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The oblique propagation of nonlinear ion acoustic solitary waves~solitons! in a magnetized low-b, weakly
relativistic warm plasma is examined by the Korteweg–de Vries equation. Two types of modes~fast and slow
ion acoustic modes! exist in the plasma. The fast mode corresponds to the propagation of compressive solitons,
whereas the rarefactive solitons exist for the slow mode. The amplitude and energy of both types of solitons
increase with the angle between the wave vector and magnetic field and also with the relativistic ion drift
velocity. The effect of finite ion temperature is to decrease the amplitude of the soliton and to increase its
width. The strength of the magnetic field weakens the soliton energy and the width becomes smaller.
@S1063-651X~96!07910-X#

PACS number~s!: 52.60.1h, 52.35.Fp, 52.35.Sb

I. INTRODUCTION

The ion acoustic solitary waves arising from the balance
of the nonlinearity and dispersion in plasmas have been in-
vestigated over a period approaching a score of years. Their
one-dimensional propagation is described with the
Korteweg–de Vries~KdV! equation@1#. Using this equation,
the characteristics of the ion acoustic solitons have been
studied by several researchers in nonrelativistic@2–6# as well
as in relativistic plasmas@7–11#. In the relativistic plasma, a
finite ion temperature was shown to influence the soliton
characteristics@7#. A limit on the ion drift velocity for the
existence of ion acoustic solitons was obtained by Malik,
Singh, and Dahiya@8# in the relativistic plasma by taking the
combined effect of electron mass and ion temperature. Large
amplitude ion acoustic waves have also been analyzed in a
two-fluid plasma by assuming the electron and ion flow ve-
locities to be relativistic@11#.

The ion acoustic solitons have also been studied in the
magnetized plasmas. Shukla and Yu@12# have shown that
finite-amplitude ion acoustic solitary waves propagating ob-
liquely to an external magnetic field can occur in a cold-ion
plasma. Three types of nonlinear waves including ion acous-
tic solitons have also been observed by Lee and Kan@13# in
a magnetized plasma with cold ions. Later, finite ion tem-
perature was included in the analysis to examine the fully
nonlinear ion acoustic solitary waves in a magnetized plasma
@14#. Finite-amplitude ion acoustic waves, ion cyclotron
waves, and the ion acoustic solitons have also been studied
in a warm-ion magnetized plasma@15#.

As is evident from the above-mentioned references, most
of the investigations on ion acoustic solitons are either for
unmagnetized relativistic plasmas or for magnetized plasmas
having no relativistically drifting ions. Since the magnetic
field modifies the soliton characteristics, it is of interest to
determine how a magnetic field affects the propagation of
ion acoustic solitary waves in a relativistic plasma. There-
fore, in the present analysis, the ion acoustic solitons have
been examined in a weakly relativistic magnetized warm
plasma. It is found that the fast ion acoustic mode corre-
sponds to the propagation of compressive solitons, whereas
the rarefactive solitons exist for the slow ion acoustic mode.

II. BASIC FLUID EQUATIONS

A small but finite amplitude ion acoustic wave propagat-
ing in a magnetized, collisionless, weakly relativistic plasma
consisting of warm ions and hot electrons is considered. The
propagation of the wave is assumed to be in the (x,z) plane
and inclined at an angle to the direction of the magnetic field
B, which is along thez axis. The characteristic frequency is
assumed to be much smaller than the ion gyrofrequency and
the ratiob of the particle pressure to the magnetic pressure is
small. Since the perturbations are of low frequency, the elec-
tron mass is neglected and their usual Boltzmann distribution
is assumed. Under these conditions, the basic fluid equations
in the normalized form can be written as@14–16#

nt1“•~nv!50, ~1a!

~gv! t1~v•“ !gv1“f2~V i /vpi!v3z1~2s/n!“n50,
~1b!

ne5exp~f!, ~1c!

¹2f2ne1n50. ~1d!

In these equationsn andne are, respectively, the ion and
electron densities normalized by the unperturbed plasma
densityn0. v is the ion drift velocity normalized by the ion
acoustic speed. The potentialf is normalized bykTe/e,
wherek is the Boltzmann constant,Te , the electron tempera-
ture, ande, the electronic charge. The subscriptt denotes
differentiation and the timet and space coordinates are, re-
spectively, normalized by the ion plasma period, i.e.,v pi
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and the electron Debye length.z is the unit vector along the
direction of magnetic fieldB~5B0z!. Vi is the ion gyrofre-
quency. s is the ion to electron temperature ratio and
g5~12v2/c2!21/2 is the relativistic factor withv!c, with c
the speed of light. It can be noted from the ion momentum
equation that the specific heat ratio is taken as 2 because the
number of degrees of freedom for the present case~two-
dimensional motion! is 2.

If the ion drift velocity is considered to be relativistic only
in the direction of the magnetic field~i.e., along thez axis!
and its other components~i.e., perpendicular to the magnetic
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field! are nonrelativistic, then the following basic equations
are obtained from the original equations:

nt1~nvx!x1~nvz!z50, ~2a!

~vx! t1vx~vx!x1vz~vx!z1fx2Avy1~2s/n!nx50,
~2b!

~vy! t1vx~vy!x1vz~vy!z1Avx50, ~2c!

~gvz! t1vx~gvz!x1vz~gvz!z1fz1~2s/n!nz50,
~2d!

ne5exp~f!, ~2e!

fxx1fzz2ne1n50. ~2f!

Here A5V i /vpi and g'11v 0
2/2c2, with v0 the ion drift

velocity in thez direction.

III. KORTEWEG –DE VRIES EQUATION

To study the propagation of the ion acoustic wave, the
basic fluid equations are solved for stationary nonlinear so-
lutions. For this purpose, the following stretched coordinate
system is introduced@16#

j5e1/2~k•r2l0t !5e1/2~x sinu1z cosu2l0t !, ~3a!

t5e3/2t, ~3b!

wherek is the unit vector along the direction of wave propa-
gation that makes an angleu with the direction of the mag-
netic field andl0 is the phase velocity of the ion acoustic
wave in ~j,t! space.e is small dimensionless expansion pa-
rameter.

The quantitiesn, ne , f, andv are expanded around the
equilibrium state in terms ofe to balance between nonlinear
and dispersive terms. Their expansion is given by@8,16#

n511en11e2n21••• , ~4a!

ne511ene11e2ne21••• , ~4b!

f5ef11e2f21••• , ~4c!

vx5e3/2vx11e2vx21••• , ~4d!

vy5e3/2vy11e2vy21••• , ~4e!

vz5v01evz11e2vz21••• . ~4f!

Equations~3a!, ~3b!, and~4a!–~4f! are used in the basic fluid
equations to obtain theK-dV equation. The terms of order
e1/2 give

cosu v0j50. ~5a!

The following relations are obtained at the order ofe:

ne15n15f1. ~5b!

The terms of ordere3/2 yield

2l0n1j1cosu vz1j1v0cosu n1j50, ~5c!

sinu f1j2Avy112s sinu n1j50, ~5d!

Avx150, ~5e!

2l0gvz1j1v0g cosu vz1j1cosu f1j12s cosu n1j50.
~5f!

The following relations between the first-order quantities are
obtained at the order ofe2:

sinu vx1j50, ~5g!

2l0vx1j1v0cosu vx1j2Avy250, ~5h!

2l0vy1j1v0cosu vy1j1Avx250. ~5i!

Equations~5a!–~5i! yield the phase velocity relation

l05cosu@v06$~112s!g21%1/2#. ~6!

It is evident from Eq.~6! that the two types of modes,
namely, a fast ion acoustic mode@corresponding to the plus
sign in Eq.~6!# and a slow ion acoustic mode@corresponding
to the negative sign in Eq.~6!#, are possible in the plasma. It
is also clear that the phase velocityl0 depends on the angle
of propagation of the wave, relativistic ion drift velocity, and
ion to electron temperature ratio. It can also be seen that the
phase velocity of both types of modes increases with the ion
drift velocity, but decreases for the larger angleu. The de-
pendence of the fast and slow modes on the ion to electron
temperature ratio has the opposite nature. The phase velocity
of the fast mode goes up, whereas that of slow mode goes
down for the higher ion temperatures.

The second-order quantities are presented by the follow-
ing equations, obtained from the basic fluid equations at the
order ofe2:

ne22f22f1
2/250, ~7a!

f1jj2ne21n250. ~7b!

The terms of ordere5/2 give rise to

2l0n2j1n1t1sinu vx2j1cosu vz2j1cosu n1vz1j

1cosu vz1n1j1v0cosu n2j50, ~7c!

2l0vx2j1v0cosu vx2j1sinu f2j1n1sinu f1j

2An1vy112s sinu n2j50, ~7d!

2l0vy2j1v0cosu vy2j50, ~7e!

2l0gvz2j2l0n1gvz1j1gvz1t1v0g cosu vz2j

1vz1g cosu vz1j1n1v0g cosu vz1j1cosu f2j

1n1cosu f1j12s cosu n2j50. ~7f!

Now all the second-order quantitiesn2, ne2, f2, vx2, vy2,
andvz2 appearing in Eqs.~7a!–~7f! are eliminated by using
the phase velocity relation@Eq. ~6!#. The following equation
in the first-order quantityf1 is obtained after the elimination
of the second-order quantities:
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2 secuf1t12 secu~l02v0cosu!f1f1j

1@$A21~112s!2sin2u%cosu/~l02v0cosu!gA2#

3f1jjj50. ~8!

Equation~8! gives the following KdV equation inf1:

f1t1af1f1j1bf1jjj50. ~9!

The coefficients appearing in Eq.~9! are given by

a5~l02v0cosu!, ~10a!

b5cos2u$A21~112s!2sin2u%/2~l02v0cosu!gA2.
~10b!

Here a is the coefficient of nonlinear term andb that of
dispersive term of the KdV equation~9!.

To find the stationary solution of the KdV equation~9!,
the transformation@8,10,16#

n5j2Ut, ~11!

whereU is a constant velocity, is used. With the use of this
transformation, the KdV equation is converted into an equa-
tion with a single variablen. Now this equation is integrated
under boundary conditions thatf1~n! and all its derivatives
vanish asunu→`, which gives the solution

f1~n!5~3U/a!sech2$~U/4b!1/2n%. ~12!
This is the soliton solution of the KdV equation. If the peak
soliton amplitude is denoted byfm and the soliton width by
L, then

fm53U/a, ~13a!

L52b1/2U21/2. ~13b!

IV. DISCUSSION

It can be noted from Eqs.~10a!, ~13a!, and ~6! that the
coefficienta of the nonlinearity remains positive for the fast
ion acoustic mode and hence compressive solitons exist in
the plasma. However, as the slow ion acoustic mode is con-
sidered, rarefractive solitons are allowed to propagate in the
plasma, since the coefficienta becomes negative~it has been
proved that the KdV equation with a negative coefficient for
the nonlinear term governs the propagation of the rarefrac-
tive solitons@17,18#!. The weak dependence of the peak soli-
ton amplitude and the width of both types of solitons on the
relativistic ion drift velocity, for other fixed parameters~u
530°, A50.2, ands50.02! @8#, is shown in Fig. 1. It is
obvious from the figure that the amplitude increases with the
relativistic ion drift velocity, whereas the soliton width de-
creases. It may also be noted that the magnitude of the am-
plitudes of compressive and rarefractive solitons is the same.

Variation of the peak soliton amplitude with the angle of
propagation of the wave, for different values of ion to elec-
tron temperature ratio, is shown in Fig. 2 forv05115 and
A50.2. It is evident from the figure that the angle of propa-
gation reinforces the amplitude, whereas it goes down for the
higher ion temperatures. It can be observed that as the wave
approaches the direction perpendicular to the magnetic field,

FIG. 1. Weak dependence of the amplitude (fm/U) and the
width ~LU1/2! of the compressive and rarefractive solitons on the
relativistic ion drift velocityv0. Heres50.02,u530°,A50.2, and
AC andAR represent, respectively, the amplitudes of the compres-
sive and the rarefractive solitons.

FIG. 2. Variation of the amplitude (fm/U) of the compressive
and rarefractive solitons with the wave propagation angleu. Here
A50.2 andv05115.
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its amplitude suddenly becomes very high and finally the
wave disappears. This can be understood from Eqs.~6!,
~10a!, and~13a!, which show that the phase velocity and the
coefficienta ~which appears in the denominator of the am-
plitude expression! tends to zero asu→90°. It should also be
noted from Eqs.~10a! and~13a! that the peak soliton ampli-
tude is independent of the magnetization and hence it is not
affected by the strength of the magnetic field. However, the
soliton width becomes smaller with the strong magnetic field
@Eqs.~10b! and ~13b!#.

The energy of the soliton is one of its characteristics. By
using the soliton solution, one can obtain an expression for
the soliton energy in terms of the phase velocity, angle of the
wave propagation, and strength of the magnetic field. The
integral*2`

` f1
2~n!dn gives the relation for the soliton energy

@8,10#

E512&U3/2cosu$A21~112s!2

3sin2u%1/2/~l02v0cosu!5/2g1/2A. ~14!

Figure 3 shows the weak dependence of the soliton en-
ergy on the relativistic ion drift velocity foru530°,A50.2,
and different values of ion temperature. It is evident from the
figure that the soliton energy increases with the relativistic
ion drift velocity but decreases for the higher ion tempera-
ture. It can also be seen from Eq.~14! that the soliton be-
comes more energetic with the angle of propagation of the
wave but loses energy for the stronger magnetic field.

CONCLUSION

The Korteweg–de Vries equation, which describes the
propagation of the ion acoustic solitons in a weakly relativ-
istic magnetized warm plasma, is derived. Two types of
modes, namely, a fast ion acoustic mode and a slow ion
acoustic mode, exist in the plasma. Fast and slow modes
correspond respectively, to the propagation of compressive
and rarefractive solitons of the amplitudes with the same
magnitude. The energy of these solitons is calculated in
terms of the phase velocity, the strength of the magnetic
field, and the propagation angle of the wave. The peak am-
plitude and energy of both types of solitons increase with the
relativistic ion drift velocity and also with the propagation
angle of the wave. The strength of the magnetic field weak-
ens the soliton energy. It is found that with increasing ion
temperature, the amplitude and the energy of the solitons go
down but the width becomes wider.
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