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Morphological instabilities of dynamic fractures in brittle solids
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We present a study of the stress fields in the neighborhood of a moving crack tip in the framework of linear
elastic fracture mechanics. This approach is found to be physically relevant for a large range of the crack
speeds. We show that the stability analyses based on conditions of attainment of a critical tensile stress on
some plane are inadequate to describe the instabilities of the crack path. A study of the largest principal stress
in the neighborhood of the crack surface is reported. We show that at “low” crack velocities the path of the
crack extension is an opening mode. However, this property disappears when the crack speed exceeds a critical
velocity V. and reappears again beyond a faster spégedbut at a different orientation from that of pure
opening mode. These variations have been interpreted as the onset of roughening and branching instabilities.
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I. INTRODUCTION of instability does not exist yet. Consequently, it has been
argued[12-14 that the quasistatic, far-field assumptions
Dynamic brittle fracture experiments have always shownupon which most conventional theories are based are inher-
many puzzling phenomena—3]. However, the recent series ently inadequate for detecting these instabilities, and that it is
of experiment§4-7] have clearly and definitely established necessary to study complete dynamic models of deformation
that these phenomena are related to fundamental physicahd decohesion at the crack {ip5] in order to understand
processes, such as crack speed, crack branching, surfagr experimental observations. Recent theoretical improve-
roughening transition, and dynamic instability. ments have been achieved in this directjd2—14. How-
More precisely, it has been shown that a dynamic instaever, the point that has remained unclear until now is the
bility controls the crack advance when its veloaitgxceeds relevance of these analytical and numerical models for the
a critical velocityV. . This threshold has been evaluated as abserved cracknorphologies Particularly in the numerical
fraction of the Rayleigh wave spe&t,, the speed at which simulations, privileged directions of propagation are often
elastic waves travel across a flat surface. At that point, th@nposed, and the lattice sizes are not “microscopic” com-
initially flat fracture surface of the material becomesigh pared to the size of the system. Consequently, the compari-
For speeds higher thaw;, the crack dynamics change dra- son with experimental results, where the microbranching and
matically: the acoustic emission from the crack increaseshe roughening instabilities are of microscopic scales, is lim-
[5,6], the velocity oscillations are amplified, and a pattern,jted.
which is more or less correlated with the velocity oscilla- In this paper, we will determine some properties of the
tions, is created on the fracture surfdde6]. Recent experi-  crack extension by examining the singular stress fields in the
ments[7] have also distinguished an intervening transitionneighborhood of a geometrically sharp crack tip. In Sec. II,
region of fine-scale fracturing. Indeed, beyond a velocitywe will discuss the validity and the limitations of this ap-
Vp(<Vy), the straight crack branches locally. Thisicro-  proach to fracture mechanics. We will investigate the rough-
branchinginstability may be the origin of the weak sound ening and the branching transitions and show that they can
emission forv <V, [6]. These different patterns that charac- be described, at least to a first approximation, by the same
terize the crack surface were already known in materials sciapproach. These instabilities are the second and third transi-
ence as thenirror-mist-hacklezones[2]. Finally, at higher tions in the morphology diagram of the crack surface. How-
velocitiesVg(>V,), amacroscopic branchininstability oc-  ever, we will assume thahe three instabilities are uncorre-
curs: the crack tip splits or deviates from its original orien-lated Therefore, their origins can be deduced separately.
tation[8]. This assumption can be justified by observing that the ap-
Crack branching and/or roughening has also been olpearance of a new zone does not lead to the disappearance of
served in recent simulations of crack motion using moleculathe old one, although it may even amplify it. For instance,
dynamics[9], using a numerical resolution of constitutive the microbranches are more dense when the crack becomes
equations on a lattidel 0] or by modeling the elastic medium rough [6,7] and there is no reason why the macroscopic
as a two-dimensional lattice of coupled sprifd4]. From  crack branches have to be smooth.
the theoretical side, although much work has been done in In Sec. Ill, we study the largest principal stress near the
the field for over 70 yearfl], the mechanisms that govern tip, in conjunction with symmetry considerations on the bro-
the dynamics of cracks are not well understood and a theorken surfaceg16]. We correlate the behavior of this quantity
before and after cracking and study the curves of constant
largest principal stress. In this way, we extract a property that
*Also at Department of Mathematics, University of Arizona, Tuc- shows that at low crack velocities, the path of crack exten-
son AZ 85721. sion is that of a pure opening modimode ) [17,18. How-
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ever, this property disappears when the crack speed exceeds 2P=0,+ 0= 0yt 0yy, (5)
V. and reappears again beyond a sp¥gd but in a direc-
tion different from that for low velocitiesy<V.). These 2 Tman= 01— T2= \(Ox— Uyy)2+403y' (6)

changes are interpreted as being related to the roughening
and branching transitions, respectively. The threshalds whereo; ando, are the principal stresses. The direction of
and Vy are below the well-known Yoffe critical velocity the largest principal stress, is found from the condition

Vy [19] and are in the range of values obtained in both exthat the shear stress on a plane whose normal makes an angle

periments and numerics. B with respect to thex axis vanishes:
II. ASYMPTOTIC STRESS FIELDS tan28= ZEXy )
NEAR A MOVING CRACK TIP XX—Eyy

Consider a body of nominally elastic material that con- |n 1951, Yoffe[19] observed that for crack speeds less
tains a crack. Under the action of applied loads on thehan a critical velocity/, , the transverse tensile strasg, is
boundary of the body or on the crack faces, the crack edge i;aximum along#=0, that is, in the direction of crack
a potential site for stress concentration. The theory that hagrowth. For crack speeds greater than this component of
been developed so fdd] for describing the relationships the stress develops a maximum in a direct# 0. Yoffe
between crack tip fields and the loads applied to a solid of19] suggested that this modification of the local singular
specified configuration is linear elastic fracture mechanics. Itress field could account for the observation that rapidly
this approach, the local analysis in the neighborhood of thgrowing cracks in very brittle materials bifurcate into
crack tip shows that the asymptotic stress tensor fiebek-  pranched cracks. However, Willianj@1] pointed out that
hibits auniversalsquare root singularityl]. When the local  the transverse tensile stress is not the most fundamental
deformation field is an in-plane opening mode, the compoguantity for understanding crack advance in brittle materials.

nents of the stress field near the tip are expressed as Instead, if the local condition for fracture is the attainment of
a critical tensile stress on some plane, then the maximum
Ki(t) principal stressr; is the relevant measure of stress to con-
oi(00.0)= 724 (0) @ sider[21,27.

Suppose that one can construct such a condition based on
for r—0, where ¢, ) are polar coordinates in a plane per- & maximization of the largest principal stress. In this case,
pendicular to the crack edge. The poirt0 coincides with ~ the direction of oy must satisfys= 6, + /2, whered, is
the crack edge and the ling=0 is the tangent to the crack the location of the maximum of, [16]. This is a direction
surface at the crack edgim the forward direction The di-  Perpendicular to a plane that contains the crack edge
mensionless functiolX;;(6,v) represents the angular varia- (" =0). This stress configuration is never satisfied for any
tion of each component of the stress near the crack tip. It i¥€loCity v [16]. So this approach is inadequate even in the
a universal function, independent of the configuration of theduasistatic limit, wherg/=0 is known to be the privileged
body and the details of the applied loa®0]. Moreover, direction of crack extensiofiL7]. Note, however, that Baker
3, depends on the material constants only throagkand [22] observed that for low crack speeds, the angular variation
Cs, which are the elastic dilatational and shear wave speed§f o1 has a shallow maximum at an angle-0. For very

These quantities are related to the Poisson ratithrough high speeds, on the other hand, the variation of this stress
x, by shows local maxima at bot#i=0 and some value df larger

than /2.
Along =0, the in-plane principal stresses within the sin-
(c 2 11— for a plane stress gular field are equal for zero crack speed and nearly equal for
d) _
28 ==

) low crack speeds. However, the maximum shear strggs
is a rapidly increasing function of the velocity for “high”
values ofv and diverges as approache¥/g. Therefore, it
has been argudd ] that this effect may explain the observed
It is important to emphasize thay; depends on the motion tendency for rapidly growing cracks in brittle materials to
of the crack tip only througthe instantaneous crack tip develop rough fracture surfaces. However, this change from
speedy(t). All information about loading and configuration the corresponding equilibrium result in the nature of the as-
are embedded in the scalar multipli(t) called the dy- ymptotic field also shows that; always exceeds-, for any

2—2v
1-2v

Cs i
for a plane strain.

namic stress intensity factor. velocity v #0. This result may imply that this class of frac-
The variation of stress components near the crack tip igure model is intrinsically unstable.3,14.
often represented in polar coordinates Nevertheless, one knows that the asymptotic expansion of
the stress field near the tip is not really singular. In fact, the
Ot 0gp=Oxxt Tyy, 3 normal stress at the tip must be exactly equal to the yield
stresso since the condition for fracture is the attainment of
Oy — 0gpt 2o, =€ 2oy — oyt 2ioyy). (4)  a critical stress. This constraint is taken into account in

cohesive-zone models of the kind introduced by Barenblatt
It is also useful to compute the hydrostatic and the maximunf15]. In these models, an isotropic, ideally brittle solid obeys
shear stresseéB and 7,5, Which are given by21] linear elasticity everywhere outside sharply defined fracture
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surfaces and a finite-ranged cohesive stress of amagnt
opposes the separation of these surfaces near the crack tip.
These models are, however, simplified pictures of the com-
plex, nonlinear phenomena occurring within the process
zone near the tip of a real cragR3].

A qualitatively different attempt to describe the vicinity of
the crack tip has been proposgld. One knows that plastic-
ity occurs before the yield stress, is attained. Therefore,
the purely linear elastic approach is strictly valid only when 4L -.....- -
the components of the stress field are smaller than a certain
critical stresso (=< 0p). Sinceo is the largest stress, one
must imposer;<o s This condition gives an estimate of
the size of the cohesive zone near the crack tip. The linear
elastic theory is valid in the regiore=r ,;,, with

K7(t)
21

rmin( 01071‘)%

2
E|(0,U)) . (8)

O max

Of cqurse, ,the asymptotic gxpangion of the stress fi¢ld FIG. 1. Shape of the surfaces of constant near a moving
remains valid for =1y, only if ¥ ip is very small. When the  craci tip, whenc=23 and for different values of the crack tip speed.
plastic effects are introduced in this way, the stress singulafrhe jnner(middie and outercurve corresponds to/c,= 0.3 (0.5
ity is avoided and the tractions have no reason to favor mogng 0.6. For clarity, we have plotted the surfaces=K,/y2.
tion perpendicular to the original direction of propagation. The behavior of the lines of constam in the neighborhood of the

It is plausible to takery. as a material constant. Then, cracked surface and far from the edge are also represented qualita-
the plastic zone defined by E() depends onk,3,)?. Itis tively (curves to the lejt
known [1] that the stress intensity factét, is a decreasing
function of v for a given geometry and loading conditions.
However, the behavior of;, is essentially controlled by
that of 3. Thus the size of the nonelastic zone is nearly
constant for low velocities. It is almost equal to the size ofare satisfiedn is the vector normal to the crack surface and
the quasistatic cohesive zone, which is, by definition, veryepeated indices indicate summation. So in the two-
small. However, according to the behavior®f [1], ryin IS dimensional case, the principal stress vanishes along the
a rapidly increasing function for large values wfand di-  surface of the fracture, in both quasistatic and dynamic
verges wherv—Vg. Thus, to be physically relevant, our propagation. From the boundary conditid®$ and the sym-
analysis relying upon linear elastic theory is limited to ve-metry of the mode-I loading, another definition of the condi-

oijnj=0 (9)

locities definitely less than these large crack speeds. tion satisfied by the crack shape can be proposed. The crack
is a line perpendicular to the curves of constant largest prin-
1. STABILITY OF A MODE-I MOVING CRACK cipal stresso;. Moreover, the stress field components in-

N crease when approaching the crack edge. Thus, near the

We have seen that analyses based on conditions of attaigrack surface and far from its edge, the sign of the curvature
ment of a critical tensile stress on some plgh@,27 fail to  of the lines of constant, is also known(see Fig. 1 These
describe the instabilities of the crack path. In fact, in order togpservations are obvious in the vicinity of the broken sur-
do a stability analysis, one must first define how the movingace, but they allow an approach of the stress field near the
crack chooses its direction of propagation. In the quasistatignole surface of the crack, including its edge.
case, the crack extension must satisfy a principle of local Now consider the largest principal stress field ahead of
symmetry[17], which states that the path taken by a crack inthe crack edge. In Fig. 1, we have plotted the lines of con-

a brittle homogeneous isotropic material is the one for whichsiant-, for different values of crack tip speeds. The vector
the local stress field at the tip is of mode-I type. It is notfield < normal to these lines is

obvious that the crack propagation still satisfies this strong

criterion in the dynamic cadd 4], where the inertial effects

increase with velocity{1]. When the crack dynamics are - - . 024,

taken into account, the response of the stress field to a S:V‘Tﬂvl—consfxz_g?»(_Elef+zﬁeﬂ)’ (10
velocity-dependent extension of the crack tip is effectively !

delayed[18]. However, if the configuration satisfies the sta- o

bility criterion of [24], the quasistatic analysis imposes thewhere €, ,e,) are the unit vectors in polar coordinates. The

crack tip to begin its motion towards a line of principal stressprientationy of s with respect to the initial direction of crack
[17,18. propagation is thus given by

For convenience, let us assume that a straight crack is
created under the action of a mode-I loading on the boundary
of the body. In brittle fracture mechanics, the crack must be
a stress-free surface where the conditions

2 9%,

— —} (11)

=g+ 60— —1
y=mto-tant o
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The angle is introduced to recall that the stress field in- surface, we conjectured that the new crack surface must be
creases when one approaches the crack tip. Note that tleeeated following the behavior of the local stress field. If

crack edge lies along thedirection only when opening(compressivemode tractions exist in certain direc-
tions with respect to the coordinates syste;rfx, the crack
y=0+. (12 propagation is favorabléunfavorabl¢ there. On the other

] - ] ~hand, the absence of privileged directions of propagation will
Suppose that, in addition to being parallel to the vector fieltye rejated to the absence of opening mode tractions in the
s, the crack has to propagate in a direction that satisfies thig;me G 1).
condition. Then one has at least three possibilities of crack |t ihe arguments presented above are adopted for any
tip propagations=0 andf= * 6, given by the solutions of = ¢rack speed, one can study now the behavior of the lines of
Eq. (12). However, it is consistent to assume that at lowconstants, at higher velocities. Beyond a critical velocity
crack speeds, the principle of local symmel#7,18 still /" the in-plane stress field, neard=0 changes its main
holds. So, unless it is initially unstabl@4], the crack is property. Effectively, in this case and as shown in Fig. 1 for
expected to grow irj the directioa_zo. The conclusion is 3 crack speed of 0cg, one still has three roots for E4L2),
that one has to define a mechanism that selects, at low Vgy ¢ g|| of these directions have the same properties. Now the
locities, the solutior¥=0 and prevents other orientations. loading neard=0 acts, similarly to the directiong 6y, on
In the approaph presented here, the proper-ties of the ﬁe'@ompressive planes with respect to the central plan®.
o are responsible for the crack path selection. Thus ong, s it is expected that there is not a privileged direction of
must relate the behavior of the largest principal stress bEforBropagation. The crack can open anywhere: this is a mani-
and after breaking the medium. For this purpose, let us d&gstation of a roughening phase, in which the crack has dif-
fine the stress components in the frarset), wheret is the  ficulties extending since no direction is prepared to break.
tangent vector to the lines of constant. Near the crack tip, This explains qualitatively why dissipative mechanisms be-
these components can be written as come important beyon¥l,, .
However, when the crack speed exceeds a second critical
velocity Vg>V,, a new situation occurs. Equati¢h2) now
has five roots(see Fig. L 6=0,£6,, and * 6z, with
0=<0z<0y. The loadingsos in the neighborhood ofi=0
) L ) o and * 6, are still acting in a way that counteracts breaking.
Oss— Oyt 2i05~e M(Exx_zyﬁz'zxy)g_l' (14 However, the in-plane stresses, act on planes off the new
directions £ 6z . The resultant loadings are thus dilational.
By definition, the process of crack growth in a certain direc-This is a manifestation of the possibility for the crack to
tion is essentially the negation, in this direction, of the trac-branch towards the velocity-dependent orientaticrg .
tion distribution ahead of the crack tip induced by the ap- It is easy to demonstrate that these morphological transi-
plied loads. The cracked surface becomes a principal stres®ns of the crack pattern occur whe#w/ 96],-,=0 for the
line, independently of the direction of propagation. There-first instability and whetidy/96],-,=1 for the second one.
fore, if the crack path follows a direction parallel spthe ~ Therefore, the roughening and branching thresholds are
stress components,, and o, in this direction are canceled 9iven by the solutions of
and o s becomes, after breaking, the largest principal stress.

Osst Utt%(zxx"'zyy)%a (13

2
Moreover, in the neighborhood of the future crack surface, Vo 21_2‘9 21} =0 (15)
the opening and eventually the shear loading must be applied ¢ a0 |, , '

on opposite planes with respect to this path. Our construction
evidently satisfies this condition at bot+0 and 6= * 6. 9?3,
As can be seen in Fig. 1, for low crack speeds, the in- Vg— Fra =0, (16)
6=0

plane stresgrgs in the neighborhood of=0 acts on planes
off the directions of this orientation. The resultant loadings V. can be seen as a quantitative criterion and a physical

are dilational. On the other hand, nearf,, oss acts on interpretation of the threshold for which the stress fields be-
planes towards the directios of these orientations. This come rapidly increasing functions ef [1]. On the other
leads to a compression effect. As a consequence, one chmand,Vg corresponds to the critical velocity where the larg-
state that the plan@=0 is “prepared” to break, but on est principal stress exhibits local maxima at béth 0 and
0= = 0, the loadings act to prevent breaking. Moreover, if some value of? beyond=/2 [22]. Note thatVg is probably
the crack propagates along the directié 0, the lines of larger than speeds for which the purely elastic description
constanto; near the newly broken surface will have the was supposed to be valid. We believe, however, that the
same sign of curvature as that of the already fractured suphysical origin of the branching phenomenon is given by
face. This is not the case it 6, were the directions of such an analysis and that only the precise valu&/gfis
propagation. At low velocities§=0 is thus the selected di- sensitive to the cohesive processes that occur near the crack
rection for crack propagation. tip.

The dilational or compressive effect of the in-plane stress Finally, we determined aniversal estimatef the rough-
o iS our basic concept that leads to a selection mechanismning and branching critical velocitiésee Fig. 2 This is an
of the crack direction of propagation. In fact, by examiningadvantage of the purely elastic approach. ker3, which
the stress field in the neighborhood of the already brokemorresponds to a wide range of elastic materials, we found
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FIG. 2. Plot of the roughening\;) and the branching\(g)
critical velocities, in units of the Rayleigh wave speéd and in
terms of the material parameter[Eq. (2)]. For comparison, the
Yoffe critical speed V,, which is the solution of
[823 4o/ 9671 4—0=0, is also plotted.

V.~0.54/; and Vg~0.62/g, which is below the critical
Yoffe velocity Vy~0.68/¢. These values are in qualitative
agreement with experimenis, 6] for the roughening thresh-
old and with both the experimentf] and numerica[11]
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preted its variations as manifestations of crack pattern tran-
sitions. This approach shows that roughening and branching
are intrinsic instabilities that are displayed at the level of the
linear elastic theory. The addition of cohesive zone treat-
ments near the crack edge should not change the instability
processes themselves. However, the velocity threshélds
andVg may be readjusted, depending on the geometry of the
problem considered, the crack dynamics, and, of course, the
nature of the cohesive zone model.

Although we have put into evidence some mechanisms of
crack instability, we did not make quantitative predictions on
the post-threshold manifestations of these instabilities. More-
over, the microbranching instability, and thus the real origin
of the velocity oscillations observed in experiments, cannot
be studied in the framework of such a simple local model. In
fact, microbranching and acoustic emission are manifesta-
tions of dissipative mechanisr®,7]: microbranches are cre-
ated once the crack tip begins to emit so(ifj they do not
extend throughout the entire thickness of the matgriphnd
they are more dense when the fracture becomes rough.
Therefore, these phenomena cannot be revealed without tak-
ing into account the inevitable nonlinearities that occur in the
vicinity of a crack tip[23].

Another major theoretical challenge is the determination
of the dynamics of the crack itself. According to the present
theory of fracture mechanic§l], the crack tip should
smoothly accelerate until it reaches the Rayleigh wave speed
Vg. Experiments, however, seldom show crack speeds ex-

estimations of the branching threshold. However, the cOMgeeding half this sped@,3]. This limitation on the terminal
parison between theses diferent results relies on the hypotlys|ocity does not seem to be always related to the dissipative
esis that the crack morphologies may be classified intQnechanisms at the crack tip. Indeed, experiméats7, 11

mirror-mist-hackle-branched zongg].

IV. CONCLUSION

show that the final crack speed depends on the potential en-
ergy fed in by the external loading. In addition, if the insta-
bilities, which induce the velocity oscillations of the crack
tip, can be treated as a perturbative process, the crack motion

We have classified the morphological instabilities of a f th di turbed bl t be k
crack into three regimes that occur upon increasing the crack’ e corresponding unperturbed probiem must be known.

speed: the microbranching, the surface roughening, and the
crack branching8]. We have proposed a model that exhibits
both roughening and branching transitions. Our analysis is M.A.B. is grateful to C. Josserand for helpful discussions
based on the study of the shape of the surfatiees) of and also thanks D. Bonn and V. Hakim for critical com-
constant largest principle stress in the neighborhood of thenents, and J. F. Boudet and S. Ciliberto for communications
whole surface discontinuity of the crack. We determined theabout their experimental work. Le Laboratoire de Physique
property that favors the mode-I extension at low speeds. W8tatistique est Associau CNRS et aux UniversiseParis VI
studied this property for higher crack velocities and inter-et Paris VII.
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