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Transient rapid solidification of dilute binary alloys is addressed in the frame of the continuous growth
model, accounting for solute trapping effects. We consider the planar isothermal growth from a melt of some
uniform initial composition. The initial solute concentration in the melt is assumed to be below its equilibrium
value. An approximate solution of this problem is developed using the mass balance integral method with the
boundary-layer-type profiles for solute concentration. This solution is validated by the numerical solution of
the original moving boundary problem. The influence of solute trapping effects on the main evolution char-
acteristics of the process is discussed. The transient regime and the long-time asymptotic states are investi-
gated. The physics of the process is clarified using the Baker-Cahn diagrams for a solute concentration at the
interface.@S1063-651X~96!01107-5#

PACS number~s!: 05.70.Fh, 81.15.Lm, 81.10.Aj

I. INTRODUCTION

Sharp interface models of solidification have been a sub-
ject of intensive research for several decades@1–25#. Such
models are stated in terms of the heat and mass transport in
the bulk and the boundary conditions at the free boundary,
i.e., at the solid-liquid interface. These conditions involve the
interfacial mass, momentum, and energy balance equations,
along with the response functions, which define the interface
temperature and composition. The fluid flow in the liquid
and the deformations in the solid are often neglected. Then
the interface momentum balance reduces to the mechanical
equilibrium incorporating the surface tension, while the long
range transport is governed by diffusion. The response func-
tions involve the equilibrium contribution, incorporating the
Gibbs-Thompson effect, and the nonequilibrium contribu-
tion, induced by the discontinuity of the chemical potentials
across a moving boundary. The nonequilibrium effects re-
flect the kinetics of the attachment of the atoms to a growing
solid.

For materials with rough solid-liquid interface~metals
and some organic materials! the thermally activated atomic
jumps are very fast. Therefore one can assume a local ther-
modynamic equilibrium at the interface~instantaneous at-
tachment kinetics!. This assumption is adequate for veloci-
ties that are typically smaller than 0.1–1 m/s@10#. For higher
crystal growth rates it is mandatory to account for the depar-
ture from equilibrium. Such conditions might occur in the
directional solidification with high pulling velocities, in
freezing from an undercooled melt, or at regrowth from
pulsed laser-induced melting. At very high growth rates the
width of the diffusional boundary layer becomes of the order
of the interface thickness. At this point the sharp interface

models break down. Such processes might be addressed
within the phase-field models@25–32#.

For pure substances the models of attachment kinetics via
thermally activated atomic jumps were proposed many years
ago @33,34#. The linearized version of such models predicts
interfacial undercooling to be proportional to the growth rate.
This result also follows from the approach based on the lin-
earized irreversible thermodynamics@10,11#.

For binary alloys the semimicroscopic models of attach-
ment kinetics have been considered in@12–20#. Each of
them defines a kinetic phase diagram, for which both the
liquidus and the solidus depend on the growth rate. As
pointed out by Baker and Cahn@6,7# the change of the free
energy per mole of solidified material has to be negative.
This thermodynamic constraint is obeyed by the models in
which the chemical potentials of each species decrease upon
incorporation into crystal@14–16#, as well as by the models
in which the chemical potential of the solvent atoms de-
creases during crystal growth, while that of the solute atoms
increases@12,13,17–20#. When the equilibrium partition co-
efficient k* is less than unity, the former models@14–16#
imply that the partition coefficientk(V) decreases with the
solidification rateV. On the other hand, for the latter models
@12,13,17–20# k(V) is an increasing function ofV, so that
the solid composition at the interface might exceed its equi-
librium value. The increase of the partition coefficient with
the solidification rate is termed ‘‘solute trapping.’’ Existence
of this phenomenon is supported by substantial experimental
evidence@6,13,20#. Following Refs.@18,19# we refer to the
kinetic models of solute trapping in materials with a rough
solid-liquid interface as some particular versions of the con-
tinuous growth model.

Analytical and numerical solutions of tractable problems
of crystal growth provide a theoretical framework to study
the interfacial kinetics effects. One of the key problems of
this sort is the planar growth of a solid germ. It mimics the
spherical growth of a solid particle when the curvature ef-
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fects are small. A pure substance growth of a solid germ
from an undercooled melt has been addressed within the
sharp interface models with the linear attachment kinetics.
Long-time asymptotic solutions to this problem have been
given in @21–25#. For small undercooling levels these long-
time solutions exhibit the diffusion-limited growthV;t21/2

~here t is time!. For large undercooling~hypercooling! the
growth is controlled by the interfacial kinetics. In this case
for t→` the temperature profile in the melt is described by a
plane wave traveling with a constant velocity. For this solu-
tion the width of the boundary layer is equal toDT/V. ~Here
DT is the thermal diffusivity of the melt.! The above results
are in agreement with the numerical solution for the spheri-
cal growth@5#. At the critical level of undercooling, i.e., at
the crossover between the diffusion-controlled and the
kinetics-limited growth, the sharp interface model yields
V;t21/3 for t→`. Analysis of this problem beyond the long-
time asymptotics has been recently presented in@24#. It has
been shown that for the critical undercooling the long-time
asymptotic state is established via a long-lived transient. No-
tice that the phase-field models of the planar growth@25,26#
admit for the critical undercooling eitherV;t21/3 or
V5const asymptotic states. Which one of them is selected
depends on the ratio of the thermal diffusivity to that of the
order parameter field.

Among the response functions, which determine the
boundary conditions at the interface of a solidifying binary
alloy, the growth rate is most accessible to experimental con-
trol. Due to this reason the solute trapping effects have been
studied so far mainly in the context of directional solidifica-
tion, where the constant pulling velocity might be fixed by
the externally imposed heat fluxes. This velocity, along with
the solute concentration far from the interface, determine the
temperature and the composition at the phase-change front.
Stability of the constant velocity solutions has been ad-
dressed first within the frozen temperature approximation
@35#. In this approach the Lewis number Le, defined as the
ratio of the mass diffusivityD to the thermal diffusivityDT ,
is assumed to be equal to zero. More recently it has been
shown that the fraction of latent heat, released at the inter-
face due to the velocity perturbations, might significantly
affect the dynamics of the phase-change front even if the
Lewis number is very small@36,37#.

Similar to the growth of pure materials, discussed above,
the solidification of binary alloys into an undercooled melt
offers another way to inspect the interfacial kinetics.~Typi-
cally, for diluted binary alloys large interface velocities can
be reached already for undercoolings of only a few degrees.!
For this setup the transient growth is controlled by the tem-
perature and the composition in the liquid far from the
phase-change front. In general, growth into an undercooled
melt involves redistribution of both the impurities and the
heat, liberated at the solid-liquid interface. Analysis of such
problems is very complicated. In fact, only a few solutions
are known even when the local equilibrium at the interface is
assumed@10#. For out-of-equilibrium conditions at the inter-
face it is natural to assume, as the first step, the isothermal
conditions in the melt. This approximation, which implies
Le50, is analogous to the frozen temperature assumption
used in the studies of the directional solidification. Obvi-
ously, this condition might be violated for sufficiently high

velocities, or for small solute concentrations@10#. For such
situations the isothermal approximation for the melt might
still be adequate if the heat liberated at the interface is rap-
idly conducted away into some appropriate sink@13,38#. We
will return to this issue in the last section of the paper.

For the binary alloys the planar isothermal growth of a
solid germ has been addressed in@15# by ignoring the solute
trapping effects and diffusion in the solid. It has been as-
sumed that the initial solute concentration in the melt is be-
low its equilibrium value. The initial thickness of the solid
germ has been neglected. An approximate solution of this
problem has been developed using the mass balance integral
method with a linear concentration profile in the boundary
layer. In spite of the highly nonlinear nature of the kinetic
model used in@15#, the long-time asymptotics of the above
solution is similar to that found for the pure substance. In
particular,V;t21/3 has been obtained at the crossover be-
tween the kinetics-controlled and the diffusion-dominated re-
gimes.

The present paper attempts to extend the aforementioned
works for a pure substance@23,24# and for the binary alloys
@15#. We address the planar isothermal growth of a solid
germ accounting for the solute trapping effects. This problem
is analyzed in the frame of the continuous growth models
both with and without the solute drag effects@12,18,19#. Fol-
lowing Refs.@15,23,24# the initial thickness of the germ is
assumed to be negligibly small. The diffusion in the solid is
disregarded, and the initial solute concentration in the melt is
assumed to be below its equilibrium value.

A sufficiently simple approximate solution describing the
germ growth is developed. It is based on the mass balance
integral method with the boundary layer-type melt concen-
tration profiles. The results are in agreement with the nu-
merical solution of the original moving boundary problem.
We analyze the initial, the transient, and the long-time stages
of the process. It is shown that the interface velocity is
monotonically decreasing in time and the solution evolves
towards the diffusion-limited, or the kinetics-limited asymp-
totic attractors. The emerging physical picture is clarified
using the Baker-Cahn diagram@7#. Evolution of the germ
generates on this diagram a trajectory, reflecting the initial
and boundary conditions, as well as the specifics of the ki-
netics model. For each of the kinetic models the correspond-
ing trajectory is along the curve that defines the solid com-
position versus the melt composition at the interface. We
show that when the solid composition is a monotonically
increasing function of the melt composition at the interface,
the long-time asymptotics is similar to that of Ref.@15#.
However, for each version of the continuous growth model
there exists some threshold equilibrium liquid composition at
the interface, above which the corresponding curves on the
Baker-Cahn diagram are no longer monotonic. In this case
the long-time asymptotic states differ from those obtained
neglecting the solute trapping effects. We also demonstrate
that the same initial conditions might yield rather different
long-time asymptotic attractors for two alternative versions
of the continuous growth model. It is shown that the long-
lived transients are present at the crossover from the
diffusion-limited to the kinetics-controlled growth both for
the monotonic, as well as for the nonmonotonic trajectories.
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II. CONTINUOUS GROWTH SOLUTE TRAPPING MODEL

Following Refs.@18,19# we begin the analysis by summa-
rizing the main results of the continuous growth solute trap-
ping model. It describes the attachment kinetics for solidifi-
cation of dilute binary alloys with a rough interface. For such
alloys the equilibrium phase diagram is given by

T5T02m* c* ~T!, cS*5k* c* , ~1!

whereT is the temperature,T0 is the melting point of the
pure solvent, andc* (T) and c S* (T) are, respectively, the
equilibrium molar concentrations of solute in the liquid ad-
jacent to the interface, and that in the solid. It is assumed that
the equilibrium partition coefficientk* and the slope of the
liquidus m* are temperature independent. We also assume
thatm*.0. If the interface is curved the latter diagram has to
be modified by the Gibbs-Thompson effect. The out-of-
equilibrium values of the liquid and the solid concentrations
at the interface are denoted bycL andcS5kcL , respectively.
In the continuous growth solute trapping model for dilute
binary alloyscS and cL are related by the nonequilibrium
partition coefficientk(V) given by

k~V!5
k*1V/vD
11V/vD

. ~2!

HereVD is the characteristic velocity scale of the solute trap-
ping effects. Thusk(V) varies fromk* at V50, to k51 as
V→`, and atV5vD , k5kD51/2(11k* ). The value ofvD
is usually estimated as the ratio of the diffusivity in the liquid
D to the interface width, which is of the order of a few
angstroms. For metallic alloysvD is typically about 5 m/s.
Smith and Aziz@20# have pointed out that such estimates
might be insufficient: correlations betweenvD andk* have
been observed, and the values ofvD about 36 m/s–38 m/s
have been reported for the Al-Sn and Al-In alloys. As em-
phasized in Ref.@20#, Eq. ~2! fits the experimental data sur-
prisingly well even at velocities for which one might ques-
tion the validity of the sharp interface models.

The continuous growth model defines also the slope of the
kinetic liquidus as a function of the solidification rate. In the
spirit of the semimicroscopic model for a pure substance
@33,34# it is postulated that the velocity of the solid-liquid
interfaceV might be expressed as

V~T,cL ,cS!5v0$12exp@DGeff~T,cL ,cS!/RT#%. ~3!

HereR is the universal gas constant,v0 is some characteris-
tic velocity ~of the order of sound velocity for metallic
melts!, andDGeff is the solidification driving force.

One of the versions of the continuous growth model
@12,13,18#, referred to in the present paper as Model A, as-
sumes thatDGeff is equal to the change of free energy per
mole of solidified materialDGDF

DGeff5DGDF5cSDmB1~12cS!DmA , ~4!

whereDm(A,B) denote the difference between the chemical
potentials of solid and liquid for solvent (A) and solute (B),
respectively. For diluted alloys at some given temperatureT

DmB /RT5 ln~k/k* !, ~5a!

DmA /RT5 ln@~12kcL!~12c* !/~12k* c* !~12cL!#

'cL~12k!2c* ~12k* !. ~5b!

Consequently,

DGDF /RT'cL@12k1k ln~k/k* !#2c* ~12k* !. ~6!

Combining Eqs.~3! and ~6! for ~DGDF/RT)!1 one obtains
the following expression forcL for Model A:

cL5
c* ~12k* !2~V/v0!
12k1k ln~k/k* !

. ~7!

Equations~1!, ~2!, and~7! define the kinetic-phase diagram,
i.e., the temperature of a planar interface and the solute con-
centrations in the regions of the solid and liquid adjacent to
the phase-change front.

Aziz and Kaplan@18# presented a somewhat different ver-
sion of the continuous growth model. They allowed reduc-
tion of the free energy, driving the interface motion, by dis-
sipating some of it in the solute-solvent redistribution across
the interface~solute drag effect!. In this model, referred to as
Model B, the crystallization free energy is

DGeff5cLDmB1~12cL!DmA . ~8!

The change of the molar free energy upon solidification,
DGDF splits into the sum of the crystallization free energy,
DGeff and the so called ‘‘solute drag’’ free energyDGD

DGDF5DGeff1DGD , ~9!

whereDGD is given by

DGD5~cL2cS!~DmA2DmB!. ~10!

From Eqs.~5!, ~6!, and~9! it follows that

cL5
c* ~12k* !2~V/v0!
12k1 ln~k/k* !

. ~11!

The slope of the kinetic liquidus is obtained by combining
Eqs.~1! and ~11!.

III. ISOTHERMAL SOLIDIFICATION:
THE BAKER-CAHN DIAGRAM FOR CONTINUOUS

GROWTH SOLUTE TRAPPING MODELS

According to Baker and Cahn@7# for the physically al-
lowed solidification processes the change of the molar free
energy has to be negative. Therefore for an isothermal
growth possible solid compositionscS that can form from a
melt of varying interfacial composition 0,cL,c* are repre-
sented by an area of thecS-cL plane, enclosed by the curve
DGDF50. In the present paper this thermodynamically al-
lowed domain is referred to as the Baker-Cahn diagram. Ac-
cording to Eq.~6! its boundarycS85cS8(cL8 ) is given by

cL85
c* ~12k* !

12k1k ln~k/k* !
, cS85kcL8 . ~12!
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Thermodynamics does not restrictk to be greater thank* .
Thus, in Eqs.~12!, k is just a parameter in the range@0, `!.
Consequently,cS8 is a double-valued function ofcL8 in the
interval c* (1–k* )<cL8 ,c* .

The functioncS85cS8(cL8 ) is essentially nonmonotonic. It
starts from zero atcL8 50 with k5`. This curve is growing
with a continuously decreasing slope and gradually reaches
its maximum atk51. From then on this function decreases
and at cL8 5c* it approaches the equilibrium value
cS*5k* c* . The functioncS85cS8(cL8 ) reaches zero again at
cL8 5c* (12k* ).

On the Baker-Cahn diagram the kinetic models with
k(V),k* are represented by curves located below the
straight linecS5k* cL . On the other hand, the models ac-
counting for the solute trapping are given by curves in the
domaink*,k,1. Since the sharp interface models are ill
defined for V>vD , we restrict the analysis to the
k*<k,kD . @HerekD5k(VD).# For this region Eqs.~7! and
~11! imply that c* is bounded from above bycmax

*

5vD/V0(12k* ). At c*5cmax
* , cL50 whenV5Vmax5VD .

Let us consider now the functioncS5cS(cL) for the con-
tinuous growth models. As follows from Eqs.~7! and~11! cL
is a monotonically decreasing function of the solidification
rateV: cL50 atV5v0c* ~1–k* ! and it tends to its equilib-
rium value c* in the limit V2.0. SincedcL/dV,0, the
sign ofdcS/dcL is determined by that ofdcS/dV. For Model
A one obtains

dcS
dV

5
cS

12k1k ln~k/k* ! F ~12k!2

k~V1vD!
2

1

cLv0
G . ~13!

According to Eq.~13! there are the following three possibili-
ties: ~a! dcS/dcL.0 for 0<cL<c* , when
c*,k* vD/v0(1–k* !2. ~b! dcS/dcL.0 for 0<cL,c* , and
dcS/dcL50 at cL5c* , if c*5k*VD/V0(1–k* !2. ~c!
cS5cS(cL! is nonmonotonic and has one maximum at
cL5cQ,c* , if c*.k*VD/V0(12k* !2. At this maximum
the solid compositioncS is above its equilibrium valuecS

*

5c* k* .
For Model B Eq.~11! yields

dcS
dV

5
cS

12k1 ln~k/k* ! F ~12k!ln~k/k* !

k~V1vD!
2

1

cLv0
G . ~14!

As follows from Eq. ~14! dcS/dcL.0 when cL→0, or
cL→c* . Hence for Model B the functioncS5cS(cL) is ei-
ther monotonically increasing for 0<cL<c* , or has an equal
number of maxima and minima~with possible saddle points!
in the open interval 0,cL,c* . These extrema are reached at
the concentrationscL5cLQ defined by

cLQ5k~V1vD!/v0@~12k!ln~k/k* !#. ~15!

Equation~15! has no real roots forc* below some threshold
equilibrium concentrationc cr* andcS5cS(cL! is a monotoni-
cally increasing function at the interval 0<cL<c* . ~The
value ofccr

* can be found numerically!. At c*5ccr
* there is a

saddle point at some value ofcL in the open interval~0,c* !.
For c*.ccr

* the functioncS5cS(cL) is nonmonotonic. The

numerical studies performed for several metallic alloys have
shown that forc*.ccr

* there exist one pair of roots of Eq.
~15! at cL5cLQ1 andcL5cLQ2.cLQ1, corresponding to the
the maximum and the minimum, respectively.

In order to illustrate the above considerations we present
the results for Al-Cu alloy atc*50.5 at. % Cu. Figure 1
shows the Baker-Cahn diagram. The curvecS5cS(cL), cor-
responding to Model A, has a maximum, whereas that of
Model B is increasing monotonically at the entire interval
0<cL<c* . Figure 2 demonstrates the interface velocity at
the extremum pointsVQ as a function ofc* . For Model A

FIG. 1. Baker-Cahn diagram for Al-Cu alloy atc*50.5 at. %
Cu. ~1! The curveDGDF50, defined by Eq.~12!; ~2! cS5cS(cL)
for Model A; ~3! cS5cS(cL) for Model B.

FIG. 2. Interface velocity at the extremum points ofcS5cS(cL),
VQ , as a function of the equilibrium melt compositionc* . ~Al-Cu
alloy!. Solid line—Model A, dotted line—Model B.
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the solidification rate at the maximal solid composition is
increasing withc* . For Model B the threshold concentration
ccr
* is about 0.54 at. % Cu. Atc*.ccr

* the separation be-
tween the maximum and the minimum ofcS5cS(cL) in-
creases withc* : the minimum point tends to the equilib-
rium, whereas the maximum point moves in the opposite
direction. Figure 3 shows the solid concentration at the ex-
tremum points ofcS5cS(cL), as a function ofc* . The maxi-
mal concentration ofcS , as given by Model A, is greater
than that defined by Model B. Similar results have been ob-
tained for several other metallic alloys.

The above considerations enable one to get a better quali-
tative understanding of the planar isothermal solidification of
dilute binary alloys. Indeed, the composition at the interface
at any instant of time might be represented by a point on the
curvecS5cS(cL), corresponding to some particular model of
interfacial kinetics. The advance of the freezing front gener-
ates, hereby, a trajectory along this curve. It depends on the
boundary and the initial conditions, as well as on the specif-
ics of the kinetics model. In the following sections we will
thoroughly discuss the trajectories describing the isothermal
growth of a solid germ, and the corresponding long-time
asymptotic attractors.

In the present paper it is assumed that the solute concen-
tration at infinity is maintained at a constant valuec5c` .
Neglecting the diffusion in the solid, the governing equations
for the planar isothermal solidification are stated as follows:

]c/]t5D]2c/]x2, x.R~ t !, ~16!

2D~]c/]x!ux5R~ t !5cL~12k!V, V5dR/dt, ~17!

cux5R~ t !5cL , cux5`5c` . ~18!

Here c is the solute concentration in the melt,R(t) is the
interface position at timet, and x is the spatial coordinate
along the direction normal to the solid-liquid interface. The
melt composition at the interface is defined by a particular
kinetic model. For the continuous growth models it is given
by Eq. ~7! for Model A, or by Eq.~11! for Model B, respec-
tively. Obviously, Eqs.~16!–~18! have to be supplemented
by the initial conditions.

Two particular solutions of the above equations are of
special interest. The first one@1,2# assumes a local equilib-
rium at the interfacecL5c* , k5k* and describes the
diffusion-controlled growth

c5c`1~c*2c`!
erfc~Vx/R!

erfc V
, R~ t !52VADt.

~19!

HereV is a root of the transcendental equation

ApV exp~V2!erfc V5St, St5~c*2c`!/c* ~12k* !.
~20!

Equation~20! admits finite solutions, when the diffusional
Stefan number St is smaller than unity (c`.c* k* ). For
St→1, the growth rate diverges, sinceV→`.

Another well known solution@4,7# describes the solidifi-
cation with a constant interface velocityR5Vt. The concen-
tration profile in the melt is then given by

c5c`1~cL2c`!exp@2~V/D !~x2R~ t !#. ~21!

Consistency of this profile with the interfacial mass balance
implies

cS5k~V!cL~V!5c` . ~22!

Equation~22! determines implicitly the solidification rateV.
The constant velocity solution represents some point on

the curvecS5cS(cL). As long as this curve is monotonic for
0<cL<c* , the maximal value of the solid concentration
max$kcL% is equal toc* k* , and the plane wave-type solu-
tions are allowed in the range 0,c`,c* k* . In this case for
each value ofc` Eq. ~22! has only one real root.

For nonmonotonic curvescS5cS(cL) the constant veloc-
ity solutions are permitted for 0,c`<max$kcL%, and Eq.
~22! has multiple roots. For such curves max$kcL%, depends
on the nature of the kinetics model: max$kcL% is equal to
kQcLQ for Model A, and to the largest amongkQ1cLQ1 and
k* c* for Model B. As pointed out in@7# the traveling wave-
type solutions might be diffusionally unstable forc`.k* c* .
The stability of the constant velocity solutions with respect
to the planar perturbations has been reconsidered recently
@39#. The preliminary analysis indicates that the Baker-Cahn
instability, mentioned above, occurs only for those roots of
Eq. ~22!, which are located on the decreasing branch of the
cS5cS(cL) curve. A comprehensive analysis of this issue
will be presented in a separate paper.

IV. ISOTHERMAL GROWTH OF A SOLID GERM:
MASS BALANCE INTEGRAL METHOD

Let us consider now the planar isothermal growth of a
solid germ from a melt with the uniform initial concentration

FIG. 3. Solid composition at the extremum points of
cS5cS(cL), cSQ as a function of the equilibrium melt composition
c* ~Al-Cu alloy!. Solid line 1—Model A, solid line 2—Model B,
dotted line—reference linecS*5k* c* .
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c`,c* . This problem is described by Eqs.~16!–~18! with
the initial condition

c~x,t50!5c` . ~23!

Since the growth is symmetric with respect to the nucleation
planex50 we restrict the analysis to the regionR<x,`.
The initial interface velocityVi5Vu t50 is defined implicitly
by cL(Vi)5c` .

An approximate solution of this problem is developed
along the lines of our previous work@24# devoted to a pure
substance. In this approach, termed ‘‘the mass balance inte-
gral method,’’ the diffusion equation Eq.~16! is replaced by
its zero order moment. Furthermore, one has to assume the
spatial dependence of the concentration field in the melt in
order to reduce the original problem to the ordinary differ-
ential equation. The physics behind the selection of the con-
centration profile determines the adequacy and the accuracy
of the resulting solution.

Integrating Eq.~16! from x5R to infinity and using Eqs.
~17!–~19! one obtains

d

dt ER
`

~c2c`!dx5V~c`2kcL!. ~24!

Following Ref. @24# we assume that forc`.max$kcL%, the
concentration in the melt can be approximated by the
diffusion-type profile

c5c`1~cL2c`!
erfc„V$11@x2R~ t !#/L~ t !%…

erfc V
. ~25!

HereV is a constant parameter, defined as the real root of
Eq. ~20!. For c`<max$kcL% the melt concentration is as-
sumed to be represented by the kinetics-type profile

c5c`1~cL2c`!exp$2@x2R~ t !#/L~ t !%. ~26!

The assumed profiles involve two time-dependent length
scales: the width of the germ, equal to 2R, and the thick-
ness of the diffusion layer in the melt, measured byL(t).
The above profiles satisfy the initial condition att50 and are
reducible to the solutions given by Eqs.~19!–~22! when
L5R, or L5D/V for the diffusion-limited, or the kinetics-
limited growth, respectively.

Inserting Eqs.~25! and ~26! into the interfacial mass bal-
ance Eq.~17! one obtains the following relation between the
thickness of the concentration boundary layer and the veloc-
ity of the interface:

L~ t !5 H2V2~D/V!c* ~12k* !~cL2c`!/cL~12k!~c*2c`!, c`.max$kcL%
~D/V!~cL2c`!/~12k!cL , c`<max$kcL%

. ~27!

Substituting Eqs.~25! and~26! into the overall mass balance Eq.~24! yields the following equation for the interface velocity:

dV/dt52V3~c`2kcL!/U@G2V~dG/dV!#. ~28!

Here

U5 H2V2Dc* ~12k* !~c`2c* k* !/~c*2c`!2 c`.max$kcL%
D, c`<max$kcL%

~29!

and

G5~cL2c`!2/~12k!cL . ~30!

As follows from Eq. ~29!, for k* c*,c`<max$kcL%, one
could use either of the profiles~25! or ~26!, sinceV(t) would
be changed only by a constant factor, not affecting the quali-
tative behavior of the solidification rate.

To summarize: the moving boundary problem, stated by
Eqs.~16!–~18!, has been reduced to a single ordinary differ-
ential equation Eq.~28!. The initial velocity Vi has been
defined implicitly bycL(Vi)5c` , with cL(V,c* ) given by
Eq. ~7!, or Eq. ~11!. Due to the intrinsic nonlinearity of the
above kinetic models Eq.~28! has to be integrated numeri-
cally. Yet, this is much less time consuming than the full
numerical solution of the original moving boundary problem.
The accuracy of the approximate solution is discussed in
Sec. VI.

We now prove that in the range of velocities, 0,V<vD ,
the growth rate given by Eq.~28! is monotonically decreas-

ing in time, providedc`>kcL during the entire process. In-
deed, Eq.~30! yields

dG

dV
5

cL2c`

cL~12k! F22
cL2c`

cL~12k!
@12~dcS /dcL!#G dcLdV

.

~31!

It is straightforward to show that for both Model A as well as
Model B,

0<12dcS /dcL<~12k!$11@v0c* ~12k* !/~V1vD!#%.
~32!

As stated in Sec. III in the region 0,k,kD of the Baker-
Cahn diagram, where the sharp interface models are well
defined, the parametersc* , k* , v0, andvD are restricted by
c* (12k* )v0<vD . Therefore

0<12dcS /dcL<2~12k!,2. ~33!
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Using this inequality in Eq.~31! and taking into account that
(dcL/dV),0, and c`>kcL , it is straightforward to show
thatdG/dV,0. It then follows from Eqs.~28! and~29! that

dV/dt,0, for 0,k,kD , and c`>kcL .
~34!

Now let us show that the conditionc`>kcL is satisfied
for the germ growth, so that the interface acceleration is
negative uniformly in time. Obviously, this condition holds
for c`<max$kcL%. In this case Eq.~28! implies that
dV/dt→0 whenV→0. If c`<max$kcL%, then the interface
decelerates at the onset of the solidification process, since
c`.k(Vi)cL(Vi). According to Eq.~34! the deceleration of
the interface continues as long askcL,c` . The acceleration
dV/dt can change its sign only when the solid composition,
at the interfacecS5kcL will reach for the first time the value
c` . However, as shown below, for growth with a decelerat-
ing interface the statekcL5c` serves as the asymptotic at-
tractor whent→`. Thus, in this case toodV/dt is negative
during the entire solidification process, and the velocity tends
to some constant valueVf for t→`.

WhencS5cS(cL) is a monotonically increasing function
the asymptotic stateV5Vf is defined uniquely by Eq.~22!,
providedc`,k* c* . The nature of the long-time asymptotic
attractor forc`5k* c* is discussed in the following section.
For nonmonotonic curvescS5cS(cL) the equationkcL5c`

admits multiple roots. The infinite time of deceleration from
V5Vi to the asymptotic stateV5Vf singles out as the long-
time attractor the root with the largest value ofVf . This root
is located either at the increasing branch of the curve
cS5cS(cL), or at its maximum.

V. ASYMPTOTIC SOLUTIONS

Let us first consider the short-time asymptotics. Expand-
ing the interfacial solid and liquid concentrations near their
initial values, up to the first order inV2Vi , one obtains

dV/dt'a2/2~V2Vi !,

a25Vi
2c`

2@12k~Vi !#
2/U$@dcL /dV#V5Vi%

2. ~35!

Integrating this equation yields

V'Vi2uauAt. ~36!

SinceV(t) is decreasing in time the minus sign is selected in
Eq. ~36! According to Eq.~27!, at short times the width of
the diffusion layerL(t) increases asAt, whereas the size of
the germR(t) is growing ast. Notice that the short-time
asymptotics ofL(t) andR(t) is similar to that found for a
pure substance@24#.

Let us now consider in detail the long-time asymptotic
solutions of Eq.~28!. We begin with the asymptotic states,
for which the interface velocity tends to zero. Expanding the
liquid and the solid concentrations at the interface near their
equilibrium values one obtains

cL5c*1a1V1a2V
210~V3!, ~37a!

cS5k* c*1b1V1b2V
210~V3!, ~37b!

where

a15~dcL /dV!V50,0, a25
1
2 ~d2cL /dV

2!V50 , ~38!

b15~dcS /dV!V50 , b25
1
2 ~d2cS /dV

2!V50 . ~39!

Consequently,

dV

dt
52

V3c* ~12k* !~c`2k* c*2b1V2b2V
2!

U~c*2c`!2@11O~V2!#
. ~40!

The solutions of Eq.~40! can be classified as follows:~1!
c`.k* c* . ~St,1.! In this case the long-time solution is
diffusion-dominated and the interface velocity decays in time
as

V~ t !5
VAD
At F11

b1VAD
~c`2k* c* !At

1O~ t21!G . ~41!

Consequently, bothL(t) andR(t) increase in time asAt. ~2!
c`5k* c* . ~St51.! As follows from Eq. ~40! b1 is either
negative, or equal to zero. In the latter case the coefficientb2
has to be negative. The solution of Eq.~40! is then given by

V~ t !5$@2Dc* ~12k* !#/3b1t%
1/3@11O~ t21/3!#, b1,0,

~42!

V~ t !5$@2Dc* ~12k* !#/4b2t%
1/4@11O~ t21/4!#,

b150, b2,0. ~43!

The ratio of the width of the diffusional boundary layer to
the germ thicknessL(t)/R(t) decreases as 1/t1/3 for b1,0,
and as 1/At for b150.

Equations~41!–~43! demonstrate that decay of the tran-
sients is correlated with the asymptotic solidification rates.
The maximal duration of transient corresponds toV;t21/4.

Let us now consider the approach to the long-time asymp-
totic attractors with the constant velocity of the interface
Vf.0. These attractors are defined by Eqs.~21! and ~22!
with kf5k(Vf), cSf5c` , andcL f5c`/kf . In the vicinity of
cL f andcSf one can expandcS andcL in power series:

cL5cL f1a1~V2Vf !1a2~V2Vf !
21••• , ~44!

cS5c`1b1~V2Vf !1b2~V2Vf !
21••• . ~45!

Here

a15~dcL /dV!V5Vf
,0, a25

1
2 ~d2cL /dV

2!V5Vf
,

~46!

b15~dcS /dV!V5Vf
, b25

1
2 ~d2cS /dV

2!V5Vf
. ~47!

For b1,0, Eqs.~28!–~30! yield in the lowest order

dV/dt'b1V
3~V2Vf !/D@cL f~12kf !2Vf~a11b1!#.

~48!

SincedcL/dV,0, the coefficienta1 is always negative. The
solution of Eq.~48! reads

V'Vf1A exp~2t/t r !. ~49!
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HereA is some constant andt r is the relaxation time, given
by

t r5D@cL f~12kf !2Vf~a11b1!#/ub1uVf
3. ~50!

If b150, thenb2,0, and the constant velocity asymptotic
attractor is represented by the maximum of the curve
cS5cS(cL). In this case instead of the exponential decay,
V(t) decreases as 1/t

V'Vf1~ t r8/t !, ~51!

where

t r85D@cL f~12kf !2Vfa1#/ub2uVf
3. ~52!

VI. NUMERICAL RESULTS

The approximate solution developed within the mass bal-
ance integral method has been applied to the planar isother-
mal growth of a solid germ in a dilute Al-Cu alloy. Physical
constants for this alloy have been adopted from Ref.@37#.
The melting point of pure Al is 933 K. The equilibrium
phase diagram is defined byk*50.14,m*56.07 K/at. % Cu.
The kinetic parameters are given byvD54.9 m/s,v051000
m/s, andD54.931029 m2/s. The equilibrium melt concen-
tration at the interface,c*50.5 at. % Cu, has been selected.
For this value ofc* the versionA of the continuous growth
model yields a nonmonotonic curvecS5cS(cL). Its maxi-
mum, cSQ50.102 at. % Cu, is located atcLQ50.353 at. %
Cu. On the other hand, for the above value ofc* the curve
cS5cS(cL), corresponding to the version B of the continuous
growth model, is monotonically increasing from zero to
k* c* . The curves corresponding to the above models are
depicted in Fig. 1.

For version A of the continuous growth model three cases
have been considered. They are presented in Table I and in
Fig. 4. The first case corresponds to the initial melt compo-
sition cLi5c` that yields fort→` the constant velocity as-
ymptotic attractor, located on the growing branch of the
curve cS5cS(cL). This asymptotic attractor exists at St
50.94, i.e., below the critical value St51, that separates the
kinetics-limited growth from the diffusion-limited regime in
the models without the solute trapping effects. In this case
the transient is short lived, corresponding to the exponential
relaxation to the asymptotic attractor. The second case with
St50.92 is at the crossover between the kinetics-limited and
the diffusion-limited long-time asymptotic states. It corre-
sponds to the trajectory, which tends to the maximum of
cS5cS(cL) as t→`. The solution for this case involves the
long-lived transient that tends asymptotically to the constant
velocity attractor. Finally, the third case with St50.5 de-
scribes evolution towards the diffusion-controlled growth.

This case too demonstrates a typical solute trapping effect:
the solute concentration in the solid is approaching its equi-
librium value from abovewhen the solidification process
evolves towards the diffusion-limited regime. The growth
velocity drops by two orders of magnitude from its initial
value during the time interval of the order 1026 s.

The transient solidification has also been inspected for
Model B. As mentioned above forc*50.5 this model does
not exhibit the solute trapping effects: the kinetics-limited
growth at long times is allowed only for St.1, whereas the
diffusion-controlled growth at long times corresponds to
St,1. The input-output data for two representative cases St
51.02 and St50.75 are given in Table II and the velocity
relaxation curves are depicted in Fig. 5. For St51.02 the
initial velocity is the same as for the case St50.94 for Model
A. As in Model A there is exponential relaxation of the ve-
locity to its asymptotic valueVf50.320vD . It is lower than
0.344vD , corresponding to Model A. For the second case,
St50.75, the initial velocity is the same as that for the St
50.5 case of Model A. The relaxation to the diffusional re-
gime at long times is accompanied now by a monotonic in-
crease of the solute concentration in the solid.

In order to validate the approximate solution, derived us-
ing the mass balance method, we have developed the nu-
merical solution of the original moving boundary problem as
stated by Eqs.~16!–~18!. The explicit finite difference
scheme with the fixed grid has been adopted for this purpose.
It is based on the algorithm originally designed for the clas-

FIG. 4. Dimensionless velocity,V/vD , as a function of dimen-
sionless time,t5tv D

2 /D, for Model A. Al-Cu alloy at c*50.5
at. % Cu. Solid lines—the approximate solution, Eqs.~23!, ~28!–
~30!. Dashed lines—the numerical solution of the original moving
boundary problem, Eqs.~16!–~18!, ~23!.

TABLE I. Input-output data for Model A.

St
c`5cLi
at. % Cu

cSi
at. % Cu Vi /VD

cLf
at. % Cu

cSf
at. Cu % Vf /VD

0.94 0.095 0.046 0.659 0.264 0.095 0.344
0.92 0.102 0.049 0.645 0.348 0.102 0.216
0.50 0.285 0.098 0.314 0.500 0.070 0

TABLE II. Input-output data for Model B.

St
c`5cLi
at. % Cu

cSi
at. % Cu Vi /VD

cLf
at. % Cu

cSf
at. Cu % Vf /VD

1.02 0.060 0.029 0.659 0.174 0.060 0.320
0.75 0.177 0.061 0.314 0.500 0.070 0

54 595SOLUTE TRAPPING EFFECTS IN THE PLANAR ISOTHERMAL . . .



sical Stefan problems with constant temperature or concen-
tration at the moving boundary@40#. This scheme uses the
Taylor series expansions which result in a polynomial fit for
forward interpolation of the concentration or temperature
fields at the nodal points, located in the vicinity of the inter-
face. This scheme successfully handles the nonlinearities of
the Stefan problem and yields accurate and stable solutions
with relatively low CPU time in a wide range of the Stefan
numbers. The latter numerical scheme has been extended in
order to incorporate the out-of-equilibrium conditions at the
interface. The concentration gradient at the interface has
been evaluated at each time step in order to calculate the
interface velocity via the kinetic liquidus equation. The spa-
tial domain has been divided into two subdomains, estimated
using the approximate solution of the problem. The inner
domain, located in the vicinity of the interface had a high
resolution grid, whereas the outer domain had a grid with a
lower resolution. The solutions for each domain have been
matched at each time step. The time step has been selected
according to the stability criterion of the explicit finite dif-
ference scheme in the high resolution domain, and the actual
step used in the calculations has been smaller than the above
one by an order of magnitude. This numerical scheme has
been validated by comparison with the numerical solution of
the moving boundary problem with linear interfacial kinet-
ics, as given in@24#. The program has been run on the Spark
10 Sun computer. The running time, required to approach the
long-time asymptotic states, varied from 5 to 50 h, for solu-
tions with short-lived and the long-lived transients, respec-
tively.

The functionsV(t), calculated within the numerical solu-
tion of the original moving boundary problem for the specific
cases given in Tables I and II, are represented by the dashed
lines in Figs. 4 and 5. These curves explicitly demonstrate
that the approximate solution, obtained in the framework of
the mass balance integral method, reproduces with a reason-

able accuracy the main features of the numerical solution of
the full problem.

VII. CONCLUDING REMARKS

In the present paper we studied the solute trapping effects
in transient isothermal solidification of the dilute binary al-
loys. The planar growth of a germ, nucleated in a melt at a
uniform concentration, below its equilibrium value, has been
considered. Assuming the boundary layer-type melt concen-
tration profiles and replacing the diffusion equation by its
zero order moment, the original moving boundary problem
has been reduced to an initial value problem for a single
ordinary differential equation for the interface velocity. Evo-
lution of the germ has been represented on the Baker-Cahn
diagram by trajectory along the curvecS5cS(cL), corre-
sponding to some specific kinetics model.

This approximate solution has been integrated numeri-
cally for the dilute Al-Cu alloy. The results are in agreement
with the numerical solution of the original moving boundary
problem.

Within the approximate solution the main evolution char-
acteristics of the germ growth are reduced to the width of the
solid germR(t) the thickness of the boundary layer in the
melt L(t) and the interfacial concentrations of the liquidcL
and the solidcS . These quantities are uniquely determined
by the solidification rateV(t) the kinetics model, the equi-
librium phase diagram„c* (T),k* …, and the initial concentra-
tion of the meltc` .

For both versions of the continuous growth model we
have shown that the growth rate of the germ is monotoni-
cally decreasing in time. Simultaneously the rejection of the
impurities from the solid raises the melt composition at the
interface. The time dependence of the solid compositioncS is
more complicated. It reflects the specifics of the interfacial
kinetics model and depends on the initial melt composition
c` as well as on its equilibrium compositionc* at some
prescribed temperature.

Whenc* is below some model-dependent threshold con-
centrationc cr* the curvescS5cS(cL) are monotonically in-
creasing, so that the solid concentration at the interfacecS is
increasing in the course of the germ growth. This behavior is
similar to that found in models without the solute trapping
effects. Forc`,k* c* ~St.1! the long-time asymptotic state
is the plane wave traveling with a constant velocity. For
c`.k* c* ~St,1! the long-time regime is diffusion domi-
nated, and forc`5k* c* ~St51! the solidification rate tends
to zero asV;1/t1/3. The last case is characterized by a long-
lived transient. The solute trapping effects become signifi-
cant forc* equal or greater than the threshold concentration
c cr* . In this case the curvescS5cS(cL) are no longer mono-
tonic.

For version A of the continuous growth model atc*5c cr*
and c`5k* c* ~St51! the long-time behavior of the inter-
face velocity is given byV;1/t1/4, rather than 1/t1/3. For
c*.c cr* the curves cS5cS(cL) have one maximum at
cL5cLQ,c* . If c`<cSQ5kQcLQ ~St>StQ! the evolution of
the germ is represented by the trajectory along the increasing
branch of the curvecS5cS(cL). The long-time attractors are
again waves, propagating with some constant velocity. Due
to the solute trapping effects these attractors are located not

FIG. 5. Dimensionless velocity,V/vD , as a function of dimen-
sionless time,t5tv D

2 /D, for Model B. Al-Cu alloy atc*50.5 at. %
Cu. Solid lines—the approximate solution, Eqs.~23!, ~28!–~30!.
Dashed lines—the numerical solution of the original moving
boundary problem, Eqs.~16!–~18!, ~23!.
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only in the region St.1, but also in the interval StQ,St,1,
forbidden for the kinetics models without solute trapping.
The duration of the transients increases when St→StQ . As
long as St.StQ the transients decay exponentially in time.
For St5StQ , i.e., at the crossover between the diffusion-
limited and the kinetics-limited long-time regimes, the tran-
sients decay as 1/t. For c`.cSQ5kQcLQ ~St,StQ! the long-
time regime is diffusion dominated. SincecS.k* c* , this
diffusion-controlled growth differs from that observed in the
models without solute trapping by a decrease~instead of an
increase! of the solid concentration at the interface during
germ growth. Furthermore, if the initial concentration in the
melt cLi is in the interval (cSQ,cLQ), then the corresponding
trajectory on the Baker-Cahn diagram is nonmonoton-
ic: the initial increase ofcS towards its maximal valuecSQ
is followed by the subsequent decrease towardsk* c* .

For version B of the continuous growth model the curve
cS5cS(cL) has a saddle point atc*5c cr* . Whenc* is above
c cr* , the saddle point splits into the maximum~at cL5cLQ1!
and the minimum ~at cL5cLQ2.cLQ1!. When
c`,max$cSQ1,k* c* % the growth rate tends exponentially to
some constant valueVf.0. These constant velocity traveling
wave-type long-time asymptotic attractors are located on the
increasing branch ofcS5cS(cL). If at the maximum of the
latter curvecSQ1>k* c* then for c`5cSQ1, the long-time
attractor is also the constant velocity traveling wave. How-
ever, in this case the deceleration of the interface follows 1/t
law. WhencSQ1,k* c* , there are also constant velocity as-
ymptotic attractors forcSQ1<c`,k* c* . At c`5k* c* the
growth rate tends to zero as 1/t1/3, just as for the kinetics
models without the solute trapping. For
c`.max$cSQ1,k* c* % the long-time regime is diffusion
dominated. In this case for sufficiently large timescS is al-
ways smaller than its equilibrium valuek* c* just like in the
models without the solute trapping effects.

Since the threshold concentration is a model-dependent
quantity, the alternative versions of the continuous growth
model might yield different long-time asymptotic states for
identical initial conditions. In particular, for St51 Model A
might yield at long times the traveling wave propagating
with a constant velocity, whereas Model B might yield in
this caseV;1/t1/3.

Before concluding we would like to comment on the tran-
sient thermal effects disregarded in the above analysis. Rapid
solidification of alloys implies fast removal of the latent heat
of fusion. In general, part of this heat is absorbed by the
alloy itself, whereas the rest of it is removed by some exter-
nal heat sinks. According to Misbah, Muller-Krumbhaar, and
Temkin @38# the growth into the undercooled melt can be
treated as isothermal if

«5~Ti2T`!/~T02m* c`2T`!!1. ~53!

HereTi is the interface temperature, andT` is the tempera-
ture far from the interface. Let us first consider the release of
the latent heat into the melt, by applying Eq.~53! to two
prototypical problems with equilibrium conditions at the in-
terface. The first problem is addressing the planar growth
into undercooled melt. Its solution is obtained by combining
the similarity solution Eqs.~19! and~20! with the same type
solution for the temperature. The second problem considers a

slow radial growth into an undercooled melt as given in@10#.
It can be shown that for these problems

«'~L/C!Len/m* c* ~12k* !. ~54!

HereL is the latent heat,C is the specific heat of the melt,
andn is the parameter, equal to 1/2 for the planar case, and
to unity for the spherical growth. For the dilute Al-Cu alloy,
L/C is about 300, Le'1024, and«<0.1 would requirec*>5
at. % Cu. On the other hand, in order to preserve the validity
of the sharp interface model (V,vD) for the entire range of
c` we had to restrict the analysis to the substantially lower
values ofc* . Therefore in this range of parameters the re-
lease of the latent heat of fusion into melt is expected to play
an important role for the planar setup not only for large ve-
locities but even for the diffusion-limited growth.

For the spherically symmetric case Eq.~54! suggests that
the thermal effects would be reduced by two orders of mag-
nitude (ALe). Within this context the solutions developed in
our paper, which mimic the radial growth of a germ, might
be relevant when the curvature effects are small, while the
interfacial kinetics still affects the solidification rate. Notice,
that this interpretation is meaningful only for sufficiently
small interface velocities, i.e., for processes that tend towards
the diffusion-limited long-time regime. Analysis of the radial
growth for the large velocities faces, however, an unsolved
problem associated with the generalization of the Gibbs-
Thompson effect to the far-from-equilibrium conditions@37#.

Let us now consider the planar setup with some appropri-
ate external heat sinks. In this case the solutions developed
above are adequate, provided the latent heat released at the
interface is rapidly conducted away. For a crystalline alloy
growing on a substrate this can be achieved, at least in prin-
ciple, by removal of the latent heat into a solid. Obviously,
for this purpose one would have to determine the appropriate
cooling strategy. In order to exemplify this approach let us
consider the diffusion-limited growth given by Eqs.~19! and
~20!. This solution can be matched with the solution of the
thermal Stefan problem in the solid, with the fixed boundary
maintained at some constant temperatureTw @1#. ~The latter
solution also yields the parabolic law for the interface ad-
vance!. It can be shown thatTw is related toT` by

T`2Tw52V2~L/Cs!~D/DTs!. ~55!

Here the subscript ‘‘s’’ stands for solid. For St50.5, the
temperature differenceT`2Tw is of the order 0.01 K. The
constant temperature control applies only at long times,
whereas the transient regime requires a time-dependent cool-
ing strategy. As shown in Sec. VI for St50.5 the germ
emerges with the initial interface velocity of about 1.5 m/s.
Its velocity drops by a factor of 100, approaching the
diffusion-limited regime during the relaxation time of the
order of 1026 s. The cooling rates needed for transitions to
the constant velocity attractors are higher. In order to main-
tain the constant velocity solutions the temperature at the
fixed wall of the solid has to decrease exponentially in time.
In the general case, in order to preserve the isothermal con-
ditions in the melt for the transient growth one has to match
the solution of the isothermal solidification problem in the
liquid with the solution of the appropriate inverse thermal
Stefan problem in the solid. The mathematical correctness of
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the latter problems with prescribed temperature and velocity
of the interface is well established and the numerical solu-
tions of such problems are discussed in@41#.

We realize that it would be rather difficult to maintain the
isothermal conditions in the melt. In spite of this, similar to
the Le50 limit, explored in the studies of directional solidi-
fication, the results of the present paper represent a first step
and the reference point for a more comprehensive analysis of
rapid solidification into an undercooled melt. The solutions
developed in the paper serve as a sufficiently simple and
accurate theoretical tool to inspect several important aspects
of the continuous growth models versus the models ignoring
the solute trapping effect. These solutions also demonstrate

that the alternative versions of the continuous growth models
yield quite different results even for relatively small growth
rates. The problem of the nonisothermal growth of a solid
germ, which is a natural extension of the present work, is
now under study.
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