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Frequency analysis with Hopfield encoding neurons
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A three-layer network that utilizes Hopfield encoding neurphs]J Hopfield, Nature76, 33 (1995], is
designed to compute the Fourier spectrum of an analog input signal of duffatiéach of the 2 (integer
M >0) Hopfield neurons in the input layer, is linked to an exclusive decoder with its output connected to all the
4M neurons present in the output layer. The connection strength between a decoder and a target neuron in the
output layer(hereby called the output neungns characterized by a coupling constant which attenuates the
decoder output that reaches the output neuron. All the attenudfedi€oder signals reaching an output
neuron are summed up within an integration time given by the period of the oscillatory drive of the Hopfield
neuron. The frequency resolution and bandwidth of the analyzer network are giveln bpd.2M /T, respec-
tively. The first 2V output neurons yield the amplitudes of the real components of the Fourier spectrum, while
the next M output neurons give the amplitudes of the corresponding imaginary components. Experiments
show that the network exhibits an exponentially decaying learning error, and is capable of learning the general
properties of Fourier transform from a limited set of exampl84.063-651X96)08510-§

PACS numbes): 87.10+e€, 84.35+i, 07.05.Mh

[. INTRODUCTION and unwanted background. Edge detection, for example,
maybe accomplished by suppressing the low-frequency com-

Knowing how the nervous system represents external inponent sinusoids df(x), while detection o&(x) in the pres-
formation is essential in our quest to understand both thénce of noise, maybe accomplished by suppressing the high-
relation between form and function in such systdhmg]. A frequency component sinusoids that contain most of the
simple information coding scheme is often carried out by ahoise signal. The contrast of a barely discernible signal may
signal detector with a simple architect@J. For biological ~be enhanced by proper selection of both the gain factor and
networks, it has long been taken that information is encodethe threshold level for the detectable component sinusoids.
in the number of pulses that a sensing neuron generates per Because the signal processing tasks being mentioned are
unit time in response to a particular stimulus valde5]. also equally important in biological systems, it is worthwhile
This amplitude-to-frequency data conversion scheme is into investigate whether a network of Hopfield neurons is ca-
herently slow and may not be the only coding scheme empable of determining correctly the Fourier spectrum of an
ployed by biological networks. arbitrary input signal. This requires that the network must be

An alternative scheme is the temporal code representatioggpable of recognizing from a limited set of examples, the
which encodes specific information regarding the externavarious Fourier transform properties concerning linearity,
stimulus in the relative distances of the spikes with respect t§caling, shifting, and symmetrj13-15. The shifting and
a fixed reference point. Temporal coding has received morgcaling properties, for example, will enable the system to
attention lately[6,7] due to the recent model by Hopfidlel] ~ recognize a local signal feature regardless of its posiion
of an encoding neuron with response characteristics that agpace or timpand magnification, respectively.
commodate the observed behavior of certain biological net- In the next section, we discuss both the response charac-
works [9—17]. Hopfield neurons utilize temporal coding to teristics of a Hopfield encoding neuron, and the features of
represent the value of the external stimu(is) at a particu- the three-layer network architecture being considered. We
lar value ofx. Variablex may represent space, time, etc.  then investigate by computer experiments if such network is

The aim of this paper is to show that a network of trainable to the task of computing the Fourier spectra of in-
Hopf|e|d encoding neurons can learn genera| rules from onW)Ut functions that are part of the training set—the first test of
a limited set of examples. In particular, a three-layer networl@ successful network desiga6]. Finally, we carry out the
with its input layer formed by Hopfield neurons, is trained tosecond test which is to find if the trained network can cor-
compute the(comple® Fourier spectrumS(f ) of s(x),  rectly analyze new arbitrary inputs.
wheref is the frequency variable. The spectrni8(f ) de-
scribes the relative amplitudes and phases of the component
sinusoids ofs(x).

Fourier analysis is a versatile signal processing [@8- lllustrated in Fig. 1 is the three-layer network with an
15] that can be used to enhance image contrast, highlighhput layer that consists ofM (integerM =1) Hopfield en-
specific signal features like edges and ridges, and uncovending neurons that sample a real-valséxl) of durationT.
nonlocal characteristics of a signal in the presence of nois€he Hopfield neurons are equally separated from each other

by a distance ofAx=T/2M, and each neuron is linked to an
exclusive decoder. Each decoder is connected to all Me 4
*Electronic address: csaloma@nip.upd.edu.ph neurons in the output laydfeedforward architecturgl6)).

II. NETWORK CONFIGURATION
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FIG. 2. ith Hopfield neuron generates a series of spil@so

FIG. 1. Schematics of the three-layer, frequency-analyzing netc@lled the action potentialsn response to a specific valsgi) of
work. The 2V (integer M<1) Hopfield encoding neurons which S(X). The spikes occur at time locationsi;=k(7—tj), where
form the input layer are equally separated by a distance T/2M.  S() ~Vos{t)=0. Integerk=1,2,... marks successive periods of
The Hopfield neurons sample the input sigsék) of length T. Vosdt). iny one action potential is generated within each oscilla-
Each Hopfield neuron is linked to an exclusive decoder with itstry Periodr.
output connected to all theM output neurons. The M output o . . .
neurons yield the Fourier spectrus(f ) of s(x). The first 21 Within a particular periodr of V(1) a spike is generated
output neurons yield the real componentsS¢f ) while the next ~ Only whenV;(t)>Vy,, and if no other spike has been gener-
2M outputs give its imaginary components. ated previously within the said period.

For the benefit of a straightforward discussion, we take

A neuron in the output layer is hereby referred to as thehat the spike is generated exadiiy time lag is involvegat
output neuron. time locations whes(i) — V{t) =0. For theith neuron, the

The first 2V output neurons yield the amplitudes of the spikes occur ag,=k(7—t;), wheret;, is called the time
real components o8(f ), while those of the corresponding advance, ank=1,2,..., etc. For exampleg;; denotes the
imaginary components are given by the nekt dutput neu- time location of the spike appearing within the first period
rons. The network, therefore, not only extracts information(k=0) of V.{t). Every ¢ is an algebraic solution to
regarding spectral energy distributio8(f )|? of s(x), but  S(i) —Vqs{t) =0.
also about the relative phases of the component sinusoids of When thes(i) value does not change with ting, will be
s(X). the same for alk values and we writé;, =t;(d;x= ;). In

Although the M decoders may be construed to constitutesuch a case, the spikes generated byi théHopfield neuron
the hidden layer of the network, it must be pointed out tha@re equidistant and knowing only the positigpn of the first
they may not represent actual biological neurons themselvespike is sufficient to decode tfei) value. Unless specified
but rather some synaptic, axonal, or cellular effects whictPtherwise, we deal only with time-independe(k) signals.
the cell potentialV(t) encounters during propagation from  The purpose of théth decoder is to determine thei)
its generating Hopfield neuron towards a particular outpuvalue from the spike locatiog, . Decoding starts when the

neuron. spike that has been generated is sensed by the decoder. In the
The cell potentialV;(t) of the ith Hopfield neuron i(  simplest case, the connection weight between a Hopfield
=1,2,...,M) is described by8] neuron and its decoder can be set either tprésence of a
transduction pathway from the Hopfield neuron to output
Vi(t) = Vip=5(i)— Ve 1), (1)  neuron, or 0 (no transduction pathway

The interconnection strength between ttredecoder and

whereVy, is the (fixed-valued threshold potential,(t) is  the jth output neuron is given by the coupling constanmt
the time-dependent subthreshold oscillatory drive of the neutj =1,2,...,4M). The decoder outpu(i) signal that reaches
ron potential, and(i) represents the particula¢x) value at  thejth output neuron is attenuated by the valuengf (posi-
the input of theith Hopfield neuron. In our analysis, we tive value for excitation, and negative for inhibitory effgcts
assume that the behavior Wf(t) and the value o¥,, are All the 2M attenuated signalsv;;s(i)} arriving at thejth
the same for all the Hopfield neurons in the network. output neuron are summed up within an integration time

The term “action potential” refers to the spik®irac §)  given by 7 because a Hopfield neuron produces only one
signal that is generated by the Hopfield neuron when inforaction potential within each oscillatory periad The output
mation regarding a particula(x) value is successfully en- potentialS}, of the jth output neuron is expressed as
coded (see Fig. 2 For simplicity, we use oM
Vosdt) =B+ A[1-co92wt/7)], whereA andB are constants i .
such that no spike is produced when no signal is present. The S]f’_vb‘as+i21 wijs(i), )
presence of a nonzesgi) introduces an upward pughias
to Vos{t), which, depending on the particula(i) value, whereV,is a potential bias, and;;s(i) is the attenuated
enables it to overcome the threshold barrier set\y. signal received by thgth output neuron from théth de-
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TABLE I. List of all input functionsqg(x) used in the training of an analyzing network with 32 Hopfield

neurons.
Number q(x) Remarks
32 *sin(27ux/T) u=1,...,16
32 *cos(2muXx/T) v=1,...,16
10 B sin(27ux/T) +c¢ sin(27vx/T) RandomB,C<1; randomu,v values
10 B sin(27rux/T) + C cos(2mux/T) RandomB,C<1; randomu,v values
10 B cos(2rux/T)+ C cos(2muvx/T) RandomB,C<1; randomu,v values
5 exp(—5x)cos 27 (p1Xx+ pox?) p; andp, are random positive numbers
1 Tri(x—0.5) Shifted triangular function
1 f(x)=0 forx=<0.5 Shifted asymmetric function
=exp[—5(x—0.5} for x>0.5
1 f(x)=0 forx=0.5 Shifted asymmetric function
=exp{—5(x—0.5} for x<0.5
1 f(x)=0.5 forx=0.5 Shifted asymmetric function
=exp{—5(x—0.5} for x<0.5
1 f(x)=0.5 forx=<0.5 Shifted asymmetric function

=exp[—5(x—0.95} for x>0.5

coder. We assume that thé,,. value is the same for all equally sampled values @f(x). For exampleS*(q) repre-
Hopfield neurons in the network. sents the tru&z(—M + 1) value corresponding tqQ(x).
Generally,s(x) has no symmetry about=0, andS(f ) is The network was trained using the backpropagation
complex valued, i.e.,S(f )=Sg(f)+«S(f), where x  method[16]. Starting from a random set of values, thg's
=v(—1),Sg(f ) andS/(f ) are the real and imaginary part were changed using the steepest descent method
of S(f), respectively. Note thaiSy(—f)=Sg(f) and [16]: w{P'=wP Y-y{se(w)aw;}, wherey is the learn-
S(—f)=-5/(f) becauses(x) is a real-valued function. ing rate, andp is the iteration number.
Because the number of Hopfield neurons in the network is The time-independent signa(x), wherex represents a
finite, s(x) is only finitely sampled and the computed Fourier position variable, is sampled equally by thé12Hopfield
spectrumS,(f ) is discretely valued with respect fe=(—M neurons, at a sampling distance dk=T/2M, whereT is
+D/T, (=M+2)/T,... M/T. . signal duration. The Fourier spectrum sfix) can be ana-
Forj=12,....M, the output{Sg} represent the real part |y7ed at a frequency resolution ofTLand a cutoff frequency
{S,_gr(f )} of the Fourier spectrum computed by the net-fcziO_S/AX:iM/T [13-15.
work, where f=(-M+j)/T. For j=(2M+1),(2M Position-independent, temporal signgi%., x is a time
+2),...,M, the output{ Sy} represent the computed imagi- yariablg, on the other hand, can be coded with only one
nary Fourier spectruriS,_g(f )}, wheref=(-3M+])/T.  Hopfield neuron. In this casdx=r and f,==0.5/~. Thus,
component sinusoids af(x) with frequencies higher than
IIl. TRAINING +0.5/r are not encodeq. _ _ _
Generally, the locationét,} of spikes in theV(t) signal
The suitablew;; values were determined by minimizing of the Hopfield neuron are not equidistant from each other,
the error functiore(w): i.e., ty#t,# - #tyy. To avoid an undersampling @&(x),
the associated decoder must be able to determine the particu-
K oam lar s(x=x,) value from the location, of the spike generated
> > {S(@)-9()? (3)  within thekth period 7, (k=1,2,...,M) of V(t). The de-
g=1j=1 coder performs a total ofM decoding operations within the
durationT of s(x).
which amounted to determining the weight veciqy;,, that In our experiments, we analyze time-independent signals
yields the loweste(w) value [16]. The components of the (T=1) using a network composed of 38 =16) Hopfield
weight vectorw are given by{w;;}. The training set consists neurons and 64 output neurons wit;,c=0. The value of
of aK number of input-output response pairs. In a given pair2M =32 (instead of 16 or 64was chosen because it offers
the input consists of @ equally sampled values of the ana- the best compromise between frequency resolution and train-
lytic expressiorg(x) of thegth input function in the training ing time for the computer that we were usiigM PC com-
set, while the output consists of the discr&templey Fou-  patible 486DX-2(66 MHz)]. The connection strength was
rier spectrum(2M values each for the real and imaginary set to unity for all the 32 Hopfield neuron-decoder pairs, and

N| =

e(w)=

componentsof g(x). the initial values ofw;; were randomly selected betweeri
In Eq. (3), SL(q) is the output of thgth output neuron and 1(y=0.5).
corresponding tag(x), and §(q) is the desired(correc} Listed in Table | are all the input functiortg(x) in the

output. The M elements of S/(q)} are determined by ap- training set(T=1, 0.5<x=<0.5), which includes all the pos-
plying the discrete fast Fourier transforfhi3] on the 2V sible 64 basis function&32 sine and 32 cosine functionsf
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nential behavior was observed for other sets of randomly selected f
initial weights, or training sets with different arbitrary functions.
; ; —10 . . .
After 53 iterations.e(w) has decreased to 8&0™ . FIG. 4. Network learned the linearity property of Fourier trans-

forms. Computed spectrum correspondings{m) =0.2 cos(2r3x)
the possible Fourier series expansiors@f). The number of  +0.5 cos(2r9x) +0.3 cos(2r13x): (@ S,_r(f) and (b)
general functions was ascertained by noting how the genes, (f ). The imaginaryS,_(f ) values are small becausgx) is
alization performance of the network improves with the in-an even functioT=1).
troduction of more arbitrary functions. We utilized the least
number of arbitrary functions possible. We observed that fof he generalization performance was measured using the
a given M, the choice of the general functions was notnormalized —mean-squared  error (NMSE):  Eyys
unique. =(2|9'—SL|?)/=|9|? where the summation is carried out
The spike location was determined within eaghat an  from j=1 to j=4M. The set{S'} represents the trudis-
accuracy of one in 1(i.e., eachr was divided into 16  creté complex Fourier spectrum of the new input function
partitions. The smallest possible change of s(x) that can Where  §=Sg(-M+j) for j=1,2,...,.M; and
be recognized by the Hopfield neuron is=(A27/ S=S(-3M+j) for j=(2M+1),...,MM. The set{Sy} is
7) sin(2m7)8t, where 8t is the size of the smallest partition the corresponding spectrum computed by the trained net-
within eachr. The s value was determined & 1/2 where ~ Work. o .
the V(1) is farthest fromV,,. In our experiments, we used  The results shown in Figs(# and 4b) illustrate that the
5t=10°. The issue of location accuracy is important be-trained network was able to learn the linearity property by
cause all physical systems have a finite time respoftse0) ~ correctly computing the discrete Fourier spectrums(f)
and are therefore limited in their ability to detect very weak =0.2 cos(2r3x) +0.5 cos(2r9x) +0.3 cos(2r13x), which
signals. is not part of the training set. The network recognized the
Figure 3 shows the behavior of the error functiefw) as ~ €ven symmetry ofs(x) by yielding negligible imaginary
a function of the number of iterations, for the 32 Hopfield So—i(f ) values where f=-16-15,..,16 (T=1). The
neuron-network and training set considered. €he) curve trained network also performed well with other functional
exponentially decays with increasing iteration number indi-forms including products of two sinusoids. For all the new
cating a trainable networKL6]. For analyzing signals in the functions tested, an averaged NMSE value of x50
training set(a simple task of memory recallithe trained Was obtained.
network Computed a Fourier Spectrum at an accuracy that The trained network was also able to learn the Scaling and
depends only on the minimum error value allowed. Equatiorhifting properties by correctly computing the Fourier spec-
(2) together with the vectow,,;, constitute what we call as trum of a shifted rectangular functidi3,14]: f .(x—0.5),
the learned solution. and its scaled versiofi.{ k(x—0.5)] for k=0.4. Figure 5
We also investigated the trainability of networks with 16 shows that the computed [B§(2.5f )] of f(0.4x—0.2)
and 64 Hopfield neurons, respectively, using appropriate sexhibits the correct broadening and relative decrease in the
of training functions and found that their corresponding erroramplitudes of the component sinusoids.

functions also decay exponentially with iteration number.  The network detected the 0.5 shiftith respect tax=0)
in the center position the rectangular function by yielding a

complex-valuedS,(f )=S,_gr(f ) +jS,_(f ). The NMSE

values associated with [35_g(2.5f )] and
The global validity of the learned solution was tested by[2.5S,_,(2.5f )] are 1.04<10 '* and 5.8%10 % respec-

letting the trained network analyze other input functigms tively.

=1, —0.5=x=0.5) that were not part of the training set. = The trained network also recognized the property that the

IV. GENERALIZATION
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-8 andj represent théth decoderi=1,2,...,32 andjth output neuron
12 T . . I' r r . . (j=33,34,35, respectively. Thg values are part of the output neu-
-16  -12 -8 -4 0 4 8 12 16 rons that yield the imaginary part &(f ).
f

use as inputs the 32 comput&]_, values and note the

FIG. 5. Network learned the scaling and shifting property of corresponding output values that take the form
Fourier transforms. Computed(f ) of an input test signal whichis 5, =S ..+ «S;_,»; (iii) Calculate the image curve as
a scaledk=0.4) square-wave function that is shifted from=0 by (So_r'+So—_r")+ K(So_7+ S 7).

05 (T=1): (@ S,_r(f) and (b) S,_(f). The computed For s(X)=fgausXx—0.5 as the original input,
So(f )'s are complex because both square waves are shifted fror[\507l/+507|"] =0, and the image curve was real (
x=0. =1,...,2M) and given by the plot of theS,_g'+S,_r")

values. When their asymmetry is neglected, an NMSE of
Fourier transform oB(f ) yields an inverted image af(X).  5.34x10" ' was obtained between the original and image
Lenses, which are important components in optical imagin@Gurves. The result in Fig. 6 again indicates that the network
systems, yield invertetfeal) images because of this property was able to learn the linearity and the distributive properties
[14]. of Fourier transformation.

The image shown in Fig. 6 is a plot of the network output  The universal validity of the learned solution can be also
values that were obtained when the computed spectBfm  seen from the behavior of the final; values which form the
discrete values each folS,_gr and S, |): S,=S,_r  components ofv,,,. Figure 7 shows plots of the;; values
+xS,_;; of a shifted (original) Gaussian function that describe the interconnection strengths between the 32
[13]:  fgausfX—0.5), was used as input. The image plot wasdecodergi=1,...,32 and three selected target output neurons
obtained as follows: (i) Use as network inputs the 32 com- (j =33,34,35 that yield the imaginary part of the computed
puted S, g values and note the values of the 64 networkFourier, spectrum.
outputs that take the forrs, =S, r'+«S,-; (i) Next, Thew;; curves(for fixed j values, exhibit the behavior of

a sin2ij/32) function with indexi. We have also noted

(data not shown that the w;; plots associated with
1%, o j=1,...,32; exhibit the behavior of a d@srij/32) function.
Q,Image Original Recall that the first 32 output neurons in the network, yield
the real part ofS,(f ) and that last 32 output neurons yield
the corresponding imaginary part.

Substituting the equivalent sinusoidal expressionsvef
into Eq.(2) yields the termgVy,;,s=0, summation taken over
index i): SL=3[s(i)coq2ij/32)] for j=1 to 32, and
S)=2[s(i)sin(27ij/32)] for j =33 to 64. These two derived
terms forS! describe the cosine and the sine transforms of
s(x) respectively, and it is clear that the learned solution
yields the desired network output, which is ttmompley
Fourier transform o8(x).

Amplitude

V. DISCUSSION

We have presented a network of Hopfield encoding neu-

FIG. 6. Network learned that the Fourier transform§gff )  rons that is able to recognize the general properties of Fou-
itself is —s(x). The image plot is the network output when the fier transforms from only a limited set of examples. The

computedS,(f ) of the original shifted Gaussian input signal is network was successfully trained using the backpropagation

utilized as input. See text for details of how the image plot wasmethod. No in-depth attempts were made to train the net-

obtained. work using evolution-based methods because under such
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methods training is relatively much slower, and they arethe coding ofs(x) can be achieved with only one Hopfield
therefore used only when backpropagation training fails. neuron.

Fourier analysis is a task that is well suited to parallel In SC-based analysis§(f ) is computed directly from
processing because each Fourier compoisént) is com- locations{x;}, wheres(x) intesects with a reference sinusoid
puted using (summation is over i) S(f) r(x)=Acos(2rMx/T). The SC'’s in{x;} are labeled from
=2[s(i){cos(2rfiAx)—«ksin(2mfiAx)}], where Ax=T/ i=1to 2M according to their order of detection relative to
2M is the sampling interval,-M<integeri<M, T is the x=0. Each SC locatiorx; is an algebraic solution te(x)
duration ofs(x), f=j/T, and —M=<integerj<M. Thus, to  —r(x)=0. If A=|s(x)| for all possibles(x) values withinT,
compute a particula®(f ) value one needs to have th&12  then there will be ®1 crossings with one SC occurring
element sefs(i)} which describes the behavior sfx) over  within each intervalhx=T/2M of r(t).
the entire duratiorT. The information content af(x) is completely encoded in

Our results also demonstrate that Fourier analysi&(xf  {x;}, and it has been shown that in addition $¢f ), the
at the same frequency resolution and cutoff frequency, cahlartley [20] and wavelet transformi3] of s(x) can also be
be achieved by a two-layer, feedforward network consistingcomputed directly fron{x;}. An advantage of SC sampling
of 2M input neurons and M output neurons. In this case, over the amplitude sampling s{x) at equal intervals of is
the input neuron performs the combined tasks of coding anéh the simplicity of the required hardware support. Only a
then decoding the particulafx) value at its input. However, single comparator is needed in an SC detef2dy in con-
no biological analogs of such input neurons have been olirast to several in a conventional analog-to-digital converter.
served so far although it is interesting to note that informa- For the Hopfield neurony.{t) takes the role of(x),
tion coding by nonspiking neurons have recently been founénd each locationp, of the action potential peaks satisfies
in the visual system of blowfliegl7]. The nonspiking neu- the conditions(x) —V,.{t)=0, providedV,,=0. Note that
ron yields an outputoften distorted that directly describes {¢} and {x;} are identical ifx is a time variable, which

the amplitude behavior of the input signal.

suggests that temporal coding usig,} is a versatile

The encoding scheme employed by a Hopfield neuron ischeme of representing the information content of an exter-
notably similar to the manner in which sinusoid crossingnal stimulus in a neural network. Note, however, that in SC-

(SO-based spectral analysis is implemenf&8,19. This is

based spectrum analysis, t8¢f ) components are computed

particularly apparent whes(x) is a time-based signal where iteratively, unlike that in the analyzer network.
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