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Stochastic resonang¢8R) is a phenomenon wherein the response of a nonlinear system to a weak periodic
input signal is optimized by the presence of a particular level of noise. Recently, we presented a method and
theory for characterizing SR-type behavior in excitable systems with apeficglicboroadbandinput signals
[Phys. Rev. B52, R33211995]. We coined the ternaperiodic stochastic resonan¢@SR) to describe this
general type of behavior. In that earlier study, we demonstrated ASR in the FitzHugh-Nagumo neuronal model.
Here we demonstrate ASR in three additional systems: a bistable-well system, an integrate-and-fire neuronal
model, and the Hodgkin-HuxleyHH) neuronal model. We present computational and theoretical results for
each system. In the context of the HH model, we develop a general theory for ASR in excitable membranes.
This work clearly shows that SR-type behavior is not limited to systems with periodic inputs. Thus, in general,
noise can serve to enhance the response of a nonlinear system to a weak input signal, regardless of whether the
signal is periodic or aperiodi¢S1063-651X96)02611-§

PACS numbgs): 87.22.Jb, 05.4G]

[. INTRODUCTION odic input signals[18,19. However, in contrast with the
present work and our earlier ASR stud[d€l-1§, these in-

Stochastic resonand8R) is a phenomenon in which the vestigationg 18,19 concentrated on distorted harmonic sig-
response of a nonlinear system to a weak periodic input sigRals and used single-frequency measures to characterize SR.
nal is optimized by the presence of a particular level of noise This paper is organized as follows. In Sec. Il, we describe
[1]. The notion of SR was originally proposed as a possibléhe measures used to characterize ASR. In Secs. Il and 1V,
explanation for periodic recurrences in global climate dy-we present computational and theoretical results for a
namics[2]. Since then, SR has been examined experimenbistable-well system and an integrate-and-fire neuronal
tally in a wide variety of systems, including electronic sys-model, respectively. In Sec. V, we present numerical results
tems [3], optical systems[4], magnetic systemg5,6], for the HH model and a general theory for ASR in excitable
mechanical system§7], and biological system$8—10. membranes. We show that the theory is applicable to both
Moreover, theories of SR have been developed for multithe FHN model and the HH model. Finally, in Sec. VI, we
stable[11] and excitabld12] systems, as well as threshold- discuss the implications of the presented results and describe
crossing detectorigl3]. These developments have pointed toPossible technological and bioengineering applications of
the possible beneficial effects of noise on the dynamics ofASR.
nonlinear systems. It is important to note, however, that all
of the aforementioned work has been restricted to systems
with periodic inputs. This focus has served to limit the ap-
plicability of SR to practical situations, given that real-world  In general, the phenomenon of SR indicates that the flow
external signals are typically not periodic. of information through a systeffie., the coherence between

Recently, we developed a method for characterizing SRthe input stimulus and the system resporiseoptimized by
type behavior in excitable systems with aperio@iditrary)y  the presence of a particular level of no[4620—23. In line
inputs[14] that emphasizes the “shape matching” betweenwith this operational definition, SR has typically been char-
the input and output signals. For this general type of behavacterized by examining the output signal-to-noise ratio,
ior, we coined the termaperiodic stochastic resonance which is computed from the power spectrum and defined as
(ASR). We have demonstrated ASR computationally in thethe ratio of the strength of the signal pedle., its areato
FitzHugh-NagumdFHN) neuronal mod€l14] and in a sum- the mean amplitude of the background noise at the input
ming network of FHN model neurors5]. We have also signal frequency9,12,20. In excitable systems, SR has also
developed a theory to account for these reduis15. More  been characterized by examining the modes in the interspike
recently, we have demonstrated ASR experimentally in rainterval histogramg23] located at integer multiples of the
cutaneous sensory neurofs6]. These developmentsl7] input signal period8,9,24. Both of these methods assess the
indicate that noise can serve to enhance the response ofcaherence of the response of the system with the input signal
nonlinear system to a weak input signal, regardless ofrequency. Thus these techniques are clearly inappropriate
whether the signal is periodic or aperiodic. In this paper, wdor systems with aperiodic inputs.
extend our work on ASR to three additional systems: a In Ref.[14], we proposed two cross-correlation measures
bistable-well system, an integrate-and-fire neuronal modefor characterizing ASR: the power norm and the normalized
and the Hodgkin-Huxley(HH) neuronal model. Previous power norm. We used these measures to characterize ASR in
studies have considered bistable-well systems with nonperthe FHN mode[14]. Here we demonstrate the generality of

Il. ASR MEASURES
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these measures for any system that can make transitions beete an ensemble average. In this syst8(t) modulates the
tween different states. We characterize the system’s responbarrier height and a disturbance is needed to switch the sys-
to an arbitrary input signal plus Gaussian white noise as théem’s state point between the two wells. This disturbance is
mean transition ratéaveraged over a time windowetween  provided by&(t), which acts as a thermal bath coupled to the

these states. system. For a given barrier height, a certain temperature
The power nornC,, is defined as (noise level will allow the system'’s state point to overcome
- the barrier and switch wells. Thus, for a given noise level,
Co=maxS(t)R(t+ 1)}, (1) the transition or hopping rate will be a function of the barrier

) . , i , height and hence a function &t). This bistable-well sys-
whereS(t) is the aperiodidzero-meaninput signalR(1) is o giffers from the original bistable-well system of Rig:
the response of the system characterized by the mean rangl- yq |atter, the barrier height was alternately lowered for

tion rate,7 is a time lag, and the overbar denotes an averaggach of the wells, whereas in the former, the barrier height is
over time.[For ASR, the exact form o(t) is unimportant, |5vered symmetrically for both wells.

provided its variatiqn_s occur on a time scale that is slower 1 compute the power-norm measufess. (1) and (2)],

than the characteristic tirt® of the system under study. \ye assume that the system'’s respoR¢#) is characterized

Note thz_:\tCO is a scalar measure thgt quantlfl_es the maximunty, the time-varying two-way transition or hopping ré2s].

in the input-output cross-correlation function which is an the numerical simulation&(t) was actually a mean tran-

function of the_ time lagr. _ sition rate formed by passing an averaging window over a
The normalized power norr@, (or cross-correlation co-  yain of impulses corresponding to the transition times. The

efficieny is defined as numerical result§29] for the bistable-well system with an
C aperiodic input signab(t) are given in Fig. 1(In the simu-
C,= 0 _ ) lations, A=1.) Shown are the ensemble-averaged values
- (and standard erroref C, andC; as a function of the input
[S(O)TYA[R(t) —R(1)]%}2 noise intensityD. (The solid curves are from the theory to be

. . : - described below.The results forC, [Fig. 1(b)] show char-
From a signal-processing perspective, maximiZBygcorre- 4 qteristic signatures of ASR behavior: a rapid rise to a clear

sponds to maximizing the shape matching between the inpWeak and then a slow decrease for higher values of noise
stimulusS(t) and the system respon&t), whereas maxi- jnensity. The results fo€, [Fig. 1(a)], on the other hand,
mizing Co corresponds to taklng account of both signal am-,;reage monotonically with input noise intensity. The rea-
plification and shape matching. These measures thus enablg, oy this effect is described below.

one to quantify the two noise-induced effects as_sociated With \we have developed a general theory for ASR. This theory
SR, i.e., the original notion of signal amplificati¢@] and  yequires an estimation of the mean first-passage time for a
the later notion of optimal stimulus-response coherenceqcnastically forced particle to pass over a barrier or reach a
[1,4,20-22. boundary. The mean first-passage time corresponds to the

More recently, information-theoretic measurd8.g., mean transition time of the system, from which the cross-
transinformatioh have been used to characterize SR an orrelation measureé.e., C, andC,) can be calculated. In

ASR in model neuronf25,2§ and the cricket cercal Sensory e case of the bistable-well system, we use Kramers's clas-
system[27]. These measures will not be considered heregic rog it for the escape time of a particle over a potential

However, it is worth noting that in an ASR study with the \,5jer[30,31. This then serves as an estimate of the mean
FHN model[26], it was shown that a peak in the cross-yansition rate between the wells. The Kramers rate is valid
correlation measureS, andC,, respectively, for a particular j, the regime where the noise level is low compared to the
level of input noise is matched by a peak in the transinforyapier height. For large noise levels, the analysis breaks

mation. Thus, for cases with subthreshold aperiodic inpulo\n and the notion of well hopping is better described as a
stimuli, the addition of noise can optimize the information- boundary-crossing problem.

transfer rate, as well as second-order coherence measures. Using Kramers's formula, the ensemble-averaged rate of

escape for a particle in a potential well is given by
lll. BISTABLE-WELL SYSTEM

We first consider a symmetric bistable-well system with a (R())= %\/U"(XmmﬂU"(Xmax)Iex;{ U (Xmin) = U(Xmax)

fluctuating barrier, as given by D (é)

dx du

qi- ax TE, (3 where X, and X, are the locations of one of the well

minima and the maximungbarriep for a potential function
where U(x). (For a symmetric bistable-well system, the escape rate
) A out of the other well is identical.
X° X To determineX,,, andXmax, We set[from Eq. (4
U(X):_[A_S(t)]E'FZ, (4) min max [ q ( )]
U’ (x)=—[A=S(t)]x+x3=0 (6)

A is a constant$(t) is an aperiodi¢zero-meahinput signal,
&(t) is Gaussian white noise with zero mean and autocorreand solve to obtain the roots= 0,=[A—S(t)]¥2 This gives
lation (£(t)£(s))=2D 8(t—s), and the angular brackets de- Xmin= —[A—S(t)]¥?2 andx,,=0. It can then be shown that
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40 S(t) is independent of ensemble averaging so the ensemble-
@ e averaged power norm in E@l) is
30| 7
. . (Coy=(S(HR(D)=S(t)(R(D)). (12
g /
B 20 / //I/I/L To computeC,, we use a time lag that corresponds to the
- Su peak in the input-output cross-correlation functisee Eq.
(2)]. For notational simplicity, this time lag is suppressed but
1o always implied.
In general, an explicit expression for the power norm does
0.0 1 1 1 1 not exist. However, for the case where the signal amplitude
00 02 04 06 08 is small compared to the barrier height, i.8(1)2<A?, the
03 rate can be expanded in a Taylor seriesS{). We first
®) expand the exponent in E@L1) and drop theS(t) depen-
dence in the amplitude to yield
02 |
A, (R(1))=Qexd —© +AS(1)], (13
(@)
\%
where Q=KoA/\27, ®=A?/4D, and A=A/2D. The pa-
oL F rameterK is included to account for normalization factors
that may arise in the construction of the mean transition rate.
The validity of these approximations will be discussed later.
0.0 1 1 L L Equation (13) can then be substituted into E¢L2) to
0.0 02 04 0.6 038

calculate{Cy). In the special case whegt) is a Gaussian-
2D distributed signal, the time average can be performed explic-
itly to obtain the result

FIG. 1. Ensemble-averaged valu@gsangles and standard er-
rors of the(a) power normC, and (b) normalized power norm
C, versus D, whereD is the intensity of the input Gaussian white
noise, for the bistable-well model with a weak aperiodic input sig-
nal S(t). S(t) was formed by convolving Gaussian correlated noise
(with correlation time equal to 150 svith a 100-s unit-area sym-
metric Hanning window filter. The same input sigrig(t), with
variance equal to 2.2410 2 and total time length equal to 3000 s,
was used for all results presentetl; and C; were computed for
each trial and then averaged over 700 trials using different seeds tbhis expression will be invalid for very small values of
generate the Gaussian white noise. The theoretical prediction fatoise, namely, whenA/4D)?S?(t)=1. However, for such
(Cyo) from Eqg.(14) using the Kramers rate witko=1 is shown in  noise levels, the rate will be very low and the errors will not
(a) (solid and dashed curyelt is seen to match the data for small be important. In the numerical simulations, we used a Gauss-
values ofD, but breaks down for larger values bfwhere a linear jan noise source fo(t), so to calculat€,, we use Eq(14).
curve (solid and dotted lingis shown to fit the data as expected |+ should be noted that even this expression has already used
from Eq. (20). The theoretical prediction fofC,) from Eq. (27) 3 small-signal approximation and should be considered to be
(solid curve is shown in(b), with K, =0.019. only slightly more accurate than the fully expanded form
given by Eq.(15).

(Coy=QAexd — 0+ A254(1)/2]S4(1). (14)

For an arbitrary non-Gaussian signal, the rate 8@) is
expanded to first order i8(t) to obtain

(Co)=QA exf —O1SX(1). (15

U" (Xmin) = 2[A=S(1) ], (7 The expression fofC,) given by Eq.(14) rises to a maxi-
mum value and then decreases with However, numeri-
U"(Xmax) = —[A=S(D)], (8)  cally, it was observed th&C,) does not decay but continues
to increase withD [Fig. 1(a)]. The reason for this discrep-
U(Xmin) = —[A—S(1)]%/4, (9)  ancy is that for larger noise levels, i.&=A?/4, the Kram-

ers escape rate is no longer a good approximation for the

(20 transition rate. This is due to the fact that in the calculation
of the escape rate, quasistationarity is assumed and for large
D, this assumption is violated. To account for the behavior
of the system in the largB-regime, we use a simple linear-
ramp model for the well[32]. In this approximation, a
straight line is drawn betweexy,;, and X,ax. We then con-
sider the first-passage time problem of a particle beginning at

Equation(11) is an estimate of the mean transition rateXmin @nd reachingmay. We shift the axis so thaty,=0.
and a function of both the noise intensily and the input  Therefore, escape from the well reduces to
signal S(t). The power-norm measures are computed by )
cross-correlating this rate witi(t) and averaging over time. Xx=—h+&(1), (16)

U (Xynaw) = O.

Substituting these expressions into E5). yields

—[A-S(D)]?

2
<R<t>>=£[A—s<t>]exp[ 5 } (ay
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where h is the slope of the ramp ané(t) is zero-mean Co (Co)
Gaussian white noise as in E@3). Escape occurs at (Cy)= = , (21
x=L=Ly+ S(t). The first-passage time of such a problem is < N[Sz(t)]1’2> N[ S(t)]¥?
given by a converging infinite seri¢82]. Keeping only the
first term, which should capture the essential qualitative picwhere
ture, we have -
N*=[R(t) —R(t)]*. (22)
DFlkl - h L
tox N2 ex;{ E) 17 Previously, we made no distinction between the sample tran-
7 " "
sition rate and the ensemble-averaged transition rate. How-
where ever, in the calculation oN, we need to account for the
time-dependent fluctuations R(t) due to the noise. There-
. L sinhX,L\ ! fore, we use the ansatz that
F1=—SInH(1L(§—T> ) (18
! R()=(R(t))+ n(1), (23)
h? 2 where(R(t)) is the Kramers escape rdigiven by Eq.(13)]
tark;L=2Dky/h, - Ay=75 +Dki. 19 and 7(t) is&ochastic component that arises from the input

noise, withz(t)=0 and#“(t)=o(D). [The stochastic com-
For largeD, k;~a/(2L)—h/(#D) and F, saturates to a ponents(t) does not affect the computation ¢€o).]
function of L. ThustexD ~*Fy(L)/L. The mean transition Substituting Eq(23) into Eq. (22) yields
rate is given byR(t) = 1/ty, which increases with, whereas o
the Kramers rate Eq13) saturates with increasing. Ex- N2=(R(1))2—(R(t))2+ o(D). (24)

panding the rate if8(t) and substituting into Eq12) yields , ,
Then, for the rate Eq13), whereS(t) is a Gaussian stochas-

(Co)xDSA(t). (20) tic process,
Hence(C,) continues to increase wifd as observed in Fig. (R(t))=Qexd — 0 +A%S(t)/2] (25)
1(a). This effect is not observed in excitable systems becausgn d
of the saturating effect of the refractory time in such systems:
This issue is discussed in greater (_jetail in Sec. V. o —(R(t)>22Q2exp[—2+2A2_52(t)]. (26)
The ensemble-averaged normalized power norm is given
by This then leads to an expression {@,) [for S(t) Gaussiaf
|
A[sZ(t)]l/Z
(Cp)= 27

{exd A%2S%(1)]— 1+ o(D)Q 2ex{ 20 — AZSZ(I)]}UZI

The general casgor small S%(t)] is obtained by expanding ers ratd Eq. (14)] matches the data for small valuesfout
to linear order inA2S?(t). breaks down for larger values whef€,) behaves linearly,
The noise-induced variance(D) can be estimated by as predicted. The theoretical curve f¢C,;) [Eqg. (27)]
using an analogy to shot noise in electrori88]. Consider ~Matches the data as seen in Fi¢o)1
the case where the sign&(t) is zero. The occurrence of a  Finally, we mention that the theory predicts the shape of
transition from one well to the other is a random process andC1) even when it is outside the range of its validity. This is
is analogous to the random arrival of an electron at a devicedn interesting circumstance. The theory is only properly
In this analogy, the mean transition rate corresponds to thealid for ranges ofD near the peak location ¢fC,). For
current. For a pure Poisson process, the variance of the metge values of noise, the Kramers rate no longer holds.
transition rate is proportional to the time average of the meafriowever, in this regime, the stochastic contribution of
transition rate. In the present case, the hopping process wiif(D) dominates, so it does not matter so much that the

not be a pure Poisson process. However, we can use as Kfiamers rate is now a poor approximation. For very small
estimate for the variance values ofD, the smallS(t) expansion breaks down, but the

rate is so low that the errors are also suppressed.

a(D)=K(R(1)), (28)
. . . IV. INTEGRATE-AND-FIRE NEURONAL MODEL
whereK is a constant. We can then insert E298) into Eq.
(27). SR has been demonstrated in a variety of neuronal models
The theoretical curves are plotted in Fig. 1. It can be seefil2,20-22,24,32,34—36including integrate-and-fire models
in Fig. 1(a) that the expression fqiC) based on the Kram- [22,32,3§. Here we consider an integrate-and-fire neuronal
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solid curves are from the theory to be described belde
model exhibits clear ASR characteristid€y) and (C,),
respectively, rapidly increase to a peak and then slowly de-
LYY crease with increasing input noise intensity.

These numerical results can be understood analytically.
We assume throughout th&f(t) < 8. We first note that the
s average interpulse intervdl is given by the first-passage
05 | distribution of the Ornstein-Uhlenbeck process Exf). For
the regime wheré 5— S(t)]12<2D, a simple expression for
T [38] is given by

— 2Dw p[[5— S(t)7?

@
15

10°<Co>
=
lo]

T~ 5-507"7 2Da (30

The ensemble-averaged mean firing rate is then given by

— 8%+ 269(1)

o
(R(t))= \/mexr{ >Da

where we have employed a sm8&l{t) expansion.

The ensemble-averaged power norm is given by(E#).
0.0 L 1 L Substituting Eq(31) into Eq. (12) yields

0.0 2.0 40 6.0

10*x2D (Co)=QA exy — O +A2S%(1)/2]S4(1), (32

; (31)

0.1

FIG. 2. Ensemble-averaged valugircles and standard errors  where
of the (&) power normC, and (b) normalized power nornc, ver-
sus D, whereD is the intensity of the input Gaussian white noise, Q=Ky8/\27D, =6%/(2Da), A=6/(Da),
for the integrate-and-fire neuronal model with a subthreshold ape- (33
riodic input signalS(t). S(t) was formed by convolving Gaussian
correlated noiséwith correlation time equal to 150 svith a 100-s  whereKg is a free parameter. This form is for the case where
unit-area symmetric Hanning window filter. The same input signals(t) is a Gaussian-distributed signal. For a general signal,

S(t), with variance equal to 1.9810  and total time length equal we can make an expansion Sﬁt), as it was done with the
to 3000 s, was used for all results present€g.and C; were  pjistaple-well system in Sec. IIl.

computed for each trial and then averaged over 300 trials USing The calculation of(C,) is also similar to that for the

different seeds to generate the Gaussian white noise. The theoretiqgl-hje-well system. We use E@7) directly, using®, A
predictions(solid curve$ from Egs.(32) and (34) are given in(a) and Q as defined in Eq.(33. We use7 the reI’ati(,)n

and (b), respectively, withK,=0.22 andK;=0.05. (D)= Kl(%% where(R(1)) is given by Eq.(31), to ob-

model with a subthreshold aperiodic input signal: tain

v=—av+a—6+S(t)+£&(t), (29) - A[SA(1)]Y?
wherev represents the voltage of the model neurarand ! {exg A2S2(1)]— 1+ Klelqu@)_Azsz(t)/z]}uz'
S are constantsy/a is the barrier height3(t) is a subthresh- (34)

old aperiodic input signal, and(t) is Gaussian white

noise  with zero mean and  autocorrelation Curves based on Eq&2) and(34) are shown in Fig. 2. The

(&(t)€(s))=2D 8(t—s). The firing threshold for this system theory for (C,) and (C,), respectively, matches the data,

issetatv=1. predicting the location of the maximum. There is a deviation
To compute the power-norm measures, we assume th#ér larger values oD because the mean firing rate expres-

the system’s responsR(t) is characterized by its time- sjon Eq.(31) begins to break down in that regime.
varying mean firing rate(This is a valid assumption for

many types of sensory neurof&7].) In the numerical simu-
lations, the time-varying mean firing rate was formed by
passing a unit-area symmetric Hanning window filter over an In our original ASR papef14], we studied the dynamics
impulse train corresponding to the firings of the model. Theof the FHN model becausg) it had been used in a number
numerical results[29] for the integrate-and-fire neuronal of physiologically motivated SR studi¢$2,20,24 and(ii) it
model with a subthreshold aperiodic input signal are given irprovided a simple representation of the firing dynamics of
Fig. 2. (In the simulationsa=0.5 andé=0.01) Shown are  sensory neurons. Here we consider the dynamics of a more
the ensemble-averaged valugsd standard errorof C,  sophisticated neuronal modg39], namely, the HH model
and C; as a function of the input noise intensify. (The  [40]:

V. HODGKIN-HUXLEY NEURONAL MODEL
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TABLE I. Parameter values used in the theory and simulations 04
for the Hodgkin-Huxley neuronal model. @
C Membrane capacitance AF/cn? 03 |-
UL Leakage reversal potential —54.4 mV
g Leakage conductance 0.3 mSkm S, oz b
UK Potassium reversal potential =77 mV v
Ok Maximal potassium conductance 36 mSfcm
Pk Potassium ion-channel density 18 channets? 01 -
UNa Sodium reversal potential 50 mV
Ona Maximal sodium conductance 120 mS/m 00 1 1 1
PNa Sodium ion-channel density 60 channglsi® 0.0 10.0 20.0 300
0.2
) ®
Cv=—gnam*h(v —vna) — kN (v —vk) — gL (v —v )+
+S(t) + &(1), (35 N

. O o1k

M= a(v) (1= M) = B(v)m, (36 v [)

h=ay(v)(1—h)=By(v)h, (37

n=ay(v)(1—n)—B,(v)n, (38) 00 . . !

0.0 10.0 20.0 300

whereC is the capacitancey is the membrane potential; the D

g’s are constant conductances;,, vk, andv_ are constant

equilibrium potentialsm, h, andn are variables representing FIG. 3. Ensemble-averaged valusguaresand standard errors
sodium activation, sodium inactivation, and potassium actiof the (a) power normC, and (b) normalized power nornt, ver-
vation channels, respectivelly;is an input currentS(t) isa  sus D, whereD is the intensity of the input Gaussian white noise,
subthreshold aperiodic input signak(t) is zero-mean for the Hodgkin-Huxley neuronal model with a subthreshold aperi-
Gaussian white noise as in E@); and thea and 3 are rate  odic input signalS(t). S(t) was formed by convolving Gaussian
constants. For our study, we use the classic Hodgkin-Huxlegorrelated noiséwith correlation time equal to 0.25 with a 0.25-

6.3°C values for the squid giant axp40] shown in Table|. S unit-grea sy_mmetric Hanning window filter. Thg same input signal
For these parameter values, the voltage-dependent rate copil). With variance equal to 1.2810"" and total time length equal
stants have the form to 10 s, was used for all results present€g.and C,; were com-
puted for each trial and then averaged over 200 trials using different
0.1(v +40) seeds to generate the Gaussian white noise. The theoretical predic-

m=4 exd — (v +65)/18], tions (solid curve$ based on Eqs(32) and (34) are given in(a)
(39) and (b), respectively, usingQ=K,(0.045+0.12%), ©®=(0.32
+2.76¢)/D, and A=0.24D, with Ky=0.55,K;=1, ande=1.1

mV.

M= exd — (v +40)/10]’

ap=0.07 exfp— (v +65)/20],

lations,| =0.) Shown are the ensemble-averaged valaesl

Bh= L ’ (40) standard errojsof C, andC; as a function of the input noise
1+exgd —(v+39/10] intensity D. (The solid curves are from the theory to be de-
scribed below. As with the integrate-and-fire modéfig. 2)
o= 0.0X(v +55 and the FHN mod€]14], the HH model exhibits clear ASR
" 1-exd —(v+55)/10]’ characteristics: the respective power-norm measures rapidly
increase to a peak and then slowly decrease with increasing
Bn=0.125exp— (v +65)/80], (41)  input noise intensity.

) ) B Below we develop a general theory for ASR in excitable
wherev has units of mV and the rates have units of ™S membranes. This theory will be applicable to both the HH
As with the integrate-and-fire mod¢Sec. IV) and the  model and the FHN model, as well as other excitable-

FHN model[14], we assume that the HH model transmits membrane models. An excitable membrane with stochastic
information about input stimuli via temporal changes in itsforcing will generally have the forrfé1]

firing rate. We use this assumption to compute the power-

norm measures(ln the numerical simulations, the time- Ci;=Iion(v,{wi(v)})JrI(t)+§(t), (42)
varying mean firing rate for the HH model was formed by

passing a unit-area symmetric Hanning window filter over arwherev is the membrane potentigiw;(v)} are the fraction
impulse train corresponding to the firings of the modéhe  of open channels for a set af ion-channel types|(t) is
numerical result§29] for the HH model with a subthreshold input current, and(t) is zero-mean Gaussian white noise.
aperiodic input signaB(t) are given in Fig. 3(In the simu- Thew;(v) channels obey equations of the form
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I Cw . _ where u=—U'(v). For a subthreshold input sign#(t),
Wi=ai(0)(1=wi) = Bi(v)wi, “3 U(v) is a double-well(bistableé potential, with minima at
wherea;(v) andB;(v) are rate constants. Eagh channel v andvzand a maximum at,. (Note that;=vg.) Action
has an asymptotic value @ ..(v) = a;(v)/[ @;(v) + Bi(v)] potentials occur when jumps from neaw, to v over the
and a characteristic time scale ofr(v)=[a;(v) barrier atv,. We knowv,(S)=v,=v,+agt). We findv,
+Bi(v)] 1. To computeC, and C, as functions oD, we  andvs by solvingu(v,S) =0, although it is not necessary to
need to obtain the mean firing rate due to a subthresholfind v for this calculation.
input signal plus noise. This is done by transforming @@) The ensemble-averaged mean firing r@R{t)) for the
into a “double-well” Langevin equation, where the Kramers System is given by the Kramers rate
escape rate from one minimum to the other can be used for 1
the mean firing rate. _ "

For a subthreshold input signal, the voltage is at a stable (RV) 27C U"(w)|U"(v2)lexi CUo/D], - (50
resting pointy =v . Consider a subthreshold input signal of . )
the form1(t) =14+ S(t), wherel, is a dc signal and(t) is  WhereUo=U(v1) —U(v;). The rate(R(t)) is a function of
an arbitrary zero-mean time-varying signal that is slow and(t), and this dependence must be made explicit. We reex-
small in amplitude(The meaning of slow and small will be PressUo as
defined latep. The resting voltage is found by settififjom

vo(S)
Eq. (42)] UO(S)=f U ;S)dv'. (51)
v1(S)
p=w,=0. 44
v=Wi “4 Expanding for smalB(t), it can be shown that
Assume that ; S_f”z(o) - fvz<0>(9 .
v.() =0, +as(t), (45) o(S)= o u(v’;0)dv " su(v’;0)dv" | S(1),
(52

wherev, can be found numerically or analytically by setting
S(t)=0 in Eq. (44). The parametea can be found by sub- where we have used the fact thatv,,0)=u(v,,0)=0. In
stituting Eq.(45) into Eq. (44) [with S(t) intact] and solving  addition,

to first order inS(t).

In general, Eq(42) contains a wide range of time scales. U'(vy)=—Uu"(vy), (53
If all the channels are either fast or slow, then E&R) can , ,
be simplified to a first-order Langevin equation. If there is U'(vz)=—u'(v2), (54)

not a separation of time scales, a multidimensional pmblen\}vhere the prime refers to derivative with respecitoThe
must be studied. In the HH model studied here, there is onl nsemble—:f eraced mean firing rate is then P en b
a partial separation of time scales and thus the theory is n verag Irng ' g y
directly applicable in the present format. However, as will be 1
shown,_it can be modified to account for this lack of full (R(t) zmwu’(ul)|u’(v2)exqcuo(8)/D], (55
separation.

The approximation we use is to let all fast channels b .
instantaneous and all slow channels be fixed near rest. Trﬁ/ghereuo(S) 's given by Eq.(52).
assumption works because we are only concerned with t
generation of action potentials from a resting state. Once an
action potential is generated, the slow variables play a role in " 2_1

. - =—v(v2—§)—WH+A— y+£(1),

restoring the membrane potentiak., voltage to rest[42]. Cu v("—3) Ty tE) (6
Therefore, we dividé,,, into fast and slow currents

on=l (v, {Wih) +15(v,{wsh), (49 whereu (t) is a voltage variabley(t) is a recovery variable,
where{w;} and{w,} are the sets of fast and slow channels,At= —5/(12)/3) is a threshold voltagey=B— S(t), B is a
respectively. The fast channels are taken to be instantaneougnstant parameter corresponding to the signal-to-threshold
i.e.,wi=wj (v), and we fix the slow channels to the resting distance,S(t) is the input signal, and(t) is the standard
value noise source. In the FHN model, the fast channel is modeled
by the nonlinear term in Eq56) and is already taken to be
Ws=Ws (v =0R). (47)  instantaneous. The slow channel is given by ). The
fixed point of the system, obtained by settingsw=0, is
approximately given by, = —1/(2y3)— y+ (1/3/2)y2. The
- time scales of the two variables can be estimated by linear-
Co=l f(v'{wf’”(v)}HIS(U’{WS’“’(UR)}H|°+S(t)+§(2é izing around the resting value. We find thathas a charac-
teristic time ofr,~1 andv has a time ofr,~6C/5. Thus,
which can be rewritten as for C very small,v is a much faster variable tham.
_ We then set the slow channel to its resting valgigen by
Co=u(v,S(t))+ &(t), (499 w=vp,) to obtain the one-dimensional Langevin equation

We first apply this formulation to the FHN model, which
e write in the form[14]

W=p—W, (57)

With these assumptions, E@2) becomes
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Co=u(v)+£&(t), (59 slow channels. We do this by moving the resting values of
n and h. We perturb the resting value by a small amount
where v,=v,+ €. We then substitute this into E¢63) and expand
to linear order so that

u(v)=—U'(v)=—(A—vl/d+0%), (59 u(,s(t),e)=u(,S(t),00+ d.u(@,S(t),0)e€. (64

Both v; and v, will shiftt v;=v;-[du(v;,0,0)/

__ 2 u’(v_j,0,0)]e, for j=1,2, where v; is the root of
A L(12y3)+ \/5/27 ' (60 u(v,0,0)=0. This results in
The potentialU(v) is a double well with one minimum at UO(S)zEz[u(v’,0,0)+r75u(v,0,0)]dv’
vi=v, and a maximum at,= — 1/(2\/3)+ y. Applying Eq. v1
(55) yields oy
+ L [dsu(v’,0,0]dv " |S(1), (65)
v1
B —2y3C[B3*-3B25(t — —
(R(t))ox ex;{ vaCl S . (6D u'(vj,e,0=u'(v;,0,0+[u"(v;,0,0
2m\/3C 3D _ _ _
X[du(v,0,0/u’(v},0,0]+d.u’"(v),0,0]e.
(This result differs slightly from the result in Rdfl4].) The (66)

cross-correlation measuré8,) and({C,) are then computed

as in Ref[14] and Sec. IIl. It should be noted that the prob-  Solving u(v,0,0)=0 vields v;=0v,, v,=—62.38 mV.

lem of increasing firing rat¢éand hencgCy)) in the large-  We insert Eq(64) into Eq.(52), keep terms to linear order in

D regime is not encountered in the FHN mod##]. The ¢ and S(t), perform the definite integrals numerically, and

reason for this is that the FHN model and other excitablegbtain

systems have an associated refractory or dead time. Thus,

after a firing event has occurred, there is a finite amount of

time before another one can occur. This refractory time im- Up=—0.32-2.76e + 0.245(t), (67)

poses a saturation mechanism onto the firing rate.

We now apply the formalism to the HH model. We use

the parameters of Table | with=0. The resting potential of u'(vy)=—0.25-0.5Z, (68)

the HH model forS(t) =0 can be found numerically with the

resultv, = — 65 mV. Settingv, =v,+aS(t) and substituting

this into Eq. (44) [with S(t) intacf] gives the value u’(v,)=0.324+1.05. (69

a=0.86. Near resting potential, the characteristic time scales o ) i

are 7,~1.4 ms,7,,~0.24 ms,m,~8.3 ms, andr,~5.6 ms. Substituting these results into E@5) gives

The m channel is faster than the potentialand theh and

n channels are slower. However, there is not a vast separa- _

tion of time scales as in the FHN modeC € 0.005 was used (R(1))=(0.045+0.12)exp([ - 0.32-2.76

in the numerical simulations for the FHN modédH].) Em- +0.245(1)]/D} ms L. (70

ploying the formalism, we would let then channel be in-

stantaneous and freeze theandn channels to their resting This rate can now be used in E&2) for (C,) and Eq.(34)

values. The effective Langevin equation would be given byfor (C,), using Q=K(0.045+0.12%), ©=(0.32
+2.76¢)/D, andA=0.24/D. Curves based on Eg&2) and
(34) are shown in Fig. 3. The rates in the simulations were

Co=u(v,S(t))+&(1), (62 expressed in units of st. The calculated rate can be con-
verted to these units by multiplyin@ by a factor of 1000.

where The theory for{Cy) and (C,), respectively, matches the

data, predicting the location of the maximum.
__ 3 _
U, S(1))= = gnaM=:(v)Nx () (v —Vna) VI. CONCLUSIONS AND IMPLICATIONS
4
— kN (ve) (v —vK) —Gulv —v )+ S(1). This work clearly shows that SR-type behavior is not lim-

(63) ited to systems with periodic inputs. Thus, in general, noise
can serve to enhance the response of a nonlinear system to a
However, because there is not a large separation of timeveak input signal, regardless of whether the signal is peri-
scales, thér andn channels will tend to drift in response to odic or aperiodic. These developments suggest that SR-type
fluctuations inv. We note thah andn are “restoring” vari-  dynamics could be exploited in systems with broadband in-
ables that will tend to increase the effective barrier. We carput signals. This could be particularly useful for the design
account for this by “shifting the path” of the effective of signal-detection devices, such as superconducting quan-
Langevin equation to take into account the dynamics of théum interference devicd$,43). This work also lends further
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support to the notiofi14,1€ that it may be possible to de- function in healthy individuals and individuals with sensory

velop ASR-based bioengineering techniques for improvinghresholds that are elevated due to disease or normal aging.
the function of neurophysiological sensory systems, such as
the somatosensory system. With such techniques, noise
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