities from the solid raises the melt composition at the
numbers. The latter numerical scheme has been extended iinterface. The time dependence of the solid compositiois
order to incorporate the out-of-equilibrium conditions at themore complicated. It reflects the specifics of the interfacial
interface. The concentration gradient at the interface hakinetics model and depends on the initial melt composition
been evaluated at each time step in order to calculate the, as well as on its equilibrium compositiot* at some
interface velocity via the kinetic liquidus equation. The spa-prescribed temperature.
tial domain has been divided into two subdomains, estimated Whenc* is below some model-dependent threshold con-
using the approximate solution of the problem. The innercentrationc}, the curvescs=cg(c,) are monotonically in-
domain, located in the vicinity of the interface had a highcreasing, so that the solid concentration at the interéade
resolution grid, whereas the outer domain had a grid with dncreasing in the course of the germ growth. This behavior is
lower resolution. The solutions for each domain have beesimilar to that found in models without the solute trapping
matched at each time step. The time step has been selecteffects. Forc,,<k*c* (St>1) the long-time asymptotic state
according to the stability criterion of the explicit finite dif- is the plane wave traveling with a constant velocity. For
ference scheme in the high resolution domain, and the actual,>k*c* (St<1) the long-time regime is diffusion domi-
step used in the calculations has been smaller than the abowated, and foc,=k*c* (St=1) the solidification rate tends
one by an order of magnitude. This numerical scheme hat zero asvV~ 142 The last case is characterized by a long-
been validated by comparison with the numerical solution ofived transient. The solute trapping effects become signifi-
the moving boundary problem with linear interfacial kinet- cant forc* equal or greater than the threshold concentration
ics, as given irf24]. The program has been run on the Sparkc}, . In this case the curvess=cg(c,) are no longer mono-
10 Sun computer. The running time, required to approach theonic.
long-time asymptotic states, varied from 5 to 50 h, for solu- For version A of the continuous growth modelcdt=c %,
tions with short-lived and the long-lived transients, respecand c.=k*c* (St=1) the long-time behavior of the inter-
tively. face velocity is given bV~ 144 rather than 1#3. For

The functionsV(t), calculated within the numerical solu- c*>cg, the curvescg=cg(c,) have one maximum at
tion of the original moving boundary problem for the specific ¢, =¢| o<<c*. If c,<Cg5q=kqC g (SE=Siy) the evolution of
cases given in Tables | and Il, are represented by the dash#lge germ is represented by the trajectory along the increasing
lines in Figs. 4 and 5. These curves explicitly demonstratdranch of the curves=cg(c ). The long-time attractors are
that the approximate solution, obtained in the framework ofagain waves, propagating with some constant velocity. Due
the mass balance integral method, reproduces with a reasote- the solute trapping effects these attractors are located not



54 SOLUTE TRAPPING EFFECTS IN THE PLANAR ISOTHERMA. .. 597

only in the region St1, but also in the interval §&St<1,  slow radial growth into an undercooled melt as givefli@].
forbidden for the kinetics models without solute trapping.It can be shown that for these problems

The duration of the transients increases wherSt, . As

long as St-St, the transients decay exponentially in time. e~(L/C)Le"/m*c*(1-Kk*). (54)
For St=St,, i.e., at the crossover between the diffusion-
limited and the kinetics-limited long-time regimes, the tran-
sients decay as tl/For ¢,.>Cgqo=KqC g (St<Siy) the long-
time regime is diffusion dominated. Sineg>k*c*, this
diffusion-controlled growth differs from that observed in the
models without solute trapping by a decredsstead of an

HereL is the latent heatC is the specific heat of the melt,
andn is the parameter, equal to 1/2 for the planar case, and
to unity for the spherical growth. For the dilute Al-Cu alloy,
L/C is about 300, Le-10 % ande<0.1 would require*=5
at. % Cu. On the other hand, in order to preserve the validity
increasg of the solid concentration at the interface during of the sharp mterche mOdeVKU.D) for the entire range of
germ growth. Furthermore, if the initial concentration in the C= W€ had to restrict th? anglyss o the substantially lower
values ofc*. Therefore in this range of parameters the re-

meltcy; is in the interval €5q,C, o), then the corresponding | fthe | h £ fusion i iti d I
trajectory on the Baker-Cahn diagram is nonmonoton €as€ Of the latent heat of fusion into melt is expected to play

ic: the initial increase ofs towards its maximal valuego 2" ImPortant role for the planar setup not only for large ve-

is followed by the subsequent decrease towdds* locities but even for the diffusion-limited growth.

For version B of the continuous growth model the curve FOF the spherically symmetric case Eg4) suggests that
cs=cq(c,) has a saddle point at =c*.. Whenc* is above the thermal effects would be reduced by two orders of mag-
C%r! the saddle point splits into the r%aximL(m CL=CLqy) Nitude (/Le). Within this context the solutions developed in
and the minimum (at € =C 0p>CLoy). When  OUr paper, which mimic the radial growth of a germ, might
c.<maxCscy,k* c*} the growth rate tgnds epronentiaIIy to be relevant when the curvature effects are small, while the
some const?ar'n valué;>0. These constant velocity traveling Interfacial kinetics still affects the solidification rate. Notice,

wave-type long-time asymptotic attractors are located on thi1at this interpretation is meaningful only for sufficiently
increasing branch ofg=cs(c,). If at the maximum of the small interface velocities, i.e., for processes that tend towards

latter curvecsg=k*c* then for c,=cg, the long-time the diffusion-limited long-time regime. Analysis of the radial
attractor is also the constant velocity traveling wave. How-9rowth for the large velocities faces, however, an unsolved
ever, in this case the deceleration of the interface follows 1/Problem associated with the generalization of the Gibbs-
law. Whencsg <k*c*, there are also constant velocity as- Thompson effect to the far-from-equilibrium conditidrg¥].
ymptotic attractors focsg<C,<k*c*. At c.=k*c* the Let us now consider the planar setup with some appropri-
growth rate tends to ze% ast¥, just as for the kinetics ate external heat sinks. In this case the solutions developed
models without the S(,)Iute trapping. For above are adequate, provided the latent heat released at the
c.>Mmaxcsoy,k*c*} the long-time regime is diffusion interface is rapidly conducted away. For a crystalline alloy
dominated. In this case for sufficiently large timesis al- ~ 9roWwing on a substrate this can be achieved, at least in prin-
ways smaller than its equilibrium value c* just like in the C|ple,. by removal of the latent heat into a.solld. Obwous!y,
models without the solute trapping effects. for this purpose one would have to determine the appropriate

Since the threshold concentration is a model-dependerP0ling strategy. In order to exemplify this approach let us
quantity, the alternative versions of the continuous growttonsider the diffusion-limited growth given by Eq49) and
model might yield different long-time asymptotic states for (20)- This solution can be matched with the solution of the
identical initial conditions. In particular, for StL Model A thermal Stefan problem in the solid, with the fixed boundary
might yield at long times the traveling wave propagating™aintained at some constant temperafCige{1]. (The latter
with a constant velocity, whereas Model B might yield in solution also yields the parabolic law for the interface ad-
this caseV~ 1413 vance. It can be shown that,, is related toT., by

Before concluding we would like to comment on the tran-
sient thermal effects disregarded in the above analysis. Rapid
soI|d|f!cat|on of alloys implies fas.t removql of the latent heatHere the subscript & stands for solid. For St0.5, the
of fusion. In general, part of this heat is absorbed by thqemperature differenc&, — T, is of the order 0.01 K. The
alloy itself, whereas the rest of it is removed by some exter- o

; : : constant temperature control applies only at long times,
nal heat sinks. According to Misbah, Muller-Krumbhaar, and, e 655 the transient regime requires a time-dependent cool-
Temkin [38] the growth into the undercooled melt can be

, ) ing strategy. As shown in Sec. VI for 80.5 the germ
treated as isothermal if emerges with the initial interface velocity of about 1.5 m/s.
Its velocity drops by a factor of 100, approaching the

e=(Ti=To)/(To—m*c,,—Ty)<1. (53)  diffusion-limited regime during the relaxation time of the

order of 10°® s. The cooling rates needed for transitions to

HereT,; is the interface temperature, afid is the tempera- the constant velocity attractors are higher. In order to main-
ture far from the interface. Let us first consider the release ofain the constant velocity solutions the temperature at the
the latent heat into the melt, by applying E&3) to two  fixed wall of the solid has to decrease exponentially in time.
prototypical problems with equilibrium conditions at the in- In the general case, in order to preserve the isothermal con-
terface. The first problem is addressing the planar growthditions in the melt for the transient growth one has to match
into undercooled melt. Its solution is obtained by combiningthe solution of the isothermal solidification problem in the
the similarity solution Eqs(19) and(20) with the same type liquid with the solution of the appropriate inverse thermal
solution for the temperature. The second problem considers @tefan problem in the solid. The mathematical correctness of

T..— T,=20%L/Cy)(D/D1s). (55)
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the latter problems with prescribed temperature and velocityhat the alternative versions of the continuous growth models
of the interface is well established and the numerical soluyield quite different results even for relatively small growth
tions of such problems are discussed4d]. rates. The problem of the nonisothermal growth of a solid
We realize that it would be rather difficult to maintain the germ, which is a natural extension of the present work, is
isothermal conditions in the melt. In spite of this, similar to now under study.
the Le=0 limit, explored in the studies of directional solidi-
fication, the results of the present paper represent a first step
and the reference point for a more comprehensive analysis of
rapid solidification into an undercooled melt. The solutions We express our gratitude to C. Caroli, B. Caroli, M.
developed in the paper serve as a sufficiently simple an@licksman, and J. W. Cahn for stimulating discussions and
accurate theoretical tool to inspect several important aspecencouragement at the early stage of this work. We appreciate
of the continuous growth models versus the models ignoringhe suggestions of B. Zaltzman concerning the numerical so-
the solute trapping effect. These solutions also demonstratation of the original moving boundary problem.
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