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Partial synchronization in populations of pulse-coupled oscillators
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| study the long-term behavior of populations of nonlinear oscillators with all-to-all, noninstantaneous, pulse
coupling. With fast enough excitatory coupling both the fully synchronized and the asynchronous state are
unstable. In this case individual units fire quasiperiodically even though the network as a whole shows a
periodic firing pattern. The behavior of networks with three or more units is different in this regard from that
of two-unit networks. With inhibitory coupling the network can break up into a variable number of fully
synchronized clusters. For fast inhibition the number of clusters tends to be large, while the number of clusters
is smaller for slow inhibition[S1063-651X96)09310-3

PACS numbd(s): 87.10+e, 05.96+m, 03.20+i

[. INTRODUCTION of individual units in this state.
Section IX discusses large networks with inhibitory cou-

Most studies of the temporal organization of populationspling. Depending on the speed of the coupling, the network
of nonlinear oscillators concentrate either on synchronousan break up in two or more clusters, with all oscillators
activity [1] or on the asynchronous std@. However, many belonging to a cluster in complete synchrdi$/5,10. The
model networks of nonlinear oscillators have regions in pa€xact number of clusters into which the network breaks up
rameter space in which the population evolves neither to afeépends on the initial condition. In Sec. X we evaluate the
asynchronous state nor to a fully synchronized state. Theg@sults of our study and consider the implications for popu-
partially synchronized states are usually discussed in thitions of more biologically realistic model neurons.
presence of noisg3,4] or inhomogeneitie$5,6]. Yet many
networks of identical nonlinear oscillators can evolve to Il. MODEL
stable partially synchronized states, even in the absence of
noise. In this paper we will look in detail into the behavior of ~ The model consists dfl identical oscillators that are uni-
such networks. formly coupled to all other oscillators. Oscillatoris de-

In a previous papef7] we considered a population of scribed by a voltagelike variabbe that runs between zero
integrate-and-fire oscillators, with all-to-all coupling, and de-and one. The evolution of; is given by the equation
termined the conditions under which the asynchronous state
is stable. Here the long-time behavior of such a network with dx;
parameter values for which the asynchronous state is un- E:F(XngEi(t)- (2.)
stable is studied. We find that these parameter values do not

typically lead to fully synchronized states but rather to partial-l-he functionF determines the behavior of the oscillator in

synchhrony. . ized as foll h d I_the absence of coupling. It can be an arbitrary positive-
The paper is organized as follows. In Sec. Il the model iyefinjte function. The second term in E@.1) describes the
ouFImed. Section [l bne_fly o_lesqnbes previous work on two- coupling.g is the coupling strength, witg>0 for excitatory
unit systemg8] and its implications for larger networks. In coupling andg<0 for inhibitory coupling.E;(t) is a dy-

”eFWOF"S of two osc[llators W't.h excitatory qoupllng, the namical variable that characterizes the inputs from the other
units fire periodically in the partially synchronized state. Inoscillators

Sec. IV | show that this is not true for networks with three or Equation(2.1) determines the behavior af in the range

more units. It is shown that for networks with three or more, iveen 0 and 1 Whex reaches the threshold=1, the
units the partially synchronized state is characterized by Qua:| is said to fire. This firing immediately resets to ,zero

siperiodically firing units. ; : : e

; . . and increments the coupling variabig(t) for j#i by a
. Sect|o.ns V-Vl degl with large excitatory networks. Sec- single pulse response. | will set the response for a single
tion V briefly summarizes the analysis of the asynchronous

state developed in Ref7]. Section VI discusses numerical bulse equal to am function
simulations of large networks with parameter values for 2
which the asynchronous state is unstable. | show that the Ei(t)—E;(t)+
network evolves to a partially synchronous state in which the ' J
firing rate fluctuates periodically. This state is analyzed in
Sec. VII. Section VIII describes the quasiperiodic behaviorHeret, is the time at which oscillator fires.
Except for Secs. lll and IV | work in the largg-limit. In
this limit | will not remove the self-coupling from Eq$2.1)
“Present address: Racah Institute of Physics, Hebrew Universitgnd (2.2). We then haveE;(t)=E(t) for all j with E(t)
Jerusalem 91904, Israel. incremented by

(t—tg)e*to™ b, (2.2
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E(t)—E(t)+ %(t—to)ea(to‘”. 2.3

This is equivalent to a mean-field approximation.
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for O<t<T andE{(t+T)=E(t).

The results we obtain for this model also hold for a more  Using Eq.(3.2), with x,(0")=0, one can shoJ8] that

general model in which the input in celldepends on the
state variable; . In this model the state variables satisfy

dx;
— =F (X)) +G(x)Ej(t),

- (2.4)

with G>0 for excitatory coupling and<0 for inhibitory

X1(T™) satisfies

X(TT)=Xo(1—e™ ) +ge*TJ'OTdte‘ET(t— &T).
(3.9

Since unit 1 fires again at tim&, x,(T~) has to satisfy

coupling. This is because a transformation of the state varix;(T " )=1.

able xi—>gf3idx/G(x), with g‘lzfédx/G(x), will trans-
form Eqg. (2.4) into Eq. (2.1). So without loss of generality
we can assume that the coupling is independens; of

Another way the model can be generalized is by describ-

Using X,(¢T ) =0, x,((¢+1)T7) can be written as

Xo((p+ 1)T*)=xo(1—e*T)+gE*Tf0Tdte‘ET(t+ ¢T)

ing the pulse response by a difference of exponentials rather

than by ana function. This amounts to replacing E@.2)
by
a,ap

(eal(to—t) _ eaz(to—t)) .

(2.9

One regains the function by taking the limita;— a,= .

.
= 1+ge*Tf dte[Er(t+¢T)
0

—Er(t—9¢T)].

This has to be equal to 1 also.
The requirement that botky (T™) andx,((¢+1)T") are
equal to 1 can be satisfied only for a few valuespofAs Eq.

(3.6

Since models with a difference of exponentials rather than af3-6) shows, the two values fop that one expects from
a function as response to a single pulse exhibit qualitativeygYmmetry arguments$=0 and ¢=1/2, are always solu-
the same behavior and their analysis is essentially the samions. For smalla these are the only solutions. Asis in-

this generalization is not considered here.

Ill. TWO-OSCILLATOR SYSTEM

creased, one reaches a bifurcation paint a.. At this
point there is a pitchfork bifurcation of th¢=1/2 solution.
Beyond this point there are two extra solutiopg<1/2 and
$,=1— ¢, in which the units are partially synchronized. As

To understand the behavior of a system with a large nume: is increasedg$, goes to 0 asymptotically; the cells get
ber of oscillators it is often helpful to know how a two-unit closer and closer to synchroitgee Fig. 1
system evolves. Here we will give a short description of a Stability analysis show§8] that for excitatory coupling
two-oscillator system. A more detailed analysis can be foundhe antisynchronous statg=1/2 is stable fora<a,,. For

in [8].
We will limit our discussion to a system for which the
state variables satisfy the equations

dx

at =Xo— X +gEi(1),

(3.2

with i=1,2 andX,>1. The coupling variabl&; is given by

tpi<t

Ei(t)= X a?(t—ty)e*tai™,

(3.2

a>a., the antisynchronous state is no longer stable, while
the two partially synchronized solutiong, and ¢, are
stable. The synchronous solutigh=0 is always unstable.

For inhibitory coupling the synchronized solution is al-
ways stable. The antiphase state is unstablenfara., and
stable fora> a.,. The two other solutions for> a, are
unstable for inhibitory coupling8].

One can show that for a more general description, in
which Xo—X; in Eg. (3.2) is replaced byF(x;), the situation
does not change qualitatively as long &>0 and
dF/dx<0. Then there is also always an in-phase and an
antiphase solution and a pitchfork bifurcation of the an-

wheret,; is the set of times at which cell 2 fires. A simular tiphase state at some valag,, while for a> a(, there are

equation holds foE,.
It turns out that both for excitatory coupling and for in-

two extra, partially synchronized, solutions. For excitatory
coupling the antisynchronous state is still the only stable

hibitory coupling that is not too strong the system evolves tosolution if a<<a and fora> a, the partially synchronized
a state in which the oscillators fire periodically. We assumesolutions are the only stable solutions. For inhibitory cou-

that unit 1 fires at times=nT and unit 2 at=(n+ ¢) T, for
some periodT and phase difference between 0 and 1.
Then

Ei(t)=E(t—¢T),

E,(t)=E+(1), (3.3

with

pling the synchronous state is always stable, while the anti-
synchronous state changes from unstable for slow coupling
to stable for fast coupling.

In a two-unit system with excitatory coupling we have
antisynchronous firing for slow coupling. As the time con-
stant for the coupling is decreased past the critical value the
units will fire more and more in synchrony. However, there
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FIG. 1. Phase difference in a periodically firing two-unit system.
The phase difference between the units is plotted against the  FIG. 2. (a) Time of firing of each cell plotted for a three-
coupling rate constant. Solid lines, stable solution; dashed linessscillator network for a time interval after the transients have died
unstable solution(a) For excitatory coupling¢=1/2 is stable for  out. To facilitate the distinction between the three cells, the spikes
a<ag. Fora>a the partially synchronized solutions are stable. are drawn to different height for the different oscillators. Notice that
All other states are unstabléb) Inhibitory coupling. The in-phase the firing pattern betweer=0 andt=5 closely resembles the fir-
solution is always stable, while the antiphase solution is stable folng pattern betweemn=34.5 andt=39.5, though the role of the
a>ac. All other solutions are unstable. units is changed. This indicates quasiperiodic behavior. In this
simulation,F(x) =1.3—x, g=0.4, anda=9.0. (b) Interspike inter-
will never be complete synchronization. If a system with twoval t,,, plotted against the previous interspike interval. The points
oscillators does not reach complete synchrony, one expecti® on a curve that makes three loops before it repeats itself.
large networks also to be only partially synchronized. One
also expects the synchrony to increasevas increased. system will evolve to an asynchronous state, with the units
For inhibitory coupling the synchronous state is the onlyfiring 360N° out of phase if the coupling is slow, while for
stable state in a two-oscillator network with slow coupling. It faster coupling the units will fire in a partially synchronized
seems likely that in large networks with slow inhibitory cou- pattern.
pling the oscillators will also fully synchronize. For faster ~ To test this expectation | performed numerical simula-
coupling a two-cell network can be either in synchrony or intions for networks of three units satisfying Ed€.1) and
antisynchrony. In a large network the synchronous state i§2.2) with F(x)=X,—Xx, for different values ofX,, g, and
therefore probably still stable, but one expects there to be. X, was always chosen larger than 1 apdiways between
another stable state in which the cells have broken up in tw@ and 1 so as to ensure continuous firing with finite rates.
clusters, so that each unit is in synchrony with the other units For all choices o, andg the network evolved to a state
in its cluster and in antisynchrony with the units in the otherin which the oscillators were 120° out of phase, regardless of
cluster. One might also expect that if the coupling is speedethe initial conditions, for sufficiently smatk. When a was
up even more there are stable states in which the oscillatoiscreased past a critical value this was no longer the case and
have broken up in more than two clusters. the spike trains evolved to a complicated pattern. Figure 2
In Sec. V | will show that large excitatory networks shows an example.
evolve to a partially synchronized state if the coupling rate In Fig. 2(a) the firing times for a network witkX,=1.3,
constant exceeds a critical value and that above this critica=0.4 anda=9.0 are shown. To facilitate the identification
value the level of synchrony increases with the rate constantf the three units the spikes are drawn to different heights for
In Sec. IX it is shown that the units in inhibitory networks different cells. The spikes of the three units tend to be clus-
break up in clusters, with a tendency to have a large numbeered, indicating that the network is partially synchronized,
of clusters if the coupling rate constant is larger. This con-but the cells no longer fire periodically. This is in marked
firms the intuition we have gained from two-neuron net-contrast to two-unit networks, in which the units fire periodi-
works. cally in the partially synchronized state. Figur@gP2shows a
plot of the interspike interval of a unit, against the previous
IV. A FEW NEURONS interspike intervalt,_;. All points lie on a closed curve,
consisting of three loops. That these points all lie on a closed
In excitatory networks with just two oscillators, the cells curve indicates that the units fire quasiperiodically.
fire in antisynchrony if the coupling time constants are large, To understand why, in a two-unit network, the oscillators
while for faster coupling the cells partially synchronize. Thisfire periodically in the partially synchronized state, while
leads one to suspect that in networks whittoscillators, the they fire quasiperiodically in a three-unit network, 1 will
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study the bifurcation from the asynchronous state in someal Hopf bifurcation, like in the subcritical pitchfork

detail. bifurcation, there is no stable solution close to the asynchro-
I will analyze anN oscillator system in which the state nous state past the critical point. In a supercritical Hopf bi-
variablesx; obey the equation furcation there is a stable solution past the critical point. In
this solution the perturbation around the asynchronous state
%—X 4 aE(t 41 varies periodically. In this case small perturbationssgf of
ar = Ko~ XitoR(), @D the asynchronous state will evolve & ;— A;cosQig+ i)

_ _ ~ for n—c. In this case the interspike interval is modulated
with E; given by Eq.(2.2. In the asynchronous state, unit periodically and the cells fire quasiperiodically.

i fires at timest=[n+(i—21)/N]T, whereT is the period I will not analyze whether the system undergoes a super-
with which the oscillators fire and is an integer. The cou- or subcritical bifurcation. Simulations show for excitatory
pling functionE,(t) is given by networks of any size that close to the transition point that the
) system stays close to the asynchronous state. Thus we can
E(t)= LE Elt+|n— EH assume that there is a supercritical bifurcation. We have to
! N—-17% —° N determine whether it is a supercritical Hopf bifurcation or a
n supercritical pitchfork bifurcation.
1 j—1 So to understand why in a two-unit network the partially
Em;i ET(t_ N T)- (4.2 synchronized state is periodic, while it is quasiperiodic in a

three-unit network, we have to show why at the critical value
in a two-cell network one of the eigenvalues goes through 1,
g\/hile this does not happen in a network with three units.

We will first analyze a two-unit network. In the asynchro-
nous state cell 1 fires at times=nT and cell 2 at
t=(n+1/2)T. The period is given by

Here we usedE(t)= a’texp(—at) to denote thex function.

To investigate the stability of this state we assume that th
times at which the cells fire are slightly perturbed. Unit
fires at timeg=[n+(i—1)/N]T+ 6,;. We require that the
perturbations are consistent with Eq4.1) and (2.2). If
Sn; is given for n<ng, one can calculatex,(t) for ;
t<ngT+Jy 1. Att=noT+ 5, 1 cgll 1 fires z'agam, therefore Xo(l_e—Tng—TJ dteE((t-T/2)=1. (4.3
the X;(neT+ &, 1) must be 1. This determine$, ;. Once 0
5,10,1 is known, 5%,2 can be determined, etc. The antisyn-

chronous state is stable if for dllandj, 6,;—J,;—0 for
n—o. (If 6,; converges tod for all i the whole system is
translated in time by an amou#t but theN oscillators will
still fire asynchronously.

If the perturbations are small one can wrifg;=\"3; . )
The asynchronous state is stable if apart from the solu'[iorrlIaloloen only if
A=1 and §=4 all solution have|\|<1. At a=«a,, the ; ;
asynchronous state becomes unstable and one or more solu T T ¢ _
tions with |[\|<1 for a<ag will switch to solutions with aT Xo(1=e )+ge fo dte; Es(t+(n=1/2T)|<0
[N|>1 for a>ag. For a=ay+ da, with 0<da<1, one (4.4
can, in general, have either one real eigenvalue |ahg 1
with |[\|<1 for all other eigenvalues or two complex- gr
conjugate eigenvalues witA|>1 and|\|<1 for all other
eigenvalues.

The behavior of the network past the transition point de- Xo— 1+gE{(—~T/2)+ge 7>, (n—1/2)
pends on how the asynchronous state becomes unstable. If n
there is one real eigenvalue=1+e¢, with 0<e<1 for T
a=aq,+ da, the system undergoes a pitchfork bifurcation at X f dte'Eg(t+(n—1/2)T)<O0. (4.5
the critical point. This can be a sub- or supercritical pitchfork 0
bifurcation. If the bifurcation is subcritical there is no stable _
solution close to the asynchronous state past the criticaiere | have use to denoted E/dt.
point. If the bifurcation is supercritical there is a stable solu- When the system is perturbed the units fire at times
tion close to the asynchronous state past the critical point. Ie=[n-+ (i —1)/2]T+ 8,i- The perturbation results in a
this solution uniti fires at timet=[n+(i—1)/N]JT+A; for  change in the coupling function§;. To lowest order in
some smallA;. So if past the critical point the system is S..i, E1 changes to
slightly perturbed from the asynchronous state, the perturba-
tions will evolve tod, ;— A; for largen. The oscillators will )
no longer fire antisynchronously, but they will still fire peri- E.(t)= ET(t—T/2)—E On2Es(t—(N+1/2)T). (4.6
odically past the bifurcation point. n

If past the critical point the system has two complex-
conjugate eigenvalues for whi¢h|=1+ ¢, the network un- For E, one finds an analogous expression. Setting
dergoes a sub- or supercritical Hopf bifurcation. In a subcritix;(nT+ &, ) =0 one finds

The coupling strength is chosen small enough so that the rate
of the units does not increase without bound. If we start the
units in antiphase, but with a slightly small@r largey pe-

riod than the period found in Eq4.3), the network should
evolve to to a state with the rate given by E4.3). This will
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X1 (N+1)T+Sn+1,0)

J
—[Co(N\)— VAS(\,1/2) ], =
ZXO(l—e_T_5n+l,l+5n,1)+ge_T_5n+l,l+‘5n,l 2N 2 A=1

T+6n+11~ On, Y\ _ _ _ae T _
xf MM e (t T+ 6, ). 4.7 =Xo=1+9gEr(~T2)~ge "2 (n-1/2)
0

T .
By assumptiork,((n+1)T+ 6,4 19)=1. Therefore, to low- X j dte'Eg(t+(n—1/2)T). (4.13
est order ind, ; 0

(5n+1,l_ 5n,1)

T (T T According to Eq. (4.5, this is always negative, so
Xo€ '—ge fo dteEqr| t- 5 Co(1+€)# V(1+€)S(1+¢,1/2) for smalle. If there is a
solution withA =1+ € for « just past the critical point, this
N L T has to be a solution withd,=—+/(1+¢€)8;. Thus, at
ge fo dteEqr| t—5 a=ag there is a solution withC,(1)=-S(1,1/2) or
S(1,1/2)=0. In [8] it was shown that the bifurcation does
T LI 1 indeed occur at the value aof for which S(1,1/2)=0. There
—ge ; 5m,2fo dteEs(t+(n—m=—2)T). (48 it was also shown that fak= arg,+ Sa, with 0< a<1 there
is a solution withA=1+€e>1. Since\ is real at the point
A similar equation hold fors,,  ; ». where the antisynchronous state becomes unstable, the sys-
Solutions of these equations can be written in the forniem will evolve to a state with 5,,—A; and
8,i=\"8,. The state is stable if for every solutih|<1 or  Sn2—A,#A;. In this state the cells still fire periodically.
A=1, andd; = &,. To make the set of consistency equations T0 study the stability of the asynchronous state in a three-
more transparent we introduce variab@g(\), defined as  cell network we assume that cell with i=1,2,3, fires at
timest=[n+(i—1)/2]T+ &,;, with &,; small. Requiring
T that the 6, ;’s are consistent leads, faf,;=\"5;, to the
Xo=1+ gET( - 5) } equations

+6n1

T
+gE+ _E

Co(M)=(A—1)

-T T tr T 1 1 2
Fge | dieBr|t=7], (4.9 Cs(\)1=5[S(N,3) 82+ SN, ) 351,

andS(\, ¢) defined as 1
_— Cs()\)52=§[5()\:%)53+S()\a%))\51],
SN, p)=ge T, )\‘”j dte'Eg(t+(n—¢)T).

n 0

1
(410 Cs(M3s=5[SNHNE+SNING,], (414
With these two variables the consistency equations can be
written as with C3(\) defined as
Co(N)81=S(\,3) 82, Ca(N)8=S(\,3)\6y. g 1 2
(4.11 Cs(N)=(N—1){Xp—1+Z|Ef| —=|+Eq| — 5T
2 T 3
These equations have two sets of solutions, one with g T ) 1 ) 2
5,=y\8; and C(\)=VAS(\,1/2) and one with +§e‘Tf dte! ET<t—§T +E; t—§T”.
5,=—\6; andC(\)=— JAS(\,1/2). Here we use/\ to 0
denote the square root of tlipossibly complex\ with ar- (4.1
gument greater than-7/2 and less than or equal te/2.
Since S(N\,¢) is defined as above. The consistency equations

(4.14) have three sets of solutions. If we defin&® as the
cube root of\ for which the argument is betweenn/3
and 7/3, these sets have solutions withy=\3ek™'/3

52: ()\ 1/3) 2e4kﬂ'i/35l and CS()\) — [)\1/3e2k77i/3s()\,1/3)

the first set always has a solutioh=1. In this case +(A32e*™35()\,2/3)]/2, withk equal to O for the first set,
8,= 65, so this is the solution in which both oscillators fire a 1 for the second set, and 2 for the last set. A solution in the
time &, later but still in antisynchrony. This is the transla- second set witth =\, has a complex-conjugate solution in
tionally invariant solution. The antisynchronous state is unthe third set with\ =\,

stable if there are other solutions with|=1. The network Since C3(1)=[S(1,1/3)+ S(1,2/3)]/2 the first set has a
will continue to fire periodically if, fora slightly larger than  solution with A=1 and §,= 8,= 83, corresponding to the
agr, there is a solution withh =1+ €, with 0<e<1. There asynchronous solution that is translated in time. Analogous
cannot be such a solution wit,= A 8; since to the two-unit network one can show that there is no solu-

T I T T
Cy(1)=ge jo dte'Et t_f =S 1,5 , (412
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tion with A=1+¢, with 83=\Y35,=(\13)25, for 088\ N=4 0.88)N=5
a=a,t+ Sa. The asynchronous solution can bifurcate in the
same manner as the antisynchronous solution in a two-cell 0.84 0.84
network if for some « the second and third sets have ¢ ¢
solutions withh=1. The second and third sets have-1 n n
as a solution if S(1,1/3)+S(1,2/3)=e?""35(1,1/3) 0.80 0.80
+e*73g(1,2/3) or, equivalently, S(1,1/3)=0 and
S(1,2/3)=0. But these two integrals are generally not O for 7 7
the same value of. Therefore ifa is increased there is no °7676 0.80¢ Q84 08¢"876 0.80¢, Q-84 088
critical value e, at which the second and third sets of solu- 0881 N=6 088 N=7
tions will give an eigenvalua=1.

Therefore, beyond this critical value we will not have a 0.84 0.84
real eigenvalueN=1+e¢, but instead two eigenvalues t t
A=(1+¢€)e Y. Since these eigenvalues are complex, the 0n80 onso
stable state past the transition point will be very different. ' '
For a= ay+ da, with 0<Sda<1, the displacement in the

time at which the .CEH k fires 5n,k will evolve to 0'78.76 0.80¢ q'84 0.880.78.76 0.80¢ q.84 0.88

8o —Re@" Tk D7BlAY for some (compley value of n- n-

A. The interspike intervdi, between two consecutive firings

of the first cell is given by FIG. 3. Interspike interval, plotted against the previous inter-
spike intervalt,_, in networks with four to seven oscillators. For

th=T+ 61— Oh—11=TH+Acogny+y), (4.16  the four-call network the points lie on a curve that has four loops,

three small loops and one large one. As the number of cells is

with A=|A(ei*”— 1)]. So for each n the pair increased, the small loops shrink, leaving only a single loop in

(th—1,ty)=(T+Acog(n— 1)+ ], T+AcOSO+ ) lies  larger networks.

on the ellipse y:0—(T+ Acos@— ), T+Acos@)), with o )

0= #<2m. The interspike interval varies periodically, show- Smaller than the fourth loop. For networks with five units,

ing that the oscillators fire quasiperiodically. In the plot of the small loops become even smaller and vanish as the num-

t, against,,_, in Fig. 2(b) the points do not lie on an ellipse ber of units in the network is increased. For larger networks

as prediced by the linearized theory. This is not surprisingh€ points {,_1,t,) lie on a curve that consists of a single

since « is quite far from the critical value, so that higher- curve.[See also Fig. ().] . .

order terms ins, ; have to be taken into account. The fact that the plot of, againstt,_; becomes “sim-
Let us summarize these results. In a two-unit network théler” as N is increased suggests that the behavior of the

antisynchronous state shows a bifurcation, with one of théetwork in the largeN limit is simpler than the behavior of

eigenvalues going through 1, for the value@fat which a networks with a few oscillators. In Secs. V=VIII we will

single conditionS(1,1/2)=0 is met. Since this eigenvalue is Study large excitatory networks.

real the oscillators continue to fire periodically past the bi-

furcation point. In a three-cell network the eigenvalue of the V. LARGE ASYNCHRONOUS NETWORKS

mode that becomes unstable is equal to 1 only if, for the

same a two conditions are satisfiedS(1,1/3)=0 and

S(1,2/3)=0. In general, this will not be the case and there

will be a bifurcation with complex eigenvalues for the modes

that become unstable. This leads to quasiperiodically firin

: . . table.
in the partially synchronized state. . .
One can do the same analysis for networks with four or For large networks the asynchronous state is characterized

more units. Then one will also find that at least two Condi-by a coupling variablé that is constanE(t) = E,. If in this
tions have to be met for the saneto have an eigenvalue state the oscillators fire with a frequenBy it follows from
A =1 at the bifurcation point. As in three cell networks both qu' (ZI.:? (tjh‘?t EO:ER' 2\/V1|thCI:E(t)b<_:o_nstzirr1]t thet\r;‘ta cant_be
conditions will generally not be satisfied for the samend calculated from Eq(2.1). Combining these two equations,

the eigenvalues will be complex, so that the cells will fire W€ find thatE, has to satisfy

In a previous papdi7] we studied the asynchronous state
in the largeN limit. Here | will briefly summarize the meth-
ods and findings relevant for the study of networks with
arameter values for which the asynchronous state is not

quasiperiodically past the bifurcation point. So in contrast to

. . . 1 1 dx

two-oscillator networks, networks with three or more units _=f — (5.2
will have partially synchronized states in which the cells fire Eo JoF(X)+gEo

guasiperiodically. ) ) ) )

This analysis is confirmed by simulations with networks For continuoud=>0 this equation always has a solution for
of 4—7 units. In Fig. 3 the interspike intervg| is plotted g<1 . o .
against the previous interspike intervial_; for networks For the analysis of the asynchronous state it is convenient
with 4—7 oscillators. All other parameters are as in Fig. 2. Ini0 change variables from to a phase variable
a three-unit network the point{_;,t,) traced out a curve v End
that consisted of three loops. In a four-cell network a four- Yi:f I EolX

- -, (5.2
loop curve is formed, but three of these loops are much 0o F(X)+Eq
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which ranges from 0 to 1 and satisfies the equation By substituting this into Eq(5.10 we have that the eigen-
g values\ have to satisfy the eigenvalue equation
y.
St ~EotTye(t), (5.3 )
Eo(A +a)?(eMFo—1)= az)\f dyI'(y)e'Fo.
where ° (5.13
9E This eigenvalue equation has infinitel [uti I
T(v)= ’ t)=E(t)— Ev.. 5.4 g quation has infinitely many solutions. In
) F(x)+9Eq (=B ~E ®49 limiting cases, for example weak coupling, the eigenvalues

o _ _ can be determined by perturbation expangion Away from
The state of the full population is described by a densitythese limits the eigenvalues have to be determined numeri-

function p(y,t) and fluxJ(y,t) defined by cally.
1 IFor}\small c?huptliggtther_e is otr;]e d(t)ut?llyt de?etﬂerateteigekn-
value A~ — « that determines the stability of the networ
ply.)= NEi oy =yi(t), against fluctuations in the firing rate of thye whole network.
The other eigenvalues are approximated \yy=27ni/E
J(y,t)=[Eq+T(y)e(t)]p(y,t). (5.5 and have eigenfunctions,(y)~ C,exp(2mny). These eigen-
values determine the stability of the network against the
These satisfy the continuity equation modes of fluctuation that tend to synchronize the oscillators

into |n| different clusters.

d For excitatory coupling the asynchronous state is never
Py U==7030 58 stable ifF(1)>F(0). If dF/dx<0 there is a critical value
a for the coupling rate constant so that tex «, the asyn-
for 0<y<1 and the boundary condition chronous state is stable, while the asynchronous state is un-
stable fora>a,. At the bifurcation pointa= «, the two
J(O)=J(11). (5.7 eigenvalues\; and\_; are purely imaginary. All other ei-
genvalues have a negative real part.
The flux thoughx=1, J(1), is the population firing rate. For inhibitory couplingg<0, the asynchronous state is

The asynchronous solution is given byy,t)=1 and  always unstable itlF/dx<0. For smalla all complex ei-
J(y.t)=E,. To determine the stability of this solution one genvalues have a positive real part. s increased the real

expands around it, writing part of the two eigenvalues, and\ _; change sign. As the
) coupling time constant is decreased further additional modes
Iy D=Eo+j(y,1) (58 pecome stable.

For inhibitory coupling the higher modes are all unstable.
If the system starts close to the asynchronous state, the
ghigher modes will initially grow exponentially. So the final
state of the system can depend on the initial conditjdds
In Sec. IX | will show that this is indeed the case. In contrast,
for excitatory coupling the higher modes are stable, suggest-
iy (5.9  ing that the final state of the system does not depend on the
ay details of the initial conditions. In the next section we will
see that this is also true.

and using Eq(5.5 to expressp in terms ofj ande. The
stability against small fluctuations is examined by expandin
p to first order inj and e. In this approximation the conti-
nuity equation(5.6) becomes

o de
S (Y)a— 0

With the fluctuation in the firing rat¢(1,t) we can rewrite

Eq. (2.3 for the coupling variable as
VI. PARTIAL SYNCHRONY IN LARGE NETWORKS

2
e(t)=a?j(11). (5.10 In the preceding section we saw that for large excitatory

networks, the asynchronous state switches from stable for
a smaller than some critical value., to unstable fora
Solutions of the linearized equatiorts.9) and (5.10 will  |arger than this critical value. Two complex-conjugate eigen-
have time dependence exp) Using this we can calculate values for perturbations of the asynchronous state have a real
the eigenvalue spectrurfill]. (References[12,2,13 use part that goes from negative for<a. to positive for
similar methodg. With Eqg. (5.9) j(y,t) can be written as a>a,. These eigenvalues have a nonzero imaginary part
and the real part of the eigenvalues Re(has a nonzero
i(y,H)= E(t)k{Jydyrr(yr)e)\y'/Eo_'_Ck e~ M/Eq. de_rivative Wi.th respecte; . All other eigenva]ges hgve
Eo 0 strictly negative real parts fow close to the critical point
(5.11 ay. At a=a, the system undergoes a Hopf bifurcation

d
a'f'a’

_ _ N [15,16].
C, is determined by the boundary condition &§.7) Hopf bifurcation theory tells us that for a parametethat
L induces a bifurcation, there is a periodic solution for param-
C. =(eMEo—1 71f dvI(v)eMY/Eo. 51 eters in the neighborhood of the bifurcation point. The am-
vl ) 0 yry) .12 plitude of this periodic solution vanishes when the parameter
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reaches the critical point. We can have one of two kinds of 407 4,=8.00
Hopf bifurcations: (i) the subcritical Hopf bifurcation, in
which case there is aunstable periodic solution for
a<ag, or (i) the supercritical Hopf bifurcation with a 0.0 T 0
stableperiodic solution fora> ay,. 407 ¢=8.33
If the Hopf bifurcation is supercritical, the behavior of the

network changes continuously when the rate constant
changes past the critical value. If the Hopf bifurcation is 0.03 3 10
subcritical the change is discontinuous. Since for excitatory 407 0=8.35
coupling a system with two oscillators has a stable firing J(,1)

pattern with the cells firing nearly antisynchronously just
past the bifurcation point, we expect a large network also to
change continuously. Thus, in a large network we expect a 401 4=8.50

supercritical Hopf bifurcation. /M/WWWUU\
| investigated the behavior of the system for parameter

0.0 5 70

values at which the asynchronous state is unstable, using g‘g? 5 10
computer simulations with 100 oscillators. The units satisfy ~]0=9.00

Eq. (2.1 with F(x)=Xy,—x. At t=0 the oscillators were

given random values; . The self-coupling was not removed, 40

E satisfies Eq(2.3) and is initialized aE=0. The firing rate

for a finite population ofN oscillators is estimated in the

following manner. Suppose a cell fires at tilethe last cell 00 ,
that fired before this cell fired 4f_,, and the next one will 0 5 45000 1

fire at t;;4. Then there is a time intervalt;(.;—t;,_1)/2
around timet; in which one cell fires. We take the firing rate

J(11) at timet; to be FIG. 4. Firing rateJ(1t) for different coupling time constants

for a system of 100 oscillators witiX,=1.3 andg=0.4. For

a=28.0 and 8.33 the asynchronous state is stable and the firing rate
I (6.1 is constant. Foer=8.35 the asynchronous state is no longer stable
N(tiy1—ti-1) and a small periodic perturbation appears. ker8.5 anda=9.0

the amplitude of the oscillations in the firing rate increases.

J(1t)=

In the simulations we let the system evolve fram O to

t=45 000, to make sure that all the transients have died outn generalm will vary periodically for a partially synchro-
We plot the firing rate for the next ten time units. Figure 4 nized system. We characterize the level of synchronization
shows the firing rate for systems wi¥y=1.3 andg=0.4.  of the system bym, the temporal average @f(t). We de-
The firing rate is shown for different values of. Using terminedm as function ofa for a system with parameters as
these parameters, the eigenvalue 13 tells us that the in Fig. 4. In Fig. 5m is plotted against . As « is increased
asynchronous state is unstable ter ., =8.34+0.01. For  past the transition pointn increases rapidly. Them levels
a<ag the firing rate is indeed constant. Farjust larger  off andm goes to 1 asymptotically as goes to infinity. The
than «, the firing rate has a small periodic perturbation. If system thus reaches total synchronization asymptotically.
one increases the firing rate oscillates with an increasing  The simulations were repeated with different random ini-
amplitude and the system becomes more synchronized. Thi&l conditions, for different values af up to 8 times. Up to
gradual growth the amplitude of a periodic firing rate is ex-

actly what one expects from a supercritical Hopf bifurcation. 1
To quantify the level of synchronization we introduce an
order parametem(t) defined as 087
1 ) 0.6
m(t)zU dyp(y,t)e?™|. (6.2 m
0 04}

If the system is in the asynchronous sthtgy,t)=1] the
order parameter is zero, while for a completely synchronized
system the order parameter equals one. kofa, we
have a partially synchronized system that fires periodi-
cally. If J(1,t) is periodic,p andJ are periodic for all values
of y, so p can be written asp(y,t)=Z,pw(y)expiknt) FIG. 5. Order parametan that characterizes the level of syn-
for some value of w. With the definition chronization as a function of &/ for a system withN= 100,
Pk,n:fédypk(y) exp(—2mniy), the order-parameter can be Xo=1.3, andg=0.4. Fora larger than the critical valuen=0 and
written as the system is in the asynchronous state. Past the transition point
m increases and the level of synchronization in the system in-
creases. As 1/ reaches Om goes to 1. The system goes asymp-
. (6.3 totically to complete synchronization for increasiag

09 005 1/ 01 0.15

m(t) =2 py € !
X
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a phase factor these gave the same firing rates. Simulations  0.015}
with Xo=1.2 and Xy;=1.5 gave analogous results, as did
simulations for different values df.

VII. CLOSE TO THE TRANSITION POINT

Finding the stable periodic solution is not easy. For pa-
rameters close to the bifurcation point, we can use the fact 0.005 |
that this solution stays close to the steady-state solution
J=E, and write the solution as an expansionjiande. In
this section | will describe how and e depend onda for
a=ag+ Sa, with 0< Sa<1. 833 §34 o 8% 536

It is clear from Fig. 5 that the order parametar and
therefore j and e are not analytical functions ok at

@=ag and hence thelr dependence mrr:anr_lot be written cates a critical exponent of 1/2. The smooth change in slope at
as a Taylor expansion grourtd= ag- We will show that, a=a is caused by the transients that have not yet died out due to
a}nalogoug to many physical phenomena near a phase trangie divergence of the relaxation time at the transition point.
tion [17], j and € can, fora= ay+ Sa>a, be written as
an expansion i with a critical exponent tion of the critical exponent in a supercritical Hopf bifurca-
. tion can actually be used to determine whether the bifurca-
— c ’ dy ..
10 =00a)I(y. ) +I'(y.)(da)"+ -~ -1 (7.1) tion is sub- or supercritical. If the bifurcation is subcritical,
this procedure will not work. Specifically E¢16) will give
a negativevalue fore_,e;=|e,|? if the Hopf bifurcation is
e(t)=(8a)[E(t)+E'(t)(da)+ -], (7.2) subcritigal. Soto de_termir!e whether the system has a sub- or
o supercritical Hopf bifurcation one can use the procedure out-
with d>0. Sincem vanishes asba goes to zero, while lined above to calculatee,e_;. If e;e_; is positive the
dnm/da diverges, the critical exponentmust between 0 and bifurcation is supercritical and just past the critical point

FIG. 6. m? as a function ofa. A linear graph fora> a, indi-

and

1. there is a periodic firing pattern that is close to the asynchro-
In Appendix A it is shown thaf(y,t) can be written as nous firing pattern. Ife;e_; is negative the bifurcation is
iy, t)==,jn(y)expinwt), where subcritical and the firing pattern changes discontinuously at

the critical point.
in(y)=(8a)" %)+ (8a) ¥4 (y)+---1 (7.3 The critical exponents can also be determined using

numerical simulations. As before | used a system consisting

for n#0 with j§ independent ofsa and j,(y) is of order of 100 cells, with F(x)=Xy—X. The parameters were
da. The angular frequency is to lowest order given by the the same as in Sec. VI. For values @franging from 8.25
absolute value of imaginary part of the eigenvalugs 4 to 8.60 the order parameter was determined. The system
whose real part goes through zero at the critical point. Simustarted att=0 with random initial values fo;. We as-
lar results hold fore(t). sumed that at=45 000 the system had reached its steady

Thus, close to the transition point the average firing ratestate. The order parameter was determined by calculating
J(1t) will oscillate periodically with an angular frequency m=|N~13;exp(2xiy;)| every time one of the cells fired for
that is close tdIm(\ .4)|, while the amplitude of the oscil- the next 200 time units and averaging these values.
lations will grow as @a)Y? as « exceeds the critical value For a= ay+ da, with 0<sa<1, j(y,t) ande(t) are to
ag by an amountSa. Therefore the critical exponent is lowest order proportional toda)*?. Thereforedp=p—1 is
c=1/2. of order (5a)Y'?, so thatm is proportional to §a)*2. Thus if

It should be noted that in the derivation of the critical m? is plotted againstr, one should theoretically get 0 for
exponent in the Appendix | did not make any special as-w<a, and a straight line with positive slope through
sumptions about the functidn. Therefore the procedure out- (a,,,0) for a> ay,.
lined above will work for any model that has the following  Figure 6 shows the results for our simulations. Not too
properties(i) The model can be reduced to a model in whichclose to the phase transition the simulation does agree with
the state of cell can be described by a variabjethat obeys the theory. Neawr,, the simulation does not give the pre-
Eqg. (5.3 for some functiorbI'. (ii) The model has a stable dicted result. This is not surprising since at the critical value
asynchronous state for an a region of coupling rate constantthe linearized theory has an eigenvalue with a vanishing real
(i) The model has a stable static solution that has a supepart, so that the relaxation time goes to infinity as one ap-
critical Hopf bifurcation at the edge of that region. proachesa,,. Thus, even at=45 000 the simulations will

Whether the asynchronous state is stable for a given fun@ot have lost all initial transients.
tion I'(y) can be determined by solving the eigenvalue Eq.
(5.13. The eigenvalues of the modes that become unstable 11 INDIVIDUAL CELLS IN THE PERIODIC SOLUTION
the edge of the region of stability will determine whether or
not there is a Hopf bifurcation at this edge. But it will nottell ~ For a> «,, the stable solutions fqgs, J, andE are peri-
you whether this Hopf bifurcation is super- or subcritical. odic. It would be natural to guess that individual cells also
The procedure outlined in the Appendix for the determina-behave periodically. Yet one can show that individual oscil-



54

lators cannot fire periodically in this solution. It is instructive
to prove this first in the special case whérgx) is given by
F(x)=Xy—x. After that | will show that it is true in other
cases also, at least close to the transition point.

Suppose that all units fire periodically with peridd
ThenJ(1t)=J(1t+T) andE(t)=E(t+T). In that case ei-

ther the cells are all synchronized in a finite number of

groups orE(t) is constant, at least for a part of the period.
Namely, if we assume that the cells are not synchronized i
a finite number of groups, there is a time inter¢g,t,),
with 0=<ty<<t;<T in which J(1t)#0. So that for every in
this interval there is a cell with x;(t)=0. For this cell the
state variable a tim@& later is given by

T ’
xi(t+T)=X0(1—e‘T)+ge‘TJ dt’e E(t+t')=1,
0
(8.1)

since the cell fires with period. We can rewrite this as
T ’
f dt’e' E(t+t)=g Y(e"—X,(eT—1)). (8.2
0

The right-hand side of this equation is independerit &o if
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tween two consecutive firings of one cell. Assume that cell
fires at timet and fires again at timg+f(t). Since
f:(l)dt’.)(l,t’) is the fraction of units that fire between time

to and timet,, f(t) satisfies

t+f(t)
f dt’J(1t')=1. (8.5
t

rI]f individual neurons fire periodically with periodT,

f(t)=T. But in this casel(1}) is also periodic with period

T. So the integral ofi(1,t) over one period should be 1. For
a synaptic rate constant close to the transition point
a=ay+ da, we have to lowest order
J(11)=Eo+j{9sacost+ ¢), so thatT=27/w,, and

t+T 2m7E
f At I(1t') =
t

Wy

1

0

(8.6

Thus, if the cells fire periodicallyw, has to satisfy
w=2mEqy. Therefore at the critical point there should be
eigenvaluea = * wi = * 27Ei. Substituting this in the ei-
genvalue Eq.(5.13 one finds that this is equivalent to
[5dyT (y)exp(=2myi)=0. But if dF/dx<0, dT'/dy>0, so

we take the derivative of the left-hand side with respect tahat
t we should have 0. But using partial integration and the

periodicity of E, we can also write
a (T "
_ ! +t’
&tfodte E(t+t)
T ’
=f dt’e' E’(t+t)
0

;
=eTE(t+T)—E(t)—f dt’e' E(t+t')
0

=(eT=1)E(t)—g (e Xq(e'—1)). (8.3
Setting this equal to 0 we have, foy<t<t,,
E(t):gl(l_e—'r_xo>, (8.4

independent of.

1

1/2
_dyr(y)sin2my) = fo dy[T(y)-T(1—y)]sin2y)

<0. (8.7
Thereforef 5dyI'(y)exp(2myi)#0, but has a negative imagi-
nary part. So close to the critical poifi¢1t) cannot satisfy
ﬁ”dt’J(l,t’) =1 and therefore the cells do not fire periodi-
cally.

This is also in agreement with numerical simulations. For
example, with F(x)=1.3—x and g=0.4 we have, for
a=ag, Eg=1.221 andwy,=7.363, so ZrEy/w,=1.042.
Thus, during one period the average cell fires a little more
than 1.04 times, fow just larger thany,. In the simulations
discussed in Sec. VI | found that asis increased and the
system becomes more synchronizefd,”dt’.](l,t’) de-
creases asymptotically to 1 with increasiag

Figure 7a) shows the times at which one of the neurons
fires after the network has settled in partially synchronized

Since with excitatory coupling the system undergoes astate. The data in this figure are taken from a simulation with

supercritical Hopf bifurcation it is increased past the criti-
cal valuea,, close to the transition poind(1,) will differ
only a small amount fronk, and thereforel(1,t)>0 for all
t. Thus it would follow that if the cells fire periodically,
E(t) is constant. But ifE is constantJ(1t) has to be con-

a=9.0, F(x)=1.3—x, andg=0.4. The top of the figure
shows the network firing rat&(1,t); below that the time at
which one of the cells fires is indicated. The time at which
the cell fires shifts a little bit relative to the peak in the
network firing rate each time the cell fires. The cell fires

stant also, and this is in contradiction with the theory. Thereslightly faster than the network rate peaks. The neuron does

fore, close to the transition point, the cetls notfire peri-
odically, even though macroscopic quantitigsJ, and E

not fire exactly periodically; for example, aroune 13 the
interspike interval is shorter than around2. Since the neu-

behave periodically. The simulations indecate that for anyons do not fire exactly periodically, the time between the

finite «, J(1,t)>0 for all t, so for anya> a, the units do
not fire periodically.

That the oscillators do not fire periodically for afy>0
with dF/dx<0 can be seen in the following way. If the
self-coupling term is not removed, so tha(t) =E(t) for all
i, Eq.(2.1) implies that all other cells fire exactly once be-

firing of the neuron shown here and the next one can vary;
this interval is short when the firing coincides with a peak in
the network firing rate and longer when the firing rate is low.
If the system has settled in a periodic firing pattern with
f{”dt\](l,t) #1 the time between two consecutive firings of
one neuron, the interspike intervgl, can take any value
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(a) T, f(t) is periodic with periodT. Thereforey(t+T) = y(t)
6l and the curvey traces a closed loop.
Figure 4c) shows a plot ot,, againstt,,_; for the 2000
J(1,t)3} time intervals used to determin@ above. All points are

indeed on a closed curve as expected.

0 | |l||]||||||||||| ||||||||||| As we have seen, the coupling functignis periodic, but
0 5 10 ¢ 15 20 25 individual oscillators do not fire with an average frequency
(b) 09.(€) that is equa}l to the frequency with whidh varies, or a
40 simple fraction of that frequency. We therefore expect the
30 _cell_s to behave qu_asiperio_dically. '_I'his guasiperiodic behav-
P(ty) 0.86 ior is indeed consistent with the firing pattern observed in
20 tn Fig. 7(c). Since the curvey traces a single loop, we can
0.82 conclude that the cells fire quasi-periodically with their state
10 characterized by two frequencies.
T Is it surprising that in the partially synchronized state in-
S T8 09°707 082386 09 dividual units behave quasiperiodically, while the macro-

scopic quantities vary periodically with time? Let us com-
N o pare this with the asynchronous state. In the asynchronous
FIG. 7. (a) Network firing rate and the spike times of one of the gtate the units behave periodically. There is a funcfior)

neurons. The fire ratéupper tracg varies periodically. The times \yith period 2r so that the state variablascan be described
when the neuron fires, indicated below, slowly shifts with respect tooy

the peak of the firing rate. The neuron does not fire periodicéd)y.
The probability distribution of the interspike intervg| has its xi(t)=f(w(t—t;)) (8.8
maximum values at the extreme valuestf The largest possible

valuet, can take is less than the periddwith which the network  for somew. The values oft; are distributed in such a way
oscillates.(c) Interspike intervat, plotted against the previous in- that the density
terspike intervat,_, of the same cell.

, p(X =N S(x—F(w(t—t))) (8.9
between some values, m, andt, ., determined by Eq. i

(8.5). If after some randomly chosen tintewe record the
time between the next two spikes for one of the neurons, w
will have some probabilityP(t,)dt, to record an interval
between t, and t,+dt,, with P(t,)#¥0 for
thminsth<thmax- One can show thatP(t,)— for
th—1h max a-ndtn_’tn,min-

In Fig. 7(b) the probability distribution of the interspike
interval t,, is plotted for the same simulation used in Fig. X (1) =F(wy(t—1}), 0x(t—1,)), (8.10
7(a). The distribution has two local maxima. There is a large
maximum  at t,=t, nax @and @ much smaller one at with appropriately chosemw; andw,. Remarkable about the
ty=tn,min- The probability distribution was determined by network is that the values @f are distributed in such a way
measuring 2000 consecutive interspike intervals and binninghat the density p(x,t)=N"13;8(x— F(w1(t—t;), w,(t
these in bins of sizetf max—tn,min) /50. Notice that this gives  —t,))) is periodic rather than quasiperiodic in time. In sum-
a finite value forP(t,, na andP(t, min). This does not con-  ming the contributions of all units to the density one of the
tradict thatP(t) — for t—t, max,th,min, since whileP(t,)  periods that determine the quasiperiodic behavior of the in-
diverges at these values the integraFobver a bin of finite  dividual cells is averaged out. For example, the valueg of
Size converges. could be uniformly distributed between 0 aner/2v;.

The shape of the interspike interval distribution in this  So both in the asynchronous state and in the partially
partially synchronized system is clearly different from that of synchronized state one needs one more frequency to describe
the interspike interval distribution of oscillators that are in-the states of the individual units than is needed to describe
completely synchronized due to noise, in a network thatariablesp, J, andE. In both states the time offsets are

would synchronize completely in the absence of noise. Inyistributed so that they cancel this extra frequency in the
such a network one expects an interspike interval distributiofnacroscopic variables.

with a peak for some intermediate value of the interval and
tails that fall off at both ends.

If an oscillator fires at some time,_;, the next time
this cell fires r,=7,_1+t,_4, with t,,_;=f(7,_1) deter- We now turn our attention to large networks of oscillators
mined by Eq.(8.5. The next time after that this cell fires with inhibitory coupling. In a system with two oscillators the
at time 7,.,=7,+t,, with t, given by t,=f(7,) synchronous state is always stable, while the antisynchro-
=f(r,_1+f(7,_1)). Thus, if one plotg, againstt,_; for  nous state is unstable for slow coupling $mal) and stable
any oscillator, this point will be on the curve for fast coupling @ large. This leads one to suspect that in
yit—(f(t),f(t+f(t))). Sinced(1}t) is periodic with period large networks there is always a locally stable synchronous

"55 independent of time. In other words, the valueg;cdire
uniformly destributed between 0 andnZiv.

In the partially synchronized state individual oscillators
behave quasiperiodically. There is a functie(x,y) that is
periodic both inx andy, with period 2, so that for the state
variablex; of oscillatori we can write, ift is large enough,

IX. INHIBITION
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solution and that for faster coupling there is a stable state in T F(1)+gE(T)
which the oscillators are synchronized in two or more clus- f th’(Xnet(t))<|n(—>- (9.7
ters. 0 F(0)+gE(T)

That the completely synchronized state is locally stable
can be shown as follows. In the synchronized state all oscilWVith [g| small enough so tha (x.e(t)) +gE-(t)>0 for all
lators fire a timet=nT. The state variablg; is the same for t, We can write
all cells; x;(t) =Xnet) andx, satisfies

fth Xne) = fd P 9.9
T (e + GER(), 9.0 " FOOTQE(O))

with F'=dF/dx<0, g<0, andEr(t)=S,Eg(t+nT). The  FOr Es given by ana function E(t)>Er(T) for 0<t<T.
cells fire att=0 so thatx,.(0)=0. Solving Eq.(9.1) one  Sinceg<0 andF'<0 Eq.(9.8) is bounded by
finds x,,(t) for 0<t<T and the periodl is determined by

Xne T)=1. F'(x)
Suppose that at=0 oscillatori is perturbed so that its f dtF’ (Xﬂel(t))<f dxm
state variable is shifted te,(0)= ¢, with |£|<1. The other
cells are not perturbed so that in the laigdimit the cou- F(1)+gEH(T)
pling variable E will be unperturbed fort>0. Thus =n F(0)+gEx(T)/ 9.9

Xj()=Xqe(t) for j#i. Let x(t) be given by
Xi (1) =Xqet) + &(1) with £(0)=¢. The system is stable for
small single-cell perturbations if&(T)|<|£(0)| for all
|£(0)|<1. We will only consider the casg>0 since show-
ing stability for the cas€<0 is completely analogous.

If £>0 oscillatori will reach the threshol&k=1 before
the rest of the network. The network reaches the threshold at

T
timet=T, and celli att=T'<T. For 0<t<T’, £ obeys to f th’(xneg<ft2th’(xne,)+f dtF’ (Xney
lowest order 0 0 t3

If the coupling is stronger, so thaltx,./dt<0 on some in-
terval to<t=<t,, with 0<ty<t,;<T, one can find &, and
t; so that dx,/dt>0 for O<t<t, and t;<t<T, and
Xne(t2) = Xnedt3). SinceF’<0 we can write

df , _ fxne(tz) F’(X)
EZF(Xnet—'—g)_F(Xnet):F (Xned &, 9.2 o 0 XF(X)+gET(t)
here we have useB’ for dF/dx. To lowest orderé(T') fl F'(x)
iofi + dX—————
satisfies Xne(ts)  F(X)+OEr(t)
T F'(x)
T')=£&(0)ex f dtF' (Xef t
ET)=£0) p( Tt (e ))) f T o BT (9.10
T
:§(O)exp( f th’(xnet(t))). (9.3  Therefore the inequalit{9.7) also holds for stronger inhibi-
0 tory coupling. The synchronous state is stable against small

single-oscillator perturbations.

We will now briefly outline how one analyzes the stability
of a state in which the cells are synchronized in two clusters.
ETH)=1-Xo(T)=(T-T)[F(1)+gEr(T)]. (9.4  The stability analysis has two components. First one assumes
that all oscillators are synchronized in two groups that fire

SinceXne{T) =1 anddx,«(T)/dt=F(1)+gE+(T) we also
have to lowest order

ThusT—T’ satisfies periodically. A fractionz, of the cells fire at timg=nT,
T ( ) while a fraction ng=1— 7, fire at timet=(n+¢@)T. The
exp(fodtF (Xne(1))) l iableE is th
T-T' = £0) Ao ned . (@5 Ccoupling variableE is then
F(1)+gEx(T)
E(t)= naEr(t) + ngEr(t—&T). (9.1

At time T’ the state variablex; is reset to zero

. Py — i
X(T"7)=0, so at timeT In the case wherE (x) is given byF(x) = Xy— X, one has for

ET)=x(T)=(T—T")[F(0)+gEx(T)] groupA, with x»(0)=0,
PO+ 9EA(T) F{ ) XA(T)=Xo(1-e )+ ge "
=00) ey o &M | AtF o Ao
F(1)+gEr(T) f ;
©6 x | dtelnaEr(0 + meBr(t- 9TV 1-1. (012

To show that the synchronous state is stable we have to
prove that For groupB one finds, sinceg(¢T)=0,
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Xg(1+¢)T)=Xo(1—e T)+ge T Ir
T ;
0 s
(9.13 0.6 frwmmommcrssomomes
These equations always have a solution witk0 and at Xn
least one other solution. For example, wigh=1/2 there is 0.4}
always a solution withp=1/2. Just as in the two-oscillator
system one will find two more solutions df exceeds a criti- 02l

cal value. Below this critical value the solution with
¢=1/2 is unstable, while above the critical valge=1/2 . .
gives a stable solution. Fap,+# 1/2 there is also onéun- % 50 n 100
stable solution with ¢#0 for small @« and three solutions
with ¢#0, one of which is stable, for large values ef _ _ .
Thus if one analyzes the system under the constraint that all F!C. 8. State variables; for a simulation in a system of 100
oscillators are synchronized in two groups, these groups cafeciiators with F(x)=1.3-x, g=—0.4, and«=4.0. The cells
fire with a fixed phase difference, if the coupling time con-'/é'€ renumbered so thaj<x,=---<xio. The state variable,
stants are small enough. is plotted_ against at some timet> 10 000, just b_efore one of the
Next one can show that the two-cluster state is also Stabl%lusters fires. The system is clearly broken up into three clusters.
for small perturbations of single cells. Since this can be done
more or less analogously to the small single-oscillator pertory coupling, the networks evolves to the asynchronous
turbation in the completely synchronized state given abovétate if the coupling time constants are slow enough. When
we will not show this here. the speed of the coupling is increased, the network starts to
The completely synchronous solution is always stablesynchronize. For finite time constants the network does not
However, if one decreases the coupling time constants paggach complete synchrony, even though the network consists
some critical value, there are also stable solutions in whictef identical oscillators and the system is completely noise-
the oscillators synchronize in two clusters. One can shovess. If the network consists of more than two units, the cells
that if the time constants are decreased even more, statfige quasiperiodically in the partially synchronized state. In
with three synchronized clusters also become stable. Redutgrge networks the average firing rate of the network varies
ing the time constants even further yields stable solutiongeriodically in this state, even though individual cells are
with even more clusters. I is very large the system has a quasiperiodic.
lot of stable states. The state into which the system will With inhibitory coupling the network synchronizes com-
evolve will depend on the initial conditions. This is in con- pletely if the coupling is slow. With faster coupling the net-
trast to a system with excitatory coupling, in which the finalwork breaks up into two or more completely synchronized
state of the system is independent of the initial conditions. clusters. The average number of clusters that is formed in-

| did computer simulations on a system with 100 oscilla-creases as the coupling time constant decreases, though the
tors. As before, | used model oscillators for which exact number of clusters that is formed depends on the initial

F(x)=1.3—-x. The coupling strengthg was set to conditions. For a network with a large but finite number of
g=—0.4. Att=0 the state variables, were given random oscillators the number of clusters that are formed will even-
initial values between 0 and E(0) and dE(0)/dt were tually approach the number of cells. The final state is then
initially set to zero. We let the system evolve until a periodic

firing pattern was reached, making sure that all transient had TABLE I. Number of clustersvl into which the system breaks
died out. Figure 8 shows the value for the state variable up for different values ofx. For each value ofr ten simulations
for all cells just before one of the oscillators starts to fire, inwere performed, each with different randomly chosen initial condi-
a simulation for whichw=4.0 at a timg>10 000. To make tions. The table shows for each how many of these simulations

it easier to see the clusters, the cells were renumbered so thatolved into a system wittM clusters. For smalke the system
X1SXo<---<Xjgo. The system is clearly broken up into always completely synchronize$/(=1 for all simulation$. As «
three different clusters with 25, 37, and 38 oscillators, re-increases the number of clusters into which the system evolves
spectively. tends to increases.

| did simulations fora ranging from 1.5 to 5.0. For each

value ofe we did ten simulations, each with different initial @ \ ™ 1 2 3 4
conditions. After the transients had died out the number of g 10 0 0 0
clustersM was determined. Table | shows for each value of, g 6 4 0 0
« the number of times with which the system evolved into an, 0 9 1 0
M-cluster state. There is clearly a trend towards a state Witgl0 0 10 0 0
a larger number of clusters asincreases. 35 0 4 6 0
X. DISCUSSION 4.0 0 2 8 0

4.5 0 1 9 0

In a network of integrate and fire cells, in which the cou-5.0 0 1 4 5

pling is modeled by arx function, we find that, for excita-
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indistinguishable from the asynchronous state. as Fourier seriesj(y,t)=2,jn(y)expinwt) and e(t)
Thus with inhibitory coupling the system goes from com- =3 ¢ exp(nwt), wherew has to be determined.

pletely synchronized for slow coupling to an essentially The densityp(y,t)==,p,(y)expnwt) can be written as
asynchronous state for fast coupling, by the formation of an

increasing number of completely synchronized clusters. This 1 * '
should be contrasted with excitatory coupling. There the net- p(y,t)=1+ E—E Iny)—el'(y)+ E Sq,j(y))e'”“’t,
work is completely synchronized if the coupling is infinitely on =2

fast and asynchronous if the time constants exceed some (A2)
critical value. The transition from a synchronous to an asyn- . , . .

chronous system is accomplished by the broadening of on¥ith the jth-order term ine, andj(y)

cluster rather than by breaking up into ever more clusters.

. . . . -1 -1
We find these properties for populations of very simple _ . _ —I(y)
nonlinear oscillators. An interesting question is whether this S"ri(y)_nl;_ n kl:[l G”k[J"i(y) enjl“(y)] Eo ’
behavior is also found in networks of more complicated os- n=n
cillators, for example, in networks of realistic neurons. Some (A3)

studies have been done on the thalamic reticular nucleus

[9,5,10,18—20Q in which channel-based models of the neu-From the continuity Eq(5.6) it follows that

rons were used. In the thalamic reticular nucleus the cells

have inhibitory coupling, either through faStAB A, or slow ] ) - d .

GABAg synapses. These studies found that with the slow Inw(]n(y)_EnF(Y)+22 Sn,j(Y)) :_an,ln(y)-
inhibitory GABAg coupling all cells synchronize com- ] (Ad)
pletely, while with the fasGABA, coupling the cells syn-

chronized in two or more groups. This agrees with what OUlsinceS, ;(y) depends orj,(y) for all k there is no simple

simple model predicts. solution forj,(y) for n#0. Only for n=0 is there an ex-
We do not know of any study that shows large popula-pncit solution with jo(y) constant.

tions of conductance-based model neurons behaving as our o, £ thej,(y)'s can be written implicitly as
simple network with excitarory connections. However, sys-

tems of two identical Hodgin-Huxley model neurons with inel ry o
excitatory coupling fire completely asynchronously when the in(y)= _[ f dy,( el (y)— E S, j(Y))
coupling is slow, while they partially synchronize for faster Eo [ Jo i=2
synapses, as we showed in Sec. lll. However, if the synaptic
time constant is of the order of the spike duration, the neu-
rons completely synchronize. This leads one to expect that
large populations of Hodgkin-Huxley-type neurons with
slow excitatory synapses will evolve to the asynchronousrom the boundary conditiof(0t)=j (1) it follows that
state, while for faster synapses the network will partially

synchronize, with individual neurons firing quasiperiodi- 1 1 _

cally. Large networks of these cells will probably also syn- anmf dy( an(y)—E Sn‘j(y))elnwy/Eo_
chronize for small but finite synaptic time constants, in con- 0 !

trast to networks of intergrate and fire neurons. (A6)

Xeinwy’/EO+Cn e~ inwy/Eq. (A5)

From Eq. (5.13 for the coupling variable one has
ACKNOWLEDGMENTS (Inw+ a)26n=a2j n(l) Sojo(y)=60 and
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sions. This work is supported by National Science Founda-  An(@,@)é=—inwa 2,: JO dyS,(y)e ° (A7)
tion Grant No. DMS 9403261 and the W. M. Keck Founda-

tion. for n#0. Here we have used

= i 2/ aiNw/Eq__
APPENDIX A: CRITICAL EXPONENT An(@,0)=Eq(inw+a)*(em*Fo—1)
In this appendix the critical exponent is determined. Since - inwazfldyF(y)e‘”“‘y’EO. (A8)
e is small, the density can be written as a converging series 0

)= Eotj(y.t) Sincej,(y) ande, vanish if S goes to 0], ande,, will
py= Eo+T'(y)e(t) be of order ga)®r for some positive constant,,. Since
j —n is the complex conjugate gf, we havec_,=c,,. The
~T(y)e(t) | simulations show thajt; andj _; dominate for smalba, so
Eq ' we assume,>c;=c for n#—1,1.
With w=wy+ dw and Sw—0 if sa—0, we write
The solution is periodic in time, so we can wrifeande  A,(w,a) as

1 o
1+ E—j(y,t)) > (A1)
0

k=0
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IA

n aAn
Ap(w,a)=A(wg,ag) + ry Sw+

Ja

a+t -
(A9)

Forn=1 we have from Eq(A7), to lowest order ofd«,

IA

A1
{Al(wcr,acr)'f'a—w 5w+(7_aéa €1

1 )
=—i wcragrfo dy; Sy(y)e' wcry/Eq (A10)

It is easy to see tha, ;= O((da)'®) for j=|n|+2k (with
k=0,1,2,...) andS, ;=0((Ja)'°) otherwise. Therefore the
right-hand side of of Eq.(A10) is of order less than
(). But if Aj(we, ) #0 the right-hand side is of order
(8a)®. So we haveA;(wg,,ay) =0.

This is exactly the eigenvalue equati¢f13 for small
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with k, determined by the boundary condition. Thus, to low-
est ordereg=€,€_1Ky, whereK, can be determined using
Egs.(A12) and (A13).

Sincee, is of order (Sa)%° ande, is of order ()" or
smaller, from Eq.(A7) e, is given to lowest order by
ezzesz. K, is a complex constant that can be calculated
from Eqgs.(A7) and(A13) for n=2.

We now return to Eq(A10) for €;. The right-hand side
has only terms of the ordew@)¢ or higher. The terms of
order (5a)%¢ can all be written as the product ef ;e,,
€o€1, OF €_,€2 and some constants that can be determined
using Eqg.(A13). Using the results foe, and e, we derived
above, one finds that the right-hand side of Ej7) can be
written aSe_leiKl, whereK is a complex constant.

With Aj(w¢r,ae) =0 we have

A, oA,
— 0w+ — Sa= E—1€1K1:

Jw Ja (A14)

perturbations about the asynchronous solution, Wwithyth Sw=w'(8a)%. The right-hand side of this equation is

A=iw¢. Equation(5.13 has infinite many solutions, but
only two of them\= *iw, are purely imaginary. Fon
# —1,1 we therefore hava, (w¢,aq) #0.

Since forn= =2 the left-hand side of EqA7) is of order
(8a)®, while the right-hand side is at most of order
(8a)?®, c_,=c,=2c. Using this one next shows that
C_3=cC3=3c, etc. Thus one shows that, fon#0,
ch=|nlc.

We can determine, by observing tha;fédyp(y,t)=1.
With the continuity equation(5.6) we have, forn#0,
J5dypn(Y) =[in(0)~jn(1))/in@=0. Therefore

1 B 1 1
fo dypo(y)=1+ = EOL dy[1-T'(y)]

* r1
—;2 Ody%,j(y))=1 (A11)

or, sincel'(y)<1,

1 -1 1
60:(1_JOdYF(Y)) > [Caysy)

1 _l
—(1—fodyr<y>)

€_1 1 A €1 1
x[ E—Ofo dyTja(y) - elr<y>]r<y>+E—0f0 dy

X[J—l(Y)—f—lf(y)]F(y)]
+ (higher order terms (A12)
For j,, to the lowest order ide,
n(y)= EnE_wcr( f dy'I'(y’)e'"@ey /Eq kn) g inwey/Bo
o \Jo
(A13)

of order (Sa)?°. If c,<1 the left-hand side is of order
(6a)®», so thatc=c,/2 andw’ (dA;/dw)=e_,e,K, while

for c,>1, the left-hand side is of orde¥a and therefore
c=1/2 ande_,e;Ko=0dA;/da. But sincee_,e,, da, and

' are all real, whiledA/dw, dA/da, andK, are complex,
these will in general not be valid solutions. Therefore, for the
generic case, we will havéw=w'da. In that case, with
e,=e,(6a)? ande_,=e_;(6a)'?

1 0A,

1 A,
K 90 @ TR, G2

+ K. 7a (A15)

e_ 191:

With real solutions

(A16)

and

(A17)

We have shown that. ; andj . are of order §a)*? while
all others are proportional téa to some higher power.
Therefore, an expansion gf or € in da using a critical
exponentc, as in Egs.(7.1) and (7.2, has 1/2 as lowest
power in da. Thus the critical exponent is 1/2. Notice that
this procedure determines only up to a phase fact@' ¢, so
that ¢, is determined up to a fact@"?. This is to be ex-
pected since a translation of the time coordingtet + St
transformse,, as e,— e,e'"“%.

To summarize, since(y,t) is periodic int, it can be
written as

j(y,t>=; jn(y)enet. (A18)
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The angular frequencw is given to first order inda by
w=wy+ o' Sa. Herew, is the imaginary part of that eigen-

IN POPULATIONS OF ... 5537

i) (sa)t2+ -]

(A19)

in(y)=(8a)"jOy)+

value of the transients of the asynchronous solution at

a=a, for which Ref\)=0. The Fourier components
jn(y) of j(y,t) can be expanded ifa as

for n#0, while jo(y) is of orderéa. Therefore we have that
j is of orderda'’? so that the critical exponeutis 3.
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