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Adiabatic matching of a nonuniform intense charged-particle beam into the focusing channel
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Adiabatic matching of a bright beam into a transport focusing channel, while avoiding beam halo formation,
is considered. Gradual changes in nonlinear focusing fields result in the modification of an initially nonlinear
beam distribution into a distribution matched with the linear focusing channel. A plasma lens with a specific
distribution of particles along the channel provides an ideal way to create an appropriate nonlinear focusing
field. Another method employs an alternating-gradient focusing quadrupole structure with a multipole compo-
nent of sixth ordefduodecapole compongntn this case, the initial matched beam profile has to be close to
square instead of the conventional circular beam cross section. Analytical results are illustrated by simulations
using the particle-in-cell methoiS1063-651X96)05111-2

PACS numbgs): 07.77—n, 29.27.Eg, 41.75:i, 52.25.Wz

I. INTRODUCTION IIl. MATCHING OF A BEAM INTO THE UNIFORM
FOCUSING CHANNEL

Experiments that use intense particle beams exhibit strong Self-consistent matched conditions for a beam with an
emittance growth and beam halo formation in the linear fo-

. X ~arbitrary distribution function in a uniform focusing channel
cusing channel due to a mismatch between the beam profile, e peen obtained from two principles: Viasov's equation

and the focusing field. This phenomenon limits beam brighto; 5 time-independent distribution function and Poisson’s
ness and results in particle loss. In the next generation qﬂf\quation for the space-charge potential of the bgad. A

intense particle accelerators for heavy ion fusfdn and  eajistic beam distribution is characterized by a high concen-
nuclear waste transmutatig@] beam halo will have to be ¢ation of particles near the axis and declining particle den-

suppressed. Recentf,4], it was shown that the emittance i, towards the periphery of the beam. Let us consider a
of a high brightness beam can be conserved in a highly norheam of particles with a parabolic distribution function,

linear focusing field. Such a focusing field must be a linearyhich s similar to experimentally observed beam distribu-
function of the radius near the axis and decay nonlinearlyjons, |n this distribution, the phase-space density of particles
further from the axis. An ideal method of creating this po- nonotonically decreases from the center of the beam until

tential distribution is to use a plasma lens with a specifiGgaching the boundary of a four-dimensional hypervolume:
distribution of particles with opposite charge. Another

method utilizes an alternating-gradient quadrupole structure 3 [ x2+y?2 p)2<+ p§
with a higher-order(duodecapolefield component, where f=ﬁ BqmEcie? 1- SRZ " 2pZ | (U]
approximate matched conditions for the beam can be ob- q Po

tained. - wherel is the beam current3 is the longitudinal particle
Most existing beam transport channels are based on fc{?elocity, q is the chargem is the mass of particleR

cusing elements dominated by linear fields produced by qua- | — - o o
drupoles, solenoids, and electrostatic axial-symmetric Iense§2 {x%) is the beam envelop@,=2+v(p}) is the double

An adiabatic variation of a nonlinear focusing field can pe/00t mean 'squarérms) beam slze In phase space, ans
expected to provide a gradual transformation of an initiallythe normalized rms beam emittance

nonlinear beam distribution into a distribution matched to the 4 D

linear focusing channel. In this case, it is only necessary to e= — \/<x2><p)2(>—<xpx)2=R o 2)
create a complicated nonlinear focusing for a short distance mc mc

in an adiabatic transformer. To match a beam with an arbi- . .
trary distribution function into the linear focusing channeI,The space charge densipy and space charge potential of

two problems must be solved: to create an appropriate l‘ocuét‘e beam,, are defined by the expressions

ing potential distribution and conserve the given beam dis- 30 r2 2
tribution function and to provide an adiabatic transformation = | 1-— (3)
. X . . . Po 2 RZ 2R2 ’
into the potential of a conventional focusing structure with a mCB
linear focusing field. ) 4 6

This paper studies the behavior of a space-charge- _ §m_cz |_ ~ f_+ r @
dominated beam in a uniform focusing channel and in an " 2 q I,8\R* 4R*  36R%)’

alternating-gradient structure with a small value of phase ad-

vance per period. In such systems, the envelopes of theherel ,=4me,mc’/q=(A/Z)3.13x10’ A is the character-
matched beams are nearly constant. This makes it possible igtic value of beam current. Substitution of the distribution
consider az-independent process and treat the problem anal) into Vlasov's equation for a time-independent distribu-
lytically. tion function gives

1063-651X/96/5¢6)/56738)/$10.00 54 5673 © 1996 The American Physical Society



5674 YURI K. BATYGIN 54

TABLE I. Beam emittance growth in a uniform focusing chan- 0.15
nel.
0.145 a
Beam distribution R vl
and Initial emittance Final emittance £ r
Curve focusing channel (7 cm mrad (7w cm mrad = 0135 1
o
. . 0.13 1
la parabolic beam in a 0.12 0.14 B i b
linear focusing field w QJ25 L *""",‘___J
1b  parabolic beam 0.12 0.126 012 s oy T
in a nonlinear - c
adiabatic matcher OIS 5555075 100 125 130 175 200
1c KV beam in a 0.12 0.124
linear focusing field z (cm)
FIG. 1. rms beam emittance growth in a uniform focusing chan-
df of of of oU of oU nel: () beam with a parabolic distribution in a linear fie(d) beam
dt ox Ux ay vy—(q Py IX | apy dy 5) with a parabolic distribution in the matching section with a nonlin

ear field, andc) KV beam in a linear field.
leading to the expression for the total potential of the struc- o o . )
ture ear distribution into a distribution matched with the linear
focusing channel. Suppose the focusing fi€ld provides
1 me 22 perfect matching of the initial nonuniform beam and subse-
=5 T R (6) quent changes in the focusing field are done adiabatically. In
this case the beam emittance is a constant of mgéon

x2+y?
2

_mczs2
T q R?

The potentiall = U,,+U, is a combination of the potential
of an external focusing fielt).,; and the space charge po- ezf dx dp=inv. (8)
tential U, of the beam. Combining the solution of Vlasov’s

equation for total potential of the structuté and space o ) ]
charge potential of the beatd,, the required potential to The restriction of an adiabatic change of parameters means
maintain a given distribution function can be found: that the system should change more slowly than the period of

oscillation of the beam particles. The adiabatic invari@t
is not conserved exactly during the field transformafibh
. (M but one can expect that any change of the value of the in-
variant (beam emittangewill be small.
The final expected beam distribution is a distribution that

ing the linear focusing, and two nonlinear terms, propor—is matched with a Iinear_foc_using structure. This class of
tional tor? andr®. The nonlinear terms compensate exactlyMaiched beams was studied in detail in RE8s:10]. A gen-

for the corresponding nonlinear terms in the space chargg@l Property of those solutions is that, with increasing beam
potential of the beam, while the quadratic term, in combinaCuITent, the profile of the matched beam has to become in-
tion with the corresponding quadratic term for the space’
charge potential, creates a total linear focusing, defined b§fl
the value of the beam emittané2). This comes from the
fact that the parabolic beam distributi¢h provides ellipti-
cal phase-space projections at phase plareg, andy—p

and the ellipse is conserved in a linear field).( Thereforé, th&=0.15 cm,e=0.12.7 cm mrad, ang3=0.01788 was done.
total field of the structure has to be a linear function of the .he beam was represented as a combination>tfG par-

radius, but the external focusing field appears as a nonlinedic/eS: Trajectories were calculated employing the leapfrog
function of radius. The required potential for the focusingMethod12] and the two-dimensional space charge potential

field (7) is substantially different from fields widely used in Of the b_eam was ca_lculated fOF the instantaljeous particle
conventional transport channels. distribution at every time step with a fast Fourier transform

on a spatial grid of 258256.

The focusing field potential was gradually transformed
from the field(7), required by nonlinear matched conditions,
to the linear focusing field

Conservation of the beam distribution function requires ,
the focusing field to be linear near the axis and become es- _ _ =
sentially nonlinear far from the axis. Conventional focusing U(r2)=Ued )+ [UL(N = Vedr)] L’ ©
structures employ quadrupole lenses and axial-symmetric
lensedqboth electrostatic and magnetostaiihere linear fo-  wherez is the longitudinal coordinate aridis the drift space
cusing components usually dominate. It is interesting toof the matcher. The potential, was chosen as a potential
verify whether it is possible to transform an initially nonlin- that provides a matched condition for an equivalent

4

mc®

U ext™ q

r

r2 (g2 3l 3l ré
“RFTOR

R\RT18 88

The potential7) consists of a quadratic ternf, describ-

reasingly flat, while the phase-space projectiosam emit-
nce has to become ever closer to rectangular.

To verify the possibility of adiabatic beam transformation,
a self-consistent computer simulation using the particle-in-
cell codeBEAMPATH [11] for the proton beam with=2 A,

IIl. ADIABATIC TRANSFORMATION OF A NONLINEAR
BEAM DISTRIBUTION
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FIG. 2. Beam emittance growth in a uniform focusing channel
with a linear focusing field(a) z=0, (b) z=114 cm, andc) z=228
cm.

Kapchinsky-Vladimirsky(KV) [6] beam in a linear focusing
channel, with the same rms beam emittaa@nd rms beam
envelopeR:

g2 |

2R T 1 BR2

mc?

UL(r):T

2

re. (10

The distancé. =114 cm was selected to allow five transverse
oscillations of the particles along the matcher. After adia
batic transformation, the beam was transported 114 cm fu

r_

x (cm) x (cm)
FIG. 3. Adiabatic matching of the beam in a uniform nonlinear
matching section(a) z=0, (b) z=114 cm, andc) z=228 cm.

[see Fig. 1b)]. The phase-space projection of the beam in the
matching section changed due to a variation in the focusing
field and the final beam distribution is completely matched
with the linear channel. This study shows that the nonuni-
form beam distribution can be transformed into a distribution
that is matched with a linear focusing channel, using a rela-
tively short adiabatic matching section with a nonlinear fo-
cusing field.

Figure Xc) indicates the emittance growth of a KV beam
due to numerical errors. An ideal KV distribution provides
linear space charge forces, which, in combination with linear

ther in the linear focusing channel to check the result of

adiabatic matching. For comparison, the beam dynamics i
the pure linear focusing channel with a potentigl for ini-
tial parabolic[Eq. (1)] and KV distributions were calculated.

The results of simulation are presented in Table | and Figs.

1-3.

Calculations show that, in a pure linear focusing channel
a beam with a parabolic distribution experiences halo forma-
tion and emittance growth, while during adiabatic transfor-
mation in a nonlinear matching section, halo formation is
avoided and emittance growth is substantially smaller. The
beam emittance of a parabolic beam distribution in the linear
focusing channel changed rapidly from the initial value 0.12
7 ¢cm mrad to become 0.136 cm mrad during the first 1.28
cm of beam transport. The emittance growth idééd z was
1072 (7 cm mrad/cm [see Fig. 1a)]. The same distribution
in the nonlinear matcher exhibited almost constant emit-
tance, with an emittance growth ratele/dz=10"*

n a b c d
5 [ ] ] ]
AvavAN;
1 AL (]l
L] — 3 / \
g 0: /\
>~ 05§ N
T NN /
1| N ///
15 ¢
2S5 005 s 2
x (cm)
FIG. 4. Lines of equal values of the function

O=r?+2{r%cos2p cosp+sin2yp sinbp) +¢2r 10 for ¢=—0.025:(a)

(7r cm mrad/cm, which is two orders of magnitude smaller =0.1, (b) $=0.5, (c) ®=1.0, and(d) ®=1.7.
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focusing forces, guarantee preservation of beam emittance. 0.6 2 I
In a numerical experiment employing the particle-in-cell 04 = -
method, the space charge forces are not perfectly linear due g 02 =
to the finite number of modeling particles and mesh points & ¢ . 3 S op++ f—11 ¢
required to solve the space-charge problem. This results in @ 92f T OS T  —T
the nonconservation of beam emittance, which in this case is ™ j;' _I'; B i
3% after ten transverse oscillations for a high brightness sl el 2 Sl (I).‘.él.. s
beam with a phase-space density of 16.6#¢m mrad. T X em) 2151030051152
The proximity of the emittance growth curves for a KV ; x (em)
beam in a linear focusing channel and a parabolic beam in a 06 F—=7F 15 I
nonlinear matcher in Fig. 1 indicates that emittance growth S RE 1 -
in a nonlinear matcher is partly due to numerical errors and § 02 E: . € 05
similar matching conditions for a KV beam in linear field are & o ) ‘E 0 d
achieved. 2 j'j " .
The required nonlinear focusing field can be created by a 06 15 s
graded distribution of oppositely charged particles along the 2151050051152 220500500515
focuser(plasma lens x (cm) x (cm)
- _ z FIG. 6. Halo formation of a circular beam in a pure quadrupole
P(1.2)=po(1) +Lp(1) =po(N)] T D uctare with a field gradier®,=40 kV/cn?: (a) z=po, (b? 60
cm, (c) z=150 cm, andd) z=300 cm.
l. [&%2 3l rz\2
Po=~ 5 RIRT Bl. (1_ ﬁ) ' nonlinear space charge forces. Let us consider a focusing-

defocusing(FD) structure with periodS=2D, created by a
sequence of electrostatic quadrupole lenses of leDgtRor

(120  the magnetic quadrupole channel, the derivations are similar.
The structure’s potential is given by

82+2|
R? " Bl

e

Pt 2 mcRR

A plasma lens with a gradually changing particle distribution G G
was considered in Ref13]. A simpler way to create a non- U(x,y,2)=f(2) 22 r2c0s2+ —6r6cosap . (13
linear potential distribution employs a quadrupole channel 2 6

with multipole components.
whereG, is a quadrupole gradienGg is duodecapole com-

ponent, and the functioh(z) represents a dependence of

IV. MATCHING OF THE BEAM L . .
the potential in alternating-gradient structure

INTO AN ALTERNATING-GRADIENT FOCUSING
CHANNEL WITH HIGHER-ORDER

MULTIPOLE COMPONENT 1 O<Z<§
’ 2
In Ref. [4] it was shown that introducing a duodecapole f(z)= (14)
component in a pure quadrupole alternating-gradient struc- -1 §<Z<S
ture results in better matching of the beam with the transport "2 '

channel, at least at the initial stage of beam transport.
Higher-order terms in the potential distribution produce non-The functionf(z) can be expanded as a Fourier series with
linear components, which can be used to compensate favave numbek,=2/S:
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FIG. 7. Halo formation of a square beam in a pure quadrupole

structure with field gradier,=40 kVicn?: (a) z=0, (b) z=60 cm,
(c) z=150 cm, andd) z=300 cm.

4
f(z)= S|nkzz+ sin&,z+ — sinB,z+ -+

3 57

sin(2n—1)k,z+--- . (15

+ e

2n—=1)m

Let us replace the variable with time t=2z/Bc. Particle
motion can be considered as fast oscillations in the field

é(r,go,t)znzl Eon 1(F,@)sin2n—1)wgt,  (16)

where the frequency,=2mBc/S and the field components

are

N 4 -
Epn_1(r, @)= Zn=Dn [—i,(Gyr cos2p+ Ggr°costp)

+r¢(Gzr sin2p + Ggr °sin6yp)]. (17
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0.6 Ii
04— 7 Particle trajectories can be represented as a combination of a
e 02 i £ o5t - slow variation of particle position plus small fast oscillations.
3 0 — & o= ~1— ¢ The oscillating field creates an effective scalar potential
S 0 s A aE
2 o4 - I -
0.6 f—i7 X ]; L 2 2 Ek(r) (18
2-15-1-050051152 -2-15-1-050051152
x (cm) X (cm) . . . .
) which describes the averagéslow) motion of particle. For
06 1 [ the FD structure the effective potential is
04 ':4.. 1 2 o
o 02 = o054 i 4 qG; | 1
€ § ol - d Ue= 3 > ———|[r?+2¢r%cos2p cosp
: 02 > 05 : lff m(x)o n=1 (Zn—l)
=) -1 . .
z'z 15 . IA +sin2p sin6yp) + £2rY,
N

Ge

The effective potential is an axially nonsymmetric and
highly nonlinear function of the radius. The value of the sum
in expression19) is

~1.014 678 (20)

E (2n— 1)4

and can be taken as 1. Let us compare the potefii®lfor
¢=0 with the required axially symmetric potenti@d). Lin-
ear focusing parts of the field must be equal:

4qcszmc2182 3, o1
Zmel g 2@\t @

From Eq.(21) the quadrupole gradient is
G T MCwq 82+ 3l 22

2vz AR VR I

To define the value 064, let us assume that the values of
electric fields Egy=—dUg/or and E.g=—dUg4lor are
equal at the boundary of the beam distributicav2R. The

The problem of particle motion in a fast oscillating field terms proportional t@? vanish due to the adopted condition

E(F,t)= S 1Ek(r)smwkt was analyzed in Ref$5, 14, 1§.

(21). The remaining terms give the equation
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FIG. 9. Halo formation of a circular beam in a quadrupole field ) ) ) o
G,=40 kV/cn? with an adiabatic decline of the duodecapole com-  FIG. 10. Adiabatic matching of the beam avoiding halo forma-
ponent fromGg=—1 kV/cn to zero for the distanck =120 cm: tion in a quadrupole fiel@,=40 kV/cn? with an adiabatic decline

(a) z=0, (b) z=60 cm, (c) z=150 cm, andd) z=300 cm. of the duodecapole component frabg=—1 kV/cm to zero for the
' ' ' distancel =120 cm:(a) z=0, (b) z=60 cm,(c) z=150 cm, andd)
8 qG%RF’g" (5 (o z=300 cm.
—— 6(— +5§R4<—) 41 .
T Moy R Rl revs or {R"=3~0.0277. Note that in every lens the duodecapole

5 5 component has to be the opposite of the quadrupole compo-
_3m¢ | [ (r LLr nent, i.e., the absolute value of the field is reduced inxthe
2 q IBR R 6 \R andy directions compared to the linear function of the ra-
dius.
For usual values ofR*<1 the second term on the left-hand  In Fig. 4 the equipotential lines of the function
of Eq. (23) can be neglected. Finally, the duodecapole com-

(23

r'R=v2

ponent is d=r2+2{r8cos2p cosbp+sin2p sinbp)+ ¢2r0
(26)
G, | 1 . . .
Ge=——g——F—>——=1. (24)  are presented. It is seen that for a small radius the lines are
R Ic 128 A ﬂ close to circles because the quadratic tefris dominant.
R? 1.8 With a larger radius, the equipotential is close to a 45°

skewed square. This suggests that the matched beam should
For space charge dominated beams, the “space charge ternalso have the square shape.

is much larger than the “emittance term”I8 3> &°/R?, Self-consistent computer simulations using particle-in-cell
which gives codeBEAMPATH were done to verify the matched conditions
of the beam, obtained from the above considerati@ee
Goe — 16G; (05  Figs. 5-10 and Table )l Parameters of the structure and of
6 36 R* the beam with an initial parabolic distributidt) were cho-
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TABLE Il. Beam emittance growth in an alternating-gradient focusing channel.

Beam distribution

and Initial emittance Final emittance
Curve focusing channel (7 cm mrad (7= cm mrad
5a circle beam 0.155 0.17

in a pure quadrupole field

5b square beam 0.155 0.165
in a pure quadrupole field

8a circle beam 0.155 0.173
in a quadrupole field
with a duodecapole component

8b square beam 0.155 0.16
in a quadrupole field
with a duodecapole component

sen as follows: =100 mA,£=0.1557cm mradR=1cm, circular beam and 0.16& cm mrad for an initially square
G,=40 kV/cn?, D=1 cm, andGg=—1 kV/cm®. The trans- beam shape. Finally, a beam halo was formed and the rms
verse beam profile in real space was truncated to be a skewe&géam emittance became stable with values of Ozldm
square with the maximum beam sizﬁmax=2.5\/(x2> mrad for a circular beam and 0.16b5cm mrad for an ini-
=1.2R [see Fig. 108)]. The potential of the structure in tially square beam shape.
simulation was defined by E@L3). The value of quadrupole In Figs. 8—10 results of the beam dynamics study in a
gradientG, was kept constant along the channel. The nonnonlinear matcher are presented. The introduction of a duo-
linear componeniGs was adiabatically changed from the decapole component in a pure quadrupole channel is a nec-
value (24) as required by matched conditions to zero, at theessary but not sufficient condition to provide beam matching.
distancel: A nonuniform beam with a circular cross section remains
mismatched in a nonlinear alternating-gradient field. In Figs.
8(a) and 9 emittance growth and halo formation of such a
beam in a nonlinear matcher are presented. The initial emit-
tance growth rate is 810 % 7-cm mrad/cm and the final
The distancd-=120 cm was chosen to provide approxi- value of beam emittance is 0.1#8cm mrad. To avoid halo
mately one transverse oscillation of particles. After the nonformation, the nonuniform beam must be truncated in real
linear matcherz>L, the channel was a pure quadrupole andspace with a square shape, as shown in Fig. 10.
the beam was transported 180 cm further to verify the results For the square beam in a nonlinear matcher, the initial
of the transformation. A relatively small distance of studyvalue of emittance growth rate is<x210™* (7 cm mrad/cm
was chosen as simulations are time consunargund 50 h  [Fig. 8b)], which is substantially smaller than in mis-
of CPU time on a VAX computgr Meanwhile, even in such matched beam transport. The final value of beam emittance
a nonadiabatic process, the effect of beam matching into this 0.16 = cm mrad, which indicates better matching condi-
nonlinear focusing field is clearly visiblg-ig. 10). tions than in previous cases presented in Figs. 6, 7, and 9.
For comparison, mismatching of a circle bedRig. 6)  The beam profile in real space is transformed from a square
and square bear(Fig. 7) in a pure quadrupole channel as to a circular shapéFig. 10 and follows the adiabatic change
well as mismatching of a circle beam in a nonlinear matcheof the effective potential. The final beam emittance and beam
(Fig. 9 were studied. To make a correct comparison, theprofile are matched with the linear focusing channel without
same beam with truncated square shidpg. 7(a)] as well as  halo and phase-space distortion.
a circle beaniFigs. §a) and 9a)] with the same maximum The above consideration demonstrates that two conditions
beam sizeRy.,=2.5/(x?)=1.25 cm were used in simula- are essential to keep emittance growth dognintroduction
tions. The beam curremt=100 mA and initial value of beam of a sixth-order component in a pure quadrupole alternating-
emittancee=0.155 7 cm mrad were identical in all cases. gradient structure an@i) square truncation of a nonuniform
Therefore, the total charge of the beam per unit length andistribution in real space. As shown in Fig.(&0 the trun-
phase space densitys were the same. cation does not disturb the shape of beam emittance at the
As shown in Figs. 5-7, the beam in a pure gquadrupolephase plan&—p, . After nonlinear matcher the beam emit-
channel experienced halo formation and emittance growthitance is close to the initial unperturbed ellipse without a halo
Initial values of emittance growth rate arex®0 ¢ in phase space, which facilitates the subsequent matching of
(memmrad/cm for a circular beam and >410* the beam with a linear focusing channel. Since nonlinear
(= cm mrad/cm for a square beam. After 30 lenses, whichspace charge effects are pronounced at low beam energy,
correspond to one-quarter of a transverse oscillation, thequare beam truncation can be performed during extraction
beam emittance achieved the value 0.1:76m mrad for a  from the particle source with a square extraction hole.

Ge(2)=Gg

Z
1- E) (27
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V. SCALING PARAMETERS velocity of particles. To obtain the same total phase shift of

The above relationships allow us to introduce scalin a}ransverse oscillations for a beam with higher energy, a
rameters that can be usgd for possible simulation of aghip larger number of lenses is required. Using the linear part of
P 9pace charge potential of the beé), the depressed value

current, h|g_h-ene_rgy beam by a small-scaled beam. Let u f phase advance per period for a space charge dominated
introduce dimensionless beam emittancand beam current regime is

j, which must be the same for scaling beams

| Mo
== =g (29) p=— (33
B 143>

Required values for the quadrupole gradient, duodecapole
component, and period of FD structure are scaled as Introducing these scaling parameters allows us to simulate a

4G,R? 4GRS S heavy ion, high current beam by a light ion beam with
172 _1>6 = ller energy and smaller current.
9= 125 B 0, %= g e 0, G—R. (299 Sma
While the scaled period of the structuteis the same for V1. CONCLUSION

s_calmg beams,_ the numb_er of quses IS dlfferenfc. Let us CON- The adiabatic change of a nonlinear focusing field along a
sider the equation of particle motion in an effective potennalbearn guiding structure results in the gradual transformation

(19): of an initially nonlinear beam distribution into a distribution
d2x q(S\2aU 7 matched with the linear focusing channel. This avoids other-
— = | = eﬁ, v==. (30)  wise substantial emittance growth during the stage of beam
dv? m\Bc/ ox S

transport. Two cases of a nonlinear focusing field were con-
gidered: a plasma lens and an alternating gradient focusing
structure with a duodecapole component. In the latter case,
the beam shape in real space has to be close to square, which
d?x 5 . ) o V2 $°G,q corresponds to the matched conditions of the beam with an
G2~ T HO(XFBOCHBLNT),  mo=—2 mdg? (3D averaged nonlinear focusing field. The suggested scheme en-

ables us to transform a laboratory beam with a nonlinear
The value OfMO is a phase shift of transverse oscillations perdiStribUtion function into a beam that is matched with the
period of structureS in an effective field of the structure linear focusing without halo formation. After transformation,
(19). Taking into account the expression for quadrupole grathe beam can be transport@tceleratedin a conventional

After some algebra, one gets the frequency of smoothe
transverse linear oscillations,:

dientG, (22), the value ofy is scaled as structure with a linear focusing field.
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