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We present a study of the stress fields in the neighborhood of a moving crack tip in the framework of linear
elastic fracture mechanics. This approach is found to be physically relevant for a large range of the crack
speeds. We show that the stability analyses based on conditions of attainment of a critical tensile stress on
some plane are inadequate to describe the instabilities of the crack path. A study of the largest principal stress
in the neighborhood of the crack surface is reported. We show that at ‘‘low’’ crack velocities the path of the
crack extension is an opening mode. However, this property disappears when the crack speed exceeds a critical
velocity Vc and reappears again beyond a faster speedVB , but at a different orientation from that of pure
opening mode. These variations have been interpreted as the onset of roughening and branching instabilities.
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PACS number~s!: 03.40.2t, 62.20.Mk, 46.30.Nz, 81.40.Np

I. INTRODUCTION

Dynamic brittle fracture experiments have always shown
many puzzling phenomena@1–3#. However, the recent series
of experiments@4–7# have clearly and definitely established
that these phenomena are related to fundamental physical
processes, such as crack speed, crack branching, surface
roughening transition, and dynamic instability.

More precisely, it has been shown that a dynamic insta-
bility controls the crack advance when its velocityv exceeds
a critical velocityVc . This threshold has been evaluated as a
fraction of the Rayleigh wave speedVR , the speed at which
elastic waves travel across a flat surface. At that point, the
initially flat fracture surface of the material becomesrough.
For speeds higher thanVc , the crack dynamics change dra-
matically: the acoustic emission from the crack increases
@5,6#, the velocity oscillations are amplified, and a pattern,
which is more or less correlated with the velocity oscilla-
tions, is created on the fracture surface@4,6#. Recent experi-
ments@7# have also distinguished an intervening transition
region of fine-scale fracturing. Indeed, beyond a velocity
Vb(,Vc), the straight crack branches locally. Thismicro-
branching instability may be the origin of the weak sound
emission forv,Vc @6#. These different patterns that charac-
terize the crack surface were already known in materials sci-
ence as themirror-mist-hacklezones@2#. Finally, at higher
velocitiesVB(.Vc), amacroscopic branchinginstability oc-
curs: the crack tip splits or deviates from its original orien-
tation @8#.

Crack branching and/or roughening has also been ob-
served in recent simulations of crack motion using molecular
dynamics@9#, using a numerical resolution of constitutive
equations on a lattice@10# or by modeling the elastic medium
as a two-dimensional lattice of coupled springs@11#. From
the theoretical side, although much work has been done in
the field for over 70 years@1#, the mechanisms that govern
the dynamics of cracks are not well understood and a theory

of instability does not exist yet. Consequently, it has been
argued @12–14# that the quasistatic, far-field assumptions
upon which most conventional theories are based are inher-
ently inadequate for detecting these instabilities, and that it is
necessary to study complete dynamic models of deformation
and decohesion at the crack tip@15# in order to understand
the experimental observations. Recent theoretical improve-
ments have been achieved in this direction@12–14#. How-
ever, the point that has remained unclear until now is the
relevance of these analytical and numerical models for the
observed crackmorphologies. Particularly in the numerical
simulations, privileged directions of propagation are often
imposed, and the lattice sizes are not ‘‘microscopic’’ com-
pared to the size of the system. Consequently, the compari-
son with experimental results, where the microbranching and
the roughening instabilities are of microscopic scales, is lim-
ited.

In this paper, we will determine some properties of the
crack extension by examining the singular stress fields in the
neighborhood of a geometrically sharp crack tip. In Sec. II,
we will discuss the validity and the limitations of this ap-
proach to fracture mechanics. We will investigate the rough-
ening and the branching transitions and show that they can
be described, at least to a first approximation, by the same
approach. These instabilities are the second and third transi-
tions in the morphology diagram of the crack surface. How-
ever, we will assume thatthe three instabilities are uncorre-
lated. Therefore, their origins can be deduced separately.
This assumption can be justified by observing that the ap-
pearance of a new zone does not lead to the disappearance of
the old one, although it may even amplify it. For instance,
the microbranches are more dense when the crack becomes
rough @6,7# and there is no reason why the macroscopic
crack branches have to be smooth.

In Sec. III, we study the largest principal stress near the
tip, in conjunction with symmetry considerations on the bro-
ken surface@16#. We correlate the behavior of this quantity
before and after cracking and study the curves of constant
largest principal stress. In this way, we extract a property that
shows that at low crack velocities, the path of crack exten-
sion is that of a pure opening mode~mode I! @17,18#. How-
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ever, this property disappears when the crack speed exceeds
Vc and reappears again beyond a speedVB , but in a direc-
tion different from that for low velocities (v,Vc). These
changes are interpreted as being related to the roughening
and branching transitions, respectively. The thresholdsVc
and VB are below the well-known Yoffe critical velocity
Vy @19# and are in the range of values obtained in both ex-
periments and numerics.

II. ASYMPTOTIC STRESS FIELDS
NEAR A MOVING CRACK TIP

Consider a body of nominally elastic material that con-
tains a crack. Under the action of applied loads on the
boundary of the body or on the crack faces, the crack edge is
a potential site for stress concentration. The theory that has
been developed so far@1# for describing the relationships
between crack tip fields and the loads applied to a solid of
specified configuration is linear elastic fracture mechanics. In
this approach, the local analysis in the neighborhood of the
crack tip shows that the asymptotic stress tensor fields% ex-
hibits auniversalsquare root singularity@1#. When the local
deformation field is an in-plane opening mode, the compo-
nents of the stress field near the tip are expressed as

s i j ~u,v,t !5
KI~ t !

A2pr
S i j ~u,v ! ~1!

for r→0, where (r ,u) are polar coordinates in a plane per-
pendicular to the crack edge. The pointr50 coincides with
the crack edge and the lineu50 is the tangent to the crack
surface at the crack edge~in the forward direction!. The di-
mensionless functionS i j (u,v) represents the angular varia-
tion of each component of the stress near the crack tip. It is
a universal function, independent of the configuration of the
body and the details of the applied loads@20#. Moreover,
S i j depends on the material constants only throughcd and
cs , which are the elastic dilatational and shear wave speeds.
These quantities are related to the Poisson ration, through
k, by

S cdcsD
2

[k5H 2

12n
for a plane stress

222n

122n
for a plane strain.

~2!

It is important to emphasize thatS i j depends on the motion
of the crack tip only throughthe instantaneous crack tip
speedv(t). All information about loading and configuration
are embedded in the scalar multiplierKI(t) called the dy-
namic stress intensity factor.

The variation of stress components near the crack tip is
often represented in polar coordinates

s rr1suu5sxx1syy , ~3!

s rr2suu12is ru5e22iu~sxx2syy12isxy!. ~4!

It is also useful to compute the hydrostatic and the maximum
shear stressesP andtmax, which are given by@21#

2P5s11s25sxx1syy , ~5!

2tmax5s12s25A~sxx2syy!
214sxy

2 , ~6!

wheres1 ands2 are the principal stresses. The direction of
the largest principal stresss1 is found from the condition
that the shear stress on a plane whose normal makes an angle
b with respect to thex axis vanishes:

tan2b5
2Sxy

Sxx2Syy
. ~7!

In 1951, Yoffe @19# observed that for crack speeds less
than a critical velocityVy , the transverse tensile stresssuu is
maximum alongu50, that is, in the direction of crack
growth. For crack speeds greater thanVy , this component of
the stress develops a maximum in a directionuÞ0. Yoffe
@19# suggested that this modification of the local singular
stress field could account for the observation that rapidly
growing cracks in very brittle materials bifurcate into
branched cracks. However, Williams@21# pointed out that
the transverse tensile stress is not the most fundamental
quantity for understanding crack advance in brittle materials.
Instead, if the local condition for fracture is the attainment of
a critical tensile stress on some plane, then the maximum
principal stresss1 is the relevant measure of stress to con-
sider @21,22#.

Suppose that one can construct such a condition based on
a maximization of the largest principal stress. In this case,
the directionb of s1 must satisfyb5u16p/2, whereu1 is
the location of the maximum ofs1 @16#. This is a direction
perpendicular to a plane that contains the crack edge
(r50). This stress configuration is never satisfied for any
velocity v @16#. So this approach is inadequate even in the
quasistatic limit, whereu50 is known to be the privileged
direction of crack extension@17#. Note, however, that Baker
@22# observed that for low crack speeds, the angular variation
of s1 has a shallow maximum at an angleuÞ0. For very
high speeds, on the other hand, the variation of this stress
shows local maxima at bothu50 and some value ofu larger
thanp/2.

Along u50, the in-plane principal stresses within the sin-
gular field are equal for zero crack speed and nearly equal for
low crack speeds. However, the maximum shear stresstmax
is a rapidly increasing function of the velocity for ‘‘high’’
values ofv and diverges asv approachesVR . Therefore, it
has been argued@1# that this effect may explain the observed
tendency for rapidly growing cracks in brittle materials to
develop rough fracture surfaces. However, this change from
the corresponding equilibrium result in the nature of the as-
ymptotic field also shows thats1 always exceedss2 for any
velocity vÞ0. This result may imply that this class of frac-
ture model is intrinsically unstable@13,14#.

Nevertheless, one knows that the asymptotic expansion of
the stress field near the tip is not really singular. In fact, the
normal stress at the tip must be exactly equal to the yield
stresss0 since the condition for fracture is the attainment of
a critical stress. This constraint is taken into account in
cohesive-zone models of the kind introduced by Barenblatt
@15#. In these models, an isotropic, ideally brittle solid obeys
linear elasticity everywhere outside sharply defined fracture
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surfaces and a finite-ranged cohesive stress of amounts0
opposes the separation of these surfaces near the crack tip.
These models are, however, simplified pictures of the com-
plex, nonlinear phenomena occurring within the process
zone near the tip of a real crack@23#.

A qualitatively different attempt to describe the vicinity of
the crack tip has been proposed@1#. One knows that plastic-
ity occurs before the yield stresss0 is attained. Therefore,
the purely linear elastic approach is strictly valid only when
the components of the stress field are smaller than a certain
critical stresssmax(<s0). Sinces1 is the largest stress, one
must imposes1<smax. This condition gives an estimate of
the size of the cohesive zone near the crack tip. The linear
elastic theory is valid in the regionr>rmin , with

rmin~u,v,t !'
KI
2~ t !

2p S S I~u,v !

smax
D 2. ~8!

Of course, the asymptotic expansion of the stress field~1!
remains valid forr>rmin only if rmin is very small. When the
plastic effects are introduced in this way, the stress singular-
ity is avoided and the tractions have no reason to favor mo-
tion perpendicular to the original direction of propagation.

It is plausible to takesmax as a material constant. Then,
the plastic zone defined by Eq.~8! depends on (KIS1)

2. It is
known @1# that the stress intensity factorKI is a decreasing
function of v for a given geometry and loading conditions.
However, the behavior ofrmin is essentially controlled by
that of S1. Thus the size of the nonelastic zone is nearly
constant for low velocities. It is almost equal to the size of
the quasistatic cohesive zone, which is, by definition, very
small. However, according to the behavior ofS1 @1#, rmin is
a rapidly increasing function for large values ofv and di-
verges whenv→VR . Thus, to be physically relevant, our
analysis relying upon linear elastic theory is limited to ve-
locities definitely less than these large crack speeds.

III. STABILITY OF A MODE-I MOVING CRACK

We have seen that analyses based on conditions of attain-
ment of a critical tensile stress on some plane@19,22# fail to
describe the instabilities of the crack path. In fact, in order to
do a stability analysis, one must first define how the moving
crack chooses its direction of propagation. In the quasistatic
case, the crack extension must satisfy a principle of local
symmetry@17#, which states that the path taken by a crack in
a brittle homogeneous isotropic material is the one for which
the local stress field at the tip is of mode-I type. It is not
obvious that the crack propagation still satisfies this strong
criterion in the dynamic case@14#, where the inertial effects
increase with velocity@1#. When the crack dynamics are
taken into account, the response of the stress field to a
velocity-dependent extension of the crack tip is effectively
delayed@18#. However, if the configuration satisfies the sta-
bility criterion of @24#, the quasistatic analysis imposes the
crack tip to begin its motion towards a line of principal stress
@17,18#.

For convenience, let us assume that a straight crack is
created under the action of a mode-I loading on the boundary
of the body. In brittle fracture mechanics, the crack must be
a stress-free surface where the conditions

s i j nj50 ~9!

are satisfied;nW is the vector normal to the crack surface and
repeated indices indicate summation. So in the two-
dimensional case, the principal stresss2 vanishes along the
surface of the fracture, in both quasistatic and dynamic
propagation. From the boundary conditions~9! and the sym-
metry of the mode-I loading, another definition of the condi-
tion satisfied by the crack shape can be proposed. The crack
is a line perpendicular to the curves of constant largest prin-
cipal stresss1. Moreover, the stress field components in-
crease when approaching the crack edge. Thus, near the
crack surface and far from its edge, the sign of the curvature
of the lines of constants1 is also known~see Fig. 1!. These
observations are obvious in the vicinity of the broken sur-
face, but they allow an approach of the stress field near the
whole surface of the crack, including its edge.

Now consider the largest principal stress field ahead of
the crack edge. In Fig. 1, we have plotted the lines of con-
stants1, for different values of crack tip speeds. The vector
field sW normal to these lines is

sW5¹W s1us15const}
1

2S1
3 S 2S1eW r12

]S1

]u
eW uD , ~10!

where (eW r ,eW u) are the unit vectors in polar coordinates. The
orientationc of sW with respect to the initial direction of crack
propagation is thus given by

c5p1u2tan21F 2S1

]S1

]u G . ~11!

FIG. 1. Shape of the surfaces of constants1 near a moving
crack tip, whenk53 and for different values of the crack tip speed.
The inner~middle and outer! curve corresponds tov/cs5 0.3 ~0.5
and 0.6!. For clarity, we have plotted the surfacess15KI /A2p.
The behavior of the lines of constants1 in the neighborhood of the
cracked surface and far from the edge are also represented qualita-
tively ~curves to the left!.
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The anglep is introduced to recall that the stress field in-
creases when one approaches the crack tip. Note that the
crack edge lies along thesW direction only when

c5u1p. ~12!

Suppose that, in addition to being parallel to the vector field
sW, the crack has to propagate in a direction that satisfies this
condition. Then one has at least three possibilities of crack
tip propagation:u50 andu56u0, given by the solutions of
Eq. ~12!. However, it is consistent to assume that at low
crack speeds, the principle of local symmetry@17,18# still
holds. So, unless it is initially unstable@24#, the crack is
expected to grow in the directionu50. The conclusion is
that one has to define a mechanism that selects, at low ve-
locities, the solutionu50 and prevents other orientations.

In the approach presented here, the properties of the field
s1 are responsible for the crack path selection. Thus one
must relate the behavior of the largest principal stress before
and after breaking the medium. For this purpose, let us de-
fine the stress components in the frame (sW, tW), wheretW is the
tangent vector to the lines of constants1. Near the crack tip,
these components can be written as

sss1s tt'~Sxx1Syy!
s1

S1
, ~13!

sss2s tt12isst'e22ic~Sxx2Syy12iSxy!
s1

S1
. ~14!

By definition, the process of crack growth in a certain direc-
tion is essentially the negation, in this direction, of the trac-
tion distribution ahead of the crack tip induced by the ap-
plied loads. The cracked surface becomes a principal stress
line, independently of the direction of propagation. There-
fore, if the crack path follows a direction parallel tosW, the
stress componentss tt andsst in this direction are canceled
andsss becomes, after breaking, the largest principal stress.
Moreover, in the neighborhood of the future crack surface,
the opening and eventually the shear loading must be applied
on opposite planes with respect to this path. Our construction
evidently satisfies this condition at bothu50 andu56u0.

As can be seen in Fig. 1, for low crack speeds, the in-
plane stresssss in the neighborhood ofu50 acts on planes
off the directionsW of this orientation. The resultant loadings
are dilational. On the other hand, near6u0, sss acts on
planes towards the directionsW of these orientations. This
leads to a compression effect. As a consequence, one can
state that the planeu50 is ‘‘prepared’’ to break, but on
u56u0 the loadings act to prevent breaking. Moreover, if
the crack propagates along the directionu50, the lines of
constants1 near the newly broken surface will have the
same sign of curvature as that of the already fractured sur-
face. This is not the case if6u0 were the directions of
propagation. At low velocities,u50 is thus the selected di-
rection for crack propagation.

The dilational or compressive effect of the in-plane stress
sss is our basic concept that leads to a selection mechanism
of the crack direction of propagation. In fact, by examining
the stress field in the neighborhood of the already broken

surface, we conjectured that the new crack surface must be
created following the behavior of the local stress fieldsss. If
opening~compressive! mode tractions exist in certain direc-
tions with respect to the coordinates system (sW, tW), the crack
propagation is favorable~unfavorable! there. On the other
hand, the absence of privileged directions of propagation will
be related to the absence of opening mode tractions in the
frame (sW, tW).

If the arguments presented above are adopted for any
crack speed, one can study now the behavior of the lines of
constants1 at higher velocities. Beyond a critical velocity
Vc , the in-plane stress fieldsss nearu50 changes its main
property. Effectively, in this case and as shown in Fig. 1 for
a crack speed of 0.5cs , one still has three roots for Eq.~12!,
but all of these directions have the same properties. Now the
loading nearu50 acts, similarly to the directions6u0, on
compressive planes with respect to the central planeu50.
Thus it is expected that there is not a privileged direction of
propagation. The crack can open anywhere: this is a mani-
festation of a roughening phase, in which the crack has dif-
ficulties extending since no direction is prepared to break.
This explains qualitatively why dissipative mechanisms be-
come important beyondVc .

However, when the crack speed exceeds a second critical
velocityVB.Vc , a new situation occurs. Equation~12! now
has five roots~see Fig. 1!: u50,6u0, and 6uB , with
0<uB,u0. The loadingssss in the neighborhood ofu50
and6u0 are still acting in a way that counteracts breaking.
However, the in-plane stressessss act on planes off the new
directions6uB . The resultant loadings are thus dilational.
This is a manifestation of the possibility for the crack to
branch towards the velocity-dependent orientations6uB .

It is easy to demonstrate that these morphological transi-
tions of the crack pattern occur when@]c/]u#u5050 for the
first instability and when@]c/]u#u5051 for the second one.
Therefore, the roughening and branching thresholds are
given by the solutions of

Vc→FS122
]2S1

]u2 G
u50

50, ~15!

VB→F]2S1

]u2 G
u50

50, ~16!

Vc can be seen as a quantitative criterion and a physical
interpretation of the threshold for which the stress fields be-
come rapidly increasing functions ofv @1#. On the other
hand,VB corresponds to the critical velocity where the larg-
est principal stress exhibits local maxima at bothu50 and
some value ofu beyondp/2 @22#. Note thatVB is probably
larger than speeds for which the purely elastic description
was supposed to be valid. We believe, however, that the
physical origin of the branching phenomenon is given by
such an analysis and that only the precise value ofVB is
sensitive to the cohesive processes that occur near the crack
tip.

Finally, we determined auniversal estimateof the rough-
ening and branching critical velocities~see Fig. 2!. This is an
advantage of the purely elastic approach. Fork'3, which
corresponds to a wide range of elastic materials, we found
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Vc'0.54VR and VB'0.62VR , which is below the critical
Yoffe velocity Vy'0.68VR . These values are in qualitative
agreement with experiments@5,6# for the roughening thresh-
old and with both the experimental@6# and numerical@11#
estimations of the branching threshold. However, the com-
parison between theses diferent results relies on the hypoth-
esis that the crack morphologies may be classified into
mirror-mist-hackle-branched zones@8#.

IV. CONCLUSION

We have classified the morphological instabilities of a
crack into three regimes that occur upon increasing the crack
speed: the microbranching, the surface roughening, and the
crack branching@8#. We have proposed a model that exhibits
both roughening and branching transitions. Our analysis is
based on the study of the shape of the surfaces~lines! of
constant largest principle stress in the neighborhood of the
whole surface discontinuity of the crack. We determined the
property that favors the mode-I extension at low speeds. We
studied this property for higher crack velocities and inter-

preted its variations as manifestations of crack pattern tran-
sitions. This approach shows that roughening and branching
are intrinsic instabilities that are displayed at the level of the
linear elastic theory. The addition of cohesive zone treat-
ments near the crack edge should not change the instability
processes themselves. However, the velocity thresholdsVc
andVB may be readjusted, depending on the geometry of the
problem considered, the crack dynamics, and, of course, the
nature of the cohesive zone model.

Although we have put into evidence some mechanisms of
crack instability, we did not make quantitative predictions on
the post-threshold manifestations of these instabilities. More-
over, the microbranching instability, and thus the real origin
of the velocity oscillations observed in experiments, cannot
be studied in the framework of such a simple local model. In
fact, microbranching and acoustic emission are manifesta-
tions of dissipative mechanisms@6,7#: microbranches are cre-
ated once the crack tip begins to emit sound@6#; they do not
extend throughout the entire thickness of the material@7# and
they are more dense when the fracture becomes rough.
Therefore, these phenomena cannot be revealed without tak-
ing into account the inevitable nonlinearities that occur in the
vicinity of a crack tip@23#.

Another major theoretical challenge is the determination
of the dynamics of the crack itself. According to the present
theory of fracture mechanics@1#, the crack tip should
smoothly accelerate until it reaches the Rayleigh wave speed
VR . Experiments, however, seldom show crack speeds ex-
ceeding half this speed@2,3#. This limitation on the terminal
velocity does not seem to be always related to the dissipative
mechanisms at the crack tip. Indeed, experiments@4–7,11#
show that the final crack speed depends on the potential en-
ergy fed in by the external loading. In addition, if the insta-
bilities, which induce the velocity oscillations of the crack
tip, can be treated as a perturbative process, the crack motion
of the corresponding unperturbed problem must be known.

ACKNOWLEDGMENTS

M.A.B. is grateful to C. Josserand for helpful discussions
and also thanks D. Bonn and V. Hakim for critical com-
ments, and J. F. Boudet and S. Ciliberto for communications
about their experimental work. Le Laboratoire de Physique
Statistique est Associe´ au CNRS et aux Universite´s Paris VI
et Paris VII.

@1# L. B. Freund,Dynamic Fracture Mechanics~Cambridge Uni-
versity Press, New York, 1990!.

@2# B. Lawn,Fracture of Brittle Solids, 2nd ed.~Cambridge Uni-
versity Press, New York, 1993!.

@3# K. Ravi-Chandar and W. G. Knauss, Int. J. Fract.25, 247
~1984!; 26, 65 ~1984!; 26, 141 ~1984!; 26, 189 ~1984!.

@4# J. Fineberg, S. P. Gross, M. Marder, and H. L. Swinney, Phys.
Rev. Lett.67, 457 ~1991!; Phys. Rev. B45, 5146~1992!.

@5# S. P. Gross, J. Fineberg, M. Marder, W. D. McCormick, and
H. L. Swinney, Phys. Rev. Lett.71, 3162~1993!.

@6# J. F. Boudet, S. Ciliberto, and V. Steinberg, Europhys. Lett.
30, 337 ~1995!; J. Phys. II~France! 6, 1493~1996!.

@7# E. Sharon, S. P. Gross, and J. Fineberg, Phys. Rev. Lett.74,
5096 ~1995!; 76, 2117~1996!.

@8# Note that we have assumed that the microbranching and the
roughening transitions aretwo different processes of instabil-
ity. This opinion is not unanimous. However, the recent works
conducted in poly~mehtyl methacrylate! ~PMMA! using simi-
lar experimental techniques@4–7# provide evidence for two
different velocity thresholds. A fair interpretation of these ex-
periments is that, in PMMA, the microbranching and the
roughening velocity thresholds are respectivelyVb'0.36VR

@4,7# andVc'0.5VR @5,6#, while the macro-branching occurs
beyond a critical velocityVB>0.6VR @6#.

FIG. 2. Plot of the roughening (Vc) and the branching (VB)
critical velocities, in units of the Rayleigh wave speedVR and in
terms of the material parameterk @Eq. ~2!#. For comparison, the
Yoffe critical speed Vy , which is the solution of
@]2Suu /]u2#u5050, is also plotted.

5778 54ADDA-BEDIA, BEN AMAR, AND POMEAU



@9# F. F. Abraham, D. Brodbeck, R. A. Rafey, and W. E. Rudge,
Phys. Rev. Lett.73, 272 ~1994!.

@10# X.-P. Xu and A. Needleman, J. Mech. Phys. Solids42, 1397
~1994!.

@11# M. Marder and S. P. Gross, J. Mech. Phys. Solids43, 1 ~1995!.
@12# J. S. Langer, Phys. Rev. Lett.70, 3592 ~1993!; J. S. Langer,

and H. Nakanishi, Phys. Rev. E48, 439 ~1993!.
@13# E. S. Ching, Phys. Rev. E49, 3382~1994!.
@14# E. S. Ching, J. S. Langer, and H. Nakanishi, Phys. Rev. Lett.

76, 1087~1996!; Phys. Rev. E53, 2864~1996!.
@15# G. I. Barenblatt, Adv. Appl. Mech.7, 56 ~1962!; D. S. Dug-

dale, J. Mech. Phys. Solids8, 100 ~1960!.
@16# B. Cotterell, Int. J. Fract. Mech.1, 96 ~1965!.

@17# R. V. Goldstein and R. L. Salganik, Int. J. Fract.10, 507
~1974!.

@18# J. A. Hodgdon and J. P. Sethna, Phys. Rev. B47, 4831~1993!.
@19# E. H. Yoffe, Philos. Mag.42, 739 ~1951!.
@20# The explicit expressions ofS i j are well known and they can be

found in @1#.
@21# M. L. Williams, J. Appl. Mech.24, 109 ~1957!.
@22# B. R. Baker, J. Appl. Mech.29, 449 ~1962!.
@23# J. R. Willis, J. Mech. Phys. Solids15, 151 ~1967!.
@24# M. Adda-Bedia and Y. Pomeau, Phys. Rev. E52, 4105~1995!;

M. Adda-Bedia and M. Ben Amar, Phys. Rev. Lett.76, 1497
~1996!.

54 5779MORPHOLOGICAL INSTABILITIES OF DYNAMIC . . .


