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Statistical properties and shell analysis in random cellular structures
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We investigate the statistical properties of two-dimensional random cellular sydteths) in terms of their

shell structure. The froth is analyzed as a system of concentric layers of cells around a given central cell. We
derive exact analytical relations for the topological properties of the sets of cells belonging to these layers.
Experimental observations of the shell structure of two-dimensional soap froth are made and compared with
the results on two kinds of Voronoi constructions. It is found that there are specific differences between soap
froths and purely geometrical constructions. In particular these systems differ in the topological charge of
clusters as a function of shell number, in the asymptotic values of defect concentrations, and in the number of
cells in a given layer. We derive approximate expressions with no free parameters which correctly explain
these different behavior§S1063-651X%96)13111-]

PACS numbegps): 82.70-y, 68.90+¢g

I. INTRODUCTION Soap froths are trivalerfthree edges meeting at a ventex
two-dimensional cellular patterns. Any two-dimensional
Materials consisting of cellular structures such as meta(2D) froth can be analyzed as being structured in concentric
grains and biological tissues are common in nafiir®].  layers of cells around a given central “germ” cell
Among these systems, soap froth is considered to be tH&5,30,23. The first layer of the shell structure consists of
paradigm for the study of trivalent two-dimensional cellular neighbors of the germ cell, the cells of the second layer are
structures. The structural analysis of two-dimensional celluthe neighbors that externally bound the first layer, éee
lar patterns has been made by many researchers and mahig. 1). More precisely, the layers are closed rings of cells
interesting results have been obtaif8¢-12]. These studies Which are at the same topological distance from the germ
of the topological properties of soap froth can be summacell (the topological distance between two cells is defined as
rized in several laws such as Lewis’ 14d3] on the statistics the minimum number of edges that a path must cross to
of cell area, von Neumann'’s laji4] on the growth rate of
n-sided cells, the scaling laj$] on the probability distribu-
tion of the cells, and Aboav-Weaire’s law on nearest-
neighbor correlatiorj15,16. So far, the evolution of soap
froth after the scaling state defined as stationary probability
distribution of cell sides has been explained by several theo-
ries[17-20, indicating that correlation effects are not mani-
fested in the analysis of area scaling law. However, a more
detailed analysis beyond the area scaling law has been done
[21] and strongly suggests the importance of clarifying the
role of correlation effects. Moreover, to our knowledge, there
has been no experimental investigation until recefE] on
the statistical properties and correlation effects beyond near-
est neighbors in two-dimensional soap froth. With the ad-
vance of experimental techniques and data analysis
[23,24,23, it is natural to investigate the structural charac-
teristic of soap froth beyond nearest neighbors. Here we de-
rive systematically exact expressions for the topology of the
froth structure beyond first neighbors. Our results will serve
as a mathematical framework for our data analysis, which
enhances our ability to test current theoretical ideas and our
understanding of topological ordering processes in soap froth
[25—-29. Our aim is to extract more information about the
differences between physical soap froths and computer gen-
erated two-dimensional cellular patterns, such as the Voronoi
construction of points randomly scattered on the plane.

FIG. 1. Shell structure and defects in trivalent two-dimensional
froth. The defects are shaded and the number denotes the topologi-
*Present address: Laboratorie the Physiqueofibae, Universite  cal distance from the center cell label€d which is a deformed
Louis Pasteur, Strasbourg, France. heptagon.
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connect these two ce)lsThe shell is a closed loop of edges class of froths called shell-structured-inflatalf&S|)) froths
which are the interface between two subsequent lagsas  [30]. These froths are particularly convenient since they can
Fig. 1). (The definition here is consistent with R&B0]. be constructed layer by layer in a recursive way according to
Note that in our previous work22], the word “shell” is an inflationary procedure. In Sec. lll, we study the correla-
used to indicate the layer used in this paper. tion length in SSI Euclidean froths. Approximate expressions
The shell structure has some physical relevance in natur&pr K; and Q; are also derived. In Sec. IV, the results ob-
froths and in problems of the topologically stable partition oftained for SSI froths are generalized to non-SSI systems. In
space by cells. In foams the evolution of the cellular struc-Sec. V, we find approximate expressionsfgrandQ; in the
ture is ruled by the process of diffusion of the gas inside ggeneral case of non-SSI froths. In Sec. VI, experimental re-
given bubble toward its neighbors. The topological distancesults are presented and compared with analytical predictions.
j between two cells is the minimum number of soap mem-Section IV contains a conclusion that emphasizes the main
branes that the gas molecules have to cross to pass from ofesults. In Appendix A, a generalization of Weaire’'s sum
cell to the other. The molecules which diffuse from a givenrule [16] is derived. In Appendix B, we find an expression
central bubble move through the shell structure, reaching thtor the fluctuations of the topological charge. Finally, in Ap-
cells of each layer with an approximately equal probability.pendix C, a proof of the correlation theorem of euclidean SSI
An analogous problem where the shell structure has physicéloth is given.
relevance is the random walk through a barrier network. In
this case the topological distangés the minimum number Il. STATISTICAL PROPERTIES IN
of barriers that must be crossed from a starting cell to a given SHELL-STRUCTURED-INFLATABLE FROTHS
final cell. The number of cells in the laygiis the number of
final states with approximately equal probabilities. More
generally, any perturbation on a given c@ell growth, cell
division, mechanical stress, cell coalescence, electrical si
nal, etc) propagates in the whole system through the she o : ; .
network, and reaches with approximately equal intensity all € be divided into two categories. Some cells simulta-
cells at the same topological distance from the perturbed cefl€0Usly have neighbors in the laygrs 1 andj+1. These
at about the same time. These considerations provide triells make themselves closed layers and constitute the “skel-
motivation for introducing shell structure analysis for froth. €ton” (sk) of the shell structure. Other celisr clusters of
The quantities investigated for a shell at topological dis-Cells are |ncIu§|ons bgtween thg layers of the shell skeleton
tancej from a givenn-sided germ cell are the total number (they have neighbors in the laygr-1 or other topological
of cells in the layer K;), the average number of sides of the inclusions but not in the layey+1). The shell skeleton is
cells belonging to the layemg;), and the topological charge itself a space-filling froth h|er.arch|cally organized around the
(Q)) of the cluster of cells delimited by the sheliHere, the germ cell. Once a germ cell is chosen, the shell structure and

topological charge of a cell witm sides is defined as its skeleton are univocally defined, but different germ cells
g=6—n andQ; is defined as the sum over the topological generate different skeletons. We call a froth shell-structured
i

charges of all the cells inside the cluster delimited by thepnﬂataple i i.t is free of topological incIusjonéln this paper
shellj which separates the laygifrom the layerj + 1. Note these inclusions are also callgd topological Qef;ﬂer Ssl
that all these quantitie;, m;, andQ; can depend on. froths the shel'l structure and its skeleton coincide.

The experimental investigation of the statistical propertie I_n this section we analyzed_only SSl systens topo-
of natural and computer generated froths in terms of the she pg|cal defects th_e results obta|r_|ed for such a class of sys-
structure gives some interesting results. For instance, we finffms aré extendible to froths with topological defects. The

Any froth can be analyzed as structured in concentric lay-
ers of cells which are at the same topological distance from a

iven central cell. These concentric layers are the shell struc-
%ﬁjre of the froth. In this structure the cells forming the layer

that the number of cells in a layer at a topological distanc‘si*"‘dv"’m'[age of studying SSI froths is that in_ these systems the
j from the germ cell increases with distance following aSheII structure can be cqnstructed by using an inflationary
linear lawK;=Cj+ B with slopeC~9 (see also Ref.22]). rec#rswe process. In parr]tltlzlular, or|1et f';%s 'E[T]at ]:[h”e nl_meer of
This is in contrast to simple geometrical considerations th ;(r)]!ces In successive shells 1S refated by the following map
the perimeter of the shell cluster increases with the radius™

with a slope of approximately 2. Moreover, we find that v s —1\/Vv*

the topological charge of the cluster bounded by the ghsll ( ! ):( ! )( 1‘1) 1)
negative, and decreases linearly wjithThis behavior is par- Vi 1 0/\Vv, ’
ticularly surprising since the total topological charge of a

froth is a constant finite quantity independent of the networkwheres;=m; —4, andm; is the average number of sides per
itself, and is related to the space curvature by the Euler foreells in layerj. The quantityvj+ (Vj) is the number of
mula associated with the Gauss-Bonnet theof@h,32.  vertices attached to edges directed outward from ghell-
Therefore, the set of cells belonging to a layer has peculiarected inward to shejl) (see Fig. 1 The matrix equatioiil)
statistical properties which are different from the one for theis the logistic map[34]. It is a dynamical map from the
whole froth. The aim of the present paper is to study theseentral germ cell (=0) to the whole froth.
peculiarities with an exact analytical approach, and to find Since our 2D froth is trivalenithree edges meeting at one
approximate solutions with no adjustable parameters whickertey, the number of cells in laygris K;=V; . In terms of
can be compared with the experimental observations. these quantities Eq1) can be written as a recursive equation
The plan of the paper is as follows. In Sec. Il, we derive
the statistical properties of the shell structure for a special Kij+1=8K;=Kj_1. 2
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The initial conditions ar&/; =K,=0 andVj =K;=nisthe  with uo={((n—6)?%). Here the averaged()) are over the
number of neighbors of the central germ cell. cell-side distributiony())==,p(n)(), with p(n) being the
Given the set of parametefs;}, the solutions of Eqg1)  probability of ann-sided cell in the whole froth. One can
or (2) are particular trajectories in the plangK;). When introduce the fluctuation part of topological chaiQe as its
s; is equal to a constarg, one finds that the parameter ~ deviation from the average valu;=Q;—(Q1), wherea
separates the map into different claspe@]. Values|s|<2 priori the fluctuation part can be any functionrokatisfying
are associated with the elliptic region which has boundedthe conditior{I';)=0. In terms of the fluctuation, the charge
finite trajectories. The regios>2 is the hyperbolic region Q; can be written as
associated with exponential trajectories. The peint2 di-
vides the elliptic region from the hyperbolic region, and cor- Q1=(6—n)+(6—myn=—pu,+1I;. C)
responds to tilings of the Euclidean plane. In this case on
finds that the solutions are linear trajectorkes<j. In gen-
eral, whens depends orj, one can note that bounded trajec- ”. ) ; O .
tories always correspond to froths which are tiling elliptic sides {n,) of the cel]s neighboring Fh'ﬂ's'ded. ceII.. In lit-
manifolds, whereas unbounded trajectories which grovframr.e' sucha relat|op has beep widely studied since Aboav
faster thanj correspond to tilings in hyperbolic manifolds. ergplrgally found the Ilneda_lr Ialw. r}'?l_gt))n:M\i\/_ a_(n,—?) .
The Euclidean space has trajectories between these solutio t].' r;)? cfan seEe mgmbe lately that l_oav- feawefs ;]W IS
associated with spaces of opposite curvatures. They are uf- ainable from Eq(9) by imposing a linear form for the

bounded trajectories which grow asymptotically as a lineaflUctuation parfi.e., I';=€,(6—n), with e;=1-a]. This
law (K;]). linear dependence can be interpreted in terms of the screen-

One finds that the total topological charge of a cluster oijng of the central charg®o=6—n by the charges of the first

cells bounded by the shglican be written in terms of num- Ia(tsy_er. The ;OF?I dscr_e(ta_nln% ch?rr]ge in the _f|rst layer is
bers of vertices coming into and going out from the shell (6—my)n and its deviation from the average is

%quation(9) gives the relationship between the number of
sides ) of a given germ cell and the average number of

) (6—myn—((6—myn)=—a(6-n). (10
< 2." (6=m)=6=Vy+Vj, ® We can therefore interpred as a screening factoa=1
corresponds to a total screening of the internal charge,
where the sum runs over all the cdllm the cluster anah; is whereasa=0 corresponds to absence of screening.
the number of sides of the ceil [35]. Equation(3) is a Aboav-Weaire's law is generally associated with the pres-
general expressiofvalid also for non-SSI systemsdt states  ence of topological correlations between nearest-neighbor
that the total topological charge inside a cluster depends onlyells. In Appendix B we discuss in detail the effects of finite
on its boundary. For SSI froths, E(B) can be rewritten as  range correlations in froths. Let us note that an arrangement

of cells free of correlatioricalled a topological gas6]) has
Qi=6-Kj1tK;j. (4) m; =6+ u,/6 [37], which leads to an Aboav coefficient

The inverse of this equation provides a relation between thé ~ #2/6, andm, is independent of.
number of cells in the layer and the topological charge of o
the cells inside the cluster delimited by the shell B. Genericj shell

-1 -1 The average topological charge inside the cluster delim-

i ) ited by shellj is
Kj=6j-2, Qi=6j—6+n-2 Q, (5 |
= = j
= 6—m)K;). 11
where we defingQ,=6—n. Let us now make use of these (Qp .21 ( K 1
recursive relations in order to evaluate the quantitigs
Q;, andm; in the shell structure. Indeed, the topological charge is an additive quantity and
therefore(Q;) is the sum of the topological charges con-
A. First shell: The Aboav-Weaire law tained in the layers (((6—m;)K;)) which are inside the

_ _ cluster with radiusj (i<j). As before, we introduce the
Consider a shell structure around arsided germ cell.  fiyctuations of the topological charge in a cluster
The number of cells constituting the first laygr<1) is
Ii=Qi—(Qi). (12)

) o o By using the generalized Weaire identit(6—m;)K;)
and the topological charge inside the cluster delimited by the:<(6_ n)K;) [Eq. (A2) in Appendix A] and by substituting
first shell is by definition Eq. (5) into Eq. (11), we can express the portion of charge
contained inside the layer in terms of the topological-
charge fluctuations

Ki=n, (6)

Q:1=(6—n)+(6—myKj. (7

Using the sum rul€46) (see Appendix A one obtains the i-1 ji-1
average value ((6=m)K))=—pp= 2, (6=mTy)==2, ((6-n)T),
(Qu)=—n2, (8 (13
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where we used’,=(6—n). The total charge of the cluster dix C for a proof) For a Euclidean SSI froth witjp,+ 0 that
inside the shelj is therefore obeys Aboav-Weaire’s law, cells must be correlated at least
between the third neighbors. This theorem can be restated
] o into two parts:(1) If a Euclidean SSI froth with nonzero
(Qj)=— 2l _;1 (J=D){(6—mTI) second moment obeys Aboav-Weaire’s law, the minimum
v in order that(K;)=j for j=w» is 3. (2) Under the same
hypothesis agl), and if the topological correlations vanish
= —_Z (j—D{(6—n)T). (14 after theéth layer, thent= v. Therefore(2) also means that
=0 £=3. An important point in the theorem is that the Aboav
Note that, in the absence of fluctuatior§, €0 for i>0), parametem is a free paramgter, for o_therwise, we can have
Eq. (13 gives a topological charge per layer equal to@n even smallgr/. (Indeed, if we restrlpa to 1, thenv=1,
— u,, and therefore a total charge which decreases linear/@"d if we restricto 2, theny=2, and if we do not put any

ji—1

ji—1

in j with slope — . festriction ona, thenv=3.) Next we will explore some con-
Using Eq.(14) and the definition of’;, one can rewrite S€AUENces of this theorem. _
Eq. (5) in terms of the fluctuations For a space-filling Euclidean froth where the correlation

length is minimal €= v=23) and Aboav-Weaire's law is sat-
i-1 isfied with T';=(1—-a)(6—n), Eg. (C3 implies
Kj=6j— 2 Q (1-a)pu,+{(6—n)T',)=— u,. A solution for this condition
1=0 is given byl',=(a—2)(6—n). Since we havg=v=3, we
can sefl’;=0 for j =3 [from Eqs.(C3) and(B3)]. With these

) values ofl’; , we can work out the solution for the number of
=6]—(6—n)— 21 Qi cells per layer,

-1

K]_:n, K2=12+ﬂ2+(2_a)(n_6),

s -y 5
=6j+n—6+———puy— 2, I K;=(6+(3—a)uo)j —(5—2a)u, for j=3. (16)

jiZ (G-)(—i—1) and the topological charge
+ 2, ————{(6—n)T;
<, 2 (6=mI') Q1= — po+(1—a)(6—n),

i 2 (—i—i- Q=—(3-a)u,+(a—2)(6-n),
=6j=2, T+ 2, W«a—nm. 2 2 _
=0 =0 Qj=—(3—a)u, for j=3. (17)
(15)

The solution Eq.(16) for the trajectoriesK; is qualita-

These relations foK;, Q;, andm; are exact results valid tively in agreement With_the experim_ental data. '_I'he number
for any SSI froth. The fluctuationB; area priori unknown  Of cells per layer versug follows a linear law with slope
functions subjected to the constrai(if;)=0. Other con- 6+ (3—a)u, and intercept-(5—2a) up. Assuming typical
straints on these fluctuations come from the space-filling/aluesa=1 and u,=1.5, we obtain 9 and-4.5, respec-

condition. tively, for the typical slope and intercept. Note that a simple
geometrical approach will suggest a linear growth of the
IIl. SHELL STATISTIC OF EUCLIDEAN FROTHS number of cells of the perimeter of the shell cluster with a

slope equal to about72, which differs from the one we have

Let us consider a Euclidean 2D froth. In such a froth thefound.
number of cells per layer must grow linearly with the dis- Equation(17) predicts that in SSI minimally correlated
tance in the asymptotic limit. We will show that fluctuations froths the topological charge is constant after the second
in the topological chargel{;#0) are essential for filling shell. This is in contradiction to the experimental data which
space with disorderedu(,#0) Euclidean SSI cellular sys- show topological charges decreasing linearly witilro re-
tems. Consider a system with;=0 for i=1 (recall solve this contradiction with experimental data, we can con-
Iy=6—n), from the next to last equality of Eq15), one  sider the following scenario. If we take the fact tkgt<j for
obtains that the number of cells in the generic layan-  largej, then Eq.(5) implies thatKJ-och. But our experimen-
creases quadratically with the distaanoch,uz. Such a tal froth is Euclidean witlK;j. Thus the only possible way
froth is realizable only in a space with intrinsic dimensionto resolve this contradiction to experimental data without
D=3 and thus it is not two-dimensional Euclidean. In natu-invoking the results on a non-SSI Euclidean froth is to con-
ral froths and in computer-generated cellular system the shedllude that the assumption thét v=3 in the above analysis
structure is organized in order to keep the froth Euclideanis incorrect. Thus this conclusion, which insists on using the
and experimentally one finds that the number of cells peresults of a SSI Euclidean froth, leads one to suspect that
layer increases linearly in after the first few layer§22].  topological correlation has a longer range>3. However,
Such organization can be provided by fiis, which must be  this is actually misleading, as we have no good reason to
different from zero at least for the first few shells. insist on the assumption that the real froth is SSI Euclidean.

We have the following interesting theorerfsee Appen- Indeed, we have enough evidence that the real froth is a
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non-SSI Euclidean froth, so that the topological correlationwhich is the generalization of Ed4). By substituting Eq.
can vanish rather early, and stil;<j and Q;=j for large (19 into Eq.(23), one obtains

j- This point is also valid for a computer-generated froth. In

Sec. IV we show that the topological defects provide a K d

mechanism which correctly gives the behavior of the topo- Qi=Qy" = 7+1Kj1- (24)
logical charge and the slope in the linear law of the trajecto-

riesK;. Therefore, the topological charge inside shels equal to
the charge associated with the shell skeleton minus a contri-
IV. EFFECTS OF THE NONINFLATABLE INCLUSIONS bution due to defects attached to the external shell. This im-
. . . . plies the important fact that defects inside the cluster do not
The ideas present(_—:-d In .precedmg sections for .She"éontribute to the total charge. Moreover, note that the defects
structured froths are still applicable when we have noninflat- ;. \had to the external shell always decrease the topological

able |n_clu5|ons. In this section, we indicate the appmp”at%harge in the shell with respect to the value associated with
corrections. We use the symboisK;, Q;, m;, andu, to the shell skeleton

indicate the quantities associated with the global fistell
skeleton plus topological inclusionand we use the notation
K:*, Q%% andm for the quantities associated with the shell A. First shell and Aboav-Weaire's law

. d d . .
skeleton only. Finally, we us&;" and mj’ to indicate the The number of cells making the first layer around an
number of defective cells and their average number of sides,_sided central cell is;=n. By using the sum ruléA2)
d : i
Note thatKy=0 always(since any cell of the froth can be optained in Appendix A, one can calculate the average topo-
the germ ce)l. One has the simple relation logical charge inside the first shell:

K=K+ K. (19) <Q1>=<(6—n)>+<(6—m1)Kl>=<(6—n)n>=—Mz-( |
25
In the general case when noninflatable inclusions are present,

the relations previously obtained for the SSI froth are appli-

cable to the quantities associated with the shell skeleton. | rom this relation and Eq.(24), it follows that

S| d
articular, relationg4) and (5) become (Q1) == pa+(7K3).

P ) © As in the SSI case, one can introduce fluctuations of the

Qj_sk:6_st|ilJr stk (19 topological charge around its average value,
and [=0Q;—(Q)). (26)

i—1
K_ pq: k
K= 6] _ZO Q. (200 In terms of these fluctuations and using E2p), the charge

contained in the first layer can be written as

On the other hand, expressi@8) for the total topological
charge of the cluster delimited by shglfemains unchanged: Q,=(6—n)+(6—m)Ky=—u,+T;. (27)

Qj=6-V, +V/; (21)

This equation gives a relation between the number of sides
here the quantitie® andV* are associated with the global (n) of a given cell and the average number of sides)(of
froth (shell skeleton plus topological inclusignhis equa-  the cells surrounding this-sided cell. In the particular case
tion is the topological analog of the Gauss theorem of electhat the fluctuation is linear im, I'y=(1—a)(6—n), we
trostatic. The chargéopologica) inside a region of space is arrive at Aboav-Weaire's law (i.e., nm;=(6—a)n
associated with the net flufof edge$ which crosses the + ,,+6a [15]). Aboav's coefficienta can be interpreted
external surfacgshel). In the absence of topological inclu- (see Sec. Il A as the factor that represents the screening of
sion (the SSI casethe flux of edges between two adjacent the central charge due to the surrounding cells. By following
shells is uninterruptedany edge outgoing from shellends  this interpretation one can associate 1 with a total screen-
in shellj+1, i.e.,V;,;=V"). In the general case, the topo- ing, anda=0 with the absence of screening. A typical value
logical inclusions trap the edge fluxes, and the previous iderfor this coefficient in natural cellular structurésoap froth,

tity must be modified as follows: alumina cuts, etg.is a=1.2; values around 0.6 are charac-
B N d teristic of Voronoi froths constructed from Poissonian points,
Vii=Vy = 71Kj g, (22)  whereas random network generated by perfornifigtrans-

_ _ formations on regular lattice have negative Aboav’s coeffi-
where 7;,, is the average number of edges which arecientsa=—1.

trapped by one defect in the layer 1. One can easily verify
thatV; =K®*. By substituting Eq(22) andV;  into Eq.(21),
one obtains B. Genericj shell
o« « g The average value of the topological charge inside the
Qj=6—Kji 1+ K= 7j11K}, 1, (23)  Jayerj can be calculated by using the sum r@) [i.e.,
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((6—m)K;)=((6—n)K;); see Appendix A and the ex- 2D plane by increasing continuously the roughness of the

pression(20) for QJ-Sk to obtain cluster surface, enlarging the available space for additional
§ cells in the layer. In practice, after some layers the rough
((6—mjK;j)=((6—n)K})+((6— n)K,-Sk> surface of the cluster starts to self-intersect, thereby generat-
-1 ing non-SSI inclusiongtopological defects in the shell struc-
i dy_ _ s ture). These inclusions of defective cells provide a way to
((6 n)K]> 20 ((6 n)Q'k> smooth the shell surface and to keep the froth Euclidean as a

consequence. Therefore, the defects play a very important

it role in the froth organization.

— d
=((6—n)Kj)— ;0 ((6=n)Qy) Soap froths and computer-generated random cellular sys-
tems show asymptotically a linear increment in the number

+{((6—n) 7+ 1KLL ) of cells per layer with the distance from the germ cell. Let us

therefore consider a Euclidean froth whefexj for any

j—1
' j=w. In contrast to the SSI case, when we have defects, this

_ _ dy _ — )
=((6=nKj}) ;0 ((6—mI') condition of linear growth oK; does not introduce any con-
g straint on the fluctuationE; . Indeed, the number of defects
+((6—n) 7 1K 1)) (28) K is a free parameter that the system can adjust in order to

o control the fluctuations in the topological charge and simul-
The average total charge of the cluster inside shilithe  5n65ysly keep the froth Euclidean. Analogously, the defects
sum over the charge of individual layers. From E28) it can play an important role in the reduction of topological

follows that correlations. In Sec. Ill we found that a SSI Euclidean froth
-1 which satisfies Aboav-Weaire's law must be correlated at
N 6—mKL V= (i—i)({((6—nT. least between third neighbors. The defects enlarge the free-

(Qy i=20 (6= ) =(=DU(E=mT) dom for the construction of the cellular system around the

d germ cell by removing the constraints on the fluctuations.
+((6—n) 7+ 1 KL ))] (29 (without these constraints on the fluctuations, one can con-
, , , , d struct a Euclidean froth which satisfies the Aboav-Weaire
In  this expression, thei=0 term is ((6—n)K1)  |aw and which is correlated only between first neighbors.
—j(m2+{(6—n)7:K3)), sincel'y=6—n. From Eq.(20),  Therefore the presence of defects can strongly reduce the
using Eq.(29) and the definition of’;, the number of cells ¢grrelations.
of the shell skeleton in the laygris Consider a froth which is minimally correlated and com-
patible with Aboav-Weaire's law with a frea parameter.
From Eq.(B3) (see Appendix Bit follows that such a froth
can be uncorrelated after the first neighbafs(). (Indeed,
for the topological gas,é=0 and this corresponds to

-1 i-1
K*=6j —;O Q*=6j _igo (Qi+ 71K 1)

j-1 a=—pu,/6.) In this case, using EQg.(30) and I';
=6j= 2 (Ti+(Qi)+ m41Kh ) =(1-a)(6-n), one obtains
1=0
Kp=12+ ppt (2—2)(n—6) — 7K+ (1= 72)K$
j—1
. . _ _ d
=6j= 2, U+ 74Ky (F=D){(6-nK()) +((n—=6)(1—7)KY). (3D
i—2 Transcurating the contribution from the defects in the first
(J—D(j—i=1) layer (K¢<1) and fixing7,=1, Eq.(31) becomes
+((6=1) 711K, 1)), (30)

Equation(B3) gives
This is the generalization of Eq15) which takes into ac-

count noninflatable inclusions. These relations have the r =(1—a+ (2—3)2/1«2)(6_”) (39

beauty of being exact and the privilege of being useless for 2 12+, '

predicting properties of real space-filling cellular systems. In

order to compare with experiments, we must use som®y using Eq.(30), one has

simple physical approximations that will provide predictions (2-a)?

for the asymptotic behaviors ¢f; andQ;, and the percent- _ B _ T2 4

age of defects. J l Ke=18+(4-a)up*|3-2a+ 12+ p, )(n 6)-Ka.
(34

V. EUCLIDEAN FROTHS AND NON-SSI INCLUSIONS . .
where we used the same approximations as for(82).plus

In the absence of defects and fluctuations, &) im- the hypothesigy;=1.
plies that the number of cells in each layer grows very fast These relations are derived using the assumptions that
(Kjocjz). In principle, such a fast growth is realizable in the K‘kl, &=2, andn,=73=1. The first conditiorK‘f«l is
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quite reasonable; as it is experimentally in real or computer- ((6—m)K;)=(Q;—Q;_1)
generated froth, the first few shells have a small number of

defects. The second condition is a condition working on the :<Qj5k_ Q}S'il>—<7lj+1K?+1_ 77ij>
conventional wisdom that the froth has rather short range . d d .
correlations. In any case, this is a working hypothesis for =({(mK)) = (mj+1Kj4q)) forj>1. (38

deriving Egs.(32), (33), and (34), which are all equations
needed for comparison with experimental data in Sec. VI. A
for the third conditionn,= n3=1, this is actually a reason-

able assumption ag;,, is the average number of edges ((6—m)K;y=—A((K;;1)—(Kj))=—pAC for j>1,

By supposing that the parametg|= 7 is independent of
Yor largej, using Eq.(38) we obtain

which are trapped by one defect in the layerl, and many (39
defects contribute in general only one extra edge to the cor-
rection in the defining Eq22). which predicts that the charge decreases linearly yvithith
a decrement ofyAC per layer. From Eq(39), using the
Asymptotic behavior in Euclidean froths expression fom; obtained in Appendix BEq. (B1)] valid

for layers of cells uncorrelated with the germ o@tll present

In a Euclidean 2D froth, the space-filling condition im- case forj>2), we obtain

plies that in the asymptotic limit the number of cells per

layer grows linearly with the topological distance and, con- (6—N)K;) nAC nA
sequently, at each layer this number is incremented by aﬂj:m}”‘=6— K Y ~6+ (B =6+ —. (40
constant amount. In a froth where the cells are uncorrelated (Kp i+(B) ]

after a given topological distancg this rate of increment : :
must be a constant parameter characteristic of the WhOISLépp;)i)S(:Eg tffig?jz‘rgrrr(])v;s ;I?gi)rlirgo(r24;hv?,esgg?;}g tsr?:”
froth, and independent of the particular central cell. The de'sl.or.),e gv=2) as-

pendence oK; on the number of sidesj of the central cell

can only be an additive constdiie., K;=Cj-+B(n)]. From C=(K3)—(Kp)=6+(3—a)u,—(K3). (41

a geometrical point of view this additive quantity is associ-

ated with the size of the central core made by the first shell gy comparison between Eq¢36) and (39), and using

and its neighbors. In a system that is uncorrelated after thgypression(41), we obtain an expression for the percentage
first shell, the length of the perimeter at shglis given by ¢ defects,

the perimeter of this coréB(n)) plus a term linearly depen-
dent on the distancedj). The generalized Aboav-Weaire (2—a)u, (2—a)u,
relation[Eq. (A2) in Appendix A] gives A= 61 (3- ), (KY) 6+ (3-a)u,’ (42

((6=m)K;)=((6—n)B(n)) for j=¢. (39

where we assume(K3) <6+ (3—a) u,. From Eq.(42) one

By assumingé=2 and using Eq(32), we obtain notes that a froth can be free of defects onlyuf=0 or
a=2. The first case g,=0) corresponds to the hexagonal

((6—m)K;)=((6—n)Ky)=—(2—a)u, forj=2. (36) lattice, which is SSI and therefore free of defects. The second

case &=2) corresponds to a froth where the Aboav param-

Equation (36) states that the topological charge containedeter takes the maximum allowed value for a Euclidean froth.

inside any layer is a constant quantity equal toThis is a very peculiar froth which has a constant topological

—(2—a)w,. It follows that the total topological charge in- charge in the shell clusters and does not need defects to fill

side shellj decreases linearly with, the plane. So far such a froth has not been observed, to our
knowledge. Note thaa=2 is a critical value since froths
(Qj)=—(2—a)uj+const forj>1. (37)  with a>2 are closed elliptic systems. That might suggest

that the valuea=2 is an upper limit which cannot be
Note that the total topological charge in the froth must bereached for Euclidean froths.

lower than 12[31]. Indeed, a froth with chargQ=121is a  |n an earlier papef22], we used the shell model to test a
closed cellular system which is tiling of a surface topologi-generalization of Aboav-Weaire's law to shells beyond the
cally equivalent to a sphere. Therefore, from E2jl) it fol-  first. These analyses revealed a universal topological relation

lows that the Aboav coefficients must be smaller than oipn the average numben; of sides per cell to the number of

equal to 2 for Euclidean 2D froth witl, given by Eq.(32).  cellsK; in thejth layer of a given center cell with sides. A

In a Euclidean 2D froth, the number of cells per Iayerp|0t of mK; vs K; shows a slope of (6a) for j=1
grows linearly with slopeC asymptotically. Let us suppose (Aboav-Weaire's law and a slope of 6 fofj=2 for all
that the percentage of defects with respect to the total numsamples. The results are universal for soap froths in the scal-
berK; of cells in the layers is a constait independent of  ing state with different preparations, different times, and dif-
the topological distance in this limit. Then the number Offerent temperaturesl With the Smaﬂ/\ approximaﬂon and
cells in the shell skeleton must also grow linearly wjth  Eq. (40), we can now provide a quantitative explanation to
[since(K*y=(1—-A)(K;) and(K) is linear inj]. Equation  the experimental results. The average number of neighbors
(20) indicates that(Kf"} can be linear if the average topo- m; in layers of cells uncorrelated with the central cell
logical charge associated with the shell skele(@fk> is (j=¢) is given by Eq.(B1). Multiplying this expression by
constant. This implie§Eg. (24)] K; we have
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((6—n)K;) . 200
mjKJ:m}’”K,:(es—<T>J Ki (i=8€. (43 ' ' '
J R ¢
In the asymptotic limit, using the approximations introduced o' $
above, we obtain 150 | ¢ w0
¢ u*
miK;=6K;+(2—a)u, (j=¥), (44 ‘e
. M n®
which is the extension of Aboav-Weaire's law to higher shell M 100 tae .
numbers. M ¢n?
s .
¢ N
VI. EXPERIMENTAL RESULTS AND COMPARISON o2 i
WITH THE THEORETICAL PREDICTIONS 50 i H n
The soap froth chamber consists of two 1.6-cm-thick rect- ‘ i 00 088

angular plexiglass plates separated by a 0.16-cm-thick " 8 8 § g5 8 280 T
spacer. The effective working area for the froth is 26.7 oL oouo8g 888 | L
%X 36.8 cn?, which can be filled with more than 20 000 0 5 10 15
bubbles as the starting condition. Soap bubbles of different )
sizes are pumped into the chamber through an inlet to create J

a relatively random froth. The chamber is filled with excess

bubbles such that excess fluid can be forced out of the cham- : :

ber through another outlet after the Soap froth has beeRumber for soap (iled circl) randorm Voronor constructon
drained for a few minutes by setting the chamber vertically fjjeq diamond, and Voronoi construction from a perturbed trian-
Thus the froth has a negligible volume fraction of liquid t0 gyjar |attice(filled squarg. Total number of defect&!! in the jth
air [33]. The chamber is then sealed by closing the inlet andihell vsj for soap (open circle, random Voronoi construction

outlet and placed horizontally. A dark field method is used(open diamony and Voronoi construction from a perturbed trian-

for viewing from above and a high resolution digital charge-gular lattice(open squane
coupled devicdCCD) camera of 103% 1344 pixels is used

to capture the images at different stages of the evolution Og)btained in the previous paragraph, one can predict the
the froth. The experiment starts with about 20 000 bUbbleSaélopes 8.30.3 (S), 10.1+0.4 (V), and 9.1 0.7 (P).

and is about 10 000 in the scaling state defined by the sta* . . .
tionary distribution of sides after about 4 h. However, the The ratiosA of the defective cells with respect to the total

topological charge becomes stationary at a much later timgumber of cells in a layer are very small in the second layer
with about 4000 bubbles. Runs with a similar initial condi- [0-0173 §), 0.05 (v), and 0.05 P)], then increase until
tion have been recorded and only data with stationary topo@bout the 15th layer, to stabilize finally at asymptotic values
logical charge will be reported in this paper. equal to 0.16:0.01 (§), 0.15:0.01 (V), and 0.130.01

In order to compare the physical froth with computer- (P), respectively. Using expressi@¢42), one can predict for
generated ones, we selected two examples of purely geometA the values 0.1363), 0.23 (V), and 0.174 P), respec-
ric constructions. The first one is the Voronoi constructiontively. We independently measured the value spfwhich
based on random Poissonian points. The second one is basgiyes 1.1-0.2 (S), 1.3+ 0.1 (V), and 1.2:0.1 (P), respec-
on the Voronoi construction generated by introducing smalfively. We deduce that the value of defect concentration
perturbations to the triangular lattice, so that we mimic theusing these values of and Eq.(42) are A=0.11+0.03
T1 transformation in real froth. We label the physical froth (S), 0.17+0.02 (V), and 0.150.03 (P), respectively. This
by (S), the random Voronoi froth by\(), and the perturbed compares reasonably well with the measured valued of
one by (). These two geometric constructions are two(see Fig. 3.
simple examples of the random froth and slightly ordered Figure 4 shows the total average cha¢@/u, vsj. This
froth. The number of cells for these systems are 3206 foguantity decreases with the distance, with an almost linear
(S), 3783 for (V), and 9634 for P). The values ofu, are  behavior forj>2. The measured slopes ar€).7+0.1 (S),
1.33 (S), 1.76 (V), and 1.51 P). They all approximately —21.6+0.1 (V), and —1.35-0.05 (P), respectively. Using
obey Aboav-Weaire’s law, with coefficiert equal, respec- EQ. (37) one predicts—0.73+0.03 (S), —1.31+0.05 (V),
tively, to 1.27+0.05 (S), 0.69+ 0.03 (V), and 0.95+ 0.07 and—1.05-0.07 (P).

(P). The topological charge contained inside the cluster delim-
In Fig. 2 the number of cells per layét; is shown as a ited by the generic shejlis an important physical parameter.
function of the distancé for soap, and for Voronoi construc- In the previous paragraph we showed that the quantity asso-

tion on a set of random points in the plane and on a perturbegiated with the shell-structured skelet@j* should be con-
triangular lattice. For all systems this number increases linstant for Euclidean froths. In Fig. 4Q%)/u, is plotted
early with the distance with slopes equal, respectively, tdopen symbolsin function ofj for the different froths stud-
9.45+0.1 (S), 11.0£0.2 (V), and 9.9%0.08 (P). These ied. One can note that in all the systems analyzed the quan-
linear behaviors indicate that these froths are Euclidean. Udity <Q3k>/,u2 saturates at a value equal to abet®.0+0.5

ing expressions for the minimally correlated Euclidean frothqS), —2.0=0.2 (V), and -1.8:0.2 (P). The saturation val-
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FIG. 3. Defect concentratiol\; vs shell numberj for soap FIG. 4. Normalized cluster topological char@g/u, vs shell

(open circlg, random Voronoi constructiofopen diamong and  numberj for soap (filled circle), random Voronoi construction
Voronoi construction from a perturbed triangular lattiGepen  (filled diamond, and Voronoi construction from a perturbed trian-
square. gular lattice(filled square. The straight line indicates the slopel.

Soap and computer-generated froths are on opposite sides of this
ues should be similar for all three cases(&')/u, is @ line. Normalized cluster topological charge of the skeleton,

characteristic of the SSI skeleton. QJ-S“/,u2 vs shell numbejj for soap(open circlg, random Voronoi
construction(open diamonyg and Voronoi construction from a per-
VII. CONCLUSIONS turbed triangular lattic€open squane Note that the normalized

. . . . topological charge for the skeleton saturates at about the same value
We studied froth as organized in concentric layers of cellgy, 5 cases.

around a given central cell. Exact expressions for the number
of cells in each layer, for the topological charge inside the ) ) ] )
shell cluster and for the average number of neighbors per cefind decreases linearly with the size of the cluster. In particu-
in a given layer were obtained. These topological propertietal, we observed that the slope is proportionak-tg,, and
of the shell structure were studied for the special class of SShe coefficient of the proportionality is smaller than 1 in soap
froths and for the general case where non-SSI defects aféoths and larger than 1 in computer-generated froths. The
present. It turns out that the defects play a very importantiumber of defects per layer has also been measured. Soap
role in the organization of the froth structure. The defectsfroths in the asymptotic limit have a percentage of defects
enlarge the freedom for the construction of the cellular sysaround 10%, whereas larger amounts were found for
tem around the germ cell by removing the constraints on theomputer-generated froths.
topological charge associated with Euclidean froths. With Our theory on asymptotic behaviors is in good qualitative
the relaxation of the constraints by the introduction of de-agreement with experiments. We correctly predict the linear
fects, we find a solution of space-filling Euclidean froth growth of the number of cells per layer with a slope around
which has only nearest-neighbor correlations. In this solu9. We demonstrate the linear decrement in the topological
tion, we calculated approximate asymptotic expressions focharge of the shell cluster with a slope above the line defined
K;, Qj, andm; which satisfy the Aboav relation and which by —u, in soap froths, and with a slope below the line
are correlated only between first neighbors. Moreover, walefined by— u, in Voronoi froths. We also predict percent-
evaluated the average number of defects per layer. Thesmes of defects per layer which are close to the experimental
expressions are free of adjustable parameters, and describalues and are smaller in soap froths and larger in Voronoi
well the behaviors of measurable properties of real froths anéfoths.
cellular patterns. On the other hand, the quantitative agreement between the
Experimentally we find that soap froth in the steady stateapproximated predictions and the experimental data is not
has an average number of cells per layer which grows linperfect. In the present paper we obtained exact relations for
early with the topological distance. The rate of growth isthe topological properties of the shell structure, but the pre-
about 9. Slopes of around 10 have been found for Voronoilictions were formulated under strong assumptions which
froths. These slopes are considerably larger than the 2 simplify the exact results into expressions with no adjustable
value suggested by a simple geometrical consideration fgparameters. The partial disagreement between the approxi-
the ratio between the perimeter of the shell cluster and itgnated predictions and the experimental data might indicate
radius. Moreover, we found that in soap and Voronoi frothsthat the assumptions utilized are too strong or incorrect.
the topological charge of the shell cluster is always negativd herefore there is still room for improvement.
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APPENDIX A: GENERALIZATION This is a recursive equation for the fluctuations. There-
OF WEAIRE’'S SUM RULE fore, in uncorrelated froths the topological charge fluctua-

) ] ) ] tions are determined in terms of the other statistical proper-
Consider ani cell of the froth withn; sides, and a sum ies of the shell system.

over the number of sides of the set of cells at a topological consider, for example, a froth which is completely uncor-

distance j from the i cell. Such a sum is equal t0 related(topological gast=0). From Eq.(B3), one obtains
m;(n;)K;(n;), wherem;(n;) denotes the average number of

sides per cell in the layer distaijt from the i cell, and
K;(n;) the number of cells of this layer. Let us now sum this
quantity over all the cells of the systel;m;(n;)K;(n;). In ) N ]
this sum the number of edges of eachell of the froth is ~Where we used the identitiés; =n andI'o=6—n. This re-
counted a number of times equal to the number of cells af@tion gives Aboav-Weaire's layl’y=(1—a)(6—n); see
distancej from this cell[e.g., the number of sides of the text] with a coefficienta= — /6.

generici cell is countedK;(n;) times and contributes to the
sum asn;K;(n;)]. It follows that we have the identity

r,= (6—n), (B4)

M2
1+?

APPENDIX C: PROOF OF THE CORRELATION
THEOREM OF EUCLIDEAN SSI FROTH

To prove this theorem, we first note that Ef) implies
m;(n;)K.(n;)= n; K. (n;). Al
20 my(n)K;(ny) =2 niK;(n,) (A1) -
Ki)=6j— i) C1
We can express this identity in term of the averages (Kj) =6l igo Q) €D
KN— _ In order to fill the two-dimensional Euclidean space, there
(m;K;)=(nkKs), (A2 must be a minimunm such that(K;)«j for j=w». This im-
plies that the cellular system must constrain the average to-
pological charge inside a shell to be independent on the shell
sizej. Such a constraint forces the average charge inside the
layer j to be equal to zero foy=v=1 [see Eq.(13)],

where(()) indicates the average over the cell-side distribu-
tions: (())==,p(n)() with p(n) probability of ann-sided
cell.

Equation(A2) is the generalization to the laygrof the
Weaire sum rule which is valid for the first laydr.e., (Qj)—(Qj_1)=((6—m)K;)
(miny=(n?)). For an arbitrarily large systentarbitrary
small boundary effecisrelation (A2) is exact, and is also
valid in the presence of non-shell-reducible topological in- :_izo ((6—n)Ty)
clusions. One should note that in real finite systems the effect
of the boundary could be dramatically important.

ji—1

-1
= _“2_;1 ((6—M)T)=0. (C2

APPENDIX B: CORRELATION AND FLUCTUATIONS ) . »
Consequently, one obtains the following two conditions on
A froth is uncorrelated after a given topological distancethe fluctuationd’; :

¢ if and only if for two cells with distanf > &, the probabil-
ity C;(n,m) to have one witm sides and the other witm _
sides factorizesC;(n,m)=s;(n)s;(m). It can be easily ;1 ((6=mTIy)=—u, for v=1, (€3
proved that in a froth where the cells are uncorrelated after

the distance, the average number of sides per Ceﬂ}‘() in and

a layerj> ¢ must be independent of the number of sides of _ N i

the central cell. This is the physical consequence of the ab- ((6=mI})=0 forj=v. €4
sence of correlations between the central cell and the cells ilm Appendix B we showed that in a system where the topo-
the layerj. This therefore mear(sm}’”K]-)= m}‘“(K,—). By us-  logical correlations vanish after thi¢h layer, the fluctuations
ing relation(A2), we have must satisfy the following relation for> ¢ [Eq. (B3)]:

v—1
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((6—m)K;)?
(Kj)
If one supposes>¢ and if we setj=v in Eq. (C5), Egs.

(C2) and(C4) yield ((6—n)T",_,)=0 which is in contradic-
tion with the definition of » (for w,#0). This implies

((6—n)Ij)=((6—n)j_1)+ (CH
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a [i.e., I'y=(1—a)(6—n), for some generah], the cells
must be correlated at least between third neighbors. Indeed,
v=1 in Eq. (C4) implies (1-a)u,=0, ora=1 if u,#0,
whereasv=2 in Eq. (C3) implies (1-a)u,=—u,, or
a=2 if u,#0. Both cases restric to special values for
mo7# 0. It follows that if a is to remain a free parameter of

v<¢. An immediate consequence is that in a random SSthe froth, v=3. Since we have shown thgt v, therefore
froth where Aboav-Weaire’s law is satisfied with an arbitrary £=3.
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