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A three-layer network that utilizes Hopfield encoding neurons@J. J Hopfield, Nature376, 33 ~1995!#, is
designed to compute the Fourier spectrum of an analog input signal of durationT. Each of the 2M ~integer
M.0! Hopfield neurons in the input layer, is linked to an exclusive decoder with its output connected to all the
4M neurons present in the output layer. The connection strength between a decoder and a target neuron in the
output layer~hereby called the output neuron!, is characterized by a coupling constant which attenuates the
decoder output that reaches the output neuron. All the attenuated 2M decoder signals reaching an output
neuron are summed up within an integration time given by the period of the oscillatory drive of the Hopfield
neuron. The frequency resolution and bandwidth of the analyzer network are given by 1/T and 2M /T, respec-
tively. The first 2M output neurons yield the amplitudes of the real components of the Fourier spectrum, while
the next 2M output neurons give the amplitudes of the corresponding imaginary components. Experiments
show that the network exhibits an exponentially decaying learning error, and is capable of learning the general
properties of Fourier transform from a limited set of examples.@S1063-651X~96!08510-8#

PACS number~s!: 87.10.1e, 84.35.1i, 07.05.Mh

I. INTRODUCTION

Knowing how the nervous system represents external in-
formation is essential in our quest to understand both the
relation between form and function in such systems@1,2#. A
simple information coding scheme is often carried out by a
signal detector with a simple architecture@3#. For biological
networks, it has long been taken that information is encoded
in the number of pulses that a sensing neuron generates per
unit time in response to a particular stimulus value@4,5#.
This amplitude-to-frequency data conversion scheme is in-
herently slow and may not be the only coding scheme em-
ployed by biological networks.

An alternative scheme is the temporal code representation
which encodes specific information regarding the external
stimulus in the relative distances of the spikes with respect to
a fixed reference point. Temporal coding has received more
attention lately@6,7# due to the recent model by Hopfield@8#
of an encoding neuron with response characteristics that ac-
commodate the observed behavior of certain biological net-
works @9–12#. Hopfield neurons utilize temporal coding to
represent the value of the external stimuluss(x) at a particu-
lar value ofx. Variablex may represent space, time, etc.

The aim of this paper is to show that a network of
Hopfield encoding neurons can learn general rules from only
a limited set of examples. In particular, a three-layer network
with its input layer formed by Hopfield neurons, is trained to
compute the~complex! Fourier spectrumS( f ) of s(x),
where f is the frequency variable. The spectrumS( f ) de-
scribes the relative amplitudes and phases of the component
sinusoids ofs(x).

Fourier analysis is a versatile signal processing tool@13–
15# that can be used to enhance image contrast, highlight
specific signal features like edges and ridges, and uncover
nonlocal characteristics of a signal in the presence of noise

and unwanted background. Edge detection, for example,
maybe accomplished by suppressing the low-frequency com-
ponent sinusoids ofs(x), while detection ofs(x) in the pres-
ence of noise, maybe accomplished by suppressing the high-
frequency component sinusoids that contain most of the
noise signal. The contrast of a barely discernible signal may
be enhanced by proper selection of both the gain factor and
the threshold level for the detectable component sinusoids.

Because the signal processing tasks being mentioned are
also equally important in biological systems, it is worthwhile
to investigate whether a network of Hopfield neurons is ca-
pable of determining correctly the Fourier spectrum of an
arbitrary input signal. This requires that the network must be
capable of recognizing from a limited set of examples, the
various Fourier transform properties concerning linearity,
scaling, shifting, and symmetry@13–15#. The shifting and
scaling properties, for example, will enable the system to
recognize a local signal feature regardless of its position~in
space or time! and magnification, respectively.

In the next section, we discuss both the response charac-
teristics of a Hopfield encoding neuron, and the features of
the three-layer network architecture being considered. We
then investigate by computer experiments if such network is
trainable to the task of computing the Fourier spectra of in-
put functions that are part of the training set—the first test of
a successful network design@16#. Finally, we carry out the
second test which is to find if the trained network can cor-
rectly analyze new arbitrary inputs.

II. NETWORK CONFIGURATION

Illustrated in Fig. 1 is the three-layer network with an
input layer that consists of 2M ~integerM>1! Hopfield en-
coding neurons that sample a real-valueds(x) of durationT.
The Hopfield neurons are equally separated from each other
by a distance ofDx5T/2M , and each neuron is linked to an
exclusive decoder. Each decoder is connected to all the 4M
neurons in the output layer~feedforward architecture@16#!.*Electronic address: csaloma@nip.upd.edu.ph
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A neuron in the output layer is hereby referred to as the
output neuron.

The first 2M output neurons yield the amplitudes of the
real components ofS( f ), while those of the corresponding
imaginary components are given by the next 2M output neu-
rons. The network, therefore, not only extracts information
regarding spectral energy distributionuS( f )u2 of s(x), but
also about the relative phases of the component sinusoids of
s(x).

Although the 2M decoders may be construed to constitute
the hidden layer of the network, it must be pointed out that
they may not represent actual biological neurons themselves,
but rather some synaptic, axonal, or cellular effects which
the cell potentialV(t) encounters during propagation from
its generating Hopfield neuron towards a particular output
neuron.

The cell potentialVi(t) of the i th Hopfield neuron (i
51,2,...,2M ) is described by@8#

Vi~ t !2Vth5s~ i !2Vosc~ t !, ~1!

whereVth is the~fixed-valued! threshold potential,Vosc(t) is
the time-dependent subthreshold oscillatory drive of the neu-
ron potential, ands( i ) represents the particulars(x) value at
the input of thei th Hopfield neuron. In our analysis, we
assume that the behavior ofVosc(t) and the value ofVth are
the same for all the Hopfield neurons in the network.

The term ‘‘action potential’’ refers to the spike~Dirac d!
signal that is generated by the Hopfield neuron when infor-
mation regarding a particulars(x) value is successfully en-
coded ~see Fig. 2!. For simplicity, we use
Vosc(t)5B1A@12cos~2pt/t!#, whereA andB are constants
such that no spike is produced when no signal is present. The
presence of a nonzeros( i ) introduces an upward push~bias!
to Vosc(t), which, depending on the particulars( i ) value,
enables it to overcome the threshold barrier set byVth .

Within a particular periodt of Vosc(t), a spike is generated
only whenVi(t).Vth , and if no other spike has been gener-
ated previously within the said period.

For the benefit of a straightforward discussion, we take
that the spike is generated exactly~no time lag is involved! at
time locations whens( i )2Vosc(t)50. For thei th neuron, the
spikes occur atf ik5k(t2t ik), wheret ik is called the time
advance, andk51,2,..., etc. For example,fi1 denotes the
time location of the spike appearing within the first period
~k50! of Vosc(t). Every fik is an algebraic solution to
s( i )2Vosc(t)50.

When thes( i ) value does not change with time,t ik will be
the same for allk values and we writet ik5t i(f ik5f i). In
such a case, the spikes generated by thei th Hopfield neuron
are equidistant and knowing only the positionfi1 of the first
spike is sufficient to decode thes( i ) value. Unless specified
otherwise, we deal only with time-independents(x) signals.

The purpose of thei th decoder is to determine thes( i )
value from the spike locationfi . Decoding starts when the
spike that has been generated is sensed by the decoder. In the
simplest case, the connection weight between a Hopfield
neuron and its decoder can be set either to 1~presence of a
transduction pathway from the Hopfield neuron to output
neuron!, or 0 ~no transduction pathway!.

The interconnection strength between thei th decoder and
the j th output neuron is given by the coupling constantwi j
( j51,2,...,4M ). The decoder outputs( i ) signal that reaches
the j th output neuron is attenuated by the value ofwi j ~posi-
tive value for excitation, and negative for inhibitory effects!.

All the 2M attenuated signals$wi j s( i )% arriving at thej th
output neuron are summed up within an integration time
given by t because a Hopfield neuron produces only one
action potential within each oscillatory periodt. The output
potentialSo

j of the j th output neuron is expressed as

So
j 5Vbias1(

i51

2M

wi j s~ i !, ~2!

whereVbias is a potential bias, andwi j s( i ) is the attenuated
signal received by thej th output neuron from thei th de-

FIG. 1. Schematics of the three-layer, frequency-analyzing net-
work. The 2M ~integerM<1! Hopfield encoding neurons which
form the input layer are equally separated by a distanceDx5T/2M .
The Hopfield neurons sample the input signals(x) of length T.
Each Hopfield neuron is linked to an exclusive decoder with its
output connected to all the 4M output neurons. The 4M output
neurons yield the Fourier spectrumS( f ) of s(x). The first 2M
output neurons yield the real components ofS( f ) while the next
2M outputs give its imaginary components.

FIG. 2. i th Hopfield neuron generates a series of spikes~also
called the action potentials! in response to a specific values( i ) of
s(x). The spikes occur at time locations:f ik5k(t2t ik), where
s( i )2Vosc(t)50. Integer k51,2,... marks successive periods of
Vosc(t). Only one action potential is generated within each oscilla-
tory periodt.
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coder. We assume that theVbias value is the same for all
Hopfield neurons in the network.

Generally,s(x) has no symmetry aboutx50, andS( f ) is
complex valued, i.e.,S( f )5SR( f )1kSI( f ), where k
5A(21), SR( f ) andSI( f ) are the real and imaginary part
of S( f ), respectively. Note thatSR(2 f )5SR( f ) and
SI(2 f )52SI( f ) becauses(x) is a real-valued function.
Because the number of Hopfield neurons in the network is
finite, s(x) is only finitely sampled and the computed Fourier
spectrumSo( f ) is discretely valued with respect tof5(2M
11)/T, (2M12)/T,...,M /T.

For j51,2,...,2M , the outputs$So
j % represent the real part

$So2R( f )% of the Fourier spectrum computed by the net-
work, where f5(2M1 j )/T. For j5(2M11),(2M
12),...,4M , the outputs$So

j % represent the computed imagi-
nary Fourier spectrum$So2R( f )%, where f5(23M1 j )/T.

III. TRAINING

The suitablewi j values were determined by minimizing
the error functione~w!:

e~w!5
1

2 (
q51

K

(
j51

4M

$So
j ~q!2Sj~q!%2, ~3!

which amounted to determining the weight vectorwmin that
yields the loweste~w! value @16#. The components of the
weight vectorw are given by$wi j %. The training set consists
of aK number of input-output response pairs. In a given pair,
the input consists of 2M equally sampled values of the ana-
lytic expressionq(x) of theqth input function in the training
set, while the output consists of the discrete~complex! Fou-
rier spectrum~2M values each for the real and imaginary
components! of q(x).

In Eq. ~3!, So
j (q) is the output of thej th output neuron

corresponding toq(x), and Sj (q) is the desired~correct!
output. The 4M elements of$Sj (q)% are determined by ap-
plying the discrete fast Fourier transform@13# on the 2M

equally sampled values ofq(x). For example,S1(q) repre-
sents the trueSR(2M11) value corresponding toq(x).

The network was trained using the backpropagation
method@16#. Starting from a random set of values, thewi j ’s
were changed using the steepest descent method
@16#: w i j

(p)5w i j
(p21)2g$]e~w!/]wi j %, whereg is the learn-

ing rate, andp is the iteration number.
The time-independent signals(x), wherex represents a

position variable, is sampled equally by the 2M Hopfield
neurons, at a sampling distance ofDx5T/2M , whereT is
signal duration. The Fourier spectrum ofs(x) can be ana-
lyzed at a frequency resolution of 1/T and a cutoff frequency
f c560.5/Dx56M /T @13–15#.
Position-independent, temporal signals~i.e., x is a time

variable!, on the other hand, can be coded with only one
Hopfield neuron. In this case,Dx5t and f c560.5/t. Thus,
component sinusoids ofs(x) with frequencies higher than
60.5/t are not encoded.

Generally, the locations$tk% of spikes in theV(t) signal
of the Hopfield neuron are not equidistant from each other,
i.e., t1Þt2Þ•••Þt2M. To avoid an undersampling ofs(x),
the associated decoder must be able to determine the particu-
lar s(x5xk) value from the locationtk of the spike generated
within the kth periodtk (k51,2,...,2M ) of Vosc(t). The de-
coder performs a total of 2M decoding operations within the
durationT of s(x).

In our experiments, we analyze time-independent signals
~T51! using a network composed of 32~M516! Hopfield
neurons and 64 output neurons withVbias50. The value of
2M532 ~instead of 16 or 64! was chosen because it offers
the best compromise between frequency resolution and train-
ing time for the computer that we were using@IBM PC com-
patible 486DX-2~66 MHz!#. The connection strength was
set to unity for all the 32 Hopfield neuron-decoder pairs, and
the initial values ofwi j were randomly selected between21
and 1~g50.5!.

Listed in Table I are all the input functionsq(x) in the
training set~T51, 0.5<x<0.5!, which includes all the pos-
sible 64 basis functions~32 sine and 32 cosine functions! of

TABLE I. List of all input functionsq(x) used in the training of an analyzing network with 32 Hopfield
neurons.

Number q(x) Remarks

32 6sin(2pux/T) u51,...,16
32 6cos(2pvx/T) v51,...,16
10 B sin(2pux/T)1c sin(2pvx/T) RandomB,C,1; randomu,v values
10 B sin(2pux/T)1C cos(2pvx/T) RandomB,C,1; randomu,v values
10 B cos(2pux/T)1C cos(2pvx/T) RandomB,C,1; randomu,v values
5 exp~25x!cos 2p (p1x1p2x

2) p1 andp2 are random positive numbers
1 Tri~x20.5! Shifted triangular function
1 f (x)50 for x<0.5 Shifted asymmetric function

5exp$25~x20.5!% for x.0.5
1 f (x)50 for x>0.5 Shifted asymmetric function

5exp$25~x20.5!% for x,0.5
1 f (x)50.5 for x>0.5 Shifted asymmetric function

5exp$25~x20.5!% for x,0.5
1 f (x)50.5 for x<0.5 Shifted asymmetric function

5exp$25~x20.5!% for x.0.5
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the possible Fourier series expansion ofs(x). The number of
general functions was ascertained by noting how the gener-
alization performance of the network improves with the in-
troduction of more arbitrary functions. We utilized the least
number of arbitrary functions possible. We observed that for
a given M , the choice of the general functions was not
unique.

The spike location was determined within eacht, at an
accuracy of one in 106 ~i.e., eacht was divided into 106

partitions!. The smallest possible changeds of s(x) that can
be recognized by the Hopfield neuron isds5(A2p/
t) sin~2pt!dt, wheredt is the size of the smallest partition
within eacht. Theds value was determined att5t/2 where
theVosc(t) is farthest fromVth . In our experiments, we used
dt51026. The issue of location accuracy is important be-
cause all physical systems have a finite time response~dt.0!
and are therefore limited in their ability to detect very weak
signals.

Figure 3 shows the behavior of the error functione~w! as
a function of the number of iterations, for the 32 Hopfield
neuron-network and training set considered. Thee~w! curve
exponentially decays with increasing iteration number indi-
cating a trainable network@16#. For analyzing signals in the
training set~a simple task of memory recall!, the trained
network computed a Fourier spectrum at an accuracy that
depends only on the minimum error value allowed. Equation
~2! together with the vectorwmin constitute what we call as
the learned solution.

We also investigated the trainability of networks with 16
and 64 Hopfield neurons, respectively, using appropriate sets
of training functions and found that their corresponding error
functions also decay exponentially with iteration number.

IV. GENERALIZATION

The global validity of the learned solution was tested by
letting the trained network analyze other input functions~T
51, 20.5<x<0.5! that were not part of the training set.

The generalization performance was measured using the
normalized mean-squared error ~NMSE!: ENMS
5((uSj2So

j u2)/(uSj u2, where the summation is carried out
from j51 to j54M . The set$Sj% represents the true~dis-
crete! complex Fourier spectrum of the new input function
where Sj5SR(2M1 j ) for j51,2,...,2M ; and
Sj5Sl(23M1 j ) for j5(2M11),...,4M . The set$So

j % is
the corresponding spectrum computed by the trained net-
work.

The results shown in Figs. 4~a! and 4~b! illustrate that the
trained network was able to learn the linearity property by
correctly computing the discrete Fourier spectrum ofs(x)
50.2 cos(2p3x)10.5 cos(2p9x)10.3 cos(2p13x), which
is not part of the training set. The network recognized the
even symmetry ofs(x) by yielding negligible imaginary
So2I( f ) values where f5216,215,...,16 ~T51!. The
trained network also performed well with other functional
forms including products of two sinusoids. For all the new
functions tested, an averaged NMSE value of 2.57310214

was obtained.
The trained network was also able to learn the scaling and

shifting properties by correctly computing the Fourier spec-
trum of a shifted rectangular function@13,14#: f rect~x20.5!,
and its scaled versionf rect[k(x20.5)] for k50.4. Figure 5
shows that the computed [2.5So(2.5f )] of f rect~0.4x20.2!
exhibits the correct broadening and relative decrease in the
amplitudes of the component sinusoids.

The network detected the 0.5 shift~with respect tox50!
in the center position the rectangular function by yielding a
complex-valuedSo( f )5So2R( f )1 jSo2I( f ). The NMSE
values associated with [2.5So2R(2.5f )] and
[2.5So2I(2.5f )] are 1.04310214 and 5.83310214, respec-
tively.

The trained network also recognized the property that the

FIG. 3. Exponential decrease of the learning errore~w! with
increasing number of iterations~2M532!. The same type of expo-
nential behavior was observed for other sets of randomly selected
initial weights, or training sets with different arbitrary functions.
After 53 iterations,e~w! has decreased to 8.5310210. FIG. 4. Network learned the linearity property of Fourier trans-

forms. Computed spectrum corresponding tos(x)50.2 cos(2p3x)
10.5 cos(2p9x)10.3 cos(2p13x): ~a! So2R( f ) and ~b!
So2I( f ). The imaginarySo2I( f ) values are small becauses(x) is
an even function~T51!.
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Fourier transform ofS( f ) yields an inverted image ofs(x).
Lenses, which are important components in optical imaging
systems, yield inverted~real! images because of this property
@14#.

The image shown in Fig. 6 is a plot of the network output
values that were obtained when the computed spectrum~32
discrete values each forSo2R and So2I!: So5So2R
1kSo2I ; of a shifted ~original! Gaussian function
@13#: fGauss~x20.5!, was used as input. The image plot was
obtained as follows: ~i! Use as network inputs the 32 com-
putedSo2R values and note the values of the 64 network
outputs that take the formSo85So2R81kSo2I ; ~ii ! Next,

use as inputs the 32 computedSo2I values and note the
corresponding output values that take the form
So95So2R91kSo2I 9; ~iii ! Calculate the image curve as
(So2R81So2R9)1k(So2I 81So2I 9).

For s(x)5 fGauss~x20.5! as the original input,
[So2I 81So2I 9]50, and the image curve was real (j
51,...,2M ) and given by the plot of the (So2R81So2R9)
values. When their asymmetry is neglected, an NMSE of
5.34310214 was obtained between the original and image
curves. The result in Fig. 6 again indicates that the network
was able to learn the linearity and the distributive properties
of Fourier transformation.

The universal validity of the learned solution can be also
seen from the behavior of the finalwi j values which form the
components ofwmin . Figure 7 shows plots of thewi j values
that describe the interconnection strengths between the 32
decoders~i51,...,32! and three selected target output neurons
~j533,34,35! that yield the imaginary part of the computed
Fourier, spectrum.

Thewi j curves~for fixed j values!, exhibit the behavior of
a sin~2p i j /32! function with index i . We have also noted
~data not shown! that the wi j plots associated with
j51,...,32; exhibit the behavior of a cos~2p i j /32! function.
Recall that the first 32 output neurons in the network, yield
the real part ofSo( f ) and that last 32 output neurons yield
the corresponding imaginary part.

Substituting the equivalent sinusoidal expressions ofwi j
into Eq.~2! yields the terms~Vbias50, summation taken over
index i !: So

j 5(@s( i )cos~2p i j /32!# for j51 to 32, and
So
j 5(@s( i )sin~2p i j /32!# for j533 to 64. These two derived

terms forSo
j describe the cosine and the sine transforms of

s(x) respectively, and it is clear that the learned solution
yields the desired network output, which is the~complex!
Fourier transform ofs(x).

V. DISCUSSION

We have presented a network of Hopfield encoding neu-
rons that is able to recognize the general properties of Fou-
rier transforms from only a limited set of examples. The
network was successfully trained using the backpropagation
method. No in-depth attempts were made to train the net-
work using evolution-based methods because under such

FIG. 5. Network learned the scaling and shifting property of
Fourier transforms. ComputedS( f ) of an input test signal which is
a scaled~k50.4! square-wave function that is shifted fromx50 by
0.5 ~T51!: ~a! So2R( f ) and ~b! So2I( f ). The computed
So( f )’s are complex because both square waves are shifted from
x50.

FIG. 6. Network learned that the Fourier transform ofS( f )
itself is 2s(x). The image plot is the network output when the
computedSo( f ) of the original shifted Gaussian input signal is
utilized as input. See text for details of how the image plot was
obtained.

FIG. 7. Plots of the coupling constantswi j vs indexi . Indicesi
and j represent thei th decoder~i51,2,...,32! and j th output neuron
~j533,34,35!, respectively. Thej values are part of the output neu-
rons that yield the imaginary part ofSo( f ).
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methods training is relatively much slower, and they are
therefore used only when backpropagation training fails.

Fourier analysis is a task that is well suited to parallel
processing because each Fourier componentS( f ) is com-
puted using ~summation is over i ! S( f )
5(@s( i )$cos(2p f iDx)2k sin(2p f iDx)%#, where Dx5T/
2M is the sampling interval,2M<integer i<M , T is the
duration ofs(x), f5 j /T, and2M<integer j<M . Thus, to
compute a particularS( f ) value one needs to have the 2M -
element set$s( i )% which describes the behavior ofs(x) over
the entire durationT.

Our results also demonstrate that Fourier analysis ofs(x)
at the same frequency resolution and cutoff frequency, can
be achieved by a two-layer, feedforward network consisting
of 2M input neurons and 4M output neurons. In this case,
the input neuron performs the combined tasks of coding and
then decoding the particulars(x) value at its input. However,
no biological analogs of such input neurons have been ob-
served so far although it is interesting to note that informa-
tion coding by nonspiking neurons have recently been found
in the visual system of blowflies@17#. The nonspiking neu-
ron yields an output~often distorted! that directly describes
the amplitude behavior of the input signal.

The encoding scheme employed by a Hopfield neuron is
notably similar to the manner in which sinusoid crossing
~SC!-based spectral analysis is implemented@18,19#. This is
particularly apparent whens(x) is a time-based signal where

the coding ofs(x) can be achieved with only one Hopfield
neuron.

In SC-based analysis,S( f ) is computed directly from
locations$xi%, wheres(x) intesects with a reference sinusoid
r (x)5A cos(2pMx/T). The SC’s in$xi% are labeled from
i51 to 2M according to their order of detection relative to
x50. Each SC locationxi is an algebraic solution tos(x)
2r (x)50. If A>us(x)u for all possibles(x) values withinT,
then there will be 2M crossings with one SC occurring
within each intervalDx5T/2M of r (t).

The information content ofs(x) is completely encoded in
$xi%, and it has been shown that in addition toS( f ), the
Hartley @20# and wavelet transform@3# of s(x) can also be
computed directly from$xi%. An advantage of SC sampling
over the amplitude sampling ofs(x) at equal intervals ofx is
in the simplicity of the required hardware support. Only a
single comparator is needed in an SC detector@21# in con-
trast to several in a conventional analog-to-digital converter.

For the Hopfield neuron,Vosc(t) takes the role ofr (x),
and each locationfk of the action potential peaks satisfies
the conditions(x)2Vosc(t)50, providedVth50. Note that
$fk% and $xi% are identical ifx is a time variable, which
suggests that temporal coding using$fk% is a versatile
scheme of representing the information content of an exter-
nal stimulus in a neural network. Note, however, that in SC-
based spectrum analysis, theS( f ) components are computed
iteratively, unlike that in the analyzer network.
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