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Self-bending photorefractive solitons
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We found stationary intensity profiles of photorefractive screening solitons in the presence of the diffusion
processes. We show that these solitons are stable and in a certain range of parameters they propagate with
negligible radiation losses along exactly parabolic trajectories. We studied the collision of screening solitons
using numerical simulations. We found that even a small contribution of the diffusion effect leads to strong
energy exchange between the colliding photorefractive soli{@1+063-651X96)03011-3

PACS numbdis): 42.65.Tg, 42.50-p

The self-induced spatial soliton is the central idea of thehe width of the beam. In the case of a strong biasing field
light-guiding-light concept[1]. Optical spatial solitons in and relatively wide beams, the diffusion term is often ne-
photorefractive media have attracted much attention recentlglected. However, its contribution can become significant for
due to the possibility of their observation at very low laservery narrow beams. It is a well known fact that this diffusion
power levels and great potentials for applications in all-Process leads to a strong bending of the trajectory of optical
optical switching and processifig]. Three different types of beams in photorefractive crystdl$0-13. It has also been
photorefractive solitons have been identified so far—quasisShown[5,8,14 that the diffusion bends the trajectories of the
steady-state[2], screening[3-5], and photovoltaic[6]. photorefractive solitons. \_/ar|at|onal and numerical analyses
Among them the so-called screening solitons are the modtave shown that the soliton propagates along an approxi-
promising. In this case, the optical beam propagates in phdnately parabolic trajectory with a constant intensity profile
torefractive crystal biased with external dc electric field. Th 14]. ) ) )
presence of the optical beam in the crystal leads to photoex- !N this paper we analyze stationary profiles of the photo-
citation of electric charges, which migrate and are trapped bjfractive solitons in the presence of the diffusion effect. We
the defects. In a steady-state regime, the spatial distributioph®W. in particular, that these solitons, with asymmetric in-
of charges screens the externally applied electric field anfEnSity profile, propagate along exactly parabolic trajectories.
this process results in the decreasing of the total electric field Steady-state propagation (_)f the one-dlmens_|ona| optical
in the illuminated area of the crystal. The spatial modulatioP€@m(in planar geometryin biased photorefractive crystal
of the static electric field modifies the index of refraction via €@ be described by the following normalized equation
the Pockels effect, in such a way that the beam becomdsh 14k
self-trapped and propagates in a form of a spatial soliton.

One- and two-dimensional screening solitons have been ob- Ju 1 du u an(1+|ul?
i ) . . . i — + = _ + u= 1
served recently in experiments with strontium barium nio 9z 2 a2 T[] Y X , (@

bate crystal$7,8]. The space-charge redistribution in photo-

refractive crystals is caused mainly by the drift of

photoexcited charges in a biasing electric field. This mechawhere u(x,z) is the slowly varying amplitude of the field

nism leads directly to éocal change of the refractive index normalized to dark or background intensity, whideand x

and the self-focusing@]. In addition, transport of the photo- are propagation and transverse coordinates, respectively.

excited charges occurs also due to the diffusion. This proceskhis is the so-called modified nonlinear Sctfimger equa-

results in thenonlocal contribution to the refractive index tion with saturable nonlinearity. The term 1/1u|?) repre-

change. The strength of the diffusion effect is determined byentslocal nonlinear(saturablg change of the refraction in-
dex of the crystal induced by the presence of the optical
beam. The last term on the left-hand side of Bg.describes

"Electronic address: wzk111@rsphyl.anu.edu.au the contribution from the diffusion process. The parameter
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v is responsible for the strength of the diffusion effectda-

tive to the external electric fie)d
1/2
I eff
7*(—) : 2
Eo 3
2
wherer 4 andE, denote an effective electro-optic coefficient =
and dc biasing field, respectively. g
Equation (1) has a conserved quantity which we call =
power
Q:f |U|2dX (3) -0.2 [TRTPTIN FRTRRTOOee| | I I
o -20-10 0 10 20 30 40

. . . . t erse coordinate
Translational invariance im suggest$15] that another con- ransy

served qu_antlty ex',StS Wh'Ch_'S analogous to Hamiltonian. FIG. 1. Examples of intensity profiles of the self-bending pho-

However, its analytic expression cannot be f(_)und. torefractive solitons characterized by different values of the param-
We are interested here in stationary solutions of @%.  eter b: solid line, b=0.026 3435; dashed lineb=0.018 82;

Using symmetry reductionfl5] (for a particular example ,=0.15 in both cases.

similar to our problem se§l6]), it can be shown that the

propagation equation has a stationary solution in the form cnracterized by the parameterSoliton amplitude and the

b2 parameteq depend orb. We can add one more parameter to

gzz—bx+q (4)  the solution using Galilean transformation

u(z,x)=f(§)exr{—iz

’ — _ H _i,2
whereé=x—(b/2)z%, andq andb are free parameters. The u'(x,2)=u(x—vz,z)explivx—iv7z/2). @)

function f(£) must be real for the profile to be stationary. It

satisfies the equation This transformation adds “velocity’v (initial slope of the

trajectory as a new parameter of the solution. Existence of

1 f ff, the symmetry(4) allows us to conside(7) as transformation,
Sfeetaf=béf— Tz +2y07 72 =0. (5)  shifting the whole solution ix andz.
In Fig. 1 we present an intensity profile corresponding to
Therefore, if a stationary solution to EL) exists, it will  two solutions with different amplitudes. In both cases the
propagate along an exactly parabolic trajectory given by th@arametery is equal to 0.15. As is evident, the solitons fea-
relation ture an asymmetric intensity profile. The steeper tail of the

soliton (at negative$) is a monotonically decaying function
of £. The other tailat positive¢) has an oscillatory behavior
at infinity. By choosing parametérto be small, the oscilla-
tory part of the tail can be made arbitrarily small and ig-
wherex, andz, are arbitrary constants. nored. In this case, the solution of the problem can be sepa-
Solutions of Eq.(5) cannot be found in analytic form rated effectively into two parts: finding the shape of the
although different approximations are possible. They can bé&oliton and calculating radiation effects. The solutions of the
found using, e.g., the variational approach. We have to beaecond part can be performed analogously to the calculation
in mind that exact profiles necessarily have to have an oscilof bending losses in waveguide theqgfyr].
latory tail at one side of the soliton which extends to infinity ~ In the above approximation, the radiation does not influ-
and decays slowly ig. This follows from the analysis of the ence much the propagation of the soliton itself. To show this,
linearized equation we used the profiles obtained from E§) as an initial con-
dition in Eqg.(1) which was subsequently integrated using the
split-step fast Fourier transforiFT) method. Results of
these simulations are shown in Fig. 2. The solid line in Fig.
2(a) is the initial intensity profile of the soliton. The dashed
which has a solution in the form of an Airy function. Asymp- line shows the soliton profile after propagation over distance
totic behavior of the solution is different at plus and minusz=80. It is clear that the soliton propagates without visible
infinity due to the asymmetric terhéf. This means also changes. The radiation field is, in this particular case, below
that the intensity profile of the soliton is asymmetric. Thethe level 104. The contour plot in Fig. @) shows parabolic
oscillatory tail indicates that there will always be radiation trajectory of the moving soliton.
phenomena which can be interpreted physically as bending In separate numerical simulations we studied stability of
losses. Consequently, when bending is smialk(), radia- these solitons with respect to perturbation of the initial pro-
tion can be ignored. file. We found that self-bending solitons are stable and can
The solitonlike solutions of Eq(5) can be found using withstand relatively large perturbations. If the initial profile
numerical integratiofishooting technigue For a given value is not exactly a solution of Eq5), the beam quickly adjusts
of y there is a one-parameter family of soliton solutionsits parameters and transforms itself into the stationary one. In

X=5(2-20)=%,
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FIG. 2. Propagation of stationary self-bending photorefractive ~FIG- 3. Gaussian _beam excitation of photor_gfractivr_e 59"“’” in
screening soliton witlhb= 0.010 882 ¢,=0.15. (a) Intensity pro- the presence of thg dlffus!on termy€ 0.15).(a) Initial (solid !lne)
file (solid line—initial profile, dashed line—final profiie(b) con- ~ @nd final(dashed ling profile of the beam(b) Contour plot illus-
tour plot illustrating soliton trajectory. trating propagation of the beam. After a short transient region the
beam propagates as a self-bending soliton.

experiments, it is very unlikely that the initial beam has ex-used to create passive waveguide structures such as lossless
actly the right soliton profile. Typically, the Gaussian beamX junctions[19]. In media with saturable nonlinearity such
from the laser is launched into the photorefractive crystalas are considered here, photorefractive materials, the propa-
This beam subsequently adjusts itself to form the solitorgation of solitons is described by the nonintegrable nonlinear
[18]. Schralinger equation. Nonintegrability manifests itself in the

In order to mimic experimental conditions, we performedinelasticity of the soliton collisiofi20], i.e., radiation is emit-
numerical simulation of self-bending solitons using theted from the impact region and solitons change their param-
Gaussian intensity distribution as the initial condition. Ex-eters due to the collision. In order to investigate the influence
amples of these simulations are shown in Figs. 3 and 4. Thef the diffusion term on the soliton collision we solved nu-
input intensity distribution is a Gaussian function merically Eq.(1) using as an initial condition two spatially
| (x)=2.51exp0.352). The plots in Figs. 3 and 4 corre- separated soliton solution{@ith y=0 and maximum inten-
spond to two different values of the bending parametersity |,=0.6). These solutions have been launched with dif-
vy=0.15 andy=0.30, respectively. One can see that excepferent initial velocitiedusing the transformatio¢¥)] in order
for a relatively short initial distance when the beam widthto introduce relative transverse velocity of the beams. The
and intensity vary, the beam propagates in the form of aesults of these simulations are presented in Figa. &hd
stationary solution as a self-bending soliton. The plots in Fig5(b). Figure 3a) shows the collision of two solitons without
3(@ and Fig. 4a) also illustrate the development of the the diffusion term (/= 0). Both solitons are initially in phase
asymmetry of the beam which increases with an increase iand collide with low losses in the impact area. However, the
the values ofy. plot in Fig. 5b) shows that inclusion of even a very small

It is interesting to see how the presence of the diffusiomonlocal term ¢=0.02) leads to an energy exchange be-
term affects the collision of photorefractive solitons. Solitontween the beams. This behavior is analogous to the reported
collision is important for their application in optical switch- earlier interaction of very narrow temporal solitons in the
ing and for use in optical circuitry. The unique property of presence of the Raman effd@1]. Strong energy exchange
Kerr solitons is that they collide elastically so that a few between the colliding solitons has been obser&l. The
crossings of optical channels can simultaneously operatdiffusion term in Eq.(1) is analogous to the Raman term in
without the cross talks. The soliton collisions can also behe equation describing temporal solitons. It has the same



5764 WIESEAW KROLIKOWSKI et al. 54

&
=

(a) |

?‘3
o
:

n
o
:

.

intensity

1.0} ]

0.5

0.0hi Jo N

-30-20-10 0 10 20 30
transverse coordinate

(b)

distance

0 L I Ex

-30-20-10 0 10 20 30
transverse coordinate

FIG. 4. The same as Fig. 3 but witp=0.30. Notice develop-
ment of the asymmetry of the beam.

dependencdas a transverse or temporal derivative of the
fboe”% Tvénttﬁgs;gm;(c\,w _T_ﬁgjr::]lgpg;egggﬁavr\]’g:n dﬂ?i?]léniilrilgntive. solitons(f'a) Wilthout and(b) with small contribution of the dif-
- _ ? . . fusion term; in this latter casg=0.02.
collision represents quite generic behavior of solitons gov-
erned by the nonintegrable nonlinear Salinger equation.
This property can be useful in modeling optical componentgarabolic trajectories. We have also shown that the nonlocal
such as asymmetriX junctions with desirable transmission contribution to the refractive index change induced by the
characteristics. diffusion term leads to the energy exchange between the two
In conclusion, we studied propagation of the photorefrac<colliding solitons. It should also be noted that, while we have
tive screening solitons in the presence of the diffusion efconsidered here the specific case of screening solitons, our
fects. We found the intensity profile of the solitons andresults are also applicable to the case of solitons which exist
showed that they propagate as stationary solutions alonigp photovoltaic photorefractive crysta6].

FIG. 5. Collision of two identical, initially in-phase photorefrac-
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