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Perturbation theory for coupled nonlinear Schrodinger equations
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We extend the perturbation theory of the nonlinear Sdimger equation to the case of the integrable vector
nonlinear Schidinger equation. By applying the perturbed inverse scattering transform, we derive a set of
nonlinear coupled evolution equations for the adiabatic change of the parameters of a vector soliton, in the
presence of a generic perturbation. We show that the same equations may also be obtained by means of a
Lagrangian variational approadi1063-651X96)00811-3
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[. INTRODUCTION plex phenomena such as inelastic soliton collisions or the
generation of polarizatioshadowq 18—-20.

The nonlinear Schidinger (NLS) equation is a paradigm
equation for describing wave propagation in weakly nonlin-
ear and dispersive medjd]. A basic property of this equa-
tion is its complete integrability by means of the inverse We intend to formulate one-soliton first-order perturba-
scattering transfornilST) method[1-3]. The importance of tion theory for the perturbed integrable vector nonlinear
the IST method is that it still permits one to analyze, bySchralinger equation, that reads in dimensionless unit6hs
means of perturbative approaches, practical situations where
the wave propagation is subject to small perturbations which U 122U
break integrability. A perturbation theory for the NLS equa- — 4+ = —
tion, valid for a generic conservative or dissipative perturba- gz = 2 JT*
tion, was developed with the help of the IST methdgb].

II. PERTURBATION EQUATIONS

+[|U|?+|V[2]U=iRy, (6h)

On the other hand, a general perturbation theory based on N 192V
the IST method for the integrable vector NLS equati6h ia_z+ Eg—Tz+[|U|2+|V|2]V:iRv. 2)

which describes the nonlinear coupling between different
waves, has not been presented yet. Applications of the vector

NLS equation range from plasma physi€sg., coupling of  Herey andV represent, for example, the complex envelopes
Langmuir and transverse or sonic wa\g§) to nonlinear  of the two orthogonal polarizations of a transverse electro-
optics (e.g., coupling between orthogonal polarizations in amagnetic field in a cubic nonlinear medium. We assume that
diffractive or dispersive dielectri¢8]) and long-distance the perturbation termBy,, Ry are relatively small, and that
soliton-based communicatior{®,10]. Several perturbative they decay to zero sufficiently rapidly at infinity.
analyses discussed the effect of specific conservative or dis- WheneverR,=R,=0, the one-soliton solution of Egs.
sipative perturbations on the adiabatic variations of the Pac1) and (2) is [6]
rameters of vector optical solitofi$1]. In fact, the dynamics
of the one-soliton parameters may be derived in different _
ways. For example, by means of the variation of the con- Uo(T,2)=2v cog f)secli2y(T—¢)]e'l?#T~ 9%l
served quantities associated with the vector NLS equation, or 3
by Lagrangian variational methods.

In this work, we derive the perturbation equations for the _ ; _ i2u(T—&)+ 8]
vector soliton parameters in the presence of a generic pertur- Vo(T.2)=2v sin(6)sech2v(T—£)]e - @)
bation. In order to do that, we generalize the perturbed IST
method[12-14 to the case of the vector NLS equation. We where 2v,&, and 2u represent the soliton amplitude, posi-
then show that the same results may equivalently be obtaindibn, and frequency, wherea,, d, are the phases of the
by extending the Lagrangian perturbation method of Reforthogonal polarization components afids the polarization
[15]. Finally, we present an example of application to non-angle.
linear fiber optics, namely, we derive perturbation equations The single-soliton solution(3) and (4) depends on six
for the passive mode locking of a vector soliton propagatingparameters. The aim of the present paper is to show that, in
in a ring fiber lasef16,17. the presence of generic perturbations, these parameters

The present perturbation theory may be further extendedvolve slowly with the distancg, according to the following
to include the contribution of radiation, and to analyze com-set of coupled equations:
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dv 1Re [coq B)R, e 'Au+sin(A)Rye 'Av] dx (5)
dz 2 v v coshx)

du 1 : ) __tanhx)
= —iB —ip
4z 2Imf [cog O)R,e™'Pu+sin(O)Rye V]cosr(x)dx’ (6)
%z—Ref [coq O)Rye Pv—sin()R e~ 'ﬁU] ! dx (7
dz 4 v v coshix)
d¢ =2u+ Ref [coq B)R, e Pu+sin(A)Rye 'Av] dx 8
dz_ Mt a2 v v coshx) "
déy d¢ 1 ) ] . 1—x tanh(x)
- — 2 _ —ip gy 7
4z 2(v? )+2,udz+ 2Vlmf [cog O)Rye™"Pu+sin(O)Rye 'PV] coshix)
1 sin(6) :
—iBy_— —ip
+— 27 0% 0) Imf [sin(@)Rye™'Pu—cog )Rye™'PV] oshx)d 9
déy T dé . 1—xtanhx)
_— = — 4 B ipy)—— 7
4z 2(v°— )+2,udz+2 Imf[cosw)RUe u+sin(g)Rye 'PV] coSix) dx
_ 1 codf Imj [sin(§)Rye 'Pu—cog A)Rye 'Av] dx (10
4 sin( ) v v coshx)
|
where x=2v(T—§), =ul(vZ)+ 4y, and This expression defines the scattering matrix, &a—y{ai,j}

By=wul(vZ)+ 6y . The derivation of Eqs(5) and (10) will

(i,j=1,2,3) of the systenill) in the basis of the Jost func-

be outlined in the next two sections by means of two differ-tions. Note that the entries @f do not depend on the time
ent approaches, that is, by means of the perturbed IST, ard

of the Lagrangian or variational method.

IIl. PERTURBED INVERSE SCATTERING TRANSFORM
A. Eigenvalue problem

As shown in Ref[6], wheneverR,=Ry=0, the vector
NLS equationg1) and(2) are exactly solvable by means of
the IST method 2,3]. In fact, (1) and (2) may be derived
from the compatibility condition of the eigenvalue problem

—iNn iU* V¥

J ~ ~ . .

(9_T|f>:|\/||f>, M=| iU DN 0 (11
iv 0 in

Let us consider the two sets of special solutiongldj, say
|#i(T,\)) and |¢(T,\)) (i=1,2,3), which are defined
through their asymptotic behavior

|pi)i=

|hi);= Siexp{ —
with 1,=1 andl,=13=—1. The ketg ¢;), |¢;) are known

5ikexp{—i|j)\T}, T— —oo,

iIAT), T+,

It has been previously showi] that the Jost functions
|$1), |2), and|i3) can be analytically continued into the
upper half plane of the complex variabtleV T, whereas the
same holds true in the lower half plane fab.,), |#3), and
|#1). Moreover, the analyticity of the Jost functions implies
the analyticity ofa;4(\) in the region Im{)=0. Further-
more, let us denote by, thek=1,... N zeros ofa;1(\).
These eigenvalues correspond to potentihl¥ in Egs.(11)
which decay sufficiently rapidly a|— + . In correspon-
dence with these eigenvalues, it turns out that

| p1(T M) = aqad o T, N)) + agad Y1 (T NY)),

In the above expressiam, 5 anda; g are two complex num-
bers which, ifU andV are defined on compact support, are
obtained by evaluating the scattering matrix elements on the
eigenvalues, i.eq = a(Ny) and = a13(\y).

The main issue of the IST method is that the potentials
U andV may be completely reconstructed at afiyas long
as one knows the evolution of their boundary values, resi-
dues, and discontinuities on the real axis: These quantities

as Jost functions: both represent a complete set of solutionepresent the set of scattering dféd and read as

to the eigenvalue problerfl1). Hence we may express the

elements of one set in terms of the other basis, for example,

3
|¢i<T,x>>=i§1 ai; (N[ ¢(T,N)).

a1 X313
(s Yok Va3 ke 1
a1 11

S,=

where
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@1nk done by evaluating the variation of the eigenvalue problem
Yok= . N= 2,3, k=1,...N. (11) and yields(a similar calculation was done for the scalar
1k NLS equation in Refs[1,4])
Here, the prime denotes derivation with respeck tand the .
subscriptk indicates that the quantity is evaluated in corre- 3 8ldi(T))y ~ 8|lhi(T)) oM .
spondence with thith zero\, of a;;. T Su(T) M 5U(T) 30T [6i(T"))
Note that they,,, may be computed as
0
~ 8| $i(T"))
. : a1n(N) =M——"241i 0 O
Yoi= lim 7N = lim (\-hg—2s (12) M=sum *
A=\ A=Ak ayy(N) 0 0
Hence the complete set @-evolution laws for the param- X(T=T")[$i(T")). (19

eters characterizing an arbitrary solution of E(9.and (2)

with Ry=Ry=0 may be derived from the spatial evolution gSince |¢;(T’)) is defined in its asymptotic form as
of the setS, . WheneverR,#0, andRy#0, the adiabatic T’ —o, the solution of(15) is uniquely determined by the
(i.e., slow evolution of the parameters of a solution of Egs. additional conditiond¢;(T’)/SU(T)=0 for T'<T.

(1) and(2) may still be found, as long as the space evolution  Now, we use again the fact that the choiceTaand T’ is
of the scattering data can be determined. In the next pargypitrary, and we set’=T+e¢, e—0. Then, by integration

graph, we illustrate the procedure that leads to the evolutiogf (15) over the interva[T,T'], Eq. (14) finally yields
of the scattering data in the presence of a perturbation.

. . 0
B. Space evolution of scattering data

56‘(”(-'-/)
The scattering matrix elements;, associated with the SU(T) >_ i
eigenvalue problenill) may be considered as functionals 0
that depend on the field componettsV and their complex

conjugates. Therefore thedr evolution may be expressed in |, 5 similar manner,

the chain-rule form

0 0
0 0||¢)=idirths.
0 O

daij _f (5CY|J(T,) U +5aij(T') &U* 5aij(T') oV 5aij(T,) . 5aij(T,) .

dz ) | 8U(T) 9z " 8UX(T) dz = oV(T) JZ SRy | etin | ey | T s
5&’”(1-’) ﬁV*)

v oz 9T

(13 Sa;j(T')\
SVE(T) =iz,
Note that the instants of tim& and T’ are arbitrary, since
aj; does not depend on the time coordinate.

The variations of aj; with respect to the potentials
(U,U*,V,V*) may be computed by means of the equiva-

so that

lence[6] dall ) &U % . ﬁU* *
, d_Z:J 'E¢11¢12+'&_Z¢12¢11
aij:<¢j|¢i>:nzl lﬂj*(n)Qsi(n), Y aV*

+i 7 d1iati 7 ¢1sl/f’fl) dT, (16)

which relates they;,'s to the Jost functions. EquatidB.2)
yields, for instance,
¢>+<%

In order to evaluate the variational derivatives of the Jost
functions, we use the fact that the right-hand side of (E8)
does not depend on time. Then, we may chobse T, so
that 6¢;(T')/ 6U(T) =0 sincey; is a plane wave that propa-
gates to the left fronT— +. As a consequence, for the d (aln) fr(d, )

daln . (9U B ) r?U* %
W:J’ 'ﬁ¢11‘//n2+' f‘ﬁlzlﬂnl

oU(T) Y av*

Sa;j(T') < oY(T")
+i &—Z¢11‘//:3+i 7 ¢13¢§1) dT (17)

SU(T) | sU(T)

5¢i(T’)> (14

for n=2,3. Moreover, we may write

causality principle the valug;(T’) may not be affected by a az (18)
variation ofU which occurred at a tim&<T’.
Hence it remains to evaluate the variations of thés

with respect to the potentialdJ(U*,V,V*). This may be for n=2, 3, and with

2
@11 aqg
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U v coq 6)sectix)e”'Pu
fol e, :j [i— o~ T iNT e
n( b, ¥) By d1( @119y, alnwlz) |¢2>: . N—p—iv+iv COS’)'( o)[tanh(x)+ 1]
A—p—lv )
JU* Liv sin(26)e' v %[ tanh(x) + 1]
= b1 anifinys — a1n W{l)} ’ (22
1 st
| —= o - .
A - v sin( 6)sectix)e'Av
|
* - i o —i(8y—éy)
. =—| sivsin(20)e "V U[tanhx)+1] |,
+|ﬁ¢13(a11¢:1_a1nl/f1(1)}d-r- |#) N—p—iv| 2 n( ). . anto v
N—pu—iv+iv sirf(§)[tanh(x)+ 1]
In the following, we restrict our attention to the one-soliton 23
case, i.e., to a single zefwhich we denote a& =\;=M\y)
for «q,. We then may proceed as described by Newell for d
the case of the scalar NL®2]. By using the definition of "
vn (n=2,3) given in(12), it is immediately verifiable that
IR R A
On the other hand, by expanding in Taylor se(i&8 around v sin(g)sectix)e’™v
A =M\g One also obtains, at first order
i(ﬂ ~[fns+()\—)\5)f,’]s] - a{ls()\_)\ ) . v coq 6)seclix)e'Au
dzZ\ aq; [ails(A—)\s)]z @1s S |¢2>:)\—+ N—p—iv+iv cog()[tanh(x)—1]
—MuTIlY L (S
where, as usual, primes denote differentiation with respect to zivsin(26)e'v U tant(x) — 1]
\ and the subscrips indicates that the quantity is evaluated (29
in A=\g. Finally, since
d)’nNdL“S_y/ d_)‘3+()\_)\ )(%_7// dis>+ . v sin( f)sechix)e'Av
- nS S nS .
dz dz dz dz dz |lﬂ3>: —— %iv Sin(za)efl(évfﬁu)[tanr(x)_1] ,
one finds N—p—iv+iv sir?(g)[tanh(x)—1]
(26)
dA f
== (19
dZ  yuslaqs) )
with x=2v(T— §£). Therefore
and
N—Ag
d 1 o] ap(N) = —,
S | g 2 (20 A=A
dz (a119) 11s

Equations(19) and (20) give the desired space evolution of

the scattering data, which is required in order to completely

characterize the solution of the initial problem.

C. Space evolution of single solitons

In the following, we specialize Eq$19) and (20) to the
case of the one-soliton solutidB) and(4) of the perturbed
nonlinear Schrdinger equation§l) and(2). In this casgsee
the Appendix for an outline of the calculation procedutbe
Jost functions read as

ivtanix)+u—X\
v coq @)sectix)e'Pu | |
v sin( 8)sechix)e'Pv

e*i)\T
| 1) = S (21)

with N g= p+iv. Moreover, it may be verified that

a1s=i cog f)e'Pu2rst)
ayas=1 sin(g)e'(ov=2Asb),
so that

Yo5= —2v cog f)e!(Pu~2st)
Yas= —2v sin(§)e(Ov— 2 st),

By inserting the above eigenfunctiof&l)—(26) in Eqs.(19)
and(20), after some lengthy but straightforward algebra we
obtain
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dis:i—Re [cog A)Rye 'Au+sin(g)Rye Pr] dx+ E|mJ [cog #)Rye Pu+sin(9)R e—iﬁv]tam(x)dx
dz 2 v v coshx) 2 v v coshx)
déy . dé sin(6) do f . Siré( 6) cos{a)RUe-‘ﬂu+ 1]sin()Rye Av] 1 J
"9z ~“'"™sqz” cod ) dz_ 2T 5c02(0) 2v 3 2v costx) °~
) cog 6) i sin( ) .| 1—x tanh(x)
—ip gyl - 7
+|Imf[ ” Rye 'Pu+ > Rye V} coshx) dx
) Siré(6) i sin( ) 1
B —iBu_
+|Imf[4v cog h) Rye 4y ]cosf{x)dx’
dé, . d& cog6) do 1]cog H)Ry e 'Au cog(6) |sin@)Rye Av) 1
i == —2iNg—=+ —+ 5= ef 77— | —— +— dx
dz dz sin(6) dz 2 2v 2 sirt(6) 2v coshx)
) cog ) i sin( 6) .| 1—x tanh(x)
—ip —igyl__ - 7
+|Imj[ > Rye™'Fu+ >0 Rye V] costX)
_ coq 0) i cos(6) 1
_ —iBy_
|Imj[ 4y Rye v 4v sin( ) | cosh(x) X
|
The above equations readily lead to the desired evolution dé 8
equations5)—(10) for the soliton parameters. Lto Lo[Ug,Ug Vo,V 1dT= Suvgz+ §V3—3VM2
ds dé
IV. LAGRANGIAN METHOD e COSZ(H)d—ZU+Sir12( e)d_zv . (31)

In this section we show that the same perturbation equa-

tions (5)—(10) for the evolution of the one-soliton parameters

may also be derived by means of the Lagrangian metholt€t Us now evaluate the variations of the Lagrandigwith

[14,15. Note that this method does not require the unper_respect to the soliton parameters. These variations may be

turbed equations to be completely solvable by means of th@t@ined in two different ways. First, one may directly use
IST. All that is necessary is simply that the unperturbedEd- (31, which yields
equations may be written in a Lagrangian form; additionally,

a solitary wave solution should also clearly exist for the un- EE (9_|-O_ i Lo :8v§—16 v 32
perturbed problem. In the present case, it is easy to recast Su  dm  dZouldZ dz M
Egs.(1) and(2) in the form
SLo dé¢
oL 5L —=8u—+8 2_ .2
55 =1Ry, 5w =iRy, (27) P VAR
déy . déy
where the Lagrangian density is —4v| cos( )47+ sin?( el (33
ouU* *1 1
= _ 2 272
Lo Im[u =7 +V =7 +2[|U| +|V|4] ﬁ:_ %+ d_M a4
5& maz Vaz) (34
1[]au 2+ au |? 28
2[] T aT oLo dv _ de
55 -4 co§(0)d—z—8v sm(a)cos(a)d—z, (35)
and the variational derivatives are defined as u
Lo < M L, a( L, oo dv . de
L :nzo “””ﬁ(W =\ 50573 (29) 55\/—4 S|r12(0)dz+8V sm(a)cos(a)dz, (36)
Lo - LM aLy a( L, Lo . (d5u déy
——_ N | —-—=8vsin(#)cog 0)| —— —=|. 3
v~ V" o ez ez GO A U KT 7

The time-averagedon the one-soliton solutiorJ=U, On the other hand, the variations lo§ may also be written
V=V, (3) and(4)] Lagrangian reads as in the chain-rule form, e.g.,
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Sl SLo Uy  SLo UE  SLo IV, terms of a pair of perturbed NLS equations which represent
5—=J 0. 9 T5U* 5 EYAET the averaging of the various elements over each pass. In a
v o ¥ o 9% o ¥ rather general form, we may write these equations as (&js.
SLe OVE and (2) with
+ 0 _0) 2
5V6c v

By inserting in the above expression E¢27) and the de-
rivatives of the one-soliton solutiof8) and (4), one obtains

‘;L;%Re [cog 6)Rue -+ sin( 9)e V] e dx
(38)
oL 2 4
5—1/0=—;Imf [cog O)Rye™'Au
) gy 1—x tanh(x)
+sin(f)e ﬁ]wdx, (39
oL . .
5—;= — 4y Imj [cog )Rye™Pu+sin(g)e'Av]
tanh(x) ;
XCOSKX)dX—4M Ref [cog §)Rye™'Au
+sin( 9)e*‘ﬁv]coshx) dx, (40)
8L, _igy
5—5U=2ReJ cog )Ry e '# cosl(x)dx’ (41
oL .
5—53=2Ref sin(e)RVe*'Bvcoshx)dx, (42
oL ;
5—00:2 ImJ [sin(9)Rye ™ "Pu
—cog H)Rye"'Av] dx. (43)

coshx)
By comparing the right-hand sides ¢82)—(37) and Egs.

(38)—(43), one obtains again the perturbation equati@)s
and(10).

V. POLARIZATION MODE LOCKING

59U
Ry=(a+ 5+ip)U+(’y+iK)V+,8§—Tz+iU|V|2U,

2 (44)
RV=(a—5—ip)V+('y+iK)U+Bﬁ+i0'|U|2V.

The meaning of the various perturbing terms in the right-
hand side of Eq944) is the following: «>0 is the isotropic
gain coefficient, whereas, y, and 8 represent gain dichro-
ism and dispersion. Moreovep, is the linear birefringence,

x is the linear coupling, and- the differential cross-phase
modulation coefficient which depends on the tensorial prop-
erties of the third-order susceptibility: in birefringent fibers,
o=—1/3.

By applying the general perturbation theory resfs-
(10) to the above cas@l4), one obtains the following equa-
tions for the adiabatic evolution of the vector soliton param-
eters:

dv_

iz 2v[a+ 6 cog260)]—8Bv

2
L)
3 TH

+2vyv coq )sin(26),

du 16 )
9z~ 3 BmvS

dé

a7~ oM (45

3—§= —k sin(y)— 6 sin(20) + y cog ¢)cog20),

dy _ 8 2
E—Zp—zk cog ¢)cot(20)— 3 ov-coq26)

—2y csq20)sin(y),

where = 6,— 6, . The availability of a set of ordinary dif-
ferential equations such as Edd45) permits one to derive

the conditions for the mode locking eigenstates of the laser:
these are represented by the stable fixed points of the above
system (45 (i.e., where dv/dZ=du/dZ=---
=dy/dZ=0).

As a specific example of application of the perturbation Clearly the limits of validity of soliton perturbation theory
theory for vector NLS solitons, we outline the case of polar-should be verified by comparing their predictions with the
ized solitons in fiber lasefd4.6,17. In a fiber laser, linear and numerical solutions of the original Egél), (2), and (44).
nonlinear birefringence in the optical fiber provide conservaWe do not intend to investigate here in detail these limits.
tive or Hamiltonian perturbations to the vector solitons,Instead, we simply present in Figs. 1 and 2 two numerical
whereas the gain medium, filters, and polarizing elementexamples which show that, even in the presence of relatively
introduce dissipative perturbations. The stable propagation déarge perturbations, the perturbation theory is able to repro-
vector solitons with a state of polarization which reproducesduce (over a limited distangethe numerically observed be-
itself after each round-trip through the cavity results from thehavior for the polarization rotation of vector solitons. The
proper balance between all these perturbations. As soon aslid curves in Figs. 1 and 2 illustrate the evolution with
the field in the cavity has organized itself in the form of adistanceZ of the polarization angl@ and relative phasé
stable soliton, the action of all the elements in each roundfrom the perturbation theory, Eg&l5). On the other hand, in
trip introduces only small changes to the soliton parametershese figures the dots show the exact numerical results which
As a consequence, the soliton stability may be analyzed iare obtained by extracting, through the direct spectral trans-
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FIG. 1. Evolution of the polarization angleé and relative phasg from perturbation theorysolid curve$ and from the scattering
transform of the numerical solutioridots. Here the conservative perturbation is givendy 1/2, o= —1/3.

form, the two angles from successive profiles as they aréhe excess gaid=0.1 and the gain dispersidier spectral
computed from the numerical solutiofisy a split-step Fou- filtering) coefficient3=0.3. Also, in this case(0)=0.6. As

rier method of Egs. (1), (2), and(44). In order to compute can be seen, although the qualitative agreement of the per-
the direct spectral transform of the vector NLS equation fromturbation results remains good, the mismatch of the soliton’s
the numerical samples, we have extended the discrete scateriod increases. We believe that this is largely due to the
tering transform method of Ref21]. Figure 1 was obtained effect of radiation, which is generated as the soliton relaxes
for a purely conservative perturbation to the vector solitontowards the fixed point of Eq$45) with amplituder=0.5.

i.e., we took a linear couplinge=1/2 and a cross-phase In fact, Fig. 3 shows the fraction of solitqsolid curve and
modulation coefficiento=—1/3. Moreover, we considered radiation energydashed curveas it is computed from the
the initial valuesy(0)=0.5, (0)=m/4, andy(0)=m/2. As  spectral transform of the numerical data. Note that the evo-
can be seen, in this case there is a very good qualitativieition of radiation in the perturbed vector NLS system may
agreement between perturbation theory and numerical realso be determined by extending the perturbed inverse scat-
sults. The quantitative agreement is also good over the firgering transform method which is presented her@, 20.

period of rotation of the soliton polarization. A slight mis-

match of the solitpn rotation period in the two cases intro- VI. CONCLUSIONS
duces a progressively larger shift between perturbative and
exact results for larger distances. We derived general evolution equations for the adiabatic

In the case of Fig. 2 we considered mixed conservativeevolution of the parameters of perturbed single solitons in
(same as in Fig.)land dissipative perturbations: we included the vector NLS equation. We have shown that these equa-

100 " 300
D
80t 250 1
o
2
< 60j & 200}
c o
S °
« q g
S 40} © 150}
o [}
S (i
20t 100}
0 50 .
0 0 5 10
Distance Z Distance Z

FIG. 2. Same as in Fig. 1, with mixed conservative and dissipative perturbationsghed®&=0.3.
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1 991 * * oy
\//— '0-,_T+U092+Vog3—2)\91-
08
o d
3 —i 22— U0, =0, (A2)
506
E d
-,304 —i%—vogl_o
L
0.2 L With the ansatz
o~~~ - g1=Agsecti2u(T—£)]eRHT-0+3  (a3)
0 5 10

Distance Z one obtains

=i i(5y=9) _a1e
FIG. 3. Fraction of solitor{solid curve and radiation(dashed g2=1Ascos 0) tanf{2v(T—£)1+8,, (A4d
curve energies for the case of Fig. 2. gs=IiA;sin( g)ei(ﬁv—rS)tanr[zy(T_ £)]+B;3. (Adb)
tions may equivalently be obtained by applying either theMoreover, by using the first of EqeA2), the following con-
perturbed IST or the Lagrangian method. As an example oflition can be found:
application of the theory, we briefly discussed the case of
polarized solitons in optical fiber lasers. A=

- [B,cog 6)'(°~ %0+ B,sin(9)e®~ V)], (AB)
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_ vcog 0)

APPENDIX: EVALUATION OF THE JOST FUNCTIONS T —— Ve“‘?* o),

Let us consider the eigensolutions of the scattering prob-
lem (11) that are associated with the one-soliton potential
U=U,, V=V, (3) and (4). We look for an eigenvector of
the form

_A—u+ivsind(6)
B AN—u+iv '

B, (A7)
‘ _ —ivsin(26) . -
|f>:e”\T|g>- (AL) T2 —ptiv) (v,

It follows that As a result, Eq(25) is found.
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