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We found stationary intensity profiles of photorefractive screening solitons in the presence of the diffusion
processes. We show that these solitons are stable and in a certain range of parameters they propagate with
negligible radiation losses along exactly parabolic trajectories. We studied the collision of screening solitons
using numerical simulations. We found that even a small contribution of the diffusion effect leads to strong
energy exchange between the colliding photorefractive solitons.@S1063-651X~96!03011-5#

PACS number~s!: 42.65.Tg, 42.50.2p

The self-induced spatial soliton is the central idea of the
light-guiding-light concept@1#. Optical spatial solitons in
photorefractive media have attracted much attention recently
due to the possibility of their observation at very low laser
power levels and great potentials for applications in all-
optical switching and processing@2#. Three different types of
photorefractive solitons have been identified so far—quasi-
steady-state@2#, screening @3–5#, and photovoltaic @6#.
Among them the so-called screening solitons are the most
promising. In this case, the optical beam propagates in pho-
torefractive crystal biased with external dc electric field. The
presence of the optical beam in the crystal leads to photoex-
citation of electric charges, which migrate and are trapped by
the defects. In a steady-state regime, the spatial distribution
of charges screens the externally applied electric field and
this process results in the decreasing of the total electric field
in the illuminated area of the crystal. The spatial modulation
of the static electric field modifies the index of refraction via
the Pockels effect, in such a way that the beam becomes
self-trapped and propagates in a form of a spatial soliton.
One- and two-dimensional screening solitons have been ob-
served recently in experiments with strontium barium nio-
bate crystals@7,8#. The space-charge redistribution in photo-
refractive crystals is caused mainly by the drift of
photoexcited charges in a biasing electric field. This mecha-
nism leads directly to alocal change of the refractive index
and the self-focusing@9#. In addition, transport of the photo-
excited charges occurs also due to the diffusion. This process
results in thenonlocal contribution to the refractive index
change. The strength of the diffusion effect is determined by

the width of the beam. In the case of a strong biasing field
and relatively wide beams, the diffusion term is often ne-
glected. However, its contribution can become significant for
very narrow beams. It is a well known fact that this diffusion
process leads to a strong bending of the trajectory of optical
beams in photorefractive crystals@10–13#. It has also been
shown@5,8,14# that the diffusion bends the trajectories of the
photorefractive solitons. Variational and numerical analyses
have shown that the soliton propagates along an approxi-
mately parabolic trajectory with a constant intensity profile
@14#.

In this paper we analyze stationary profiles of the photo-
refractive solitons in the presence of the diffusion effect. We
show, in particular, that these solitons, with asymmetric in-
tensity profile, propagate along exactly parabolic trajectories.

Steady-state propagation of the one-dimensional optical
beam~in planar geometry! in biased photorefractive crystal
can be described by the following normalized equation
@3,14#:
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whereu(x,z) is the slowly varying amplitude of the field
normalized to dark or background intensity, whilez and x
are propagation and transverse coordinates, respectively.
This is the so-called modified nonlinear Schro¨dinger equa-
tion with saturable nonlinearity. The term 1/(11uuu2) repre-
sentslocal nonlinear~saturable! change of the refraction in-
dex of the crystal induced by the presence of the optical
beam. The last term on the left-hand side of Eq.~1! describes
the contribution from the diffusion process. The parameter*Electronic address: wzk111@rsphy1.anu.edu.au
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g is responsible for the strength of the diffusion effects~rela-
tive to the external electric field!,

g}S r effE0
D 1/2, ~2!

wherereff andE0 denote an effective electro-optic coefficient
and dc biasing field, respectively.

Equation ~1! has a conserved quantity which we call
power
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`

uuu2dx. ~3!

Translational invariance inz suggests@15# that another con-
served quantity exists which is analogous to Hamiltonian.
However, its analytic expression cannot be found.

We are interested here in stationary solutions of Eq.~1!.
Using symmetry reductions@15# ~for a particular example
similar to our problem see@16#!, it can be shown that the
propagation equation has a stationary solution in the form

u~z,x!5 f ~j!expF2 izS b23 z22bx1qD G , ~4!

wherej5x2(b/2)z2, andq andb are free parameters. The
function f (j) must be real for the profile to be stationary. It
satisfies the equation
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Therefore, if a stationary solution to Eq.~1! exists, it will
propagate along an exactly parabolic trajectory given by the
relation
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wherex0 andz0 are arbitrary constants.
Solutions of Eq.~5! cannot be found in analytic form

although different approximations are possible. They can be
found using, e.g., the variational approach. We have to bear
in mind that exact profiles necessarily have to have an oscil-
latory tail at one side of the soliton which extends to infinity
and decays slowly inj. This follows from the analysis of the
linearized equation

1

2
f jj1q f2bj f2 f50, ~6!

which has a solution in the form of an Airy function. Asymp-
totic behavior of the solution is different at plus and minus
infinity due to the asymmetric termbj f . This means also
that the intensity profile of the soliton is asymmetric. The
oscillatory tail indicates that there will always be radiation
phenomena which can be interpreted physically as bending
losses. Consequently, when bending is small (b!1), radia-
tion can be ignored.

The solitonlike solutions of Eq.~5! can be found using
numerical integration~shooting technique!. For a given value
of g there is a one-parameter family of soliton solutions

characterized by the parameterb. Soliton amplitude and the
parameterq depend onb. We can add one more parameter to
the solution using Galilean transformation

u8~x,z!5u~x2vz,z!exp~ ivx2 iv2z/2!. ~7!

This transformation adds ‘‘velocity’’v ~initial slope of the
trajectory! as a new parameter of the solution. Existence of
the symmetry~4! allows us to consider~7! as transformation,
shifting the whole solution inx andz.

In Fig. 1 we present an intensity profile corresponding to
two solutions with different amplitudes. In both cases the
parameterg is equal to 0.15. As is evident, the solitons fea-
ture an asymmetric intensity profile. The steeper tail of the
soliton ~at negativej) is a monotonically decaying function
of j. The other tail~at positivej) has an oscillatory behavior
at infinity. By choosing parameterb to be small, the oscilla-
tory part of the tail can be made arbitrarily small and ig-
nored. In this case, the solution of the problem can be sepa-
rated effectively into two parts: finding the shape of the
soliton and calculating radiation effects. The solutions of the
second part can be performed analogously to the calculation
of bending losses in waveguide theory@17#.

In the above approximation, the radiation does not influ-
ence much the propagation of the soliton itself. To show this,
we used the profiles obtained from Eq.~5! as an initial con-
dition in Eq.~1! which was subsequently integrated using the
split-step fast Fourier transform~FFT! method. Results of
these simulations are shown in Fig. 2. The solid line in Fig.
2~a! is the initial intensity profile of the soliton. The dashed
line shows the soliton profile after propagation over distance
z580. It is clear that the soliton propagates without visible
changes. The radiation field is, in this particular case, below
the level 1024. The contour plot in Fig. 2~b! shows parabolic
trajectory of the moving soliton.

In separate numerical simulations we studied stability of
these solitons with respect to perturbation of the initial pro-
file. We found that self-bending solitons are stable and can
withstand relatively large perturbations. If the initial profile
is not exactly a solution of Eq.~5!, the beam quickly adjusts
its parameters and transforms itself into the stationary one. In

FIG. 1. Examples of intensity profiles of the self-bending pho-
torefractive solitons characterized by different values of the param-
eter b: solid line, b50.026 3435; dashed line,b50.018 82;
g50.15 in both cases.
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experiments, it is very unlikely that the initial beam has ex-
actly the right soliton profile. Typically, the Gaussian beam
from the laser is launched into the photorefractive crystal.
This beam subsequently adjusts itself to form the soliton
@18#.

In order to mimic experimental conditions, we performed
numerical simulation of self-bending solitons using the
Gaussian intensity distribution as the initial condition. Ex-
amples of these simulations are shown in Figs. 3 and 4. The
input intensity distribution is a Gaussian function
I (x)52.51exp(20.35x2). The plots in Figs. 3 and 4 corre-
spond to two different values of the bending parameter,
g50.15 andg50.30, respectively. One can see that except
for a relatively short initial distance when the beam width
and intensity vary, the beam propagates in the form of a
stationary solution as a self-bending soliton. The plots in Fig.
3~a! and Fig. 4~a! also illustrate the development of the
asymmetry of the beam which increases with an increase in
the values ofg.

It is interesting to see how the presence of the diffusion
term affects the collision of photorefractive solitons. Soliton
collision is important for their application in optical switch-
ing and for use in optical circuitry. The unique property of
Kerr solitons is that they collide elastically so that a few
crossings of optical channels can simultaneously operate
without the cross talks. The soliton collisions can also be

used to create passive waveguide structures such as lossless
X junctions@19#. In media with saturable nonlinearity such
as are considered here, photorefractive materials, the propa-
gation of solitons is described by the nonintegrable nonlinear
Schrödinger equation. Nonintegrability manifests itself in the
inelasticity of the soliton collision@20#, i.e., radiation is emit-
ted from the impact region and solitons change their param-
eters due to the collision. In order to investigate the influence
of the diffusion term on the soliton collision we solved nu-
merically Eq.~1! using as an initial condition two spatially
separated soliton solutions~with g50 and maximum inten-
sity I 050.6). These solutions have been launched with dif-
ferent initial velocities@using the transformation~7!# in order
to introduce relative transverse velocity of the beams. The
results of these simulations are presented in Figs. 5~a! and
5~b!. Figure 5~a! shows the collision of two solitons without
the diffusion term (g50). Both solitons are initially in phase
and collide with low losses in the impact area. However, the
plot in Fig. 5~b! shows that inclusion of even a very small
nonlocal term (g50.02) leads to an energy exchange be-
tween the beams. This behavior is analogous to the reported
earlier interaction of very narrow temporal solitons in the
presence of the Raman effect@21#. Strong energy exchange
between the colliding solitons has been observed@21#. The
diffusion term in Eq.~1! is analogous to the Raman term in
the equation describing temporal solitons. It has the same

FIG. 2. Propagation of stationary self-bending photorefractive
screening soliton withb5 0.010 882 (g050.15!. ~a! Intensity pro-
file ~solid line—initial profile, dashed line—final profile!; ~b! con-
tour plot illustrating soliton trajectory.

FIG. 3. Gaussian beam excitation of photorefractive soliton in
the presence of the diffusion term (g50.15).~a! Initial ~solid line!
and final~dashed line! profile of the beam.~b! Contour plot illus-
trating propagation of the beam. After a short transient region the
beam propagates as a self-bending soliton.
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dependence~as a transverse or temporal derivative of the
beam intensity! for low saturation regime when nonlinearity
follows the Kerr law. The energy exchange during soliton
collision represents quite generic behavior of solitons gov-
erned by the nonintegrable nonlinear Schro¨dinger equation.
This property can be useful in modeling optical components
such as asymmetricX junctions with desirable transmission
characteristics.

In conclusion, we studied propagation of the photorefrac-
tive screening solitons in the presence of the diffusion ef-
fects. We found the intensity profile of the solitons and
showed that they propagate as stationary solutions along

parabolic trajectories. We have also shown that the nonlocal
contribution to the refractive index change induced by the
diffusion term leads to the energy exchange between the two
colliding solitons. It should also be noted that, while we have
considered here the specific case of screening solitons, our
results are also applicable to the case of solitons which exist
in photovoltaic photorefractive crystals@6#.
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