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We present a model for diffusion with correlated motion in continuous space. Correlation is implied as the
retention of the directional memory of the moving particle between successive scattering events. We use a
model borrowed from the field of polymers, based on a scattering angleu, which is analogous to the bond
angle between two monomers in a chain molecule. We monitor via Monte Carlo computer simulations the
usual random walk properties, such as the mean-square displacement, the number of sites visited~where the
underlying continuous space is binned in boxes!, etc., for two-dimensional spaces, as a function of time, and
the correlation parameter. This type of motion belongs asymptotically to the same class as the regular random
walk. For short times one observes a crossover that is strongly dependent on the correlation parameter in a
scaling form, which is calculated numerically.@S1063-651X~96!00407-2#

PACS number~s!: 05.40.1j

I. INTRODUCTION

Correlation in diffusional motion has been shown in the
past@1–3# to be a very important and sometimes a necessary
idea for the explanation of several different experimental
systems. For example, it has been used to explain hydrogen
diffusion in group VB metals at higher temperatures@1#, va-
cancies in solids@2#, motion of excitons at low temperatures
in mixed naphthalene crystals@3#, etc. Correlated walks are a
special case of random walks, in which the moving particle
has a retention of the directional memory over a certain num-
ber of trajectory steps. Thus, the options available to the
moving particle at each step, regarding the direction of the
next step, depend on its past history, i.e., previousl steps,
wherel signifies the degree of correlation. It is sometimes
referred to as persistent motion, or coherent motion, to de-
note the particular characteristic of the motion that distin-
guishes it from totally stochastic motion~regular random
walk! by preserving the memory of the direction of the pre-
vious step~s!. Up to now it has been studied on regular@4,5#
and fractal@6# discrete lattices. In the present work we ex-
tend these lattice models to continuous space. It is generally
believed that@4# continuous space and lattice models behave
identically, at least as far as simple random walks are con-
cerned. This similarity is also checked here.

Due to the nature of the problem we use a model that is
based on the scattering angleu. The value of this angle
quantitatively determines the extent of correlation. This
model is equivalent to the ones used in chain molecules~usu-
ally hydrocarbons, polymers, etc.!, where the particle steps
are the connecting bonds between two consecutive atoms,

while the angleu is the bond angle@7#. The root mean-
square displacement of random walks is simply the polymer
end-to-end distance. However, depending on the problem at
hand, one may have to consider a self-avoiding walk in the
polymer case, rather than a usual random walk, if the ex-
cluded volume principle applies. At any rate, the angle
model can not be generally formulated on a lattice, where the
bond angles have only a few fixed values~e.g., 90°, 60°,
etc.!, and thus continuous space comes naturally. Due to the
large number of configurations~or step combinations! the
problem can only be treated statistically. Here we are inter-
ested in the system properties as we varyu, the degree of
correlation, and the variation is always in the entire range
0°,u .360°.

The questions addressed here include the following: To
what class of walks does this new model belong? What are
the differences from the well-known lattice models? What is
the detailed behavior of the usual random walk quantities?
The numerical model that is used to answer these questions
is described in detail in Sec. II. Our results are given in Sec.
III, and finally a summary and conclusions in Sec. IV.

II. MODEL AND METHOD OF CALCULATIONS

Our model pertains to a random walk in continuous space
in two dimensions. No lattice periodicity is used, thus all x
and y positions are possible. A particle is allowed to perform
a random walk, by choosing at random the direction of mo-
tion at each step. The length of each step is constant and
always the same, say equal to one length unit. The correla-
tion parameter is introduced via the angleu. The direction of
motion for each step is limited inside this angle as follows:
When the next step is to be made, first we draw the extension
of the direction of motion of the previous step. This exten-*Electronic address: argyrakis@physics.auth.gr
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sion is considered to be the dichotomy of the new angleu
~or, an angleu/2 is formed above it, andu/2 below it!. Then
the full angleu is constructed, and a random direction is
chosen inside this angle. This is the direction of the next
step. An example is shown in a pictorial in Fig. 1, where
u590°. Subsequent steps are also performed using the same
mechanism. It is obvious that the smaller theu, the larger is
the correlation. Also,u50 corresponds to motion on a
straight line~totally correlated walk!, while u5360° is the
case for totally uncorrelated motion~stochastic random
walk!. Similar considerations would apply to three-
dimensional space, where a solid angleu would be used,
with the same principles as here.

To monitor the mean-square displacement we use no lat-
tice ~i.e., we have free space!, but keep the values of thex
andy coordinates, as a function of time, for a fixed value of
u. We varyu in the interval 02360°, and consider about 30

different u values. The advantage of this algorithm is that
one never has finite-size effects, regardless of the length of
time. We thus go routinely to 107 steps, and if necessary it is
feasible to extend this realistically to 109 steps.

In order to monitor the regions of space that are visited by
such a correlated process we use a boxing technique. Here it
is necessary to use an underlying lattice. We divide the avail-
able space in a large number of boxes~squares!, typically
300033000 for the two-dimensional case. For simplicity we
keep the length of the box equal to the length of the step. We
trace the particle motion and monitor the number of boxes
that are visited in a random walk as a function of time. Dur-
ing the walk cyclic boundary conditions are used, so that the
particle is never ‘‘forced’’ to stay in a limited size area. The
number of boxes visited at least once corresponds to the
well-knownSN property in lattices. Additionally, we monitor
the number of visits for each box, a quantity that leads to the
‘‘entropy’’ function of the system. However there is a new
element in the continuous space case: A trajectory traced by
a single step may go over and visit two boxes in one step
~instead of the lattice case, where only one site can be visited
in one step!. Thus, one can either count the initial and final
boxes only~case I!, which corresponds to the lattice case, or
can additionally count the intermediate boxes~case II!. We
treat both cases.

III. RESULTS

In Fig. 2 the mean-square displacement is shown as a
function of time ~number of steps! for several differentu
values. The case ofu5360° corresponds to totally stochastic
random walk, and gives a straight line with slope equal to
1.00, as expected. Several curves are shown with varying
correlation parameteru, in the range 2°,u.360°. Asu is

FIG. 1. A pictorial of correlated motion in continuous space. For
a given angleu ~here u590o) random directions of motion are
chosen for each step, as given by a random angle, which is formed
by using the extension of the previous step and the interval2u/2 to
1u/2, as shown here.

FIG. 2. ^R2& vs N ~number of
steps! for several different scatter-
ing anglesu. The calculation was
carried over continuous space
with no boundaries. Several dif-
ferent u values are shown: 360,
150, 60, 30, 10, 5, 2. These data
are averages of 5 000 realizations.
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decreased and the motion becomes correlated we observe
that initially the slope is larger than the stochastic case. The
smaller theu, the larger the initial slope. This early-time
increase manifests the fact that the particle, due to the corre-
lation, is able to get further away from the point of origin,
producing a larger̂R2&, as compared to the uncorrelated
walk. At longer times, however, we observe that there is a
crossing over to the same slope as the normal stochastic
walk. This means that all slopes, for allu values, become
parallel to theu5360o case. This is in agreement to the well-
known result for lattices@4#:

^RN
2 &5 fN N→`. ~1!

This shows that forN approaching infinity, for a finite cor-
relation, the mean-square displacement is proportional to
N, with a proportionality constantf . Thus, correlated walks
belong to the same universality class as the simple random
walks. It is realized that the factorf is indeed the actual
correlation factor, which is, of course, related tou. As it has
been previously@7,8# shown from the field of polymers,f is
given by

f5
11^cosq&
12^cosq&

. ~2!

The angleq is the angle between two consecutive jumps,
and^cosq& is the average over all possible jump directions,
properly weighted. We see that this result is identical for
chain molecules as well as for correlated walks. Upon inte-
grating the term cosq from 2u/2 to u/2 ~due to the defini-
tion of our model!, and considering all possibleu angles, we
arrive at

^cosq&5
sin~u/2!

u/2
. ~3!

Then

f5
u/21sin~u/2!

u/22sin~u/2!
, ~4!

which can directly be used in Eq.~1!. For the regular, uncor-
related walk, whereu5360, we get the expected result that
f51. For any other values ofu different than 0 or 360,f
Þ1. We can now proceed to use the data of Fig. 2 to calcu-
late numerically thef values. By extrapolating the portion of
the straight line with slope equal to 1~the long time portion!,
we find the intercept on they axis, and the corresponding
value of f as a function ofu. A plot of f vsu in log-log form
is given in Fig. 3. The straight line represents Eq.~4!, and we
see that we get very good agreement. The slope of the
straight line is22.

In Fig. 2 we observe additionally that the crossover to the
asymptotic behavior is a strong function ofu. For eachu
value we estimatetc , the crossover time. This is given by the
intersection of the two straight lines: the early-time and the
late-time parts of each curve. In Fig. 4 we plottc as a func-
tion of u in log-log form. We observe that we get a straight
line with a slope of about21.88. This implies an expression
of the form

tc;uh, ~5!

where we find that the exponenth521.88.
The next property we look at is the measure of the visi-

tation efficiency of the undelying space during the random

FIG. 3. The intercept
f vs the correlation angle
u. The points correspond
to the intercept on they
axis of the lines of Fig. 2,
and the straight line repre-
sents Eq.~4!.
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walk process, as a function of time. Fig. 5 shows the number
of boxes visited at least once, for both cases, as explained in
Sec. II. Case I corresponds to the lattice walk, and thus in the
same figure we also plot the latticeSN quantity, as it has
been reported in the literature@9#, for the case ofu5 360
~stochastic walk!. We see that it is in excellent agreement

with the continuous space walk data, again showing that the
two processes belong to the same class, and in fact are iden-
tical. Several values of the correlation parameter are shown
in this figure. We notice a considerable difference in the
numerical data between case I and case II, and also observe
that this difference increases with increasing correlation.
This trend is rather simple to understand: As correlation in-
creases andSN also increases, the situation arises much more
frequently where intervening boxes are visited by the particle
path. With increasing correlation, the revisitation rate de-
creases, and more boxes are visited less frequently~see also
the I N property below!. This results in more visits of inter-
vening boxes at higher values of the correlation parameter,
producing this difference between the two cases, as shown in
Fig. 5.

Comparing theSN curves for the different values ofu we
see that the trend goes as expected, i.e.,SN increases with
increasing correlation. The analytical solution to this prob-
lem is rather intractable, even for lattices, but some attempt
has been made in the past@5# to derive numerically a fitted
equation for lattice correlated walks. We will relate the data
of the present work in continuous space to the reported equa-
tion for the lattice case. A proposed solution for the lattice
correlatedSN was @9#

^SN&5
p fN

ln~bN!(j50

`

cj~ lnBN!2 j , ~6!

where f is a function ofpf , pf is the probability for scatter-
ing in the forward direction for the lattice model~the corre-
lation parameter of the lattice model!, B is a fitted constant,
which was derived numerically, andb58 f eB. Using these
B values~found in Table I of Ref.@5#!, we find a correspon-

FIG. 4. The crossover
time tc vs the correlation
angle u. The points are
calculated from the data
of Fig. 2, while the
straight line is the best fit.
The slope of the straight
line is h521.88.

FIG. 5. ^SN& vs N ~number of steps! for several different scat-
tering anglesu, as marked. The solid line is the result of the
Henyey-Seshadri formalism. The full symbols pertain to case I, the
empty symbols to case II. Symbols are marked as follows:
u5360, circles;u5180, squares;u5120, triangles;u590, dia-
monds.
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dence betweenpf and u, which is given in Table I. This
correspondence is found by simply matching theSN values
produced by the differentpf @Eq. ~6!# andu ~present simu-
lation data! calculations. No additional fitting is performed
here. We can also now directly compare the^cosq& term of
the lattice model~of Ref. @5#! with that of Eq.~3!. For the
lattice model the parameterf is

f5
pf11/2

12pf
~7!

resulting in

^cosq&5 1
3 ~4pf21!. ~8!

The values of̂ cosq& are also given in Table I for both cases.
We notice that they have the same trend, but differ by about
10–20% in all cases. The conclusion, therefore, can be
drawn that the influence ofSN is qualitatively similar, but
there remains a quantitative difference which might be
caused by the arbitrariness of the box subdivision.

The quantitySN gives an overall measure of the spread of
the particle motion, but it gives no information about the
revisitation properties of the motion. This information is
given through the probabilityPk,N that boxk has been vis-
ited afterN steps. This quantity is given by

Pk,N5
Wk,N

(kWk,N
5
Wk,N

N
, ~9!

whereWk,N is the number of times boxk has actually been
visited inN steps. In the above equation, strictly speaking,
the second equality is valid only for case I. As in the case of
discrete lattices this quantity leads to the ‘‘entropy’’ function

^I N&52(
k51

SN

Pk,NlnPk,N, ~10!

which in turn produces the information dimensionDI of the
process

DI5
I N
lnN

. ~11!

A plot of the^I N& function vs time~number of steps! is given
in Fig. 6, for both models, for uncorrelated and correlated
walks. In this figure we observe a trend similar to the^SN&
behavior, as follows:~1! Case II data are always larger than
case I, for the same reason as previously explained.~2! As
correlation increases the entropy increases also.~3! The data
in Fig. 6 give an almost linear relationship, but upon closer
inspection one sees that there are more than one regimes. We
consider, however, this latter point not to be in the interests
of the present work, and we will not address it here any
further. However, comparison with the same quantities for
the lattice walks shows once again complete agreement be-
tween the two cases.

Another direct way of comparing the behavior of^SN& for

FIG. 6. ^I N& vs N ~number of steps! for several different scat-
tering anglesu, as marked. The lines pertain to case I, while the
symbols to case II.

FIG. 7. The efficiencŷEN& vsN ~number of steps! for several
different scattering anglesu, as marked.

TABLE I. The correspondence of the models in the lattice case
~where the correlation parameter is given by the probabilitypf),
and in the continuous space~given by the angleu), together with
the correspondinĝcosq&.

pf u ^cosq& ^cosq&
lattice model continuous space model

0.4 308 0.200 0.163
0.5 270 0.333 0.300
0.6 240 0.466 0.413
0.7 209 0.600 0.531
0.8 178 0.733 0.644
0.9 142 0.866 0.763
0.95 122 0.933 0.821
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correlated walk in continuous space with that of uncorrelated
random walk is to define the efficiencyEN as~similar to the
definition of the lattice case!

EN5
^SN&corr

^SN&uncorr
. ~12!

Figure 7 shows the data forEN for various values of the
correlation parameteru. We observe a behavior similar to
that in the lattice walks@5#. The number of boxes visited
increases less strongly than the number of steps, due to the
logarithmic correction in the denominator of Eq. 5. Thus, for
small u ~large correlation! we have an effective proportion-
ality of ^SN& with N, since a constant correction term ap-
pears in the denominator. Thus the ratioEN increases with
N. This is less visible in large values ofu, as expected.

IV. CONCLUSIONS

In the present work we extended the ideas on correlation
processes from lattices to continuous space. The usual prop-
erties of random walks were calculated numerically and they
were found to behave in an analogous way. Due to the nature
of the process, correlation was introduced by the use of an
algorithm that employes an angleu that limits the direction
of motion. This is a simple model borrowed from the poly-
mer science for the construction of the algorithm that per-
forms the correlated steps of the walk. It is found that the

mean-square displacement initially increases faster, as a
function of the correlation parameter, but after a certain time
tc the increase is the same, as uncorrelated walks. This
shows that correlated walks, in the long time limit, belong to
the same class of processes as the uncorrelated walks, only
with different prefactors that denote the extent of correlation.
This prefactor is derived similarly, as in the case of chain
molecules, in Eq.~4!, and it is valid in the long time limit.
For the short time limit a crossover timetc to the universal
behavior is found. This crossover time also obeys a scaling
relationship with the correlation parameteru with an expo-
nent h521.88. We conclude that from the simulation data
we are able to provide simple formulae for the walk proper-
ties and the crossover behavior, and also provide the numeri-
cal values of the coefficients.

The visitation efficiency of the walk is described by the
^SN& and^I N& properties, which were also calculated numeri-
cally in the simulation procedure. The results were compared
to the equivalent properties in lattice walks and their corre-
spondence was established. In all cases studied in the present
work we found complete equivalence between the lattice
walk and the continuous space walk, both for the uncorre-
lated and for the correlated case.
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