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4/3 problem in classical electrodynamics
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We evaluate the self-force acting on an extended nonrelativistic charged particle, in the framework of
classical electrodynamics with a cutoff at short distances. We show that in the regularized Maxwell theory, the
point particle limit is finite and well defined. As a result, the electromagnetic mass of a point particle enters the
equation of motion in a form consistent with the special theory of relati{#}063-651X96)15111-4

PACS numbd(s): 03.50.De

[. INTRODUCTION treated from the start as a point charge, Colefi@drintro-
duced a cutoff in the Maxwell theory, which enables an un-
The nonrelativistic equation of motion of an extendedambiguous derivation of the relativistic equation of motion
charge was first derived by Abraha(®903 and Lorentz comparable to Eq1), called the Lorentz-Dirac equati¢].
(1904, who considered a purely electromagnetic model ofHe considered the cutoff as a merely computational device.
the electron’s structurl]. It was assumed that in the instan- On the other hand, Moniz and Shd§| have shown in the
taneous rest frame of the particle, the charge distribution isontext of the quantum theory of a nonrelativistic electron
rigid and spherically symmetric. If an external force is alsothat a natural cutoff of order of the Compton wavelength of
applied to the electron, then the Abraham-Lorentz equatiothe electron may be effectively induced by the processes
of motion which assumes no mechanical mass takes the formhich occur in quantum electrodynamics.
In this work, we consider the point electron as a limiting
4U(a) . 2¢€°, case of an extended charged particle, which may lead to a
372 V33V Fex (1) yseful insight. In particular, we would like to propose an
alternative explanation for the factor 4/3 which appears in
wherev is the velocity of the particle and(a) is the elec- EQ. (1). To this end, we remark that the Abraham-Lorentz
trostatic energy of a symmetric charge distributip(x), = assumption of the existence of a rigid extended particle leads

which is located within a sphere of radias to a difficulty with regard to special relativity. In classical
electrodynamics, the point particle limit cannot be taken be-
1 3 3, p(X)p(x") cause the electromagnetic mass becomes infinite. In order to
U(a)= 2 f d Xf d*x Cx=x'] @ circumvent this problem, we shall use a gauge and Lorentz

invariant regularization of the Maxwell theory at short dis-

The factor(4/3)U/c? in Eq. (1) is evidently the electro- tances. This is done by introducing an appropriate cutoff at
magnetic mass. I} were the total energy, special relativity the threshold of the classical regime, which allows for the
would requireU :mCZ’ wherem is the observed mass of the existence of a finite and well defined point particle limit. In
electron. For this reason, the factor 4/3 has been a source 8fiS case, the calculation of the electromagnetic mass does
considerable discussion. Poinc#fig gave a solution to this Not violate the requirements of Lorentz covariance, so that
problem, pointing out that the stability of the charge requiresJ/c® will enter the particle’s equation of motion with the
the existence of nonelectromagnetic, attractive forces actingroper factor of unity, instead of 4/3.
on the particle. These internal forces yield a contributign A possible approach involves adding a new term to the
to the mass of the particle, which would appear as an addeaxwell Lagrangian. Its form can be restricted by a few
coefficient of the acceleration in E€L). Then the require- reasonable and simple properties, which leave the Maxwell
ments of special relativity would apply only to the total self- theory as nearly unaltered as possiti@: The Lagrangian
energy and massi=m,+m,. Nevertheless, such a solution Must be gauge and Lorentz invaria) It should lead to
has one puzz”ng aspect. Classical electrodynamics is a prob)cal field equations which are still linear in the field quan-
er|y covariant theory’ SO we m|ght expect that a correct Ca|Iiti€S. Then, the Simplest pOSSlblllty which includes a cutoff
culation should not violate the requirements of Lorentz coJ€ads to a Lagrangian containing second-order derivatives of
variance. In fact, one can define a purely electromagnetighe electromagnetic potentiads,=(A,i ¢):
self-energy-momentum tensor having the correct Lorentz
transformation propertieRohrlich [2]; Jackson(3]). Com- 1 1 0F,5dF,, 1
prehensive reviews of these and other relevant aspects of th&l) = — 16m FopFapg— a 2 . o +=jA, 3
above problem may be found in the literatui€rber [4]; & & Xg Xy C
Teitelboim, Villaroel, and Van Weeit]; Pearle[6]).

The point electron has been of greatest interest becausenhereF ,;=d,Az—dzA, is the usual electromagnetic field
high-energy experiments indicate that the electron may be&ensor and ,=(j,icp) is the four-current. At distances much
regarded as a point particle, at least down to distances dérger than the cutoff, the fields described by B).become
order of 101 cm. Using an approach where the electron isessentially equivalent to the Maxwell fields. We mention that
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1 0A
Fs(t)=—f p(Xx,t) V¢>(x,t)+EW(x,t) d3x.  (7)

In order to determine the form of the retarded potentials,
which satisfy the differential equation$), it is useful to find
the Green function for the equation

(1-1?2DHOG(x—x",t—t",)=—478(x—x")8(t—t'). (8)

Then the solution of Eq4) will be

1
Aa(x,t,l)=E f G(x—x",t—t",1)j(x",t")d3x'dt’. 9)
FIG. 1. The interaction between the elements of a sphericallyThe appropriate Green function must satisfy the causality

symmetric charged particle. condition thatG=0 for t<t’. With the help of the invariant

, i unctions described, for example, 1], we find that the
such a Lagrangian was proposed a long time ago by Podo,

jyroper solution of the differential equatid8) is given b
sky and Schwed10], in a somewhat different context. P quatids) is g y

In the Lorentz gauge,A,=0, one obtains from Eq3) 1 R
the following set of linear partial differential equations: G(R,7,l)= R 5( T— E)
4
A-1POOA,=——j,. (4) c 4 R Je?r?—R?
¢ TRRATT) T )

(10

In the static case, the scalar potential due to a charge
distribution p turns out to be

p(X') Ix—X'| whereR=[x—x'|, 7=t—t’, andJ, is the Bessel function of

; 1—ex;{ - —) , (5) order zero. Note that in the limit—0, the second term van-

x=x'| | ishes, so that Eq(10) reduces to the usual retarded Green
which, at distances much larger thenbecomes practically function of classical electrodynamics. Combining the two
equal to the Coulomb potential. On the other hand, at shoferms In Eq.2(120), and using the fact tha® is an invariant
distanced behaves as an effective cutoff since for a pointfunction ofc“7“—R*, we arrive at the expression
charge located at the origig, approaches the finite vall

¢(X)=f d3x’

R
as|x|—0. ol — 2
In Sec. I, we present in this framework a direct calcula- B c/ d Je?rP—R?
tion of the self-force acting on an extended spherically sym- GR7.D=- cr  or Jo | - (1D

metric charged particle. We show in Sec. Il that in the point

particle limit, the electromagnetic mass is well defined and e recall at this point that the distinctive feature of the
has a form consistent with the requirements of Lorentz coabraham-Lorentz calculation in electrodynamics is a series

variance. expansion in powers oR/c, for R/c small, of the four-
currentj,, which must be evaluated at the retarded time
Il. CALCULATION OF THE SELF-FORCE t'=t—R/c. This is essentially equivalent to an expansion of
FROM THE RETARDED POTENTIALS the usual Green function as
Let us evaluate, in the regularized Maxwell theory, the o
self-force on the rigid i i i 1 R (-1)" d"
gid spherically symmetric charged particle Z 8l =)= 2 R — §(7) (12)
shown in Fig. 1. R i=o n!c" dm" '

We calculate initially the force that a small volume ele-
mentd>x experiences from all other parts of the sphere. Infollowed by thet’ integration in Eq(9).
terms of the electric and magnetic fields at this location, the Proceeding in a similar way, we may expand the retarded
force on the elemend®x is given by Green functionrG(R,7,1) as

o0

—1)n I\ d"
G(R,T,I)=nzo (mcz R”lfn(ﬁ) g 80, (13

dF«(x,t)=dxp(x) E(x,t)+% V(t)XB(x,t)|.  (6)

Without loss of generality, we may consider the instanta-

neous rest frame of the particle. Then we need to evaluateheref, (I/R) are dimensionless functions which should re-
only the electric field which can be derived from the retardedduce to unity in the limit —0. These can be determined by
potentials as=—V ¢—dA/cdt. Integrating over all parts of multiplying G by 7' and performing ther integration using
the sphere, we find that the self-force acting on the extendedhe properties of the Bessel functiofi2]. We record here
charged particle is given in this frame by the expression the expressions for the lowest order functidgs
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! ~RII 1 2 3 3y i ,
fo R =1-e™ ™, f1=1 FS=§§ d°xp(x,t) | d°x WJ(X 1), (20

| I For a rigid charge distribution the current density is
fz(R =l+g e M fi=1 (14 j(x',t)=p(x" t)v(t); thereforej-R=pv-R. Furthermore, for a

spherically symmetric charge distribution only the compo-
which will be used subsequently. nent of R parallel tov can survive the integration. In this

2 : 2 H
Substituting serie$13) in Eq. (9), the self-force(7) be- ~ CaSe(vV-R)” can be replaced by its mean valwR?/3. Since

comes at low velocities we can neglect terms nonlinearvinthe
expressions foF 2 andF! become, respectively,
o (D" f 3 j 3y 2 v
FS(t)__nZo P d*xp(x,t) | d°x ng_g? J dSXp(X,t)f dgxlp(xr,t)
X | dt’{|p(x',t")V(R"1f,) 1 Riy_ L R
p(X’, n X|=(1-e - —e (21)
R 4]
1 d"
+ IR, | 5(7)]. (15 and
1 2 V 3 3y’ ’ 282 o
We consider the first two terms arising from the scalar po- Fo=3 . | xe(xt) [ dX'p(X\)=3 5V, (22)

tential separately. Using E@L4), we see that the=1 term

vanishes identically. The=0 term leads to the electrostatic wheree is the total charge of the particle. THe! term is

self-force independent of the size of the particle and reproduces the
radiation reaction force found in classical electrodynamics.

1
el__ _ 3 3y ’ - _ ~—RI/I
Fs f d Xp(x’t)f X p(x 't)V{R (1-e )}’ lll. LORENTZ COVARIANCE PROPERTIES
(16) OF THE MODEL

which vanishes by symmetry. Eliminating these two terms Let us consider now the structure of thg term. It de-
and increasing by two the summation index on the termgends on the radiua of the charged particle as well as on
contributing by the scalar potential, we find after performingthe cutoffl. If we first take the limitl —0, we see that the
thet’ integration that the surfl5) can be written as follows: double integral becomes proportional to the electrostatic self-
energy(2) of the charge distribution. Ther;F2 will yield

[

—1)" 5 the Abraham-Lorentz term which appears in EL.
Fs(t)= —nZO n|Cn+2 f d*xp(x,t) In order to obtain the general expression for the electro-
N static self-energy wheln#0, we recall that the corresponding
5 L [ ap(x’,t) V(R 5) energy can be written in a positive definite form[4§)]
f dx gttt gt (n+1)(n+2)

1
U(a,l):S—Wfd3x[E-E+|2(V.E)2], (23
+ R“lfnj(x',t)]. (17)

whereE=—V ¢. Making use of the relationg) and(5), Eq.

The continuity equation may now be used to replagét by (23) can easily be shown to be equivalent to the expression

—V'-j(x’,t). In the d®x’ integration we can integrate these 1 1

p-dependent terms by parts, so that the bracket inNEf.is  U(a,l)= > f d3xf d3x’ p(x)p(x") B [1-e RN, (24)
equivalent to

which reduces to Ed2) in the limit| —0. On the other hand,

2w 1
[i(x',0)-VIV(R™ . 2) if the point particle limita—0 is taken firstU approaches

{ =RV (XD -

(n+1)(n+2) ' the finite valuee?/2l. In this case, the second part of the
(18 double integral in Eq(21) removes the factor 4/3, so that we
obtain

The first two terms in Eq17) may now be evaluated explic-

itly with the help of Eq.(14), to give u(o,)

_E%0 = X 1-1 v_ :
F0) =3 (1-DUO)) z=—Z"V. (25)

1 J —RJ/I
0_ 3 3y ’
Fs= 2¢c? f d Xp(x’t)j d*x at J(xL) This has the correct form required by special relativity,
R R since the electrostatic self-energy divideddfycan be iden-
e RI_ S gra J R (19 tified with t_he2 reglzjlanzed electromagnetic mass of a point
I = charge,mg=e“/2lc”.

To see more clearly the origin of this behavior, we write
and Eqg. (22 in the form
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Higher-order terms in the expansi¢t7) give for a point
T 4B - e e o o o charged particle contributions of the form
~1.20f b.e2 dn+t
~ n —
2 F2:n|Cn+2 In ! dtn+1 v, (28)
D .
1.10
r | N T S SN where b, are constants. These terms become relevant only
0 20 40 60 80

when significant changes in motion occur in very short times
of orderl/c. In particular, the higher-order terms are essen-
tial in suppressing, when the electron bare mass is positive,
the unphysical runaway solutions characterized by an expo-
nential growth of the acceleration with tinj@,13].

In the situations when such terms can be neglected, the

a/d —

FIG. 2. Behavior of the coefficierd(a/l) as a function of the
radius of the charged particle.

a\ U(a,l) nonrelativistic equation of motion of a point charged patrticle
-Fa,l)=C T cz’ v, (26)  can be approximated as
where the coefficient is a dimensionless function af|. It u(al) e 2_62 U 29
may be evaluated explicitly given a specific model for the c? 0" 3¢t ext:

charge distribution. For example, if the charged particle is

regarded as a spherical shell of charge of radiuthen we  where the electromagnetic mass, occurs in accord with
find from Eq.(21) that the special theory of relativity. Since in practice the electro-
magnetic field cannot be separated from the bare particle, we
combinem,, with the bare masm, to get the empirical rest
massm. The equation of motion then takes the form

a
I

5 1/3

AT)= 3" fexd—2ail—1] *+1/2a"

(27)

This monotonic function is illustrated in Fig. 2.

We see that the coefficiedi(a/l) interpolates smoothly
between the point particle limit in the regularized theory,
when C(0)=1, and the result obtained for an extended
charged particle in the Maxwell theory, whéw)=4/3. Itis  which describes correctly the radiation damping observed in
important to note that unless the radius of the particle vanthe classical domain.
ishes, U/c? does not appear in Eq26) with the correct
coefficient required by Lorentz covariance. This occurs in
consequence of the assumed existence of a rigid extended
particle, which is incompatible with the special theory of
relativity.

2e?

mv=——
3c?

V+ Feyts (30
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