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Disorder and order in sheared colloidal suspensions
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We study colloidal suspensions in a linearly sheared solvent using standard stochastic field equations,
namely, a modified Navier-Stokes equation for the solvent’s velocity, coupled with the continuity equation for
the suspensions’ number density. Unlike earlier approaches, active mixing is included, leading to distortions in
the structure factor for wave vectors perpendicular to the flow direction. Depending on the nature of the
colloidal interactions, the density of the suspension, and the magnitude of the shear, spatial correlations can be
either enhanced or reduced. Moreover, in strongly interacting systems, a spinodal line can be found, above
which the system is unstable to the formation of layers perpendicular to the shear gradient. We discuss how our
theory may be used to understand shear thinning or shear thickening, and the transition to lamellar phases seen
in simulations[S1063-651X96)03207-3

PACS numbegp): 82.70-y, 64.60.My

I. INTRODUCTION structure factor or the suspension’s viscosity as a function of
the shear rat¢15] (and references therginThe effective
Colloidal dispersions contain charged or neutral particlessiscosity of the suspension can exhibit three possible behav-
that are suspended in a solvent which may also contain exers, namely, the viscosity may be independent of the shear,
cess counterions. Typically, the energy of interaction beor it may increase or decrease as the applied shear strength
tween the colloidal particles is of the same order of magniincreases. Respectively, these correspond to Newtonian be-
tude as ions in a metal, while their size is of the order of ahavior, to shear thinning, and to shear thickening. Shear thin-
micrometer[1]. Hence the interaction energy density is tre-ning seems to be the initial reaction of most systems under
mendously reduced in comparison to the usual moleculashear, and can be explained in terms of the loss of order seen
systems, and consequently, colloidal systems are very sofin the structure factor, cf. Ref16]. As the shear rate is
Colloidal suspensions exhibit gaseous, liquid, crystallinejncreased further, shear thickening may or may not be seen
and glassy phase2-5], and this makes them attractive depending on the physical parameters of the sheared system
model systems for a wide range of studies, phase transitiorend on the maximum attainable shear rate. Refer¢hgg
and shear-induced melting being two standard exampleslso suggests that for suspensions which are in a solid state at
Since the size and/or average separation of the particles is @aguilibrium, once shear melting has occurred, one recovers
the same scale as the wavelength of light, their structure mathe same types of behaviors found in an initially liquid sus-
be probed either using light scattering at low concentrationgpension.
or small-angle neutron scatterifANS) at larger packing In this paper we use a statistical field theory model to
fractions. study the effect of a linear shear gradient on hard-sphere
Because of their unusual softness, the nonequilibrium becolloidal dispersions at different concentrations. We focus on
havior of colloidal suspensions is of particular interest. Fol-the structure factor for wave numbers in the shear gradient
lowing the experimental work of Clark and Ackersg@, direction since, as will be seen later, this is probably the key
sheared colloidal suspensions have been widely studiegispect in understanding the rich phenomena mentioned
[2,7-11]. Most studies of nonequilibrium phenomena focusabove. This work was motivated by experiments and numeri-
on the response of either crystalline-phase or liquid-phaseal simulationg [17,18, and othersin which distortions of
colloidal suspensions to an applied shear stress. In the formémne structure factor are seen in the plane perpendicular to the
case, the primary interest lies with the shear melting transiflow direction of the solvent, and more specifically, in the
tion, where a solid colloidal suspension is sheared until idirection of the shear gradient. No theory of colloidal sus-
becomes disordered and liquidlike. In some simulat{dray, pensions in a solvent predicts such an effect, though an ap-
a reentrant solid phase is found as the shear rate is increaspbach ignoring the solvent and based on the Smoluchowski
past the melting transition, and furthermore, in stronger solequation[11] (with boundary conditions defined on the sus-
ids (obtained by increasing the packing fraction and/or repended particles’ closest approach surfated to an effect
ducing the counterion concentratjoa solid-solid transition in the plane perpendicular to the shear flow direction. Their
was observed with no melting occurring. Finally, we noteresults, however, are drastically different from those pre-
that while discontinuities in viscometric functions have beensented here and the conclusion which may be drawn from
observed, reentrant crystallization has not been observed their study relative to the behavior of the system under shear
real systems. Instead, long-wavelength pattéens., stripes  is actually opposite to ours.
can form[13] and these have been explained using a con- In the next section, the model is presented both in the
tinuum viscoelastic hydrodynamic model in REE4]. form of Langevin equations and in the Martin-Siggia-Rose
The second case involves shearing a system in the liquiMSR) formalism[19], and the two-point correlation func-
state; this leads to a wide variety of behaviors in terms of thdion is given to one-loop order. The calculation is done for a
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general equilibrium structure factd®® and the general [21], as in Ref[7]. The above equations are simply the con-
form of the results is given. The high- and low-shear do-tinuity equation[Eq. (1)], which ensures conservation of the
mains are clearly identified in terms of the self-diffusion of total number of colloidal particles, and the Navier-Stokes
the colloid particles and the characteristic length of the equi€quation as modified by the inclusion of active mixirin.
librium structure factor, and may thus be ea5i|y ComparedZ)], which describes the kinetics of a viscous fluid, here the
with experiment_ S|mp|e expressions for the Sma”-sheaﬁowent. In addition, the solvent is assumed to be incompress-
limit as well as for the asymptotic high-shear behavior areble and the colloidal particles neutrally buoyant; hence
found. In Sec. Il calculations are performed for a system ofp= const, which implies, using the continuity equation, a
hard spheres in the Percus-Yevick approximation. We condivergenceless velocity field, and thus E¢b. and (2) are
clude in Sec. IV, and details of calculations are given in thecomplemented by the following relations:

Appendix. p=const, V-v(x,t)=0. (5)

Il. THEORY This transversality condition implies longitudinal terms such
) ) o as the pressure gradient term in E) and the term in
The model presented in this section involves a stochast@ivj in the velocity noise correlation E¢d), which includes

field theory description, of aa priori coarse grained system, he pylk viscosity drop out. The relaxation of this condition
and is an extension of Ronis’s linear fluctuating diffusionimp"es the existence of sound waves, a situation which was
equation{ 7]. The number densitM(x,t), which is a continu-  gt,died in simple liquids by Machtet al. [22], who looked

ous variable, represents the number of particles per unit vols; the deformation of the Brillouin peaks caused by shear.
ume, where naively, the unit volume should be large with s system of equations has been used previously to
respect to the interparticle separations. However, the succeggdy systems near a phase transition such as pure fluids near
of these types of theories in describing nonequilibrium strucyhe |iquid-gas transition and binary mixtures near the critical
tural changes in solidésee, e.g., Ref.20]) has shown that concentration23-26. Since we are not studying a phase
often, the above coarse graining requirements are to0 Strifransition but rather nonequilibrium effects within a liquid
gent, and that the so-called phase field models may be enase, some phenomenological differences arise. First, the
tended down to lengths of the order of the interface widthentjre equilibrium structure factor is used as opposed to that
thatis, to the order of the interatomic spacing. Consequentlyspytained from a square-gradient expansion of the free energy
the standard assumptions will be made that the fields arg, the relevant order parameter near the transition. Further-
smoothly varying functions of time and space and are everymore, the assumption about the equilibrium particle distribu-
where well behaved, implying of course that any boundary,, ‘yrangjating into the simple relation betweBitk) and

effects are neglected. The other field relevant to our probleqhe equilibrium structure factor specified above, due to de

is the local velocity of the fluidy(x,t). Genneg21], was later shown to be a good approximation for

The equations of motion governing the evolution of thesecolloidal suspension§4]. Thirdly, the convective term is

fields are usually neglected since by naive power counting, it has an
IN(x,t) ) upper critical dimension of 2, and is thus irrelevant for
st RoVax)=vixt)- VN O+, (D §=5 |y the case at hand, however, these arguments do not
apply since we are not in the critical regi¢m fact, one
VX _ _ _ Vp(x,t) might wonder how the convective term can disappear in any
vVav(X,t) —v(Xx,t) - Vv(x,t) h 3 . . . . .
at p dimension since it ensures Galilean invariance of the equa-
T tion; a proper renormalization grofRG) treatment using,
+LVN(X,t),u,(X,t)+f(X,t), (2)  for example, the Callan-Symanzik equation to obtain the
pNe scaling functions, shows that priori, the coefficient of the

e ikox (eq) convective term is not affected by a scale transformation, and
where  u(x,t)=[[dk/(2m)"Je” " *N(k,t)/S*¥(k), and  thys remains present whei>2]. Nevertheless, it will be
with the Gaussian noise, whose moments are seen later that for realistic shear strengths, the convective

(Z(x,t))=0, term appearing in the Navier-Stokes equation is negligible.
Note that the Navier-Stokes equation for an incompress-
PR\ — _ 2 ! _t!
{(Ex DX ))=2Done( =V S(x=x") 8(t =),  (3) ible fluid when no external forces are involved relaxes to a

(f(x,1))=0, simple Gaussian equilibrium distribution. This essentially

follows from the particular structure of the reversible term

and (the convective term leaving a simple linear term as the

_ VA V25— V.V (Lt irreversible part of the thermodynamic force, from which a
(HOGOT ) =2ke T p)[ = V20 = ViVi(3 + )] fluctuation-dissipation theorem folloW&7,28. In the same

X 8(x—x")é(t—t"), (4) way, the additional term involving the number density

N(x,t), which appears in Eq2) (sometimes referred to as
and wheren,. is the number density of colloid particles,is  the active-mixing terr)y) enforces detailed balance and hence,
the fluid density D, is the diffusion constant of the suspen- in the absence of external perturbations, allows the system to
sions in the solventy is the kinematic viscosityp is the reach thermodynamic equilibrium. Note that the active-
local pressure, angt is the ratio of the bulk viscosity to the mixing term is responsible for hydrodynamic interactions;
shear viscosity. The definition gfi(x,t) follows from de i.e., fluctuations irN at one point in the system lead to fluc-
Gennes’s expression for a generalized diffusion operatotuations in the velocity, which in turn affect density fluctua-
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tions at other points. In the limit of vanishing Prandtl num- constraint, Eq.(5), may be cast in functional form from

ber, the active-mixing couplings all involve the usual Oseenwhich the generating functional of cumulants and of vertex

tensor. Finally, note that our theory does not explicitly in-functions may be defined. This representation of fluctuating

clude the effects associated with the hydrodynamic boundarfield equations, known as the MSR formalia®], has the

conditions at the colloidal particles’ surfaces, except througlpractical purpose of defining vertex functions which can be

the form of the diffusion constant. calculated in perturbation theory using Feynman diagrams.
The stochastic equationd) and (2) together with the We first define the functional:

- dkdw . o - . o
H[N,N,V,v]=fmj+—l kgT(v/p)kV(Kk,w) - ®-V(—k,—w)— (—iw+ vk?)V(k,w) - v(—k,— o)

i (dk'dw’ _ .
3 (2—77)dﬂv“(—k,—w)Vﬁ"Bva(k',w')vV(k—k',w—w')

i [ dk'de’ _ - ~

+5 (Z—W,ai—lv“(—k,—w)U“(k,k’)N(k’,w’)N(k—k’,w—w’)+DonckzN(k,w)N(—k,—w)

_ ' D k2 ( dk'de’ ~ o , ,

—N(k,w) _IQH—S(T(k) N(—k,—w)—lfmrlN(k,w)kava(k ,o' )N(k—k",o—w")|, (6)
where @) P=5"P—KkUKPFIKZ,  VIPY=KB(®)+K/ (D), UKk )=kgT/(pne)(®y) *Pk’ P[1/SCD(k—k')

—1/3®9(k")], 8%F is the Kronecker delta, the Greek superscripts denote Cartesian coordinates, and a sum over repeated
indices is henceforth implied. The above functional may be used to construct the partition function as

~ . L~ ) ~ dkdw
Z[h,h,j,]]Zf {DN}{DlN}{DV}{Dﬁ/}exp(—H[N,N,v,v])exp{fW[h(k,w)N(—k,—w)

+h(k,w)N(—k, — )]

dkdw ~ _
EXF{J'(2—7T)c|+—1[1'(k,w)'v(—k,—w)ﬂ(k,w)-v(—k,—w)] : (7
Using the partition function, we can define the free energy functional in the usualﬁ&hﬁ,j ,T]: - InZ[h,F,j T] The latter

functional generates all connected graphs, or cumulants. Finally, through a Legendre transformation, we obtain the vertex
functional:

—~ ~ _ o~ dkdw ~ ~
F[<N>,<N>1<i>1<i>]=F[h,h,jJ]+JWﬁ[h(k,wXN(—k,—w)>+h(k,w)<N(—k,—w)>]

dkdew - B
+JW[J(k.w)‘(V(—k,—w)>+l(k.w)'<v(—k,—w)>]. €)
|
with The evaluation of the two-point correlation function
— 5F[h ﬁj j~] (N(k,Q)N(k’,Q")), performed in this work up to one-loop
(N(k,w))= m|h:ﬁ:oﬂf:m order, may be represented diagrammatically as
~ — 6F[h,h,jj] 3 =——+—w D
(N(K,0))= —=————|n-F=0; ]=0 )
sh(—k,—w) (a) (b)
and, + s + AN
— 8F[hh,j.j] — —
(v(k,w))= mhzﬁzo;ﬁ:o, (c) (d) (1D
- —8F[h/h,j.j] =l —
(V(k,0))= —=—————|n=f=0j ]=0- (10)
(=K, —w) (e) (f)

The functionall’ generates vertex functions which can bewhere the elements used in constructing Feynman diagrams
obtained diagrammatically by keeping only one-particle-are easily determined. For example, in expansions about
irreducible (1P)) graphs and amputating the external legs. equilibrium, the result is
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e VAVAVAVAY =
2Dgn k*
2
@* + Dok?
St (k)

(Dy)**
—iw+vk?’

b

_ 2ksT(vip)k® o

@)
@? + (vk2)? W
i
MM< == 5‘ Vk’ﬂy,
www\w< = 5 (k k/)
WAM/\A/\/< = _l'ka.

Note that Eq.(11) can be obtained in alternate ways; we

~iw + Dk2/S@(k)’

12

13

(14

(15

(16)

17

(18

common starting point for a theory of the dynamic structure
factor [which Eq.(11) formally is], for a self-consistent ver-
sion of the theory, or for an analysis of a linear relaxation
experiment. Some of these points are already under consid-
eration, and will be reported later.

This study focuses on such a system being driven away
from equilibrium by the application of linear shear, i.e.,

V(X,1)=Vo(X) + dv(x,t), with vo(X)=weyX. (19

In all that follows, wy=0 is assumed, with no loss of gener-
ality. The shear breaks detailed balance and brings the sys-
tem to a steady state out of equilibrium. Thus the fluctuation-
dissipation relation no longer holds and the system will not
decay back to its original thermodynamic equilibrium as
long as the external forogheay persists. The applied shear
also modifies the bare propagators that appear in(EL,

i.e., it modifies Eqs(12)—(15). They become nondiagonal in
the shear gradient direction of Fourier space, and hence be-
come integral operators as opposed to simple factors. For
example, the bare number density response function be-
comes

S CRLY)
— VWV lk >0 — Oky
(k + k ) x dr
Xexp( —Tky_ jkx wok, — (r; +k)D(k, x)),
_ 8k tk)
e AVAVAVAVAV) lky<0 - (—‘(Ooky)
(ke + kx) ke dr, ,
XEXP(IQ (—awok,) -k (—wok )(r + k) Dk, rx)}

(20

have adopted the MSR method since it can be used aswhile the correlation function takes the form

—k
(24 kD)D) - |

I](>0—~2D0n
k,+k
xexp(—iQ(X o)
ok,

lk_ 2D0n
(ke k)
xexp|iQ — —

p( (—ak,) J (—wok)

dk j I,
27 Jmaxtk, -k, 9 (wok, )2

dk min(k—ky)  dl,
2 (wok )2

— X (P +k)

—fx (2 +kQD&hQ—I drw&(r+k%D&wﬁ}
ky a)oky

— (P +kD)

(r +k| )D(kh x))»

L (o Ok) (21
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where k, =(0ky ,k;). This constitutes a nontrivial change toy, the external propagatothnes) will cause the result to
which greatly increases the complexity of the calculation.be negligibly small for large shears unldgs=0, and hence
The leading order correlation function, cf. EqR1), is  we focus our attention on wave vectors in the gradient direc-
equivalent to the result of Ron[g]. tion. Moreover, note that the zero-loop analysis describes the

Previous studies of sheared colloid suspensions dealingjstortion of the structure factor reasonably well away from
with the liquid phase either ignored the effect of the solventhe gradient axis, i.e., fdk,# 0.
[18,11], or dealt with convection only to zero-loop ordéfi. Thus we focus on evaluating the nonlinear correction
As a consequence, these methods were unsuccessful at pateng the gradient direction and proceed to evaluate, to first
ducing an effect in the gradient directidinerex). As can be  order in perturbation theory, the two-point correlation func-
seen from the modified response and correlation functiongjon for the colloid number density, settihg andk, to zero.
Egs. (200 and (21), respectively, the shear strength,  This will be done for a general equilibrium structure factor
couples to the component of the wave number in the flows®9(k).
direction, ky; hence, in the plane perpendicular o the The quantity of interest is the equal-time two-point corre-
hydrodynamic model implies that only mode-coupling termslation function. It is related to the dynamical two-point cor-
could lead to shear effects, and these first appear in the oneelation function and to the nonequilibrium structure factor
loop terms of Eq(11). in the following way:

As was shown in Ref.7], the zero-loop expressions, Egs. dQ r do’
(20) and(21), predict a loss of order as the shear is increased, (N(k)N(k’))=fﬂf 2—<N(k,Q)N(k',Q')>
eventually resulting in an ideal gas structure factor, i.e., T
Sed)(k)~1, as long ak,#0. Whenk,=0 the leading order =(2m)98(k+k')NS(K). (22)
analysis predicts no change in the structure factor. The rea-
son for this behavior lies in the form of the response func-To one-loop order, cf. Eq11), the equal-time structure fac-
tion, cf. Eq.(20); it is unchanged fok,=0 but whenk, tor along the special direction becomes
#0 it becomes a rapidly decreasing function lgk’. At S(t)=SCt) {1+ S (t)n[f(t)+F(—1)]}, (23
higher order, even though the loop terms in Eil) include
contributions from internal wave vectors that are orthogonaivhere the nonequilibrium correctian.f(t) has the form

|
3 [a . x2 +e 9 [ SEIXZ+(p+x)?) 1 P [X2+(r+x)?]
f X[xf+(x+t>2]2f o f

_ d R _ r 1]
o o “Pap Se9(|x]) ayJo SEI\Z+(r+x)?)
(29)

with x, =(0y,z), and with the integration domain along the relation function is easily found from Eq&3) and(25) and

y direction restricted to¢=0. The quantityn.f(t) is a func- leads to the following resummed expression $or

tion of the scaled wave numbéerk,o [Whereo=2m/Kayx 1S(t)=1—nC(t) +f(t)+f(—1)]. (26)

is the characteristic length scale defined by the maximum of

S(e9)(k), which for hard spheres corresponds to the particlesThis formulation will be particularly useful later when con-
diametet, the dimensionless quantityr=wyo?/(2Dy), structing an approximate stability phase diagram. The insta-
which is analogous to the Blet number and is sometimes bility in question is then simply defined as the
called the Deborah numb¢pg], and the packing fraction, 1/S(t*)|s=q,=0, which corresponds to a spinodal line,
n=(4w/3)n.a° a being the radius of the particles. Note wheret* =k* ¢ is the position of the diverging peak in the
that the latter expression does not have an explicit deperstructure factor.

dence on the kinematic viscosity but only an implicit one It is of interest to investigate the nonequilibrium structure
throughD,, if one accepts the Stokes-Einstein relation. Fur-factor in the limit of small shear¢<1), as well as its as-
ther details on the derivation é¢{t) are given in the Appen- ymptotic infinite-shear behavior{— =), as simplified ex-
dix. pressions for the nonlinear correctib(t) may be obtained.

The equilibrium structure factor is related to the directFor small Deborah numbers andtat0, the full expression
correlation function through the Ornstein-Zernike relation, for f(0), cf. Eq.(24), reduces to

20 2
limn.f(0)= % a a3’2[a ncc(t—)vlat ]l};OC,
(25) 20 T\ o [1-n.c(0)]
whereC is a constant given by EqA6) in the Appendix.
Hence it is natural to suppose that quantities which mainly
wherec(t) is the Fourier transform of the equilibrium direct depend on the long wavelength behavior of the system are
correlation functionc(x). If the Ornstein-Zernike form is expected to vary ag®? for small a.
assumed for the nonequilibrium structure factor, cf. %), At finite t, the nonequilibrium correction to the direct
then the first-order correction to a nonequilibrium direct cor-correlation function is

(27)

SHO= T 50
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O = () 2a aszdr ne'(r)y [(x*—1) |1+x 34+5 2+5+ 7 . 3

nfO=NF =G\ TNV o T mnmn el x I\ T T e e T ae
s 32 1.5 3 28
X230 e ok (28

wherex=r/t. In addition to the requirement of small-shear-rate<(1), the validity of the finitet expression is restricted to

the regime wherezl/2<t, and hence the notion of a boundary layer arises. Equéi®nwill be compared with the numerical
integration of the full expression for hard spheres, confirming the existence of a boundary layer as defined above.
Nonanalyticities were seen in simulations of fluids with various types of interaf3@n33, where the typical behavior
was an increase in pressureais’ for small to intermediate shear rates, and a decrease of the viscosilff &sr intermediate
shear rates. Theoretically, nonanalytical behavior was also fEe#d36,16,9, together with an expansion parameter analo-
gous toa/t? for quantities such as the structure factor which implies the same boundary layer definition as above. Note that
the relation between the structure and the viscosity is nontrivial, and has contributions from both high and low wave numbers;
hence, just which wave number regime, if any, makes the dominant contribution is responsible for the variety of different
behaviors seen in simulations and experinméi.
Simple expressions are also found for the infinite-shear correction to the direct correlation function:

X2+ 2
Xt

X+t

In
X—t

3 /(a\ (> x* _
ncfx(t)+ncfx(—t):—ﬂ<;> fo dxt—zncc(x) —2), (29

wherex= (o is the scaled internal momentum, anid defined above. The same quantity may be expressed in terms of the real
space correlation functioo(s), wheres=r/¢ is a scaled real space variable, giving

a © n.c(s)(sin(st
ncfw(t)+ncfw(—t)=—677(—)o‘°’f ds— (2) n( )[(st)2—1]+cos{st)). (30)
[ 0 st st
|
The notion of infinitear limit may appear purely aca- The well-known Percus-Yevick expression for the real

demic, since experimentally, the maximum shear rates attairspace correlation function is

able is of the order of 10-10* s, which for neutral par-

ticles of radiusa=10"° cm in water at room temperature N+ 67N Xx— 2 gagxE, x<1

gives ana=10—-100 as the largest Deborah number which Cpy(X)= (32)
can be achieved. However, substituting glycerine for water 0, x>1

and increasing the size of the particles twofold boosts thevhere

Deborah number dramatically, tem,=10*~1C, which

may now be considered the>1 regime, if not the infinite- 41 (1+27)? (1+ 5/2)?

2 . . RGN = 3 = el
«a limit. Hence, in practice, the limit of infinite shear may be 7=z a e, A= (1—n"" Np= T
approached by increasing the Deborah numberl, while (32)

keeping the Prandtl number at a very small valRes 1, and ) ) )
o small enough to avoid any effect on the solvent such a¥/ith X=r/o, wherer is the length of the Cartesian vector
turbulence, i.e.w,l %/ v<R,, wherel is the plate separation r and, as_ment|oned earlies; is the scale of the structure
in the shear gradient direction aRy, is the critical Reynolds factor, Wh'Ch for hayd spheres corresponds to the dlamgter of
number. th_e particles, that isr=2a, and hgnceforth, Whgn _deallng
with hard-sphere systems, the ratit(2a) appearing in Eq.
(23) will be set to one. Besides being widely used to fit
experimental data, this type of model, because of its simplic-
. RESULTS ity, allows the analysis to be carried out farther in some
cases, thus reducing the need for numerical computation. For
ample, in the limit of small shea® <1, and at zero wave
mber, a closed expression emerges for the correction to the
tructure factorf(0), which shows a simple dependence on
he shear rate. Namely, for hard spheres, (@) reduces to

The correction to the nonequilibrium structure factor,
f(t), presented in the preceding section has been evaluat e€
numerically for a system of hard spheres at both low an(i'
high packing fraction. Again the reader is reminded that thq
results reported below relate to the distortion of the equilib-
rium structure factor caused by the application of a shear 3C (N 1/5— p\o+ 7\ 1/16)
stress, and our attention is focused on the gradient shear limncf(0)= — 52

, - T [1+ 7n(8N1—36mNo+ 27N 1)]
direction as we believe this is where the most interesting (33)
effects arise.
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where C is given by Eq.(A6). Comparison of the small- boundary layer arount= '/ outside which the correction
shear approximation Eq33) with the full expression Eq. to the direct correlation functiom[f(t)+f(—t)], has an
(24) is shown in Fig. 1 wherd(0) is plotted versus:®? at «? dependence. Note that there are similar boundary layers
infinite dilution; excellent agreement is seen fox 1. in the asymptotic expansions of the zero-loop resultskjor

At nonzero values of wave vector=0), the small-shear #0 [7,16,9.

. . _ A simple expression is also obtained in the limit of an
expression Eq(28) is shown in Table | to be reasonably infinite-shear rate. Substitutingey(s) given by Eq.(31), in

accurate.foral’2§t_. Consequently, at least for hard-spheregq (30) for the asymptotic infinite-shear nonequilibrium
systems in the limit of small-shear rates, there seems to be@rrection, yields the following closed expression:

1|sin(t 1{1/# sin(t
anZY(t)Jrncsz(—t)=187;)\1t—2[%)—c05{t) +108772)\2t—2[?(§+si(t) +cos(t)—2%)}
oo L[ ) sin(t)
+97°\1 57| Atsin(t) — tcogt) + 9| cogt) - —— ||, (34)
|
where as the main figure, as well as the direct correlation function.

o It is clearly seen that short-range order in the gradient direc-
si(t)E—f [sin(x)/x]dXx, (350  tion monotonically decreases as shear increases, at infinite

t

dilution. This is contrary to the theoretical results of

_ . Blawzdziewicz and Szamel, cf. Fig. 2 of RéL1], who pre-

andz, Ny, and\, are defined in Eq(32). _ .. _dict that shear will enhance short-range order at infinite di-
We first examine a system of hard spheres at infinite d'1ution, the exact opposite of our conclusion.

lution, and Cons'%er,,“mﬂo[s(t)_ 11/, which, from Eq. Of course, our theory is not restricted to infinite dilution

(26), is just (6/ma)[c(t) +f(t)+f(—t)]. The latter quan- 514 Figs. 3 and 4 show the nonequilibrium structure factor at

tity is shown in Fig. 2 for different orders of magnitude in \3rious shear rates and at a packing fraction of 10% and

shear together with the corresponding equilibrium quantity50%' respectively. The insets depict the corresponding quan-

ie., the_direct correlation function at zero packing fracti(_)_n.tity [S(t) — S€(t) ]/S9(t), the deviation from equilibrium,

The main trends to note are the flattening of the nonequilibzyr the ditferent shear rates. Again, note the flattening of the

riumk corlrelation functionband the in”ghL shift of thedmhaln structure factor with increasing shear, as well as the peak
peak to larger wave numbers at small-shear rate, and then fyqition which initially moves right and then left, as the

smaller wave numsbers at higher-shear rate. The inset depiciye,r rate is further increased:; both these effects have been
the quantity (6#ro)[f(t) +f(—1)] for the same shear rates opqerved in the experiment of Ackersehal. when looking

at the structure factor in the gradient direct[d7]. Hence, at

(A LA L L B low packing fraction, the effect of increasing shear is to de-
S L : crease the correlations between the colloidal parti@eise-
s6Fz ¢ . 3 . havior also seen in the flow direction, i.e., fey#0 [7]),
S oLsmr ] E : i e.g., as if the packing fraction were reduced.
N . E i The monotonic rise of the structure factor at long wave-
E | = b ’ 3 ) | lengths €<1) as a function of the Deborah numherper-
& b e (.) . ﬂ sists as the concentration increases. For the case at hand, i.e.,
G In(a) the Percus-Yevick approximation for a hard-sphere system,
o0 . 1 at some point it will even cross ones(0)|,-..=1] at a
7:”? - | packing fraction of 55.8%, and will eventually become un-
=] [ -] T
\ij 2+ analytic ° - TABLE |. Comparison between direct numerical integration of
= | ® numerical » _ Eq. (24) with the small-shear finité-expression Eq(28). Good
g1 . | agreement is seen foe o/
. + | | | | 7 a t Exact result Approximation %
R Lo L R T R |
0 0.5 1 15 2 2.5 01 1.0 6.0 -9.4027%10° -9.4297x10°° 0.3
10803/2

01 1.0 1.0 1.8119810 3 1.7257%10°°% -438

FIG. 1. Comparison of the small-shear approximation expresO-1 1.0 0.1  4.6865610°°  1.62430<10°> 246
sion atk,o=0, which has ane®2 behavior, cf. Eq(27), and the 0.1 0.1 6.0 —9.30518<10 ' —-9.42971x10 ' 1.3
exact numerical result, for a system at infinite dilution. The samed.1 0.1 0.316 5.6405810 ° 5.34716<10°° —5.2

quantity is shown on a log-log scale in the inset. Good agreementig.1 0.1 0.03 1.4385810° % 5.32846<10°4 270
seen fora<1.
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FIG. 2. The zero density limit of the correlation function for

hard spheres. The various curves correspond to equilibfaero FIG. 4. The same quantities as in Fig. 3, but for a packing
shear, solid ling a=0.91(short-dashed line«= 9.1 (dashed ling fraction of 50%, and again for=0 (solid line), a=10 (short-

and infinite sheaflong-dashed ling Flattening of the curve with dashed ling anda=500(dashed ling At infinite shear, the system
increasing shear is clearly seen, as is a slight shift of the main pegk unstable, and hence the omission of the = curve. As in the

to the right at small shear and a shift to the left at infinite shear. Thef)revious two figures, the main peak first moves right and then left,
inset depicts the direct correlation function and the nonequilibriumy 44 at small wave numbers, the structure factor moves up continu-
corrections separately. ously. The main peak first decreases, but then moves up dramati-
cally, signaling that the system is close to the spinodal point, pre-
sumably representing an instability to the formation of lamella in
the shear gradient direction. The inset shows the nonequilibrium
correction to the direct correlation function multiplied by the non-

F P b R equilibrium structure factor for the parameters mentioned above.
1~ — stable[1/3(0)| ,-..= 0] when 7 reaches 57.3%. Hence, at
- 4 very large values of the shear rate and of the concentration,
L large, long-wavelength fluctuations develop, a situation
i = ] which is reminiscent of systems near a second-order phase
S o8l sk 4 transition. However, as we now show, an instability near the
Vo a [\ 1 principal peak of the structure factor occurs at smaller pack-
o r = 1 - ing fraction(or equivalently, for weaker interactionsvhich
B § B \\ 17 renders the long-wavelength instability irrelevant.
N 5,)06}‘\\\ i At larger packing fractions, the amplitude of the main
0.6 E : “\ 1 peak of the structure factor will first decrease @ss in-
L & Op N e creased, reach a minimum, and thereafter increase. We illus-
N 0 5 . 10 15| trate this in Fig. 5, which shows the difference
| ) [S(t*)| 4= — S®(t*)] between the nonequilibrium struc-
(‘) T é T 1‘0 ‘ ! 1‘5 ture factor at infinite shear and the equilibrium structure fac-

K o tor as a function of the packing fraction (each structure

x factor being evaluated at its maximum peak positibh At
small concentrations, the latter quantity is negative, which
implies the peak has decreased as the shear rate was in-
creased from zero to infinity, while at larger concentrations it
shear(long-dashed ling As before, the main peak initially moves becomes pOSIt!ve_, _|mp|y|ng the exstenc_:e _Of more short-
to higher wave numbers, then turns back and moves to lower valudénge order a_t infinite shear than at eqU|I|br|um_. .
of k.o at larger shear rates, while at long wavelengths, the structure Hence, while for large length scales, fluctuations increase
factor increases monotonically. The main peak, however, at firsfhonotonically, the situation is different in the first peak re-
decreases with increasing shear but later starts increasing again f8ion. Initially, when the concentration is very small, the ef-
large values ofe, while the secondary peaks continue to flatten. fect of shear is the same as for large wavelengths, i.e., less
The quantity shown in the inset represents the nonequilibrium cororder. However, as the number of particles per unit volume
rections times the nonequilibrium  structure  factors increases, a weak order develops in the gradient direction as
[f(keo)+f(—k.o)]S(ksa), for the shear rates cited above. to avoid the active-mixing hydrodynamic interactions cre-

FIG. 3. Nonequilibrium structure factor, also in the shear gradi-
ent direction but for a packing fraction of 10%, far=0 (solid
line), =10 (short-dashed linge =500 (dashed ling and infinite
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0.6 FIG. 6. Phase diagram showing the spinodal ligelid line)
"o representing an instability to the formation of lamella in the shear

) ) ) ) gradient direction. Above this line, the system is unstable to the
FIG. 5. Shown here is the difference in height between the nontqmation of lamellae perpendicular to the velocity. The solid line
equilibrium structure factor at infinite shear and the equilibrium shows|7— 7| "% wherez=1.4 (as determined by least squares
structure factor, both at long wavelengifigshed lingand for the fiting to the data points Also shown is the line where
maiq peak(solid line). The main pgak is lower at= for packing. [0S(t*)/9a]=0 (t* being the main peak positipnwhich may
fractions less than 26-27%, while for small wave numbers, it is,qghly correspond to the transition between the shear thinning be-
glv_va}ys higher. Thg |nse_t deplt_:t_s the mot_n_)n_of the main p_eak ahavior and shear thickening for reasons explained in the text. The
infinite shear, relative to its position at equilibrium, as a function of points on these lines were obtained in the following manner: First,
packing fraction. As shown, the peak always moves to the left fory ot of points were calculated numerically in the plane for a
asymptotically high shear rates, and at large enough packing fragjiyen value ofy. The resulting two dimensional grid was fitted to
tions, by a sizable amount, up to 20-30%. various polynomials inv andt and the transition points were de-
termined numerically. The data points represent the average of the

ated by the increasingly sheared solvent. Eventually, a crititesults, with one standard deviation error bars.
cal value is reached, S(t*)|,7cr;a:w=0, characterized by a

diverging peak in the structure factor. Note that the latterthe System is unstable against the formation of layers perpen-
instability corresponds to a spinodal point, thus implying thed!(_:ular to the shear gradient direction. Since near the insta-
possibility of a fluctuation induced first-order transition be- Pility the structure factor develops a large peak, drastic
fore the point in question is reached. Moreover, in theqhanggs in quantities associated with it are expected, in par-
Percus-Yevick model, there is a critical packing fraction,ticular in the average stress tenget') and thereby the vis-
easily found numerically using Eq34), below which no  cosity. The dotted line in the same figure shows where the
instability occurs (even at infinite shear Its value is liquidlike system is expected to stop shear-thinning and start
7e=0.375 319 51, shear thickening, as characterized by the behavior of the first
Since the viscosity of the whole system is proportional toPeak of the structure factor.
the integral of S(k) — 1] times other factor§l6], the shear-
Fhinning ar_1d -th_ickening behaviors as well as _difs_continuous IV. CONCLUSION
jumps in viscosity are probably related to the initial flatten-
ing of the structure factor followed by the increase in the The effect of linear shear on a system of colloidal suspen-
peak up to the instability. Indeed, this suggests that the resions was studied using a stochastic field model describing
gion of parameters where the first peak of the structure factathe evolution of the local particle number dendityx,t) and
goes from a decreasing to an increasing behavior, which mathe local solvent velocity(x,t) = woxy+ v(x,t). The main
be defined as$)S(t*)/(da)=0 with t* the position of the conclusions are as follows.
first peak, might correspond to the point where the system At small shear ratesa<1), the nonequilibrium correc-
reverses its shear-thinning behavior and starts shear thicketien to the correlation function at zero wave number in-
ing. For packing fractions higher than the critical value, thecreases ase®? implying S(0) grows accordingly, and
correlations decreade.e., S(k)—1] for all k's except for hence, such a behavior should be observed in any experi-
those near the first peak B{®¥(k). The correlations in this mental quantity or numerical simulation probing the long-
range at some point start to increase, until eventually theyavelength character of the system. For finite values of wave
diverge at a large but finite value af, the Deborah number. number, the concept of boundary layer emerges, defined by
A phase diagram may be drawn fgr> 7., in the 7-a  kyo=a'2 Whenk,o= o2, again for small-shear rates, the
plane, together with a line delimiting the shear-thinning be-nonequilibrium correction is well approximated by Eg8),
havior from shear thickening. Such a diagram is shown inwhich shows arm? dependence.
Fig. 6. Below the spinodal lin€ull line), the system may be As the shear is gradually increased to infinity, the struc-
characterized as liquidlike, whereas above the transition linture factor is modified in different ways depending on the
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strength of interaction between the colloidal particles and oring fraction of 37.5% found for hard-sphere systems for the
the magnitude of the wave vector. The structure factor apebvious reason that charged particles in poorly screened sus-
proaches unity for all wave vectors except those in the neighpensions have strong electrostatic interactions, and hence
borhood of the first peak withk,#0; here, the main peak have an effective size which is significantly larger than their
first decreases with increasing shear, but, if the interparticlphysical size.
interactions are strong enoudé.g., by having the concen- Hence the model of colloidal suspension presented in this
tration high enough it eventually reaches a minimum and paper has succeeded in reproducing many results previously
then grows. This represents increasing short-range order, asgen in experiments or numerical simulations. In addition,
eventually, an instability may be reached, characterized by predictions were made in the form of a phase diagram,
diverging peak. This divergence in the main peak of theamong other things, which, at least in the case of hard
structure factor usually indicates that some type of longspheres, may easily be compared with experiments and nu-
range order has settled in. A phase diagram was thus olwrerical simulations using the simple parametersnd 7,
tained in the Percus-Yevick approximation. The line in thethe Deborah number and the packing fraction, respectively.
a-7 plane divides a liquidlike region from a region where = We have compared the predictions of the theory with the
lammella are thought to form in the plane perpendicular tarends observed by Ackersat al. [17]; the correspondence
thex direction(the shear gradient directiprA lower limitto  with simulations is more difficult to establish since to date
the packing fraction is thus found for a hard-sphere systermone of them include a real solvent, thereby making the iden-
below which no instability occurs even at infinite shear; i.e. tification of the Deborah number problematic. Nonetheless,
no instabilities are possible for packing fractions less tharwhat we predict is consistent with what is seen experimen-
37.5%, in hard-sphere systems. Note that these last two olbally. This may be somewhat fortuitous since the de Gennes
servations do not preclude the existence of first-order transform for the diffusion constant will cease to be valid for very
tions that may occur on either side of the= 5, line. concentrated suspensions and higher-order corrections in
The aforementioned changes in the structure factor as perturbation theory will likely be important near the spinodal
function of Deborah number and packing fraction and itslines.
relation to the viscosityas proportional to the integral of

[S(k)—1]), leads to a line delimiting shear-thinning and APPENDIX
shear-thickening behavighere defined agS(t*)/(da)=0 ) . I
for simplicity], and is indicated in the phase diagram. The expression corresponding to the nonequilibrium

At low particle concentrations, it is interesting to note thatStructure factor up to one-loop corrections, cf. E), for
the reduction in the amplitude of the main peak together wittEXternal wave numbers in the gradient direction is
a shift of the latter to lower wave numbers was seen experi-
mentally by Ackersoret al. [17] when looking at the struc- S(ky) =S¥ (k) {1+ SV (k) [F (ko) + F(— k) T},
ture factor in the gradient direction. (
Finally, in charged systems, an instability may occur at
much smaller packing fraction than the lower critical pack-where

A1)

_ keT dg of [+= dly Dok} ) 2 2| (1)
F(kx)_TDOncJ’(z—ﬂ_)d?qu mex S(T(kx)+V[QpL1/3(qx+qx|x+|><):| ooty
kel dry  Do(a?+13) || [ S®9(Jaf +(ke—1,)7) 2 J ) 2
-1 d exp 2 +1/3(15+1
kaqwaQy SeI(JZ+r2) Sk, Z+12), PxPx v[ i + 1315+ 1Py

— +o (eq) k,— 2 <« Px 2 2
Lo px>)+j dpx(is (V? + (K, px)))exp(sz P dr,  Do(a?+r5)

wodly S Py S®9(k,) kel @by S®9(\Jgf +1%)
S9(k,) 2 f+°° (Ix—=pg)
X + dp.plexp 2v[q% + 1/3(12+1. p.+p.H)]———=| | t, A2
S(eq)(\/qi+(kx_lx)2) Qi'i‘l)z( L Py Px V[ql X x T IxPx ™ Py )] woly ( )

whereq, =(0,9,,9,), and the domain of integration of, is  Do=kgT/(67avp), wy is the shear strengtk, is the wave
restricted toq,=0. Note that the above expression is notnumber in the direction of the shear gradient, ands the
symmetric with respect to thig, origin, so one must add the scale of the structure factor and is typically defined such that
—k, contribution to the final result, as shown in Eg3). In  the main peak of the structure factor occurs neas=27. In

the above expressiong, is the kinematic viscosity of the the case of hard spheres, for exampteis the diameter of
solvent,D corresponds to the diffusion constant of the sus-the colloid particles.

pensions and is defined by the Stokes-Einstein relation It is thus natural to define new variables as ko,
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p=pyo, p'=pyo, | =10, r=r,o, andt=k,o, from which The simplified expression resulting from neglecting terms
two decay scales appear inside the exponentials, namelpf orderP{’? and higher(as described aboyés

B=woo?/(2v) (which is similar to the internal Reynolds

number wya?/v) for the solvent velocity propagator, and F(t)zf(t)+O(Pt1’2)+ cey (A3)
a=wqo?/(2Dy) for the colloid number density propagator.

Typically, colloidal suspensions are characterized by small

Prandtl numberP,=D,/v<1, implying B<a and accord- Wheref(t) is given by Eq.(24).

ingly exd —g,(I,p,q)/Bl<exd —gn(,p,0)/a] (these expo- Even though neglecting terms 6f(P}'?) allows for con-
nential factors appear in the expression Foabove and are siderable simplification, the expression remains intractable
essentially the number density and velocity propagators ofinalytically. Further progress may be achieved by perform-
the sheared systemwhereg, and gy are functions of the ing an integration by parts ip, andf(t) becomes

same order of magnitude. This implies that the shear rates

relevant to the suspension are orders of magnitude smaller f(t)="f.(t)+Af(1), (A4)
than those relevant to the solvent. Thus the effect of shear on

velocity fluctuations is negligible and the usual linear propa-

gator may be used in place of the more tedious expressiowhere f.. is the infinite-shear correction given by either of
used at finite shear. This corresponds to neglecting the exp&ds. (29) or (30), and Af contains the remaining finite-
nential factors of lines 2 and 4 of EGA2), and integrating dependence. Through a change of variables, specifically, set-
by parts ovet, the exponential factor of line 1 and neglect- ting z= \/XE —y?, they integration may be carried out, giv-
ing the remaining integral. ing

A (D)= 3 a +°°d °°d Xf
(t)_sza o f—w Xfo XL[XE+(X+t)2]ZS(eq)(|X|)

1 (p [X2+(r+x)2] )

—1 d

ax; Jo ' S X2 +(r +x)?] (A5)

X dep[xf+(p+x)2]'5[ VXE +(p+%)?IKg
0

whereKy(x) is the modified Bessel function. Nonethelead, still has a complicated form, and its evaluation for arbitrary
parameters and structure factors must still be done numerically.

The small-shear expression, H87), is obtained from Eq(24) att=0 by scaling all the integration variables by2 and
Taylor expanding quantities dependent @rarounda=0. Equation(27) is thus obtained with the consta@tgiven by

e [ e[ ay [ ez 25 apip e -2 o
= X Z—>> xyexpg — = =
. o y =502, pep y 3
with x> =y?+ 72, andx?=x?+x? . The result isC=1.848 739 49.
Using the Percus-Yevick approximation for a hard-sphere system, an approximate analytical asymptotic form for

Af(t=0) may be found in the limit of large shear. By addifig(t=0), which is easily obtained from Ed34), to
Af(t=0), it follows that the nonequilibrium correction to the direct equilibrium correlation function is

X2 +xp+

} , (A6)

9\, [ T2
7]1<7T 10

el ety 2y2—8vy+4yIn(12a)— 8 In(12a) + 2[In(12a)]?

1 1
2ncf(0):6n(>\l—4m\2+gnxz)— ;), (A7)
wherewy is Euler’s constant. Note that the logarithmic terms result from the slow oscillatory decay of the equilibrium structure
factor in the Percus-Yevick approximation, which aside from the value of the coefficient isfthe same found in a dilute
hard-sphere gas; they would disappear for models that have more rapidly decaying structure factors.
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