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Thermal phase diagram of a model Hamiltonian for columnar phases of liquid crystals
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We present the phase diagram and critical properties of a codptetsing model on a triangular lattice
using the mean-field approximation, the Migdal-Kadanoff renormalization-group scheme, and Monte Carlo
simulations. The topology of the phase diagram is similar for the three techniques, with the appearance of a
phase withXY order and Ising disorder. Critical exponents estimated from preliminary finite-size scaling are
not inconsistent with Ising universality. This model is relevant to the columnar phases of discotic liquid
crystals [such as hexaexylthigtriphenyleng in the limit of weak intercolumn coupling[S1063-
651X(96)03006-1

PACS numbes): 61.30.Cz, 64.70.Md, 64.60.Ak, 75.10.Hk

I. INTRODUCTION vertical displacement of the column. The propof&dstruc-
Columnar phases of discotic liquid crystals are becomin fure of theH phase of HHTT is characterized by the forma-
P 9 Y "Qion of a+/3x /3R30° superlatticéFig. 1(b)] in the helicity

a field of Increasing experl_mental and theoretical activity Inpattern and vertical positions of the molecules described as
areas traditional to magnetic systefmodulated phases, sta- follows. One-third of the columns are displaced by half an

bility, critical phenomena, ete[1,2]. Particular attention has yacolumnar intermolecular distance in the direction

been given to hexaexylthiotriphenylene (HHTT) com-  (50ng the stacking axisThis is thought to be a mechanism
pounds since they were found to be excellent photocondugy, yelieve part of the frustration due to steric hindrance. The
tors [3]. The photoinduced charge carrier mobility is four gisplaced columns also have opposite helicity to the undis-
orders of magnitude higher than organic materials suitabl@|aced ones.
for electronic devices and opens the way to improved con- QOther experimentgRayleigh scatterind9]) on similar
ventional and novel applications. At present, our efforts are&;zompounds have served to elucidate the question of the sta-
focused on the understanding of the positional and orientapility [1] of the H phase. It is currently advocated that the
tional orderings of the columnar phases. H phase of HHTT is characterized by quasi-long-range order
The HHTT compound, first synthesized in 1984, has  within the columns[10]. Orientational order in the low-
been thoroughly studied by x-ray diffractid5—8|]. These temperature region of thél phase has been explored by
measurements indicate that two intermediate columnaground-state calculationfid1] and reproduces experimental
phases are present between the low-temperature crystallig®servationg5].
K phase and the high-temperature isotropic liquid pHase A model has been proposed recently to reproduce the se-
Upon cooling from thd phase, the system enters the disor-quence of phases of the HHTT compoyi@]. This simple
dered hexagondD4 phase alf =93 °C, where the disklike model Hamiltonian incorporates, to a certain extent, what
molecules form columns, which are arranged on a triangulafas noted by Fontels] and mentioned earlier. It is a gen-
lattice. TheDy 4 phase is characterized by intracolumnar po-eralization of a model introduced by Plumetral.[13]. The
sitional and orientational short-range order and long-rangeolumns are taken as rigid helices inscribed in a two-
order in the triangular positions of the columns. As the tem-dimensional triangular array. The state of a column is deter-
perature is reduced even further, the HHTT compound entengiined by its helicityK; (Ising-like variabl¢ and a global
the ordered hexagonal columnar phasel (phas¢ at phase angl#; (XY-like variable. The vertical displacement
T=70 °C. In this phase, the molecules within the columnsof a column is then viewed as a change in the global phase
show long-range positional and orientational or@@solu-  angled; : the displacement of a column in tiedirection by
tion limited [7]) while maintaining the triangular arrange- half an intracolumnar intermolecular spacing is replaced by
ment of columns. Inside the columns, the molecule®Dgf the addition of the anglex/2 to 6; [12]. This simplifying
internal symmetry are equally spaced and rotated by an anglgproximation neglects fluctuations in positional and orien-
« of approximately 45° along the column axgsg. 1(@)].  tational degrees of freedom of individual molecules and
The columns can be either left handed or right handed. Asnimics the change in helicity of a column, which would
noted by Fonte$5], these observations leave only three de-result from a gradual unwinding of the helix, by a simple flip
grees of freedom for each column: the helicity of the column,n the variableK;. This model is thought to be valid in the
the overall orientational phase angle of the column, and thetrong intracolumn coupling limit of the exact interaction
energy[11].
To second order in the moments of the mass density of
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FIG. 2. Mean-field phase diagram of Hamiltonidfh) for
J' = 1. Different phases are noted by roman numerals. Phase Il is
characterized byY and Ising order, phase Il bXY order with
Ising disorder, and phase | B¥Y and Ising disorder. Helicity and
angular configurations are represented and explained in the text.
Solid and dashed lines represent first- and second-order phase tran-
sitions, respectively. The square denotes the location of critical end
point.

It is also of interest to summarize briefly the intrinsic
properties of Hamiltoniaril) in the low-temperature portion
of the phase diagrafii2]. ForG’ =0, the effective exchange
parameter foK;K; brings true long-range ferromagnetic or-
der in the Ising variables, while thKY variables should
exhibit Kosterlitz-Thouless order. Fat' =0, the effective
exchange parameter f&;K; is antiferromagnetic. On a tri-
angular lattice, this results in an Ising disordered state at all
temperature$18]. On the other hand, the term cést ¢))
breaks the rotation invariance permitting true long-range or-
der in theXY variables. The competition between tifeand
G’ terms is responsible for a rich-J’ phase diagram within

FIG. 1. (a) Schematic side view of a half period of HHTT in the mean-field theory12].

H phase. The full period is composed of eight moleculeDgf In this work, we study th@ -G’ phase diagram and criti-
internal symmetry symbolized by triangles. The two helicities cal behavior of Hamiltonian(1) for J’=1. In Sec. Il the
Ki=*1 are representedb) Structure of theH phase in the basal mean-field phase diagraitfiollowing [12]) is presented to
plane showing the unit celdashed ling Displaced columns are give an indication of the type of order that may occur. In
represented by open dots and undisplaced columns by full dots. Sec. IIl we present the Midgal-Kadanoff renormalization-
group study of Hamiltoniargl). Then, the phase diagram is

3’ calculated along with the critical exponents from preliminary
H=— 72 (1+KiK;j)cog ¢ — o) Monte Carlo simulationgSec. I\V). Finally, general remarks
i and conclusions are drawn in Sec. V.
T2 (1=-KiKj)cos ¢i+ ¢;), (1) Il. MEAN-FIELD PHASE DIAGRAM

The mean-field phase diagram f&'=—1 has already
with Kij=+1 and ¢;=36; (0<¢;<2m). (We use primed been published12]. Here we use the same technique to cal-
parameters to be consistent with earlier calculatjdi® and culate theJ'=1 phase diagramJ(=1 fixes the energy
leave unprimed parameters for the exact interaction energscalg. The main purpose of this calculation is to gain knowl-
[11].) Note that the sign o&' is not relevant since changing edge of the order parameters describing each phase. To sixth
G'——G’' and ¢;— ¢;+m/2 leaves (1) invariant. This order in a Landau-type expansion of the free energy for a
Hamiltonian withG’ =0 has been studied extensively in re- unit cell (see Ref[12]), the resulting phase diagram is given
lation to the fully frustratedXY models and Josephson junc- in Fig. 2.
tion arrays in a transverse magnetic fi¢ldt,15. They re- Despite the fact that the mean-field approximation is
ported a single continuous transition from XY and Ising  crude, a lot of information can be extracted from Fig. 2. The
ordered phase to a totally disordered phase with exponentew-temperature phaséhase 1l) is characterized byXY
v=0.83(4) andB/v=0.14(2) associated with the Ising or- and Ising order[(¢;)=(¢;)=m/2 and (K1)(K,)(K3))
der parametelr16]. These results suggested the possibility of=(+ + +)]. Phase Il shows the existenceX¥ order with
a new universality class. We note also that a similar modelsing disorder [(¢;)=(#;)#0 and (K ){K){Kz))
with no Ising variabledHamiltonian (1) with K;=K;=0] =(000)]. Finally, the high-temperature phagehase ) has
has been studied recenfly7]. both XY and Ising disorder. As expected, f@' =0, we
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have a direct transition from phase Il to phagé4], but the 2
order of the transition is wrongsee belowwithin the mean- C
field approximation. Thé&' term is responsible for the sta-
bilization of phase Il withXY order and Ising disorder. In ~ 1
fact, this phase Il appears only fG&' =0.25.Note that italic 1 N
letters (, D4, andH) refer to phases reported experimen-
tally in HHTT and roman numerald, Il, and Ill) denote the
phases in the present study.

feEd

Ill. MIGDAL-KADANOFF RENOMALIZATION-GROUP 0
APPROACH

G 05
In order to go beyond the Landau-type mean-field theory FIG. 3. Topological features of the phase diagram of Hamil-

of Sec. Il and include fluctuations of the order parameterstonian(2) within the Migdal-Kadanoff renormalization scheme for

we apply the Mlgdal_Kadanoff renorma“za“on_group J'=1 andL’=0. Phases are labeled as in F|g 2, with phase v

scheme to a wider class of Hamiltonians

J/
BHRG=—BT<% (1+KiK))cos ¢~ ;)
G’ L’
- %(Ej) (1-KiKj)cod + ) — %(2” KiKj.

)

of which Hamiltonian(1) is the L'=0 limiting case. The
term —(BL'/2)Z;;,KiK; is added td1) since its form is not
preserved under renormalizatidthe renormalization pro-
cess createX;K; couplings. The Migdal-Kadanoff ap-
proach has been applied to Hamiltoni@y with G'=0 by a
number of author$14,19. Those calculations were carried
out on a square lattice with rescaling factdris=2 and

b=3 in order to detect an antiferromagnetic Ising order at

large and negative’. The addition of theG’ term on a

representingKY disorder with Ising order. All transitions are con-
tinuous (dashed lings The structure at poinP cannot be deter-

mined accurately; the two possibilities are represented by the insets

A andB.

277d_ _
A= | £u4(0—¢)u4(0),

Zﬂd; J—
A0)= | vt (0= )0%0),

Zde

As(O)= | 5 ut(6=d)u*(o),

2md J—
A4(0)=f0 %v“(a—@u“(a).

4

triangular lattice, representing an intrinsic Ising frustration, is

responsible for the apparition of a new phase characterizefihe primed variables iti3) are the renormalized exchange
by XY order with Ising disorder and should be given specialpgrametergafter decimation and should not be confused
attention. For these reasons, we will calculate the phase digyith 3, G', andL’, which are the coupling constants of the

gram of (2), for G'<J’, using the Migdal-Kadanoff ap-
proximation implemented by Leet al. [14], directly on the
triangular lattice with a rescaling factbr=2.

To apply the Migdal-Kadanoff transformation, bonds are

moved in such a way that half the sitgs be integrated out
are linked to only two neighborén one spatial direction

original Hamiltonian(2). In deriving (3), the only assump-
tion on the potential&) (8) andV(6), during the renormal-
ization process, is their periodicities.

The phase diagram obtained by numerically iteratidg
is presented in Fig. 3 fal’ =1 andL’ =0. It is comprised of

four phases: |, a high-temperature disordered phase; Il, a

This bond moving leads to a one-dimensional decimation thase with XY order and Ising disorder; I, a low-

sites. In terms of new variables(#)=exgU(6)—U(0)],
v(6)=exdV(6)—V(0)], and z=exd U(0)—V(0)+BL'] with
U(6)=pBJ'cos() andV(0)=BG’cos(@), the recursion rela-
tions are

Z°A1(p1— po) + 7 *Ax(p1— )
Z*A1(0)+z *A,(0) ’

[u'(d1— ¢2)1°=

Ag( 1t d2) AL D1t b2)
A3(0)+A,(0) '

[0/ (1+ ¢2)]?=

[Z,]zzz“Al(O)z“‘Az(O)
A3(0)+A,0)

)

where

order andXY disorder. The low-temperature phase Il is
characterized byXY and Ising order[BJ —(BJ')*",
BG'—(BG’')* with (8J')*=(BG")*, and BL' —]. The
Hamiltonian with 8G'=0 [14] is a stable limit under the
renormalization-group transformatior(8), as well as the
BJ =0 limit. Thus, in the BG’'=0 case, we get
BI —(BJ)*, BG'—0, and BL'—x. The intermediate
temperature phase Il shows§Y order with Ising disorder
[BI' —(BJ')", BG'—(BG")" with (8J")*=(BG")", and
BL'—0]. The PF line (Fig. 3 corresponds to an Ising-like
transition within this approximation. In fact, putting
(BI')*=(BG")* in (3) and(4), we find A7 (0)=A;(0) and

7zt

(2 P=———,

®
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which is the Migdal-Kadanoff recursion relation for the spin- first-order transition of the-state Potts model fag>4 [20].

1/2 Ising model withb=2. TheCPE line is relatively diffi- ~ Our specific implementation is due to Le¢al. [14]. The

cult to locate due to the high-temperature drift suffered byidea is to have vacancies to prevent overestimation of the
the Migdal-Kadanoff approximation. The other intermediate-local order in the system.

temperature phase IV is characterized by Ising order with The lattice-gas version d) reads

XY disorder 8J'—0, BG'—0, andBL' —). This phase

is not seen in the mean-field approach and we argue that it is J

an artifact of the renormalization-group scheme. B BHie=~ T% (1+KiKptiticos ¢ = ¢y)

line cannot be located precisely since the Migdal-Kadanoff G

approach does not reproduce a line of true fixed points for

the XY model. Nevertheless, this scheme generates a line of T% (I=KiKjtiticod i+ )

almost fixed points that gives a hint ofY-like ordered

phases. Finally, because of these shortcomings of the _EZ (L’K-K-t-t-+K’t-t-)+AE t (6)
Migdal-Kadanoff approximation, the exact topology of the 275 B H S
bifurcation pointP (insetsA and B of Fig. 3) cannot be

resolved. where the vacancy variable is=0,1 andA is the fugacity.

As can be observed in Fig. 3, every phase transition i#\pplying the same renormalization scheme @), with
second order. The technique used to arrive at this conclusion=exd K’ +V(0)+U(0)] and y=exp@), we get the recur-
is a generalization of the procedure known to reproduce thsion relations

2+[Z*°A1(p1— do) + 2 *Ax( 1 — o) Twly %3

[u’(¢l_¢2)]2: 2+[Z4A1(0)+Z—4A2(0)]W4y—2/3 ’
, 2+ [Ag( it o)+ AL b1t pp) Wy 2B
[U (¢l+¢2)]2_ 2+[A3(0)+A4(0)]W4y72/3 ’
Lo WOYBR(24[Z%A,(0) + 2 *A,(0) Wiy Z3H{2+ [ Ag(0) +A4(0) Jwly 23,
[w']"= 2w %y?P+B,z°+ B,z ? '
W712y6
y/

~ 2w 2y?P1 B, 7%+ B,z 2

_2+4[Z°A4(0)+Z “Ay(0)]wly

z'? — 7
e A0+ A0 iy 2 @
|
with small deviations from the fixed point along the unstable di-
_ rection, must be given by=b{ (d is the dimensionality of
_ 2md o the lattice [21]. We can see, fron9), that this is certainly
B1= B o7l (¢), not the case. Therefore, within the Midgal-Kadanoff approxi-

mation and using the procedure of Nienhuis and Nauenberg
dez o [21], the transitions in Fig. 3 are continuous.
Bz:f —v4(¢). (8) It is of interest to compare our results with those of Lee
2 etal. [14] in the limit of G’'=0 and L’'=0. Within the
Migdal-Kadanoff approximation, both calculations give the

sitei before moving them. This is necessary to preserve thgons between them.

site density at each step of the renormalization process. The
line of discontinuity fixed points, signaling the first-order

transition, appears fow,y,z—o [14,21]. In this limiting IV. MONTE CARLO SIMULATIONS

case, an almost fixed line appears when In this section we report the results of a preliminary
1413y~ 12,12 Monte Carlo study of the phase dia_\gram and critical behavior

y’[W’]_Z[Z']2=y Z 0 of the model(1). We used the traditional Monte Carlo tech-
A’l*(O)2 nigue to locate the phase boundaries and to verify the overall

temperature behavior of the thermodynamic quantities, espe-
The criterion to have a discontinuity fixed poieorrespond- cially the order parameters and susceptibilities. Then we
ing to a first-order transitionstates that eigenvalug, for  used the Monte Carlo histogram technique to locate accu-
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FIG. 4. Monte Carlo phase diagram, wilti=1, for a system
size of 36 sites. Different phases are represented as in Fig. 2. Full
circles denote the transition temperatures for a gi@én All tran-
sitions are continuous. Full squares and capital letters refer to the

transitions where finite-size scaling was performed.

rately the transition temperatures and to estimate critical ex-
ponents by finite-size scaling analysis. Both Monte Carlo
approaches used a sequential version of the Metropolis algo-
rithm to test separately the Ising aXd trial configurations.

A Monte Carlo step(MCS) is as follows. For each lattice
site, the Metropolis test is applied to the Ising variable
(K;) and then to theXY variable (;).

A. Monte Carlo phase diagram

Figure 4 shows the resulting Monte Carlo phase diagram.
It has been obtained for BXL lattice (L=36) with 1¢
MCS for thermalization and 4 10° MCS for averaging. We
use the same convention as in the mean-fi8ec. 1) and
renormalization-grougSec. Il) phase diagrams to name the
phases(roman numerals To describe the order present in
each phase, we define the order parameters

1
Pe=| 22 Ki, (10
! FIG. 5. (a) Temperature dependence of the IsifRy) and XY
(Py) order parameters fo&' =0.4. (b) Temperature dependence
3 . of the susceptibilities associated wity and Py, .
PM1=’pE S|, 1 ,
res in the phase Il has been reported for the six-state clock

model [23] and is characteristic of systems with intrinsic
where S; denotes one of the three sublattices anddisorder.

Si=(cos(p),sin(¢)) are pseudospin variables. The three The general features_, of the Monte qulo phase diagram
XY-like P; order parameters are very sensitive to sublatticéan be understood easily. FGr' =0, there is a single tran-

switching. We therefore performed the simulations with thesition from phase Ill directly to phase[lL5]. This can be
XY order parameter seen by noting that the mechanism required to have a tran-

sition in the Ising variables is the appearance of domain
walls. ForG'=0, at such a domain wall, th€Y variables
are decoupled since (1K;K;)=0. In this case, Ising disor-
der inducesXY disorder. On the other hand, f@&'>J’,

. there should be no Ising order in the systé®ec. ). This is
which has a smoother temperature dependenceRfgnIn — goqp Fig. 4: thePQ; line of transitions goes toward

order to understand each phase in Fig. 4, we present thfe:0 asG’ gets larger. Ultimately, fo6’ —, there is only

order parameter®y and Py, as functions of temperature o - ; ;
. . _ t tion f h MY ord dl disord
[Fig. 5a)]. Phase IIl Py, and Pc#0) is the phase with one transition from a phase wiXY order and Ising disorder
eto the phase I.

XY and lIsing order. The intermediate phase Il keeps th
XY order (Py#0) but loses the Ising ordePi=0). At
high temperatures, the isotropic phase | iag and Ising
disorder P, andPx=0). A behavior similar to that of the The rest of this section is concerned with the finite-size
XY order parameteP,, and its susceptibilityy, [Fig. 5(b)]  scaling at the four pointsM, N, Q,, and @Q,) shown in Fig.

J

B. Finite-size scaling
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0 2 4 6 8 FIG. 7. Scaling of the minimum of the energy cumulant for the
(/L) four transitions considered. Solid lines are guides to the eye.

FIG. 6. Estimation ofT. for G'=0. The solid lines show the .
scaling of the extrema o;(K, Vi, xu, andV,, vs L1 The at the same temperature, as expe¢2j15. The precision

dashed lines represents the scaling Bf with respect to i§ quite go_od, especially when it is compared to th_e estima-
In~%(L'/L) using the cumulant-crossing method. tion of T, in other system$28,29. The value ofT, is re-

quired to findB/v becauseP~L A" at T,. The other ex-

4. The goal here is to extract only rough estimates of théoonents can also be found by a scaling'at but in our case
critical exponents. We are also interested in detecting théhe scaling of the extrema of the thermodynamical quantities
order of the transitions. Finite-size scaling using the MontgProved to be more precise.
Carlo histogram method has been recently reviewed by The size dependence of the minimum of the energy cu-
Plumeret al. [24]. In our case, it involves the specific heat mulant Ug) is given in Fig. 7 for the four transitions. The
(C,), the energy cumulantU,), the order parameters, fact thatU .— 2/3 whenL — < indicates that the four transi-
andPy), their susceptibilities ¥y, and ), their logarithmic ~ tions are continuou$30]. This is in agreement with our
derivatives ¥y, andV) [25], and their fourth-order cumu- renormalization-group resuliSec. Il) and with the results
lants (U, andU ) [26]. We performed a simulation for each 0f Granatoet al. [15] in the case of’=0.
lattice sizel. =54,63,72,81,90, and 108 at our best estimate Figures 8 and 9 show the scaling that leads to the critical
of the transition temperatuf®&, from the results for the order €Xxponentsvx and By /vx associated with the Ising order
parameters, as in Fig. 5. Typically, {8)x 10° MCS were  parameterPy . In the case o3k /vy, we used the critical
used for thermalization and (610)x 10> MCS were kept temperature given by the scaling of the extremaxqf,
for averaging. Since we did only one simulation per latticeVk, xm, andVy, . The rough estimates asg =1.1(1) and
sizes afT, the errors bars on the exponents are likely quiteBk / vk =0.1&1). Theerrors on the exponents are estimated
large (typically 10—15 %. only by the goodness of the fit on the plots and do not ac-

Let us focus on the transitioM, at G'=0, where count for the(unknown statistical error for each run. From
To=2.175 in Fig. 4, to explain the details of the scaling
analysis used here and because these results will be com-
pared with data published earligh5]. The well-studied fully
frustratedXY model is also closely connected with Hamil-
tonian(1) with G'=0 [22].

To determine the critical temperatuiie,, we used the
scaling withL ~* (which assumeg=1) of the positions of
the extrema of the susceptibilitieg); and xx) and of the
logarithmic derivatives Y, and V). In the special case of
G'=0, the cumulant-crossing methgdsing Uy) was also
applied to get a better estimate ©f [25]. The results are 1 /.
summarized in Fig. 6. Both techniques give roughly the same . s ' , ,
T.. The scaling of the extrema ofy, and Vy gives 38 40 42 44 46 48
T._w=2.1631(10), while the scaling fopx andVy gives e
T.-xk=2.163%7). Using the cumulant crossing we get FIG. 8. Scaling of the logarithmic derivative & . The solid
Tc_cc=2.1644(10). From our data we can conclude thatjine through the five largest lattice sizes gives the exponent
given the errors on the critical temperatures, the transitions,=1.1(1). Thedotted line is for the scaling using the two small-
involving the XY-type and Ising-type order parameters occurest lattice sizegsee the tejt

6.0 T T T T T T T
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FIG. 9. Scaling of the order parametey at T,=2.163%7). FIG. 11. Specific heat as a function of lattice sizel)n(

The solid line through the five largest lattice sizes gives the expo-
nent By /v=0.181). Thedotted line is for the scaling using the

three smallest lattice sizésee the text tions involving large lattice sizes and better statistics are re-

quired to verify this conclusion.

Table | lists the exponents for the four transitions consid-
the relatively |arge scatter of the pOintS on those figures, ibred, a|ong W|thT0 anch_ The missing values for the ex-
appears that there are large statistical fluctuations. Our eStﬂronents at pointsQ; and Q, reflect the fact that for
mates of the exponents are in apparent disagreement Wiy’ =0 4, the transitions involve only Ising andY order,
those of Granatet al. [15]. Their study involved very long respectively. The errors on the exponents are estimated only
Monte Carlo runs, but on relatively small lattice sizes by the goodness of the fit. The exponent 0 (log) means
(L=<40). Scaling with or_1|y our three smallest lattice sizeSipat C,max~IN(L), as in the 2D Ising model. We note that
(L=54, 63, and 72) gives)=0.74 and By /vx=0.10, , /y atG’'=0.4 was estimated &, becausey,, shows
which are closer to their results. It is clear that there arynly a broad maximum across the phase Il and not a sharp
significant finite-size effects. Figure 10 presents the Sca””%eak[see Fig. 0)]. It was impossible to get an estimate of
of Xkmax With L, giving yi /v =1.55(16). By vy for transitionQ,, the data being too erratic.

_These exponentsvf, Bk/vk, andyg/vg) are not too Under the assumption that fa8’=0.0 (and G’ =0.1)
different from those of the two-dimension@D) Ising uni-  there is only a single transition, there can be only one char-
versality class ¢x=1, Bx/vk=0.125, andyc/vk=1.75).  acteristic length that diverges. The exponentsand vy, are
In this case, the specific heat diverges like the logarithm ofg|ated to the divergence &f. of the Ising-type and
L. Figure 11 show<C,may against Iih.. The straight line fit  xy_type correlation lengths, respectively. Thys has to be
for L=63 is an indication that, contrary to what was sus-gqual tow,, , if there is a direct transition from phase IIl to
pected earlief15], the transition aG’ =0 may be of the 2D ppase |. This seems to be the case given the accuracy of our
Ising universality class. Such logarithmic divergence of.egyits. As noted in Ref.14], however, the Ising anXY
C,max for the infinite lattice is also reported for the fully {ansitions may be decoupledif=1. This question has also
frustrated XY model [27]. Extensive Monte Carlo simula- peen addressed in relation to the antiferromagnegi¢

model on a stacked triangular lattif28].
52 : , : , Except for the values By / vk at pointsN andQ-, from
% =15506) the data given in Table | and Fig. 7, we tentatively suggest
1 1 that the transitions along thd PQ; line are continuous and
might belong to the 2D Ising universality class. This in
agreement with our renormalization-group treatment of
model (1) along thePF line of Fig. 3 in Sec. lll. As for the
other exponentsyy / vk and yy /vy seem to be stable along
441 . the MPQ line and may also suggest the 2D Ising univer-
sality class. However, the data f@ /v and By /vy are
very noisy (see Fig. 9 and no definite conclusions can be
W T T T drawn. . . . .
540 a2 44 as a The last transition studiedQ,) is characterized by the
loss of XY order while the Ising variables are disordered.

FIG. 10. Scaling of the susceptibility associated witp. The ~ The specific heat scaling shows no dependence on lattice
solid line through the five largest lattice sizes gives the exponensize, indicating thatv=0. A similar behavior has been ob-
vk | vk=1.55(16). served in frustrated antiferromagneX¥¢ models in a mag-
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TABLE I. Summary of the critical exponents for the four transitions considered. The errors are estimated
by the robustness of the fit of the data and can be larger due to statistical fluctuations. The tra@sitiods
Q. involve XY and Ising orders, respectively, and only those exponents are given. Question marks indicate
large scatter in the data.

Exponent G’'=0.0 (M) G'=0.1 (N) G'=0.4 (Q,) G'=0.4 (Q,)
To 2.175 2.165 1.745 2.37
T, 2.163%7) 2.1482) 1.7373) 2.3765)
v 1.1(2) 1.1416) 1.0612)

Bl vy 0.1811) 0.571)?

vl v 1.5516) 1.5816) 1.64(16)

va 0.908) 1.1913) 1.097)
B! vm 0.445)? 0.5610)? 0.5814)?
! vm 1.46(6) 1.46(18) 1.1014)

a 0 (log) 0 (log) 0 (log) 0

netic field[27]. In this case the exponents were reported tosuggest that the transition from phase Il directly to phase | is
be nonuniversalvarying continuously with field strength  also of the 2D Ising universality clasdVe emphasize, how-
This might be the case here, but several points along thever, that our statistical errors appear to be quite larGas
PQ, would have to be donéwith much better statistigsn  latter result may be in disagreement with the suggestion by

order to follow the evolution of the critical exponents. Granatoet al. [15] of a new universality class.
Note addedAfter the original submission of this work we
V. CONCLUSION learned of Monte Carlo transfer-matrix calculatigB84] that

. complement the works of Refgl4-14.
We have presented the phase diagram of a model for co-

lumnar phases of HHTT in the limit of weakly interacting
columns. Its Hamiltonian coupleXY and Ising variables.
We used the mean-field approximation, the Migdal-Kadanoff
renormalization-group scheme, and Monte Carlo simula- We thank A. Cailleand A.M. Tremblay for useful discus-
tions. These techniques give qualitatively the same topologgions. One of the authof$!. H.) wishes to thank H.T. Diep

for the phase diagram, showing a phase wWiti order and for discussions on Monte Carlo simulations and acknowl-
Ising disorder. Renormalization-group results and Monteedge the hospitality of the Universite Cergy-Pontoise dur-
Carlo simulations suggest that all the transitions are continuing the early stages of this work. This work was supported
ous. From the renormalization-group analysis, we found thaly the National Sciences and Engineering Research Council
the transition from phase Il to phase Il should be of the Isingof Canada, the Fonds pour la Formation des Chercheurs et de
type (Fig. 3. Preliminary Monte Carlo simulations on large I'Aide a la Recherche du Qbec, and the Centre de Recher-
lattice sizes are not inconsistent with this result and mighche en Physique du Solide.
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