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lon acoustic solitons in a weakly relativistic magnetized warm plasma
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The oblique propagation of nonlinear ion acoustic solitary wasebtong in a magnetized lows, weakly
relativistic warm plasma is examined by the Korteweg—de Vries equation. Two types of (fastesnd slow
ion acoustic modegsxist in the plasma. The fast mode corresponds to the propagation of compressive solitons,
whereas the rarefactive solitons exist for the slow mode. The amplitude and energy of both types of solitons
increase with the angle between the wave vector and magnetic field and also with the relativistic ion drift
velocity. The effect of finite ion temperature is to decrease the amplitude of the soliton and to increase its
width. The strength of the magnetic field weakens the soliton energy and the width becomes smaller.
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PACS numbgs): 52.60+h, 52.35.Fp, 52.35.Sb

I. INTRODUCTION II. BASIC FLUID EQUATIONS

The ion acoustic solitary waves arising from the balanc A small but finite amplitude ion acoustic wave propagat-
: ltary wav ISing qng in a magnetized, collisionless, weakly relativistic plasma

of the nonlinearity and dispersion in plasmas have been inggiting of warm ions and hot electrons is considered. The

vestig_ated over a period approaching a score of years. Theﬁropagation of the wave is assumed to be in tag)( plane
one-dimensional  propagation is  described with theang inclined at an angle to the direction of the magnetic field
Korteweg—de VriesKdV) equation1]. Using this equation, g hich is along thez axis. The characteristic frequency is
the _characterlstlcs of the ion acoustic solitons have beegss,med to be much smaller than the ion gyrofrequency and
studied by several researchers in nonrelativigties] as well  he ratiog of the particle pressure to the magnetic pressure is
as in relativistic plasma—11]. In the relativistic plasma, 8 gmg|l. Since the perturbations are of low frequency, the elec-
finite ion temperature was shown to influence the solitory,on mass is neglected and their usual Boltzmann distribution

characteristic§ 7]. A limit on the ion drift velocity for the s 355umed. Under these conditions, the basic fluid equations
existence of ion acoustic solitons was obtained by Malik,n the normalized form can be written Bs4—16

Singh, and Dahiy&8] in the relativistic plasma by taking the

combined effect of electron mass and ion temperature. Large ne+V-(nv)=0, (1a)
amplitude ion acoustic waves have also been analyzed in a

two-fluid plasma by assuming the electron and ion flow ve- (yv),+(v-V)yw+V ¢—(Q; lwp)VXZ+(20/n)Vn=0,

locities to be relativistid 11]. (1b)
The ion acoustic solitons have also been studied in the

magnetized plasmas. Shukla and ¥i2] have shown that n.=exp ¢), (10

finite-amplitude ion acoustic solitary waves propagating ob-

liquely to an external magnetic field can occur in a cold-ion VZ2¢p—ne+n=0. (1d)

plasma. Three types of nonlinear waves including ion acous-

tic solitons have also been observed by Lee and [K&hin In these equations andn, are, respectively, the ion and

a magnetized plasma with cold ions. Later, finite ion tem-electron densities normalized by the unperturbed plasma

perature was included in the analysis to examine the fullydensityny. v is the ion drift velocity normalized by the ion

nonlinear ion acoustic solitary waves in a magnetized plasmacoustic speed. The potentid is normalized bykT./e,

[14]. Finite-amplitude ion acoustic waves, ion cyclotron wherek is the Boltzmann constarni,, the electron tempera-

waves, and the ion acoustic solitons have also been studiddre, ande, the electronic charge. The subscriptienotes

in a warm-ion magnetized plasn5]. differentiation and the timé and space coordinates are, re-
As is evident from the above-mentioned references, mostpectively, normalized by the ion plasma period, ice,;-l

of the investigations on ion acoustic solitons are either forand the electron Debye lengthis the unit vector along the

unmagnetized relativistic plasmas or for magnetized plasmadgirection of magnetic fiel®8(=Byz). (); is the ion gyrofre-

having no relativistically drifting ions. Since the magnetic quency. o is the ion to electron temperature ratio and

field modifies the soliton characteristics, it is of interest toy=(1—v?/c?) 2 s the relativistic factor withv<c, with ¢

determine how a magnetic field affects the propagation ofhe speed of light. It can be noted from the ion momentum

ion acoustic solitary waves in a relativistic plasma. There-equation that the specific heat ratio is taken as 2 because the

fore, in the present analysis, the ion acoustic solitons haveumber of degrees of freedom for the present cas®-

been examined in a weakly relativistic magnetized warmdimensional motiohis 2.

plasma. It is found that the fast ion acoustic mode corre- If the ion drift velocity is considered to be relativistic only

sponds to the propagation of compressive solitons, whereas the direction of the magnetic field.e., along thez axis)

the rarefactive solitons exist for the slow ion acoustic modeand its other componentse., perpendicular to the magnetic
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field) are nonrelativistic, then the following basic equations Sing ¢1,—Avy,+ 20 singd ny =0, (5d)
are obtained from the original equations:

Av,1=0, 5€

N+ (Nvy)x+(nv,),=0, (29 X %9

- + + + =0.
(0,00+ 0RO Do)+ Gy Av,y+ (20TM)N,=0, NoYUz1¢T VoY COH U1+ COH 120 COH Ny =0

(2b) S

() U0yt 02(0y) 1+ Avy=0, 20 Zggfsggv;ipgh;eﬁz%Tsdg?Meen the first-order quantities are
(Y )t Fvx(Y0)xFV(Yv2)+ b+ (20/N)N,=0, 0 SiN vy,,=0, (59
Ne=expl(¢), 20 —NoUx1£FT00COSI Uy1,—Avyr =0, (5h)
bt by Nt N=0. (2f) —NgUy1: T 00COH vy1+Avy=0. (5i)

Here A=Q/w,; and y~1+0v2/2c2, with v, the ion drift Equations(5a)—(5i) yield the phase velocity relation

velocity in thez direction. No=covoE{(1+20)y~ 1117, (6)

Ill. KORTEWEG -DE VRIES EQUATION It is evident from Eq.(6) that the two types of modes,

To study the propagation of the ion acoustic wave, thd'@mely, a fast ion acoustic mogeorresponding to the plus
basic fluid equations are solved for stationary nonlinear so$19" N EG.(6)] and a slow ion acoustic modeorresponding

lutions. For this purpose, the following stretched coordinatd® the negative sign in Eq6)], are possible in the plasma. It
system is introducefL6] is also clear that the phase velocity depends on the angle

of propagation of the wave, relativistic ion drift velocity, and
E=ek-r—Not)=€Y¥(x sing+z co¥—\ot), (38  ion to electron temperature ratio. It can also be seen that the
phase velocity of both types of modes increases with the ion
=%, (3b) drift velocity, but decreases for the larger angleThe de-
pendence of the fast and slow modes on the ion to electron
wherek is the unit vector along the direction of wave propa- temperature ratio has the opposite nature. The phase velocity
gation that makes an angtewith the direction of the mag- of the fast mode goes up, whereas that of slow mode goes
netic field and\, is the phase velocity of the ion acoustic down for the higher ion temperatures.
wave in(¢,7) space.e is small dimensionless expansion pa-  The second-order quantities are presented by the follow-

rameter. - ing equations, obtained from the basic fluid equations at the
The quantitie:, n,, ¢, andv are expanded around the grder of €

equilibrium state in terms of to balance between nonlinear

and dispersive terms. Their expansion is giver] &1 6] Nes— dp— $212=0, (7a)
n=1+en;+e’n,+--- , (4a) $1ee—Nep+N,=0. (7h)
Ne=1+e€ne + e nep+ -+, (4D)  The terms of ordee? give rise to
p=ept+ eyt (40) —NoNgeF Ny, +SING o+ COSH U 16+ COH N1Y 1
Uy= €%+ vt (4d) +CO v,1N1 £+ VCOH Ny =0, (70
vy= €+ vyt (4e) —NQUxag T 00COSH Uyop+SING ppetNySING bys
v, =Vt €v gt €20 ot (4f) —Anvy;+20 sing ny=0, (7d)
Equationg(3a), (3b), and(4a)—(4f) are used in the basic fluid —NQUy2£Tv0COSH vy =0, (7¢)
equations to obtain thK-dV equation. The terms of order
€2 give N YV 26~ NoN1 YU 16T VU1, T VoY COH U
COSA 04 =0. (58 +0,1Y COH v+ N1wgY COS v y1+ COSH Dy
The following relations are obtained at the ordereof T N1C0Y hyet20 COF Npe=0. (70)
i, B o s e cvies v, v
The terms of ordee®? yield the phase velocity relatiofEqg. (6)]. The following equation

in the first-order quantityp, is obtained after the elimination
—NoN1£+COSI U1+ v(COSH N1=0, (500  of the second-order quantities:
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2sed¢;,+2sed(\g—voCOH) p1h1¢ 7.0 £
+[{A%+(1+20)3sir6}costl (A g— v oCOH) yA?] 6o b
X =0. 8 -
Prece ® 5.0 F
Equation(8) gives the following KdV equation i, : 0 -
P1-tadipret Bdieee=0. 9) 30 -
Q D
The coefficients appearing in E() are given by g >
e Or
a=(\o—v,C09), (103 = . AR
_30 ~ 0=O.1
B=cog0{A?+ (1+20)2sir6}H2(\ g— v oCOSH) yAZ. -
(10b) 4.0 ":-'
Here « is the coefficient of nonlinear term angé that of 5.0 F
dispersive term of the KdV equatid®). ' -
To find the stationary solution of the KdV equati¢®), -6.0 I~
the transformation8,10,1§ - |
70 1l llllll]llllllllIHI’IILIJ

v=£&—-Ur, (11

10 20 30 40 50 60
0 (degreces)

whereU is a constant velocity, is used. With the use of this

transformation, the KdV equation is converted into an equa-

FIG. 2. Variation of the amplituded,/U) of the compressive

tion with a single variable.. Now this equation is integrated and rarefractive solitons with the wave propagation ar@lelere
under boundary conditions that(») and all its derivatives A=0.2 andvy=115.

vanish agv|—w, which gives the solution

¢1(v)=(3U/a)secR{(U/4B)Y2p}. (12
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FIG. 1. Weak dependence of the amplitudg,(U) and the

This is the soliton solution of the KdV equation. If the peak
soliton amplitude is denoted by, and the soliton width by
L, then

ém=3Ula, (133

L:2B1/2U71/2. (lsb)

IV. DISCUSSION

It can be noted from Eqg10g, (133, and (6) that the
coefficienta of the nonlinearity remains positive for the fast
ion acoustic mode and hence compressive solitons exist in
the plasma. However, as the slow ion acoustic mode is con-
sidered, rarefractive solitons are allowed to propagate in the
plasma, since the coefficieatbecomes negativiét has been
proved that the KdV equation with a negative coefficient for
the nonlinear term governs the propagation of the rarefrac-
tive solitons[17,18)). The weak dependence of the peak soli-
ton amplitude and the width of both types of solitons on the
relativistic ion drift velocity, for other fixed paramete(g
=30°, A=0.2, ando=0.02 [8], is shown in Fig. 1. It is
obvious from the figure that the amplitude increases with the
relativistic ion drift velocity, whereas the soliton width de-
creases. It may also be noted that the magnitude of the am-
plitudes of compressive and rarefractive solitons is the same.

Variation of the peak soliton amplitude with the angle of
propagation of the wave, for different values of ion to elec-
tron temperature ratio, is shown in Fig. 2 fog=115 and

width (LU of the compressive and rarefractive solitons on theA=0.2. It is evident from the figure that the angle of propa-

relativistic ion drift velocityv,. Here=0.02, =30°, A=0.2, and

gation reinforces the amplitude, whereas it goes down for the

AC andAR represent, respectively, the amplitudes of the compreshigher ion temperatures. It can be observed that as the wave

sive and the rarefractive solitons.

approaches the direction perpendicular to the magnetic field,
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57 (e E=12v2U%2cosp{A?+ (1+20)?

X SirP 0} Y2 (N g— v ocosh) >y 2A. (14)
56|

Figure 3 shows the weak dependence of the soliton en-
ergy on the relativistic ion drift velocity fop=30°, A=0.2,
S5 . and different values of ion temperature. It is evident from the
figure that the soliton energy increases with the relativistic
ion drift velocity but decreases for the higher ion tempera-
S4r ] ture. It can also be seen from E@.4) that the soliton be-
comes more energetic with the angle of propagation of the

Energy

53k 6=0.1 ~ wave but loses energy for the stronger magnetic field.
CONCLUSION
52 L H [l 1 A
80 120 160 200 The Korteweg—de Vries equation, which describes the
A propagation of the ion acoustic solitons in a weakly relativ-

istic magnetized warm plasma, is derived. Two types of
modes, namely, a fast ion acoustic mode and a slow ion

FIG. 3. Weak dependence of the soliton enefigy) > onthe  acoustic mode, exist in the plasma. Fast and slow modes
relativistic ion drift velocityv,. HereA=0.2 and#=30°. correspond respectively, to the propagation of compressive

and rarefractive solitons of the amplitudes with the same

its amplitude suddenly becomes very high and finally themagnitude. The energy of these solitons is calculated in
wave disappears. This can be understood from E@s. terms of the phase velocity, the strength of the magnetic
(103, and(13a), which show that the phase velocity and thefield, and the propagation angle of the wave. The peak am-
coefficiente (which appears in the denominator of the am-plitude and energy of both types of solitons increase with the
plitude expressiontends to zero a8—90°. It should also be relativistic ion drift velocity and also with the propagation
noted from Eqs(10a and (133 that the peak soliton ampli- angle of the wave. The strength of the magnetic field weak-
tude is independent of the magnetization and hence it is n@&ns the soliton energy. It is found that with increasing ion
affected by the strength of the magnetic field. However, th@emperature, the amplitude and the energy of the solitons go
soliton width becomes smaller with the strong magnetic fielddown but the width becomes wider.
[Egs.(10b and(13b)].

The energy of the soliton is one of its characteristics. By ACKNOWLEDGMENTS
using the soliton solution, one can obtain an expression for
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