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We present the phase diagram and critical properties of a coupledXY Ising model on a triangular lattice
using the mean-field approximation, the Migdal-Kadanoff renormalization-group scheme, and Monte Carlo
simulations. The topology of the phase diagram is similar for the three techniques, with the appearance of a
phase withXY order and Ising disorder. Critical exponents estimated from preliminary finite-size scaling are
not inconsistent with Ising universality. This model is relevant to the columnar phases of discotic liquid
crystals @such as hexa~hexylthio!triphenylene# in the limit of weak intercolumn coupling.@S1063-
651X~96!03006-1#

PACS number~s!: 61.30.Cz, 64.70.Md, 64.60.Ak, 75.10.Hk

I. INTRODUCTION

Columnar phases of discotic liquid crystals are becoming
a field of increasing experimental and theoretical activity in
areas traditional to magnetic systems~modulated phases, sta-
bility, critical phenomena, etc.! @1,2#. Particular attention has
been given to hexa~hexylthio!triphenylene ~HHTT! com-
pounds since they were found to be excellent photoconduc-
tors @3#. The photoinduced charge carrier mobility is four
orders of magnitude higher than organic materials suitable
for electronic devices and opens the way to improved con-
ventional and novel applications. At present, our efforts are
focused on the understanding of the positional and orienta-
tional orderings of the columnar phases.

The HHTT compound, first synthesized in 1984@4#, has
been thoroughly studied by x-ray diffraction@5–8#. These
measurements indicate that two intermediate columnar
phases are present between the low-temperature crystalline
K phase and the high-temperature isotropic liquid phaseI .
Upon cooling from theI phase, the system enters the disor-
dered hexagonalDhd phase atT.93 °C, where the disklike
molecules form columns, which are arranged on a triangular
lattice. TheDhd phase is characterized by intracolumnar po-
sitional and orientational short-range order and long-range
order in the triangular positions of the columns. As the tem-
perature is reduced even further, the HHTT compound enters
the ordered hexagonal columnar phase (H phase! at
T.70 °C. In this phase, the molecules within the columns
show long-range positional and orientational order~resolu-
tion limited @7#! while maintaining the triangular arrange-
ment of columns. Inside the columns, the molecules ofD3
internal symmetry are equally spaced and rotated by an angle
a of approximately 45° along the column axes@Fig. 1~a!#.
The columns can be either left handed or right handed. As
noted by Fontes@5#, these observations leave only three de-
grees of freedom for each column: the helicity of the column,
the overall orientational phase angle of the column, and the

vertical displacement of the column. The proposed@8# struc-
ture of theH phase of HHTT is characterized by the forma-
tion of aA33A3R30° superlattice@Fig. 1~b!# in the helicity
pattern and vertical positions of the molecules described as
follows. One-third of the columns are displaced by half an
intracolumnar intermolecular distance in theẑ direction
~along the stacking axis!. This is thought to be a mechanism
to relieve part of the frustration due to steric hindrance. The
displaced columns also have opposite helicity to the undis-
placed ones.

Other experiments~Rayleigh scattering@9#! on similar
compounds have served to elucidate the question of the sta-
bility @1# of the H phase. It is currently advocated that the
H phase of HHTT is characterized by quasi-long-range order
within the columns@10#. Orientational order in the low-
temperature region of theH phase has been explored by
ground-state calculations@11# and reproduces experimental
observations@5#.

A model has been proposed recently to reproduce the se-
quence of phases of the HHTT compound@12#. This simple
model Hamiltonian incorporates, to a certain extent, what
was noted by Fontes@5# and mentioned earlier. It is a gen-
eralization of a model introduced by Plumeret al. @13#. The
columns are taken as rigid helices inscribed in a two-
dimensional triangular array. The state of a column is deter-
mined by its helicityKi ~Ising-like variable! and a global
phase angleu i (XY-like variable!. The vertical displacement
of a column is then viewed as a change in the global phase
angleu i : the displacement of a column in theẑ direction by
half an intracolumnar intermolecular spacing is replaced by
the addition of the anglea/2 to u i @12#. This simplifying
approximation neglects fluctuations in positional and orien-
tational degrees of freedom of individual molecules and
mimics the change in helicity of a column, which would
result from a gradual unwinding of the helix, by a simple flip
in the variableKi . This model is thought to be valid in the
strong intracolumn coupling limit of the exact interaction
energy@11#.

To second order in the moments of the mass density of
the columns, the interaction energy of the system, coupling
XY and Ising variables on a triangular lattice, is@12#
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with Ki561 andf i53u i (0<f i<2p). ~We use primed
parameters to be consistent with earlier calculations@12# and
leave unprimed parameters for the exact interaction energy
@11#.! Note that the sign ofG8 is not relevant since changing
G8→2G8 and f i→f i1p/2 leaves ~1! invariant. This
Hamiltonian withG850 has been studied extensively in re-
lation to the fully frustratedXY models and Josephson junc-
tion arrays in a transverse magnetic field@14,15#. They re-
ported a single continuous transition from anXY and Ising
ordered phase to a totally disordered phase with exponents
n50.83(4) andb/n50.14(2) associated with the Ising or-
der parameter@16#. These results suggested the possibility of
a new universality class. We note also that a similar model
with no Ising variables@Hamiltonian ~1! with Ki5Kj50#
has been studied recently@17#.

It is also of interest to summarize briefly the intrinsic
properties of Hamiltonian~1! in the low-temperature portion
of the phase diagram@12#. ForG850, the effective exchange
parameter forKiK j brings true long-range ferromagnetic or-
der in the Ising variables, while theXY variables should
exhibit Kosterlitz-Thouless order. ForJ850, the effective
exchange parameter forKiK j is antiferromagnetic. On a tri-
angular lattice, this results in an Ising disordered state at all
temperatures@18#. On the other hand, the term cos(fi1fj)
breaks the rotation invariance permitting true long-range or-
der in theXY variables. The competition between theJ8 and
G8 terms is responsible for a richT-J8 phase diagram within
mean-field theory@12#.

In this work, we study theT-G8 phase diagram and criti-
cal behavior of Hamiltonian~1! for J851. In Sec. II the
mean-field phase diagram~following @12#! is presented to
give an indication of the type of order that may occur. In
Sec. III we present the Midgal-Kadanoff renormalization-
group study of Hamiltonian~1!. Then, the phase diagram is
calculated along with the critical exponents from preliminary
Monte Carlo simulations~Sec. IV!. Finally, general remarks
and conclusions are drawn in Sec. V.

II. MEAN-FIELD PHASE DIAGRAM

The mean-field phase diagram forG8521 has already
been published@12#. Here we use the same technique to cal-
culate theJ851 phase diagram (J851 fixes the energy
scale!. The main purpose of this calculation is to gain knowl-
edge of the order parameters describing each phase. To sixth
order in a Landau-type expansion of the free energy for a
unit cell ~see Ref.@12#!, the resulting phase diagram is given
in Fig. 2.

Despite the fact that the mean-field approximation is
crude, a lot of information can be extracted from Fig. 2. The
low-temperature phase~phase III! is characterized byXY
and Ising order @^f i&5^f j&5p/2 and (̂ K1&^K2&^K3&)
5(111)#. Phase II shows the existence ofXY order with
Ising disorder @^f i&5^f j&Þ0 and (̂ K1&^K2&^K3&)
5(000)#. Finally, the high-temperature phase~phase I! has
both XY and Ising disorder. As expected, forG850, we

FIG. 1. ~a! Schematic side view of a half period of HHTT in the
H phase. The full period is composed of eight molecules ofD3

internal symmetry symbolized by triangles. The two helicities
Ki561 are represented.~b! Structure of theH phase in the basal
plane showing the unit cell~dashed line!. Displaced columns are
represented by open dots and undisplaced columns by full dots.

FIG. 2. Mean-field phase diagram of Hamiltonian~1! for
J851. Different phases are noted by roman numerals. Phase III is
characterized byXY and Ising order, phase II byXY order with
Ising disorder, and phase I byXY and Ising disorder. Helicity and
angular configurations are represented and explained in the text.
Solid and dashed lines represent first- and second-order phase tran-
sitions, respectively. The square denotes the location of critical end
point.
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have a direct transition from phase III to phase I@14#, but the
order of the transition is wrong~see below! within the mean-
field approximation. TheG8 term is responsible for the sta-
bilization of phase II withXY order and Ising disorder. In
fact, this phase II appears only forG8*0.25.Note that italic
letters (I , Dhd , andH) refer to phases reported experimen-
tally in HHTT and roman numerals~I, II, and III! denote the
phases in the present study.

III. MIGDAL-KADANOFF RENOMALIZATION-GROUP
APPROACH

In order to go beyond the Landau-type mean-field theory
of Sec. II and include fluctuations of the order parameters,
we apply the Migdal-Kadanoff renormalization-group
scheme to a wider class of Hamiltonians

bHRG52
bJ8

2 (̂
i j &

~11KiK j !cos~f i2f j !

2
bG8

2 (̂
i j &

~12KiK j !cos~f i1f j !2
bL8

2 (̂
i j &

KiK j ,

~2!

of which Hamiltonian~1! is the L850 limiting case. The
term2(bL8/2)(^ i j &KiK j is added to~1! since its form is not
preserved under renormalization~the renormalization pro-
cess createsKiK j couplings!. The Migdal-Kadanoff ap-
proach has been applied to Hamiltonian~2! with G850 by a
number of authors@14,19#. Those calculations were carried
out on a square lattice with rescaling factorsb52 and
b53 in order to detect an antiferromagnetic Ising order at
large and negativeL8. The addition of theG8 term on a
triangular lattice, representing an intrinsic Ising frustration, is
responsible for the apparition of a new phase characterized
by XY order with Ising disorder and should be given special
attention. For these reasons, we will calculate the phase dia-
gram of ~2!, for G8,J8, using the Migdal-Kadanoff ap-
proximation implemented by Leeet al. @14#, directly on the
triangular lattice with a rescaling factorb52.

To apply the Migdal-Kadanoff transformation, bonds are
moved in such a way that half the sites~to be integrated out!
are linked to only two neighbors~in one spatial direction!.
This bond moving leads to a one-dimensional decimation to
obtain the effective exchange parameters between remaining
sites. In terms of new variablesu(u)5exp@U(u)2U(0)#,
v(u)5exp@V(u)2V(0)#, and z5exp@U(0)2V(0)1bL8# with
U(u)5bJ8cos(u) andV(u)5bG8cos(u), the recursion rela-
tions are

@u8~f12f2!#
25

z4A1~f12f2!1z24A2~f12f2!

z4A1~0!1z24A2~0!
,

@v8~f11f2!#
25

A3~f11f2!1A4~f11f2!

A3~0!1A4~0!
,

@z8#25
z4A1~0!z24A2~0!

A3~0!1A4~0!
, ~3!

where

A1~u!5E
0

2pdf̄

2p
u4~u2f̄ !u4~u!,

A2~u!5E
0

2pdf̄

2p
v4~u2f̄ !v4~u!,

A3~u!5E
0

2pdf̄

2p
u4~u2f̄ !v4~u!,

A4~u!5E
0

2pdf̄

2p
v4~u2f̄ !u4~u!. ~4!

The primed variables in~3! are the renormalized exchange
parameters~after decimation! and should not be confused
with J8, G8, andL8, which are the coupling constants of the
original Hamiltonian~2!. In deriving ~3!, the only assump-
tion on the potentialsU(u) andV(u), during the renormal-
ization process, is their periodicities.

The phase diagram obtained by numerically iterating~3!
is presented in Fig. 3 forJ851 andL850. It is comprised of
four phases: I, a high-temperature disordered phase; II, a
phase with XY order and Ising disorder; III, a low-
temperature fully ordered phase; and IV, a phase with Ising
order andXY disorder. The low-temperature phase III is
characterized byXY and Ising order @bJ8→(bJ8)!,
bG8→(bG8)! with (bJ8)!5(bG8)!, andbL8→`#. The
Hamiltonian withbG850 @14# is a stable limit under the
renormalization-group transformations~3!, as well as the
bJ850 limit. Thus, in the bG850 case, we get
bJ8→(bJ8)!, bG8→0, and bL8→`. The intermediate
temperature phase II showsXY order with Ising disorder
@bJ8→(bJ8)!, bG8→(bG8)! with (bJ8)!5(bG8)!, and
bL8→0#. ThePF line ~Fig. 3! corresponds to an Ising-like
transition within this approximation. In fact, putting
(bJ8)!5(bG8)! in ~3! and ~4!, we findAi

!(0)5Aj
!(0) and

@z8#25
z41z24

2
, ~5!

FIG. 3. Topological features of the phase diagram of Hamil-
tonian ~2! within the Migdal-Kadanoff renormalization scheme for
J851 andL850. Phases are labeled as in Fig. 2, with phase IV
representingXY disorder with Ising order. All transitions are con-
tinuous ~dashed lines!. The structure at pointP cannot be deter-
mined accurately; the two possibilities are represented by the insets
A andB.
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which is the Migdal-Kadanoff recursion relation for the spin-
1/2 Ising model withb52. TheCPE line is relatively diffi-
cult to locate due to the high-temperature drift suffered by
the Migdal-Kadanoff approximation. The other intermediate-
temperature phase IV is characterized by Ising order with
XY disorder (bJ8→0, bG8→0, andbL8→`). This phase
is not seen in the mean-field approach and we argue that it is
an artifact of the renormalization-group scheme. ThePD
line cannot be located precisely since the Migdal-Kadanoff
approach does not reproduce a line of true fixed points for
theXY model. Nevertheless, this scheme generates a line of
almost fixed points that gives a hint ofXY-like ordered
phases. Finally, because of these shortcomings of the
Migdal-Kadanoff approximation, the exact topology of the
bifurcation pointP ~insetsA and B of Fig. 3! cannot be
resolved.

As can be observed in Fig. 3, every phase transition is
second order. The technique used to arrive at this conclusion
is a generalization of the procedure known to reproduce the

first-order transition of theq-state Potts model forq.4 @20#.
Our specific implementation is due to Leeet al. @14#. The
idea is to have vacancies to prevent overestimation of the
local order in the system.

The lattice-gas version of~2! reads

bHLG52
bJ8

2 (̂
i j &

~11KiK j !t i t jcos~f i2f j !

2
bG8

2 (̂
i j &

~12KiK j !t i t jcos~f i1f j !

2
b

2(̂i j & ~L8KiK j t i t j1K8t i t j !1D(
i
t i , ~6!

where the vacancy variable ist i50,1 andD is the fugacity.
Applying the same renormalization scheme to~6!, with
w5exp@K81V(0)1U(0)# and y5exp(D), we get the recur-
sion relations

@u8~f12f2!#
25

21@z4A1~f12f2!1z24A2~f12f2!#w
4y22/3

21@z4A1~0!1z24A2~0!#w4y22/3 ,

@v8~f11f2!#
25

21@A3~f11f2!1A4~f11f2!#w
4y22/3

21@A3~0!1A4~0!#w4y22/3 ,

@w8#25
w8y8/3$21@z4A1~0!1z24A2~0!#w4y22/3%$21@A3~0!1A4~0!#w4y22/3%

2w22y2/31B1z
21B2z

22 ,

y85
w212y6

2w22y2/31B1z
21B2z

22 ,

@z8#25
21@z4A1~0!1z24A2~0!#w4y22/3

21@A3~0!1A4~0!#w4y22/3 ~7!

with

B15E
0

2pdf̄

2p
u4~f̄ !,

B25E
0

2pdf̄

2p
v4~f̄ !. ~8!

TheDt i term has been distributed equally between bonds at
site i before moving them. This is necessary to preserve the
site density at each step of the renormalization process. The
line of discontinuity fixed points, signaling the first-order
transition, appears forw,y,z→` @14,21#. In this limiting
case, an almost fixed line appears when

y8@w8#22@z8#25
y14/3w212z212

A1
!~0!2

. ~9!

The criterion to have a discontinuity fixed point~correspond-
ing to a first-order transition! states that eigenvaluel, for

small deviations from the fixed point along the unstable di-
rection, must be given byl5bd (d is the dimensionality of
the lattice! @21#. We can see, from~9!, that this is certainly
not the case. Therefore, within the Midgal-Kadanoff approxi-
mation and using the procedure of Nienhuis and Nauenberg
@21#, the transitions in Fig. 3 are continuous.

It is of interest to compare our results with those of Lee
et al. @14# in the limit of G850 and L850. Within the
Migdal-Kadanoff approximation, both calculations give the
sequence of phases III↔ IV ↔ I with second-order transi-
tions between them.

IV. MONTE CARLO SIMULATIONS

In this section we report the results of a preliminary
Monte Carlo study of the phase diagram and critical behavior
of the model~1!. We used the traditional Monte Carlo tech-
nique to locate the phase boundaries and to verify the overall
temperature behavior of the thermodynamic quantities, espe-
cially the order parameters and susceptibilities. Then we
used the Monte Carlo histogram technique to locate accu-
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rately the transition temperatures and to estimate critical ex-
ponents by finite-size scaling analysis. Both Monte Carlo
approaches used a sequential version of the Metropolis algo-
rithm to test separately the Ising andXY trial configurations.
A Monte Carlo step~MCS! is as follows. For each lattice
site, the Metropolis test is applied to the Ising variable
(Ki) and then to theXY variable (f i).

A. Monte Carlo phase diagram

Figure 4 shows the resulting Monte Carlo phase diagram.
It has been obtained for aL3L lattice (L536) with 105

MCS for thermalization and 43105 MCS for averaging. We
use the same convention as in the mean-field~Sec. II! and
renormalization-group~Sec. III! phase diagrams to name the
phases~roman numerals!. To describe the order present in
each phase, we define the order parameters

PK5U 1L2(i KiU, ~10!

PM j5U 3L2(iPSj SW iU, ~11!

where Sj denotes one of the three sublattices and
SW i5„cos(fi),sin(fi)… are pseudospin variables. The three
XY-like PM j order parameters are very sensitive to sublattice
switching. We therefore performed the simulations with the
XY order parameter

PM5max
j

~PM j !, ~12!

which has a smoother temperature dependence thanPM j . In
order to understand each phase in Fig. 4, we present the
order parametersPK and PM as functions of temperature
@Fig. 5~a!#. Phase III (PM and PKÞ0) is the phase with
XY and Ising order. The intermediate phase II keeps the
XY order (PMÞ0) but loses the Ising order (PK50). At
high temperatures, the isotropic phase I hasXY and Ising
disorder (PM andPK50). A behavior similar to that of the
XY order parameterPM and its susceptibilityxM @Fig. 5~b!#

in the phase II has been reported for the six-state clock
model @23# and is characteristic of systems with intrinsic
disorder.

The general features of the Monte Carlo phase diagram
can be understood easily. ForG850, there is a single tran-
sition from phase III directly to phase I@15#. This can be
seen by noting that the mechanism required to have a tran-
sition in the Ising variables is the appearance of domain
walls. ForG850, at such a domain wall, theXY variables
are decoupled since (11KiK j )50. In this case, Ising disor-
der inducesXY disorder. On the other hand, forG8@J8,
there should be no Ising order in the system~Sec. I!. This is
seen in Fig. 4: thePQ1 line of transitions goes toward
T50 asG8 gets larger. Ultimately, forG8→`, there is only
one transition from a phase withXY order and Ising disorder
to the phase I.

B. Finite-size scaling

The rest of this section is concerned with the finite-size
scaling at the four points (M , N, Q1, and Q2) shown in Fig.

FIG. 4. Monte Carlo phase diagram, withJ851, for a system
size of 362 sites. Different phases are represented as in Fig. 2. Full
circles denote the transition temperatures for a givenG8. All tran-
sitions are continuous. Full squares and capital letters refer to the
transitions where finite-size scaling was performed.

FIG. 5. ~a! Temperature dependence of the Ising (PK) andXY
(PM) order parameters forG850.4. ~b! Temperature dependence
of the susceptibilities associated withPK andPM .
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4. The goal here is to extract only rough estimates of the
critical exponents. We are also interested in detecting the
order of the transitions. Finite-size scaling using the Monte
Carlo histogram method has been recently reviewed by
Plumeret al. @24#. In our case, it involves the specific heat
(Cv), the energy cumulant (Ue), the order parameters (PM
andPK), their susceptibilities (xM andxK), their logarithmic
derivatives (VM andVK) @25#, and their fourth-order cumu-
lants (UM andUK) @26#. We performed a simulation for each
lattice sizeL554,63,72,81,90, and 108 at our best estimate
of the transition temperatureT0 from the results for the order
parameters, as in Fig. 5. Typically, (223)3105 MCS were
used for thermalization and (6210)3105 MCS were kept
for averaging. Since we did only one simulation per lattice
sizes atT0 , the errors bars on the exponents are likely quite
large ~typically 10–15 %!.

Let us focus on the transitionM , at G850, where
T052.175 in Fig. 4, to explain the details of the scaling
analysis used here and because these results will be com-
pared with data published earlier@15#. The well-studied fully
frustratedXY model is also closely connected with Hamil-
tonian ~1! with G850 @22#.

To determine the critical temperatureTc , we used the
scaling withL21 ~which assumesn.1) of the positions of
the extrema of the susceptibilities (xM and xK) and of the
logarithmic derivatives (VM andVK). In the special case of
G850, the cumulant-crossing method~usingUK) was also
applied to get a better estimate ofTc @25#. The results are
summarized in Fig. 6. Both techniques give roughly the same
Tc . The scaling of the extrema ofxM and VM gives
Tc2M52.1631(10), while the scaling forxK andVK gives
Tc2K52.1635(7). Using the cumulant crossing we get
Tc2CC52.1644(10). From our data we can conclude that,
given the errors on the critical temperatures, the transitions
involving theXY-type and Ising-type order parameters occur

at the same temperature, as expected@22,15#. The precision
is quite good, especially when it is compared to the estima-
tion of Tc in other systems@28,29#. The value ofTc is re-
quired to findb/n becausePK;L2b/n at Tc . The other ex-
ponents can also be found by a scaling atTc , but in our case
the scaling of the extrema of the thermodynamical quantities
proved to be more precise.

The size dependence of the minimum of the energy cu-
mulant (Ue) is given in Fig. 7 for the four transitions. The
fact thatUe→2/3 whenL→` indicates that the four transi-
tions are continuous@30#. This is in agreement with our
renormalization-group results~Sec. III! and with the results
of Granatoet al. @15# in the case ofG850.

Figures 8 and 9 show the scaling that leads to the critical
exponentsnK and bK /nK associated with the Ising order
parameterPK . In the case ofbK /nK , we used the critical
temperature given by the scaling of the extrema ofxK ,
VK , xM , andVM . The rough estimates arenK51.1(1) and
bK /nK50.18(1). Theerrors on the exponents are estimated
only by the goodness of the fit on the plots and do not ac-
count for the~unknown! statistical error for each run. From

FIG. 6. Estimation ofTc for G850. The solid lines show the
scaling of the extrema ofxK , VK , xM , and VM vs L21. The
dashed lines represents the scaling ofTc with respect to
ln21(L8/L) using the cumulant-crossing method.

FIG. 7. Scaling of the minimum of the energy cumulant for the
four transitions considered. Solid lines are guides to the eye.

FIG. 8. Scaling of the logarithmic derivative ofPK . The solid
line through the five largest lattice sizes gives the exponent
nK51.1(1). Thedotted line is for the scaling using the two small-
est lattice sizes~see the text!.
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the relatively large scatter of the points on those figures, it
appears that there are large statistical fluctuations. Our esti-
mates of the exponents are in apparent disagreement with
those of Granatoet al. @15#. Their study involved very long
Monte Carlo runs, but on relatively small lattice sizes
(L<40). Scaling with only our three smallest lattice sizes
(L554, 63, and 72) givesnK.0.74 andbK /nK.0.10,
which are closer to their results. It is clear that there are
significant finite-size effects. Figure 10 presents the scaling
of xKmax with L, giving gK /nK51.55(16).

These exponents (nK , bK /nK , andgK /nK) are not too
different from those of the two-dimensional~2D! Ising uni-
versality class (nK51, bK /nK50.125, andgK /nK51.75).
In this case, the specific heat diverges like the logarithm of
L. Figure 11 showsCvmax against lnL. The straight line fit
for L>63 is an indication that, contrary to what was sus-
pected earlier@15#, the transition atG850 may be of the 2D
Ising universality class. Such logarithmic divergence of
Cvmax for the infinite lattice is also reported for the fully
frustratedXY model @27#. Extensive Monte Carlo simula-

tions involving large lattice sizes and better statistics are re-
quired to verify this conclusion.

Table I lists the exponents for the four transitions consid-
ered, along withT0 andTc . The missing values for the ex-
ponents at pointsQ1 and Q2 reflect the fact that for
G850.4, the transitions involve only Ising andXY order,
respectively. The errors on the exponents are estimated only
by the goodness of the fit. The exponenta50 (log) means
that Cvmax; ln(L), as in the 2D Ising model. We note that
gM /nM atG850.4 was estimated atTc , becausexM shows
only a broad maximum across the phase II and not a sharp
peak@see Fig. 5~b!#. It was impossible to get an estimate of
bK /nK for transitionQ1 , the data being too erratic.

Under the assumption that forG850.0 ~and G850.1)
there is only a single transition, there can be only one char-
acteristic length that diverges. The exponentsnK andnM are
related to the divergence atTc of the Ising-type and
XY-type correlation lengths, respectively. ThusnK has to be
equal tonM , if there is a direct transition from phase III to
phase I. This seems to be the case given the accuracy of our
results. As noted in Ref.@14#, however, the Ising andXY
transitions may be decoupled ifn51. This question has also
been addressed in relation to the antiferromagneticXY
model on a stacked triangular lattice@28#.

Except for the values ofbK /nK at pointsN andQ1 , from
the data given in Table I and Fig. 7, we tentatively suggest
that the transitions along theMPQ1 line are continuous and
might belong to the 2D Ising universality class. This in
agreement with our renormalization-group treatment of
model~1! along thePF line of Fig. 3 in Sec. III. As for the
other exponents,gK /nK andgM /nM seem to be stable along
theMPQ1 line and may also suggest the 2D Ising univer-
sality class. However, the data forbK /nK andbM /nM are
very noisy ~see Fig. 9! and no definite conclusions can be
drawn.

The last transition studied (Q2) is characterized by the
loss of XY order while the Ising variables are disordered.
The specific heat scaling shows no dependence on lattice
size, indicating thata.0. A similar behavior has been ob-
served in frustrated antiferromagneticXY models in a mag-

FIG. 9. Scaling of the order parameterPK at Tc52.1635(7).
The solid line through the five largest lattice sizes gives the expo-
nentbK /nK50.18(1). Thedotted line is for the scaling using the
three smallest lattice sizes~see the text!.

FIG. 10. Scaling of the susceptibility associated withPK . The
solid line through the five largest lattice sizes gives the exponent
gK /nK51.55(16).

FIG. 11. Specific heat as a function of lattice size ln(L).
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netic field @27#. In this case the exponents were reported to
be nonuniversal~varying continuously with field strength!.
This might be the case here, but several points along the
PQ2 would have to be done~with much better statistics! in
order to follow the evolution of the critical exponents.

V. CONCLUSION

We have presented the phase diagram of a model for co-
lumnar phases of HHTT in the limit of weakly interacting
columns. Its Hamiltonian couplesXY and Ising variables.
We used the mean-field approximation, the Migdal-Kadanoff
renormalization-group scheme, and Monte Carlo simula-
tions. These techniques give qualitatively the same topology
for the phase diagram, showing a phase withXY order and
Ising disorder. Renormalization-group results and Monte
Carlo simulations suggest that all the transitions are continu-
ous. From the renormalization-group analysis, we found that
the transition from phase III to phase II should be of the Ising
type ~Fig. 3!. Preliminary Monte Carlo simulations on large
lattice sizes are not inconsistent with this result and might

suggest that the transition from phase III directly to phase I is
also of the 2D Ising universality class.~We emphasize, how-
ever, that our statistical errors appear to be quite large.! This
latter result may be in disagreement with the suggestion by
Granatoet al. @15# of a new universality class.

Note added. After the original submission of this work we
learned of Monte Carlo transfer-matrix calculations@31# that
complement the works of Refs.@14–16#.
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@13# M.L. Plumer, A. Caillé, and O. Heinonen, Phys. Rev. B47,

8479 ~1993!.
@14# Jooyoung Lee, E. Granato, and J.M. Kosterlitz, Phys. Rev. B

44, 4819~1991!, and references therein.
@15# E. Granato, J.M. Kosterlitz, Jooyoung Lee, and M.P. Nightin-

gale, Phys. Rev. Lett.66, 1090~1991!.
@16# Jooyoung Lee, J.M. Kosterlitz, and E. Granato, Phys. Rev. B

43, 11 531~1991!.
@17# T. Horiguchi, D. Loison, H.T. Diep, and O. Nagai, Physica A

206, 508 ~1994!.
@18# G.H. Wannier, Phys. Rev.79, 357 ~1950!.
@19# Mai Suan Li and Marek Cieplak, Phys. Rev. B50, 955~1994!.

TABLE I. Summary of the critical exponents for the four transitions considered. The errors are estimated
by the robustness of the fit of the data and can be larger due to statistical fluctuations. The transitionsQ1 and
Q2 involve XY and Ising orders, respectively, and only those exponents are given. Question marks indicate
large scatter in the data.

Exponent G850.0 (M ) G850.1 (N) G850.4 (Q1) G850.4 (Q2)

T0 2.175 2.165 1.745 2.37
Tc 2.1635~7! 2.148~2! 1.737~3! 2.376~5!

nK 1.1~1! 1.18~16! 1.06~12!
bK /nK 0.18~1! 0.57~1!?
gK /nK 1.55~16! 1.58~16! 1.64~16!
nM 0.90~8! 1.19~13! 1.09~7!

bM /nM 0.44~5!? 0.56~10!? 0.58~14!?
gM /nM 1.46~6! 1.46~18! 1.10~14!
a 0 ~log! 0 ~log! 0 ~log! 0

54 557THERMAL PHASE DIAGRAM OF A MODEL HAMILTONIAN FOR . . .



@20# B. Nienhuis, A.N. Berker, E.K. Riedel, and M. Schick, Phys.
Rev. Lett.43, 737 ~1979!.

@21# B. Nienhuis and M. Nauenberg, Phys. Rev. Lett.35, 477
~1975!.

@22# M. Yosefin and E. Domany, Phys. Rev. B32, 1778~1985!.
@23# S. Fujiki and T. Horiguchi, J. Phys. Soc. Jpn.64, 1293~1995!.
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