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Inelastic hard spheres can undergo an infinite number of collisions in a finite time. This process is called
inelastic collapse. We consider the effect of rotation in this process and find that in contrast to the case of
nonrotating spheres, collapse is possible for even large values of the coefficient of restitution and the angle
formed by the colliding particles can be large. The limit to the nonrotating case is discontinuous. The three-
body problem is solved analytically under the flat surface approximation and many-particle simulations are
carried out.@S1063-651X~96!15011-X#

PACS number~s!: 47.50.1d, 05.20.Dd, 81.05.Rm

I. INTRODUCTION

Interest in granular materials has grown rapidly during the
past several years. In addition to being a major engineering
concern, the behavior of granular materials attracts the atten-
tion of physicists trying to understand the underlying physi-
cal mechanisms of such untraditional systems@1#.

A granular system often exhibits long range correlations.
Collective behavior like the formation of surface wave pat-
terns has been observed@2,3#, even though the grains interact
only through collisions. The lack of long range interactions
makes the occurrence of correlations nontrivial. One essen-
tial quality of granular systems is that they are dissipative. A
character of dissipative dynamical systems is the appearance
of attractors in phase space. If such attractors are strong
enough, collective behavior can show up.

Inelastic hard spheres are a simple but effective model for
grains of granular materials. Since inelastic collisions be-
tween particles reduce the velocity differences between
them, correlations can be naturally built up. In previous
simulational investigations of inelastic hard particles@4,7#, it
is observed that an initially homogeneous system will gener-
ally evolve into one with clusters of particles and voids. A
shearing mode was identified@4,8#, in which particles in a
cluster have about the same velocities. This can be under-
stood intuitively in the following way: the particles in a clus-
ter collide very frequently with one another, so the velocity
differences among them diminish due to inelasticity and the
particles acquire about the same velocity which is just the
average velocity of the cluster. Furthermore, since the cluster
picks up a particular direction from this average velocity, the
rotational symmetry of the space is broken, and conse-
quently, the cluster forms a stringy structure@4#. All this
suggests that there exist correlations among particles which
are manifested as cluster formation in a spatial form, or as
the shear mode described above in a velocity form.

Correlations are built up through inelastic collisions be-
tween particles. An extreme case is of great interest: the
collapse state in which several particles collide an infinite
number of times in a finite time interval@5–11#. Previous
analytic work@11# showed that an attractor exists for a col-

lapse state, so that spatial and velocity correlations are estab-
lished for participating particles which were unrelated before
the event. The method can be extended to arbitrary
masses for which collapse is possible when cosu
,2Ar (11m0 /m1)(11m0 /m2)/(11r ); where u is the
angle between the three particles andr the coefficient of
restitution. Besides being a singularity, collapse also has the
interesting feature that the spheres form a linear structure@7#.

The previous calculation@11# was for nonrotating par-
ticles. We want to investigate the effects of rotation on the
collapse process for an obvious reason: physical grains can
rotate. Such consideration brings significant changes due to
the coupling between velocity components. The question re-
mains if a transverse coefficient of restitution makes the
same important difference to real materials.

In some sense, inelastic collapse is a consequence of the
hard sphere model. Generally, event driven computations
used for hard particles require much less computer resources
than molecular dynamics methods for soft particles. Unless
the density is extremely high, the deformation of a particle is
not an important factor, and hard spheres provide an effec-
tive model. Inelastic collapse requires an infinite number of
collisions, but the model will break down when the particles
get close enough to one another. Nevertheless, from the
above discussion we see that the physical implications of
inelastic collapse are not limited to the hard sphere model.

We discuss the friction law and set up the problem in Sec.
II. In Sec. III we derive analytically the conditions on the
parameters for which collapse of three rotating particles is
possible. Section IV is a numerical study of the collapse
probabilities. In Sec. V we carry out many-particle simula-
tions and compare them to those with nonrotating particles
by McNamara and Young@7,8#.

II. THE COLLISION MODEL

The energy loss during a collision between two inelastic,
rotating particles is usually attributed to two effects. The
relative velocity of the colliders along the line of centers is
multiplied by2r as a result of the collision. The coefficient
of restitution,r , is a number between zero and one. There is
also a reduction of the relative velocity in the tangential di-
rection due to friction.

What sort of friction law should we assume for the pro-*Electronic address: tongzhou@control.uchicago.edu
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cess? Quite generally, the tangential frictional force can be
expressed to first order as f (v r ,v t)5(] f /]v r)v r
1(] f /]v t)v t . Or rewritten,Dv t5mv r1(h21)v t if uDv tu
,uv tu, since the change in tangential velocity may not ex-
ceed the tangential velocity itself. The case of nonrotating
particles corresponds toh51 andm50, since the rotation
then does not interfere with the collapse process. Ifh51 the
relative tangential velocity will not vanish after an infinite
number of collisions which is not physical, so we will sup-
poseh,1. For simplicity we setm50, because the follow-
ing calculation can be readily modified for nonzerom. The
collision rules are hence

v r852rv r and v t85hv t , ~1!

with 0<r<1 and21,h,1.
We look at a situation in which one particle~numbered

zero! takes part in all collisions, the other two~numbered one
and two! are alternatively collider and spectator. We assume
all particles are identical, with unit radii and masses, and
have a momentum of inertiaI with respect to a tangential
line (I51.5 for a uniform disk, andI51.4 for a uniform
sphere!.

Let vW j , xW j , andvW j be the velocity, the position, and the
angular velocity of thej th particle at the instant before a
collision occurs. Also assumenW j is a unit vector pointing to
the center of particlej from the center of particle 0~Fig. 1!.
Let particle 1 collide with particle 0. We denote the quantity
after collision by a prime. Then from momentum conserva-
tion,

vW 181vW 085vW 11vW 0 . ~2!

Since we can suppose that the interaction force is acting on
the contact point, the angular momentum of each particle is
conserved with respect to that point:

IvW 181nW 13vW 185IvW 11nW 13vW 1 ,

IvW 082nW 13vW 085IvW 02nW 13vW 0 . ~3!

And from Eqs.~1!,

~vW 182vW 08!•nW 152r ~vW 12vW 0!•nW 1 ,

~vW 183nW 11vW 182vW 083nW 11vW 08!3nW 1

5h~vW 13nW 11vW 12vW 03nW 11vW 0!3nW 1 . ~4!

Certainly there are no changes for particle 2,

vW 285vW 2 , vW 285vW 2 . ~5!

Equations~2!–~5! determine the configuration after a colli-
sion from the configuration before it. They are comple-
mented by the equations corresponding to the positions of
the particles at the next collision,

xW085xW01vW 08t,

xW185xW11vW 18t,

xW285xW21vW 28t. ~6!

The time interval between the two collisions,t, is such that
the magnitude ofxW282xW08 is 2. The above equations can then
be applied to the next collision between particle 0 and par-
ticle 2, by interchanging the subscripts 1 and 2.

III. COLLAPSE OF THREE ROTATING PARTICLES

During inelastic collapse, the relative velocities of the
contact points of the colliding particles approach zero as the
collision number diverges. Suppose that just before a colli-
sion between particle 0 and particle 1, the contact point on
particle 1,C1, has a velocityuW 1 relative to the contact point
on particle 0,C0, and pointD1 has a velocityuW 2 relative to
D0 ~Fig. 1!. Then after this collision, from Eqs.~1!,

uW 18•nW 152r ~uW 1•nW 1!,

uW 183nW 15h~uW 13nW 1!. ~7!

In order to calculateuW 28 , we need the change of the velocity
of pointD0 during this collision since there is no change of
the velocity ofD1. From Eqs.~2!–~5!, we have

DvW 052
12h

2~ I11!
uW 13nW 1 ,

DvW 05
11r

2
~uW 1•nW 1!nW 12

I ~12h!

2~ I11!
~uW 13nW 1!3nW 1 .

These yield

uW 285uW 22DvW 02DvW 03nW 2

5uW 22
11r

2
~uW 1•nW 1!nW 11

I ~12h!

2~ I11!
~uW 13nW 1!3nW 1

1
12h

2~ I11!
~uW 13nW 1!3nW 2 . ~8!

We have established the recursion relation for theuW j val-
ues. In order to find linearized expressions, we introduce the
‘‘flat surface approximation,’’ following the procedure of the
calculation for the nonrotating case@11#. Introduce the su-
perscripts,c, denoting the collider, ands, denoting the spec-
tator particle, as well as a subscript,i , to denote the instant

FIG. 1. Configuration of particles.
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before thei th collision occurs. Notice that a collider be-
comes a spectator immediately following a collision.

Since the collapse process corresponds to a very short
time interval, we can neglect thet terms in Eqs.~6! and then

nW j85nW j , or

nW i11
c 5nW i

s, nW i11
s 5nW i

c .

If we define

Vi
c[uW i

c
•nW i

c , Ui
c[uW i

c
•nW i

s ,

Vi
s[uW i

s
•nW i

s , Ui
s[uW i

s
•nW i

c ,

then relations~7! and~8! imply the following recursion rela-
tion (u is the angle indicated in Fig. 1!:

F Vi11
c

Ui11
c

Vi11
s

Ui11
s

G53
S 11r

2
2
I ~12h!

2~ I11!
D cosu I ~h21!

2~ I11!
1 0

2
11r

2
1

12h

2~ I11!
cosu

12h

2~ I11!
0 1

2r 0 0 0

~r1h!cosu h 0 0

4 F Vi
c

Ui
c

Vi
s

Ui
s

G .
The characteristic polynomial of the above matrix is

l42F11r

2
cosu1

~12h!~12I cosu!

2~ I11! Gl3

1F r2h1
~11r !~12h!

4~ I11!
~cosu2I !Gl2

1Fh 11r

2
cosu1

r ~12h!~ I cosu21!

2~ I11! Gl2hr50. ~9!

The long term behavior of the system is determined by the
eigenmode of the eigenvalue with maximum modulus. A col-
lapse attractor corresponds to the situation when this eigen-
value is real and within (0,1). The situation is very similar to
the calculation in@11#. Ui

c , Vi
c , the time interval between

collisions t i , and the minimum distance between the specta-
tor and particle 0 decrease exponentially with increasing col-
lision numberi . More specifically,

Ui
c;l i ,

Vi
c;l i ,

t i;S rl2D i ,
di;S rl D i .

Simulational results agree precisely with these ratios~Fig. 2!.
The ‘‘flat surface approximation’’ is only valid when the

time interval t i decreases faster than the radial components
of relative velocitiesUi

c , so we need another condition,
l3.r .

We solve Eq. ~9! numerically and give the result in
graphical form. There are four parameters:r , h, I , andu.
We fix I51.5, corresponding to homogeneous two-
dimensional disks, and plot the collapse region in Fig. 3. If
r is below the border shown, then collapse can occur. For
comparison, the nonrotating case is shown by a dotted line at

FIG. 2. Comparison of simulational results (d for uVi
cu, s for

uuW i
c3nW i

cu, 3 for t i , v for di) with the theoretical predictions~solid
lines! for the caser50.1,h50.05,u584.8°, andI51.5.

FIG. 3. Parameter region where collapse can occur,I51.5. For
comparison, the dotted line ath51 shows the collapse regime for
the nonrotating case.
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h51. Our result strongly contrasts with the nonrotating
case.~i! Collapse can occur even for high values ofr . In fact,
r can be arbitrarily close to 1~without rotation collapse re-
quires r,924A5'0.056). ~ii ! Collapse can occur for
u.90°. ~Figure 3 is extended beyond 120°, which is prohib-
ited.! ~iii ! The rotating case does not go continously to the
nonrotating case in the limith→1. ~iv! There is a prohibited
parameter region at small angles and largeh. Slight tangen-
tial friction prohibits collapse for smallu while allowing it
for largeu. ~However, the particles can collide many times
in this region before they separate.!

The transition to the nonrotating case

Whenh51, Eq.~9! reduces to the nonrotating case. Two
eigenvalues are then61. Their eigenmodes correspond to
purely tangential velocities. Since these modes do not couple
with the radial velocities, they do not interfere with the col-
lapse process. The other two eigenvalues are

k65
11r

4
cosu6AS 11r

4
cosu D 22r , ~10!

the relevant fixed points of the nonrotating problem.
An h different from 1 will introduce a coupling between

the radial and tangential components of the velocities. We
can treat the caseh'1 perturbatively. For the eigenvalues
close to61,

6l6512~12h!

11
3

4
I1

cosu

4
7
11cosu

2

~27cosu!~ I11!
1O~12h!2.

These values are independent ofr . For collapse, the domi-
nant eigenmode must correspond to a positive eigenvalue,
i.e.,

cosu.
23I1A9I 2116

2
. ~11!

In Fig. 3 this critical angle isu540.5°.
The existence of additional eigenvalues, stemming from

additional degrees of freedom~rotation!, widens the param-
eter region for which collapse is possible.

IV. COLLAPSE PROBABILITIES

Figure 3 shows the region of parameters where collapse
can occur. For three rotating particles, collapse is possible
even for coefficients of restitution arbitrarily close to 1. This
is a feature qualitatively different from the nonrotating case.
However, from the requirementl3.r , we see that the de-
crease rate of the time intervals between collisions,r /l2, is
rather slow whenr is very close to unity. This means it takes
a long time to reach the singularity. Consequently, the do-
main of appropriate initial conditions is small. We expect
that collapse is very unlikely under such circumstances.

We investigate the collapse probabilities through numeri-
cal simulations. For each pair ofr andh, 107 simulations are
carried out with random initial conditions. A simulation ends
either when the particles fly apart or when inelastic collapse

occurs. The number of collapse events provides the probabil-
ity information. Of course, the probability depends on the
spatial area over which initial positions of particles are taken,
or the density of the particles—it is roughly proportional to
this density when the density is not very high. For fixed
density, the probability is not sensitive to the distribution of
initial data.

Here we use the ‘‘separation’’ criterion for collapse@7#: if
immediately after one collision the next collision involves
two particles whose separation is less than 10212, the system
is considered to have collapsed. This will inevitably include
‘‘almost collapses’’ in which the particles come very close
but separate before the singularity is reached. One may not
be able to or not wish to distinguish physically these events
from collapses. Cases are observed where parameters are
outside the collapse region, but simulations end due to the
‘‘separation’’ criterion. Further detailed investigation shows
such cases will not lead to a singularity—there will not be an
infinite number of collisions. Naturally, such situations also

FIG. 4. Relative collapse probabilities as a function ofr and
h; I51.5. Each gray scale corresponds to a collapse probability
which is 10 times smaller than the previous one. In the white region
we have detected no or very few events~out of 107 initial condi-
tions per pair of parameter values!.

FIG. 5. Relative collapse probabilities as a function ofu for
different values ofr . h50.2, I51.5. u is divided into bins of
10°.
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occur when parameters are inside the collapse region. The
collapse probabilities calculated using the ‘‘separation’’ cri-
terion are thus generally larger than the real probabilities.

Figure 4 shows the collapse probabilities for differentr
andh accumulated overu. As expected, collapses for large
r are very unlikely. One sees a strong dependence onr and a
weaker dependence onh. Figure 5 shows the probabilities as
a function ofu for different values ofr . Collapses for large
u are unlikely. Smallu can be unlikely too. We clearly see
that the most probableu can be rather different from 0°. It
can even be larger than 90°.

V. MANY-PARTICLE SIMULATIONS

From previous sections, we see that collapse between ro-
tating particles is quite different from that of the nonrotating
particles. What does rotation change in the many-particle
collapse process?

We performed simulations of a two-dimensional system
containing 1024 inelastic disks with periodic boundary con-
ditions. The volume fraction occupied by the disks is kept at
0.22. Simulations for various values ofr andh are carried
out. For the nonrotating case, the critical value of the coef-
ficient of restitution for collapse to happen is aboutr50.62
@7#. Collapses for rotating particles are observed forr as high
as 0.75. The participants of a collapse generally form a linear
structure, as in@7#. However, an interesting feature is ob-
served: instead of forming a straight line, as nonrotating par-
ticles do, rotating particles tend to form a wiggled line when
collapse happens. This corresponds qualitatively to the above
result that collapse between three particles can have a non-
zero most likelyu. A typical collapse configuration is shown
in Fig. 6.

VI. CONCLUSIONS

We demonstrated analytically the existence of inelastic
collapse for three rotating particles and found that rotation
changes the collapse conditions dramatically. Collapse is
now possible for large coefficients of restitutionr and large
angles. The likelihood of collapse, however, decreases rap-
idly with increasingr . The most likely angle between col-
lapsing particles is often not 0°. In many-particle simulations
wiggled collapse structures are observed.
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FIG. 6. A configuration of 1024 inelastic disks withr50.7,
h50.3, I51.5, and the volume fractionn50.22 when collapse
happens, or more accurately, when the ‘‘separation’’ criterion is
satisfied. The solid disks are those involved in the last 200 colli-
sions. The linear collapse structure for the nonrotating case is
shown in the upper right box, which is from a simulation of 1024
nonrotating disks withr50.6, n50.22.
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