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Adiabatic matching of a bright beam into a transport focusing channel, while avoiding beam halo formation,
is considered. Gradual changes in nonlinear focusing fields result in the modification of an initially nonlinear
beam distribution into a distribution matched with the linear focusing channel. A plasma lens with a specific
distribution of particles along the channel provides an ideal way to create an appropriate nonlinear focusing
field. Another method employs an alternating-gradient focusing quadrupole structure with a multipole compo-
nent of sixth order~duodecapole component!. In this case, the initial matched beam profile has to be close to
square instead of the conventional circular beam cross section. Analytical results are illustrated by simulations
using the particle-in-cell method.@S1063-651X~96!05111-2#

PACS number~s!: 07.77.2n, 29.27.Eg, 41.75.2i, 52.25.Wz

I. INTRODUCTION

Experiments that use intense particle beams exhibit strong
emittance growth and beam halo formation in the linear fo-
cusing channel due to a mismatch between the beam profile
and the focusing field. This phenomenon limits beam bright-
ness and results in particle loss. In the next generation of
intense particle accelerators for heavy ion fusion@1# and
nuclear waste transmutation@2# beam halo will have to be
suppressed. Recently@3,4#, it was shown that the emittance
of a high brightness beam can be conserved in a highly non-
linear focusing field. Such a focusing field must be a linear
function of the radius near the axis and decay nonlinearly
further from the axis. An ideal method of creating this po-
tential distribution is to use a plasma lens with a specific
distribution of particles with opposite charge. Another
method utilizes an alternating-gradient quadrupole structure
with a higher-order~duodecapole! field component, where
approximate matched conditions for the beam can be ob-
tained.

Most existing beam transport channels are based on fo-
cusing elements dominated by linear fields produced by qua-
drupoles, solenoids, and electrostatic axial-symmetric lenses.
An adiabatic variation of a nonlinear focusing field can be
expected to provide a gradual transformation of an initially
nonlinear beam distribution into a distribution matched to the
linear focusing channel. In this case, it is only necessary to
create a complicated nonlinear focusing for a short distance
in an adiabatic transformer. To match a beam with an arbi-
trary distribution function into the linear focusing channel,
two problems must be solved: to create an appropriate focus-
ing potential distribution and conserve the given beam dis-
tribution function and to provide an adiabatic transformation
into the potential of a conventional focusing structure with a
linear focusing field.

This paper studies the behavior of a space-charge-
dominated beam in a uniform focusing channel and in an
alternating-gradient structure with a small value of phase ad-
vance per period. In such systems, the envelopes of the
matched beams are nearly constant. This makes it possible to
consider az-independent process and treat the problem ana-
lytically.

II. MATCHING OF A BEAM INTO THE UNIFORM
FOCUSING CHANNEL

Self-consistent matched conditions for a beam with an
arbitrary distribution function in a uniform focusing channel
have been obtained from two principles: Vlasov’s equation
for a time-independent distribution function and Poisson’s
equation for the space-charge potential of the beam@3,4#. A
realistic beam distribution is characterized by a high concen-
tration of particles near the axis and declining particle den-
sity towards the periphery of the beam. Let us consider a
beam of particles with a parabolic distribution function,
which is similar to experimentally observed beam distribu-
tions. In this distribution, the phase-space density of particles
monotonically decreases from the center of the beam until
reaching the boundary of a four-dimensional hypervolume:
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where I is the beam current,b is the longitudinal particle
velocity, q is the charge,m is the mass of particle,R
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The space charge densityrb and space charge potential of
the beamUb are defined by the expressions
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whereI c54p«0mc3/q5(A/Z)3.133107 A is the character-
istic value of beam current. Substitution of the distribution
~1! into Vlasov’s equation for a time-independent distribu-
tion function gives
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leading to the expression for the total potential of the struc-
ture
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The potentialU5Uext1Ub is a combination of the potential
of an external focusing fieldUext and the space charge po-
tentialUb of the beam. Combining the solution of Vlasov’s
equation for total potential of the structureU and space
charge potential of the beamUb , the required potential to
maintain a given distribution function can be found:
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The potential~7! consists of a quadratic termr 2, describ-
ing the linear focusing, and two nonlinear terms, propor-
tional to r 4 and r 6. The nonlinear terms compensate exactly
for the corresponding nonlinear terms in the space charge
potential of the beam, while the quadratic term, in combina-
tion with the corresponding quadratic term for the space
charge potential, creates a total linear focusing, defined by
the value of the beam emittance~2!. This comes from the
fact that the parabolic beam distribution~1! provides ellipti-
cal phase-space projections at phase planesx2px andy2py
and the ellipse is conserved in a linear field. Therefore, the
total field of the structure has to be a linear function of the
radius, but the external focusing field appears as a nonlinear
function of radius. The required potential for the focusing
field ~7! is substantially different from fields widely used in
conventional transport channels.

III. ADIABATIC TRANSFORMATION OF A NONLINEAR
BEAM DISTRIBUTION

Conservation of the beam distribution function requires
the focusing field to be linear near the axis and become es-
sentially nonlinear far from the axis. Conventional focusing
structures employ quadrupole lenses and axial-symmetric
lenses~both electrostatic and magnetostatic! where linear fo-
cusing components usually dominate. It is interesting to
verify whether it is possible to transform an initially nonlin-

ear distribution into a distribution matched with the linear
focusing channel. Suppose the focusing field~7! provides
perfect matching of the initial nonuniform beam and subse-
quent changes in the focusing field are done adiabatically. In
this case the beam emittance is a constant of motion@5#

«5E dx dpx5 inv. ~8!

The restriction of an adiabatic change of parameters means
that the system should change more slowly than the period of
oscillation of the beam particles. The adiabatic invariant~8!
is not conserved exactly during the field transformation@5#,
but one can expect that any change of the value of the in-
variant ~beam emittance! will be small.

The final expected beam distribution is a distribution that
is matched with a linear focusing structure. This class of
matched beams was studied in detail in Refs.@6–10#. A gen-
eral property of those solutions is that, with increasing beam
current, the profile of the matched beam has to become in-
creasingly flat, while the phase-space projection~beam emit-
tance! has to become ever closer to rectangular.

To verify the possibility of adiabatic beam transformation,
a self-consistent computer simulation using the particle-in-
cell codeBEAMPATH @11# for the proton beam withI52 A,
R50.15 cm,«50.12p cm mrad, andb50.01788 was done.
The beam was represented as a combination of 33104 par-
ticles. Trajectories were calculated employing the leapfrog
method@12# and the two-dimensional space charge potential
of the beam was calculated for the instantaneous particle
distribution at every time step with a fast Fourier transform
on a spatial grid of 2563256.

The focusing field potential was gradually transformed
from the field~7!, required by nonlinear matched conditions,
to the linear focusing field

U~r ,z!5Uext~r !1@UL~r !2Uext~r !#
z

L
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wherez is the longitudinal coordinate andL is the drift space
of the matcher. The potentialUL was chosen as a potential
that provides a matched condition for an equivalent

FIG. 1. rms beam emittance growth in a uniform focusing chan-
nel: ~a! beam with a parabolic distribution in a linear field,~b! beam
with a parabolic distribution in the matching section with a nonlin-
ear field, and~c! KV beam in a linear field.

TABLE I. Beam emittance growth in a uniform focusing chan-
nel.

Curve

Beam distribution
and

focusing channel
Initial emittance

~p cm mrad!
Final emittance

~p cm mrad!

1a parabolic beam in a
linear focusing field

0.12 0.14

1b parabolic beam
in a nonlinear
adiabatic matcher

0.12 0.126

1c KV beam in a
linear focusing field

0.12 0.124
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Kapchinsky-Vladimirsky~KV ! @6# beam in a linear focusing
channel, with the same rms beam emittance« and rms beam
envelopeR:
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The distanceL5114 cm was selected to allow five transverse
oscillations of the particles along the matcher. After adia-
batic transformation, the beam was transported 114 cm fur-
ther in the linear focusing channel to check the result of
adiabatic matching. For comparison, the beam dynamics in
the pure linear focusing channel with a potentialUL for ini-
tial parabolic@Eq. ~1!# and KV distributions were calculated.
The results of simulation are presented in Table I and Figs.
1–3.

Calculations show that, in a pure linear focusing channel,
a beam with a parabolic distribution experiences halo forma-
tion and emittance growth, while during adiabatic transfor-
mation in a nonlinear matching section, halo formation is
avoided and emittance growth is substantially smaller. The
beam emittance of a parabolic beam distribution in the linear
focusing channel changed rapidly from the initial value 0.12
p cm mrad to become 0.135p cm mrad during the first 1.28
cm of beam transport. The emittance growth rated«/dzwas
1022 ~p cm mrad!/cm @see Fig. 1~a!#. The same distribution
in the nonlinear matcher exhibited almost constant emit-
tance, with an emittance growth rated«/dz51024

~p cm mrad!/cm, which is two orders of magnitude smaller

@see Fig. 1~b!#. The phase-space projection of the beam in the
matching section changed due to a variation in the focusing
field and the final beam distribution is completely matched
with the linear channel. This study shows that the nonuni-
form beam distribution can be transformed into a distribution
that is matched with a linear focusing channel, using a rela-
tively short adiabatic matching section with a nonlinear fo-
cusing field.

Figure 1~c! indicates the emittance growth of a KV beam
due to numerical errors. An ideal KV distribution provides
linear space charge forces, which, in combination with linear

FIG. 2. Beam emittance growth in a uniform focusing channel
with a linear focusing field:~a! z50, ~b! z5114 cm, and~c! z5228
cm.

FIG. 4. Lines of equal values of the function
F5r 212zr 6~cos2w cos6w1sin2w sin6w!1z2r 10 for z520.025:~a!
F50.1, ~b! F50.5, ~c! F51.0, and~d! F51.7.

FIG. 3. Adiabatic matching of the beam in a uniform nonlinear
matching section:~a! z50, ~b! z5114 cm, and~c! z5228 cm.
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focusing forces, guarantee preservation of beam emittance.
In a numerical experiment employing the particle-in-cell
method, the space charge forces are not perfectly linear due
to the finite number of modeling particles and mesh points
required to solve the space-charge problem. This results in
the nonconservation of beam emittance, which in this case is
3% after ten transverse oscillations for a high brightness
beam with a phase-space density of 16.6 A/~p cm mrad!.
The proximity of the emittance growth curves for a KV
beam in a linear focusing channel and a parabolic beam in a
nonlinear matcher in Fig. 1 indicates that emittance growth
in a nonlinear matcher is partly due to numerical errors and
similar matching conditions for a KV beam in linear field are
achieved.

The required nonlinear focusing field can be created by a
graded distribution of oppositely charged particles along the
focuser~plasma lens!:
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A plasma lens with a gradually changing particle distribution
was considered in Ref.@13#. A simpler way to create a non-
linear potential distribution employs a quadrupole channel
with multipole components.

IV. MATCHING OF THE BEAM
INTO AN ALTERNATING-GRADIENT FOCUSING

CHANNEL WITH HIGHER-ORDER
MULTIPOLE COMPONENT

In Ref. @4# it was shown that introducing a duodecapole
component in a pure quadrupole alternating-gradient struc-
ture results in better matching of the beam with the transport
channel, at least at the initial stage of beam transport.
Higher-order terms in the potential distribution produce non-
linear components, which can be used to compensate for

nonlinear space charge forces. Let us consider a focusing-
defocusing~FD! structure with periodS52D, created by a
sequence of electrostatic quadrupole lenses of lengthD. For
the magnetic quadrupole channel, the derivations are similar.
The structure’s potential is given by

U~x,y,z!5 f ~z!FG2

2
r 2cos2w1

G6

6
r 6cos6w G , ~13!

whereG2 is a quadrupole gradient,G6 is duodecapole com-
ponent, and the functionf (z) represents az dependence of
the potential in alternating-gradient structure

f ~z!5H 1, 0,z,
S

2

21,
S

2
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~14!

The functionf (z) can be expanded as a Fourier series with
wave numberkz52p/S:

FIG. 5. rms beam emittance growth in a pure quadrupole
alternating-gradient focusing channel withG2540 kV/cm2: ~a! cir-
cular beam and~b! square beam.

FIG. 6. Halo formation of a circular beam in a pure quadrupole
structure with a field gradientG2540 kV/cm2: ~a! z50, ~b! z560
cm, ~c! z5150 cm, and~d! z5300 cm.
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Let us replace the variablez with time t5z/bc. Particle
motion can be considered as fast oscillations in the field
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where the frequencyv052pbc/S and the field components
are
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The problem of particle motion in a fast oscillating field

EW (rW,t)5(k51
` EW k(rW)sinvkt was analyzed in Refs.@5, 14, 15#.

Particle trajectories can be represented as a combination of a
slow variation of particle position plus small fast oscillations.
The oscillating field creates an effective scalar potential
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which describes the averaged~slow! motion of particle. For
the FD structure the effective potential is
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The effective potential is an axially nonsymmetric and
highly nonlinear function of the radius. The value of the sum
in expression~19! is

(
n51
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~2n21!4
'1.014 678 ~20!

and can be taken as 1. Let us compare the potential~19! for
w50 with the required axially symmetric potential~7!. Lin-
ear focusing parts of the field must be equal:
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From Eq.~21! the quadrupole gradient is
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To define the value ofG6, let us assume that the values of
electric fields Eext52]Uext/]r and Eeff52]Ueff/]r are
equal at the boundary of the beam distributionr5&R. The
terms proportional tor 2 vanish due to the adopted condition
~21!. The remaining terms give the equation

FIG. 7. Halo formation of a square beam in a pure quadrupole
structure with field gradientG2540 kV/cm2: ~a! z50, ~b! z560 cm,
~c! z5150 cm, and~d! z5300 cm.

FIG. 8. rms beam emittance growth in a quadrupole field
G2540 kV/cm2 with an adiabatic decline of the duodecapole com-
ponent fromG6521 kV/cm6 to zero for the distance 0,z,120 cm
followed by a channel with a pure quadrupole field:~a! circular
beam and~b! square beam.
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For usual values ofzR4!1 the second term on the left-hand
of Eq. ~23! can be neglected. Finally, the duodecapole com-
ponent is
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For space charge dominated beams, the ‘‘space charge term’’
is much larger than the ‘‘emittance term’’ 3I /I cb@«2/R2,
which gives

G652
1

36

G2

R4 ~25!

or zR45 1
36'0.0277. Note that in every lens the duodecapole

component has to be the opposite of the quadrupole compo-
nent, i.e., the absolute value of the field is reduced in thex
and y directions compared to the linear function of the ra-
dius.

In Fig. 4 the equipotential lines of the function

F5r 212zr 6~cos2w cos6w1sin2w sin6w!1z2r 10

~26!

are presented. It is seen that for a small radius the lines are
close to circles because the quadratic termr 2 is dominant.
With a larger radius, the equipotential is close to a 45°
skewed square. This suggests that the matched beam should
also have the square shape.

Self-consistent computer simulations using particle-in-cell
codeBEAMPATH were done to verify the matched conditions
of the beam, obtained from the above considerations~see
Figs. 5–10 and Table II!. Parameters of the structure and of
the beam with an initial parabolic distribution~1! were cho-

FIG. 9. Halo formation of a circular beam in a quadrupole field
G2540 kV/cm2 with an adiabatic decline of the duodecapole com-
ponent fromG6521 kV/cm6 to zero for the distanceL5120 cm:
~a! z50, ~b! z560 cm,~c! z5150 cm, and~d! z5300 cm.

FIG. 10. Adiabatic matching of the beam avoiding halo forma-
tion in a quadrupole fieldG2540 kV/cm2 with an adiabatic decline
of the duodecapole component fromG6521 kV/cm6 to zero for the
distanceL5120 cm:~a! z50, ~b! z560 cm,~c! z5150 cm, and~d!
z5300 cm.
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sen as follows: I5100 mA,«50.155p cm mrad,R51 cm,
G2540 kV/cm2, D51 cm, andG6521 kV/cm6. The trans-
verse beam profile in real space was truncated to be a skewed
square with the maximum beam sizeRmax52.5A^x2&
51.25R @see Fig. 10~a!#. The potential of the structure in
simulation was defined by Eq.~13!. The value of quadrupole
gradientG2 was kept constant along the channel. The non-
linear componentG6 was adiabatically changed from the
value ~24! as required by matched conditions to zero, at the
distanceL:

G6~z!5G6S 12
z

L D . ~27!

The distanceL5120 cm was chosen to provide approxi-
mately one transverse oscillation of particles. After the non-
linear matcher,z.L, the channel was a pure quadrupole and
the beam was transported 180 cm further to verify the results
of the transformation. A relatively small distance of study
was chosen as simulations are time consuming~around 50 h
of CPU time on a VAX computer!. Meanwhile, even in such
a nonadiabatic process, the effect of beam matching into the
nonlinear focusing field is clearly visible~Fig. 10!.

For comparison, mismatching of a circle beam~Fig. 6!
and square beam~Fig. 7! in a pure quadrupole channel as
well as mismatching of a circle beam in a nonlinear matcher
~Fig. 9! were studied. To make a correct comparison, the
same beam with truncated square shape@Fig. 7~a!# as well as
a circle beam@Figs. 6~a! and 9~a!# with the same maximum
beam sizeRmax52.5A^x2&51.25 cm were used in simula-
tions. The beam currentI5100 mA and initial value of beam
emittance«50.155p cm mrad were identical in all cases.
Therefore, the total charge of the beam per unit length and
phase space densityI /« were the same.

As shown in Figs. 5–7, the beam in a pure quadrupole
channel experienced halo formation and emittance growth.
Initial values of emittance growth rate are 631024

~p cm mrad!/cm for a circular beam and 431024

~p cm mrad!/cm for a square beam. After 30 lenses, which
correspond to one-quarter of a transverse oscillation, the
beam emittance achieved the value 0.176p cm mrad for a

circular beam and 0.168p cm mrad for an initially square
beam shape. Finally, a beam halo was formed and the rms
beam emittance became stable with values of 0.17p cm
mrad for a circular beam and 0.165p cm mrad for an ini-
tially square beam shape.

In Figs. 8–10 results of the beam dynamics study in a
nonlinear matcher are presented. The introduction of a duo-
decapole component in a pure quadrupole channel is a nec-
essary but not sufficient condition to provide beam matching.
A nonuniform beam with a circular cross section remains
mismatched in a nonlinear alternating-gradient field. In Figs.
8~a! and 9 emittance growth and halo formation of such a
beam in a nonlinear matcher are presented. The initial emit-
tance growth rate is 831024 p cm mrad/cm and the final
value of beam emittance is 0.173p cm mrad. To avoid halo
formation, the nonuniform beam must be truncated in real
space with a square shape, as shown in Fig. 10.

For the square beam in a nonlinear matcher, the initial
value of emittance growth rate is 231024 ~p cm mrad!/cm
@Fig. 8~b!#, which is substantially smaller than in mis-
matched beam transport. The final value of beam emittance
is 0.16p cm mrad, which indicates better matching condi-
tions than in previous cases presented in Figs. 6, 7, and 9.
The beam profile in real space is transformed from a square
to a circular shape~Fig. 10! and follows the adiabatic change
of the effective potential. The final beam emittance and beam
profile are matched with the linear focusing channel without
halo and phase-space distortion.

The above consideration demonstrates that two conditions
are essential to keep emittance growth down:~i! introduction
of a sixth-order component in a pure quadrupole alternating-
gradient structure and~ii ! square truncation of a nonuniform
distribution in real space. As shown in Fig. 10~a!, the trun-
cation does not disturb the shape of beam emittance at the
phase planex2px . After nonlinear matcher the beam emit-
tance is close to the initial unperturbed ellipse without a halo
in phase space, which facilitates the subsequent matching of
the beam with a linear focusing channel. Since nonlinear
space charge effects are pronounced at low beam energy,
square beam truncation can be performed during extraction
from the particle source with a square extraction hole.

TABLE II. Beam emittance growth in an alternating-gradient focusing channel.

Curve

Beam distribution
and

focusing channel
Initial emittance

~p cm mrad!
Final emittance

~p cm mrad!

5a circle beam
in a pure quadrupole field

0.155 0.17

5b square beam
in a pure quadrupole field

0.155 0.165

8a circle beam
in a quadrupole field
with a duodecapole component

0.155 0.173

8b square beam
in a quadrupole field
with a duodecapole component

0.155 0.16
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V. SCALING PARAMETERS

The above relationships allow us to introduce scaling pa-
rameters that can be used for possible simulation of a high-
current, high-energy beam by a small-scaled beam. Let us
introduce dimensionless beam emittanceh and beam current
j , which must be the same for scaling beams

h5
«

R
, j5

I

I cb
. ~28!

Required values for the quadrupole gradient, duodecapole
component, and period of FD structure are scaled as

g25
qG2R

2

mc2b
u, g65

qG6R
6

mc2b
u, u5

S

R
. ~29!

While the scaled period of the structureu is the same for
scaling beams, the number of lenses is different. Let us con-
sider the equation of particle motion in an effective potential
~19!:

d2x

dy2
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q

m S S
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2 ]Ueff

]x
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S
. ~30!

After some algebra, one gets the frequency of smoothed
transverse linear oscillationsm0:

d2x

dy2
52m0

2~x16zx515z2x9!, m05
&

p2

S2G2q

mc2b2 . ~31!

The value ofm0 is a phase shift of transverse oscillations per
period of structureS in an effective field of the structure
~19!. Taking into account the expression for quadrupole gra-
dientG2 ~22!, the value ofm0 is scaled as

m0;
u

b
. ~32!

This means that for the same values of dimensionless period
of the structureu, the value ofm0 is inversely proportional to

velocity of particles. To obtain the same total phase shift of
transverse oscillations for a beam with higher energy, a
larger number of lenses is required. Using the linear part of
space charge potential of the beam~4!, the depressed value
of phase advance per period for a space charge dominated
regime is

m5
m0

113
j

h2

. ~33!

Introducing these scaling parameters allows us to simulate a
heavy ion, high current beam by a light ion beam with
smaller energy and smaller current.

VI. CONCLUSION

The adiabatic change of a nonlinear focusing field along a
beam guiding structure results in the gradual transformation
of an initially nonlinear beam distribution into a distribution
matched with the linear focusing channel. This avoids other-
wise substantial emittance growth during the stage of beam
transport. Two cases of a nonlinear focusing field were con-
sidered: a plasma lens and an alternating gradient focusing
structure with a duodecapole component. In the latter case,
the beam shape in real space has to be close to square, which
corresponds to the matched conditions of the beam with an
averaged nonlinear focusing field. The suggested scheme en-
ables us to transform a laboratory beam with a nonlinear
distribution function into a beam that is matched with the
linear focusing without halo formation. After transformation,
the beam can be transported~accelerated! in a conventional
structure with a linear focusing field.
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