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We extend the perturbation theory of the nonlinear Schro¨dinger equation to the case of the integrable vector
nonlinear Schro¨dinger equation. By applying the perturbed inverse scattering transform, we derive a set of
nonlinear coupled evolution equations for the adiabatic change of the parameters of a vector soliton, in the
presence of a generic perturbation. We show that the same equations may also be obtained by means of a
Lagrangian variational approach.@S1063-651X~96!00811-2#
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I. INTRODUCTION

The nonlinear Schro¨dinger ~NLS! equation is a paradigm
equation for describing wave propagation in weakly nonlin-
ear and dispersive media@1#. A basic property of this equa-
tion is its complete integrability by means of the inverse
scattering transform~IST! method@1–3#. The importance of
the IST method is that it still permits one to analyze, by
means of perturbative approaches, practical situations where
the wave propagation is subject to small perturbations which
break integrability. A perturbation theory for the NLS equa-
tion, valid for a generic conservative or dissipative perturba-
tion, was developed with the help of the IST method@4,5#.

On the other hand, a general perturbation theory based on
the IST method for the integrable vector NLS equation@6#,
which describes the nonlinear coupling between different
waves, has not been presented yet. Applications of the vector
NLS equation range from plasma physics~e.g., coupling of
Langmuir and transverse or sonic waves@7#! to nonlinear
optics ~e.g., coupling between orthogonal polarizations in a
diffractive or dispersive dielectric@8#! and long-distance
soliton-based communications@9,10#. Several perturbative
analyses discussed the effect of specific conservative or dis-
sipative perturbations on the adiabatic variations of the pa-
rameters of vector optical solitons@11#. In fact, the dynamics
of the one-soliton parameters may be derived in different
ways. For example, by means of the variation of the con-
served quantities associated with the vector NLS equation, or
by Lagrangian variational methods.

In this work, we derive the perturbation equations for the
vector soliton parameters in the presence of a generic pertur-
bation. In order to do that, we generalize the perturbed IST
method@12–14# to the case of the vector NLS equation. We
then show that the same results may equivalently be obtained
by extending the Lagrangian perturbation method of Ref.
@15#. Finally, we present an example of application to non-
linear fiber optics, namely, we derive perturbation equations
for the passive mode locking of a vector soliton propagating
in a ring fiber laser@16,17#.

The present perturbation theory may be further extended
to include the contribution of radiation, and to analyze com-

plex phenomena such as inelastic soliton collisions or the
generation of polarizationshadows@18–20#.

II. PERTURBATION EQUATIONS

We intend to formulate one-soliton first-order perturba-
tion theory for the perturbed integrable vector nonlinear
Schrödinger equation, that reads in dimensionless units as@6#
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HereU andV represent, for example, the complex envelopes
of the two orthogonal polarizations of a transverse electro-
magnetic field in a cubic nonlinear medium. We assume that
the perturbation termsRU , RV are relatively small, and that
they decay to zero sufficiently rapidly at infinity.

WheneverRU5RV50, the one-soliton solution of Eqs.
~1! and ~2! is @6#

U0~T,Z!52n cos~u!sech@2n~T2j!#ei [2m~T2j!1dU] ,
~3!

V0~T,Z!52n sin~u!sech@2n~T2j!#ei [2m~T2j!1dV] , ~4!

where 2n,j, and 2m represent the soliton amplitude, posi-
tion, and frequency, whereasdU , dV are the phases of the
orthogonal polarization components andu is the polarization
angle.

The single-soliton solution~3! and ~4! depends on six
parameters. The aim of the present paper is to show that, in
the presence of generic perturbations, these parameters
evolve slowly with the distanceZ, according to the following
set of coupled equations:
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where x52n(T2j), bU5m/(nZ)1dU , and
bV5m/(nZ)1dV . The derivation of Eqs.~5! and ~10! will
be outlined in the next two sections by means of two differ-
ent approaches, that is, by means of the perturbed IST, and
of the Lagrangian or variational method.

III. PERTURBED INVERSE SCATTERING TRANSFORM

A. Eigenvalue problem

As shown in Ref.@6#, wheneverRU5RV[0, the vector
NLS equations~1! and ~2! are exactly solvable by means of
the IST method@2,3#. In fact, ~1! and ~2! may be derived
from the compatibility condition of the eigenvalue problem

]

]T
u f &5M̂ u f &, M̂5F 2 il iU * iV*

iU i l 0

iV 0 il
G . ~11!

Let us consider the two sets of special solutions of~11!, say
uf i(T,l)& and uc i(T,l)& ( i51,2,3), which are defined
through their asymptotic behavior

uf i& j5d ikexp$2 i I jlT%, T→2`,

uc i& j5d ikexp$2 i I jlT%, T→1`,

with I 151 andI 25I 3521. The ketsuf i&, uc i& are known
as Jost functions: both represent a complete set of solutions
to the eigenvalue problem~11!. Hence we may express the
elements of one set in terms of the other basis, for example,

uf i~T,l!&5(
j51

3

a i j ~l!uc i~T,l!&.

This expression defines the scattering matrix, sayâ5$a i , j%
( i , j51,2,3) of the system~11! in the basis of the Jost func-
tions. Note that the entries ofâ do not depend on the time
T.

It has been previously shown@6# that the Jost functions
uf1&, uc2&, and uc3& can be analytically continued into the
upper half plane of the complex variablel ;T, whereas the
same holds true in the lower half plane foruf2&, uf3&, and
uc1&. Moreover, the analyticity of the Jost functions implies
the analyticity ofa11(l) in the region Im(l)>0. Further-
more, let us denote bylk the k51, . . . ,N zeros ofa11(l).
These eigenvalues correspond to potentialsU, V in Eqs.~11!
which decay sufficiently rapidly asuTu→1`. In correspon-
dence with these eigenvalues, it turns out that

uf1~T,lk!&5a12kuc2~T,lk!&1a13kuc1~T,lk!&,

k51, . . . ,N.

In the above expressiona12k anda13k are two complex num-
bers which, ifU andV are defined on compact support, are
obtained by evaluating the scattering matrix elements on the
eigenvalues, i.e.,a12k5a12(lk) anda13k5a13(lk).

The main issue of the IST method is that the potentials
U andV may be completely reconstructed at anyZ, as long
as one knows the evolution of their boundary values, resi-
dues, and discontinuities on the real axis: These quantities
represent the set of scattering data@6#, and read as

S15H ~lk ,g2k ,g3k!k51
N ,

a12

a11
,
a13

a11
J ,

where
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gnk5
a1nk

a11k8
, n52,3, k51, . . . ,N.

Here, the prime denotes derivation with respect tol and the
subscriptk indicates that the quantity is evaluated in corre-
spondence with thekth zerolk of a11.

Note that thegnk may be computed as

gnk5 lim
l→lk

gn~l!5 lim
l→lk

~l2lk!
a1n~l!

a11~l! .
~12!

Hence the complete set ofZ-evolution laws for the param-
eters characterizing an arbitrary solution of Eqs.~1! and ~2!
with RU5RV[0 may be derived from the spatial evolution
of the setS1 . WheneverRUÞ0, andRVÞ0, the adiabatic
~i.e., slow! evolution of the parameters of a solution of Eqs.
~1! and~2! may still be found, as long as the space evolution
of the scattering data can be determined. In the next para-
graph, we illustrate the procedure that leads to the evolution
of the scattering data in the presence of a perturbation.

B. Space evolution of scattering data

The scattering matrix elementsa ik associated with the
eigenvalue problem~11! may be considered as functionals
that depend on the field componentsU, V and their complex
conjugates. Therefore theirZ evolution may be expressed in
the chain-rule form

da i j

dZ
5E S da i j ~T8!

dU~T!

]U

]Z
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dU* ~T!
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]Z
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]V

]Z

1
da i j ~T8!

dV* ~T!

]V*

]Z DdT. ~13!

Note that the instants of timeT andT8 are arbitrary, since
a i j does not depend on the time coordinate.

The variations ofa i j with respect to the potentials
(U,U* ,V,V* ) may be computed by means of the equiva-
lence@6#

a i j5^c j uf i&5 (
n51

3

c j*
~n!f i

~n!
,

which relates thea ik’s to the Jost functions. Equation~3.2!
yields, for instance,

da i j ~T8!

dU~T!
5 K dc j~T8!

dU~T!
Uf i L 1 K c jU df i~T8!

dU~T! L . ~14!

In order to evaluate the variational derivatives of the Jost
functions, we use the fact that the right-hand side of Eq.~13!
does not depend on time. Then, we may chooseT8.T, so
thatdc j (T8)/dU(T)50 sincec j is a plane wave that propa-
gates to the left fromT→1`. As a consequence, for the
causality principle the valuec j (T8) may not be affected by a
variation ofU which occurred at a timeT,T8.

Hence it remains to evaluate the variations of thef i ’s
with respect to the potentials (U,U* ,V,V* ). This may be

done by evaluating the variation of the eigenvalue problem
~11! and yields~a similar calculation was done for the scalar
NLS equation in Refs.@1,4#!

]

]T
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5M̂
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1

dM̂

dU~T!
uf i~T8!&

5M̂
duf i~T8!&

dU~T!
1F 0 0 0

i 0 0

0 0 0
G

3d~T2T8!uf i~T8!&. ~15!

Since uf i(T8)& is defined in its asymptotic form as
T8→2`, the solution of~15! is uniquely determined by the
additional conditiondf i(T8)/dU(T)50 for T8,T.

Now, we use again the fact that the choice ofT andT8 is
arbitrary, and we setT85T1e, e→0. Then, by integration
of ~15! over the interval@T,T8#, Eq. ~14! finally yields

Uda i j ~T8!

dU~T! L 5K c jUF 0 0 0

i 0 0

0 0 0
GUf iL 5 if i1c j2 .

In a similar manner,

U da i j ~T8!

dU* ~T! L 5 if i2c j1 , U da i j ~T8!

dV~T! L 5 if i1c j3 ,

U da i j ~T8!

dV* ~T! L 5 if i3c j1 ,

so that

da11

dZ
5E S i ]U

]Z
f11c12* 1 i

]U*

]Z
f12c11*

1 i
]V

]Z
f11c13* 1 i

]V*

]Z
f13c11* DdT, ~16!

da1n

dZ
5E S i ]U

]Z
f11cn2* 1 i

]U*

]Z
f12cn1*

1 i
]V

]Z
f11cn3* 1 i

]V*

]Z
f13cn1* DdT ~17!

for n52,3. Moreover, we may write

d

dZ S a1n

a11
D5

f n~f,c!

a11
2 ~18!

for n52, 3, and with
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f n~f,c!5E F i ]U
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In the following, we restrict our attention to the one-soliton
case, i.e., to a single zero~which we denote asl5l1[lS)
for a11. We then may proceed as described by Newell for
the case of the scalar NLS@12#. By using the definition of
gn (n52,3) given in~12!, it is immediately verifiable that
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2
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On the other hand, by expanding in Taylor series~18! around
l5lS one also obtains, at first order
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where, as usual, primes denote differentiation with respect to
l and the subscriptS indicates that the quantity is evaluated
in l5lS . Finally, since
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~a11S8 !2 F f nS8 2
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Equations~19! and ~20! give the desired space evolution of
the scattering data, which is required in order to completely
characterize the solution of the initial problem.

C. Space evolution of single solitons

In the following, we specialize Eqs.~19! and ~20! to the
case of the one-soliton solution~3! and ~4! of the perturbed
nonlinear Schro¨dinger equations~1! and~2!. In this case~see
the Appendix for an outline of the calculation procedure!, the
Jost functions read as

uf1&5
e2 ilT

m2l2 in F in tanh~x!1m2l
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n sin~u!sech~x!eibV
G , ~21!
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1
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G ,
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with x52n(T2j). Therefore

a11~l!5
l2lS

l2lS*
,

with lS5m1 in. Moreover, it may be verified that

a12S5 i cos~u!ei ~dU22lSj!,

a13S5 i sin~u!ei ~dV22lSj!,

so that

g2S522n cos~u!ei ~dU22lSj!,

g3S522n sin~u!ei ~dV22lSj!.

By inserting the above eigenfunctions~21!–~26! in Eqs.~19!
and ~20!, after some lengthy but straightforward algebra we
obtain
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The above equations readily lead to the desired evolution
equations~5!–~10! for the soliton parameters.

IV. LAGRANGIAN METHOD

In this section we show that the same perturbation equa-
tions~5!–~10! for the evolution of the one-soliton parameters
may also be derived by means of the Lagrangian method
@14,15#. Note that this method does not require the unper-
turbed equations to be completely solvable by means of the
IST. All that is necessary is simply that the unperturbed
equations may be written in a Lagrangian form; additionally,
a solitary wave solution should also clearly exist for the un-
perturbed problem. In the present case, it is easy to recast
Eqs.~1! and ~2! in the form
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5 iRU,
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and the variational derivatives are defined as
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The time-averaged@on the one-soliton solutionU5U0,
V5V0 ~3! and ~4!# Lagrangian reads as
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Let us now evaluate the variations of the LagrangianL0 with
respect to the soliton parameters. These variations may be
obtained in two different ways. First, one may directly use
Eq. ~31!, which yields
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du
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2
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dZ D . ~37!

On the other hand, the variations ofL0 may also be written
in the chain-rule form, e.g.,
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By inserting in the above expression Eqs.~27! and the de-
rivatives of the one-soliton solution~3! and ~4!, one obtains

dL0
dm

5
2

n
ReE @cos~u!RUe

2 ibU1sin~u!e2 ibV#
x

cosh~x!
dx,

~38!

dL0
dn

52
2

n
ImE @cos~u!RUe

2 ibU

1sin~u!e2 ibV#
12x tanh~x!

cosh~x!
dx, ~39!

dL0
dj

524n ImE @cos~u!RUe
2 ibU1sin~u!e2 ibV#

3
tanh~x!

cosh~x!
dx24m ReE @cos~u!RUe

2 ibU

1sin~u!e2 ibV#
1

cosh~x!
dx, ~40!

dL0
ddU

52ReE cos~u!RUe
2 ibU

1

cosh~x!
dx, ~41!

dL0
ddV

52ReE sin~u!RVe
2 ibV

1

cosh~x!
dx, ~42!

dL0
du

52 ImE @sin~u!RUe
2 ibU

2cos~u!RVe
2 ibV#

1

cosh~x!
dx. ~43!

By comparing the right-hand sides of~32!–~37! and Eqs.
~38!–~43!, one obtains again the perturbation equations~5!
and ~10!.

V. POLARIZATION MODE LOCKING

As a specific example of application of the perturbation
theory for vector NLS solitons, we outline the case of polar-
ized solitons in fiber lasers@16,17#. In a fiber laser, linear and
nonlinear birefringence in the optical fiber provide conserva-
tive or Hamiltonian perturbations to the vector solitons,
whereas the gain medium, filters, and polarizing elements
introduce dissipative perturbations. The stable propagation of
vector solitons with a state of polarization which reproduces
itself after each round-trip through the cavity results from the
proper balance between all these perturbations. As soon as
the field in the cavity has organized itself in the form of a
stable soliton, the action of all the elements in each round-
trip introduces only small changes to the soliton parameters.
As a consequence, the soliton stability may be analyzed in

terms of a pair of perturbed NLS equations which represent
the averaging of the various elements over each pass. In a
rather general form, we may write these equations as Eqs.~1!
and ~2! with

RU5~a1d1 ir!U1~g1 ik!V1b
]2U

]T2
1 isuVu2U,

~44!

RV5~a2d2 ir!V1~g1 ik!U1b
]2V

]T2
1 isuUu2V.

The meaning of the various perturbing terms in the right-
hand side of Eqs.~44! is the following:a.0 is the isotropic
gain coefficient, whereasd, g, andb represent gain dichro-
ism and dispersion. Moreover,r is the linear birefringence,
k is the linear coupling, ands the differential cross-phase
modulation coefficient which depends on the tensorial prop-
erties of the third-order susceptibility: in birefringent fibers,
s521/3.

By applying the general perturbation theory results~5!–
~10! to the above case~44!, one obtains the following equa-
tions for the adiabatic evolution of the vector soliton param-
eters:

dn

dZ
52n@a1d cos~2u!#28bnS n2

3
1m2D

12gn cos~c!sin~2u!,

dm

dZ
52

16

3
bmn2,

dj

dZ
52m, ~45!

du

dZ
52k sin~c!2d sin~2u!1g cos~c!cos~2u!,

dc

dZ
52r22k cos~c!cot~2u!2 8

3 sn2cos~2u!

22g csc~2u!sin~c!,

wherec5dU2dV . The availability of a set of ordinary dif-
ferential equations such as Eqs.~45! permits one to derive
the conditions for the mode locking eigenstates of the laser:
these are represented by the stable fixed points of the above
system ~45! ~i.e., where dn/dZ5dm/dZ5•••

5dc/dZ50).
Clearly the limits of validity of soliton perturbation theory

should be verified by comparing their predictions with the
numerical solutions of the original Eqs.~1!, ~2!, and ~44!.
We do not intend to investigate here in detail these limits.
Instead, we simply present in Figs. 1 and 2 two numerical
examples which show that, even in the presence of relatively
large perturbations, the perturbation theory is able to repro-
duce~over a limited distance! the numerically observed be-
havior for the polarization rotation of vector solitons. The
solid curves in Figs. 1 and 2 illustrate the evolution with
distanceZ of the polarization angleu and relative phasec
from the perturbation theory, Eqs.~45!. On the other hand, in
these figures the dots show the exact numerical results which
are obtained by extracting, through the direct spectral trans-
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form, the two angles from successive profiles as they are
computed from the numerical solutions~by a split-step Fou-
rier method! of Eqs. ~1!, ~2!, and ~44!. In order to compute
the direct spectral transform of the vector NLS equation from
the numerical samples, we have extended the discrete scat-
tering transform method of Ref.@21#. Figure 1 was obtained
for a purely conservative perturbation to the vector soliton,
i.e., we took a linear couplingk51/2 and a cross-phase
modulation coefficients521/3. Moreover, we considered
the initial valuesn(0)50.5,u(0)5p/4, andc(0)5p/2. As
can be seen, in this case there is a very good qualitative
agreement between perturbation theory and numerical re-
sults. The quantitative agreement is also good over the first
period of rotation of the soliton polarization. A slight mis-
match of the soliton rotation period in the two cases intro-
duces a progressively larger shift between perturbative and
exact results for larger distances.

In the case of Fig. 2 we considered mixed conservative
~same as in Fig. 1! and dissipative perturbations: we included

the excess gaind50.1 and the gain dispersion~or spectral
filtering! coefficientb50.3. Also, in this casen(0)50.6. As
can be seen, although the qualitative agreement of the per-
turbation results remains good, the mismatch of the soliton’s
period increases. We believe that this is largely due to the
effect of radiation, which is generated as the soliton relaxes
towards the fixed point of Eqs.~45! with amplituden50.5.
In fact, Fig. 3 shows the fraction of soliton~solid curve! and
radiation energy~dashed curve! as it is computed from the
spectral transform of the numerical data. Note that the evo-
lution of radiation in the perturbed vector NLS system may
also be determined by extending the perturbed inverse scat-
tering transform method which is presented here@19,20#.

VI. CONCLUSIONS

We derived general evolution equations for the adiabatic
evolution of the parameters of perturbed single solitons in
the vector NLS equation. We have shown that these equa-

FIG. 1. Evolution of the polarization angleu and relative phasec from perturbation theory~solid curves! and from the scattering
transform of the numerical solutions~dots!. Here the conservative perturbation is given byk51/2, s521/3.

FIG. 2. Same as in Fig. 1, with mixed conservative and dissipative perturbations: hereb53d50.3.
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tions may equivalently be obtained by applying either the
perturbed IST or the Lagrangian method. As an example of
application of the theory, we briefly discussed the case of
polarized solitons in optical fiber lasers.
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APPENDIX: EVALUATION OF THE JOST FUNCTIONS

Let us consider the eigensolutions of the scattering prob-
lem ~11! that are associated with the one-soliton potential
U5U0, V5V0, ~3! and ~4!. We look for an eigenvector of
the form

u f &5eilTug&. ~A1!

It follows that

i
]g1
]T

1U0* g21V0* g352lg1 ,

2 i
]g2
]T

2U0g150, ~A2!

2 i
]g3
]T

2V0g150.

With the ansatz

g15A1sech@2n~T2j!#ei [2m~T2j!1d] ~A3!

one obtains

g25 iA1cos~u!ei ~dU2d!tanh@2n~T2j!#1B2 , ~A4a!

g35 iA1sin~u!ei ~dV2d!tanh@2n~T2j!#1B3 . ~A4b!

Moreover, by using the first of Eqs.~A2!, the following con-
dition can be found:

A15
n

l2m
@B2cos~u! i ~d2dU!1B3sin~u!ei ~d2dV!#. ~A5!

By imposing the boundary conditions

iA1cos~u!ei ~dU2d!1B251,

iA1sin~u!ei ~dV2d!1B350, ~A6!

which correspond to the Jost functionc2, one obtains from
Eq. ~A5!

A15
n cos~u!

l2m1 in
ei ~d2dU!,

B25
l2m1 in sin2~u!

l2m1 in
, ~A7!

B35
2 in sin~2u!

2~l2m1 in!
ei ~dV2dU!.

As a result, Eq.~25! is found.
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