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In recent experiments, a thin~presumably cylindrical! tubular ‘‘tether’’ is mechanically pulled from a
roughly spherical fluid-phase lipid-bilayer vesicle. As a first step to understanding these experiments in terms
of the commonly used models for vesicle shapes, we examine the mechanical stability of cylindrical vesicle
surfaces under axial tension. This should be an adequate description of the extruded tether under the influence
of the pulling force, and it provides a starting point for the calculation of the full vesicle shape. It turns out that
there is not much difference between an isolated cylindrical vesicle and one where the spherical part of the
whole shape is taken into account in an approximate way, giving us reason to believe that our calculation is
also relevant to the tether-pulling experiments. Comparison of our results with the experiments shows that the
observed tethers fall comfortably within the predicted range of cylindrical stability.@S1063-651X~96!11511-7#

PACS number~s!: 82.70.2y, 87.22.Bt, 68.15.1e

I. INTRODUCTION

In recent years, much has been accomplished in the un-
derstanding of vesicle shapes. The stationary shapes of freely
suspended closed vesicles of spherical topology have been
calculated using various models@1,2#. In principle, equilib-
rium always selects the shape of lowest total energy at given
values of the control parameters~vesicle volumeV, surface
areaA, etc.!. In practice, two~or more! shapes characterized
by the same control parameters may be simultaneously
stable, provided that they are both~all! locally stable and that
energy barriers are large on the scale of thermal energies
kBT. At true bifurcations or when energy barriers become
comparable tokBT, abrupt shape transformations can occur.
Particular attention has been paid to two such shape transfor-
mations called budding and vesiculation. A variety of experi-
ments have now provided many examples of locally stable
and/or equilibrium shapes and of shape transitions@3#.

A particularly simple shape that has attracted some theo-
retical attention is the cylindrical shape, usually seen experi-
mentally as a tube or ‘‘string’’ connected to one or two
larger assemblies of membrane material@4#. Theoretical in-
terest here has focused on the stability of free tubes@5,6#, on
tubes composed of chiral lipids@7#, and on a dynamic insta-
bility of tubular vesicles induced by perturbing them with a
laser beam@8#. In this paper we study static experiments in
which a vesicle~or a part of a vesicle! is seen to consist of a
tubular segment of membrane under longitudinal tension.

One particular type of experiment exhibiting tubular
shapes is that in which a tether is mechanically pulled from a
vesicle@9–11#. In these experiments some of the vesicle ma-
terial ~e.g., a swollen red blood cell or a phospholipid
vesicle! is sucked into a pipette, forming a ‘‘tongue’’ which
anchors the vesicle and acts as a reservoir of surface area for
the rest of the vesicle. A glass bead is then manipulated so as
to touch the vesicle and stick to it. When the bead is subse-

quently moved away, a long tether is pulled from the vesicle,
without significantly perturbing the shape of the remainder
of the vesicle.~A schematic picture of the geometry of the
experiment is shown in Fig. 1.! The precise structure of such
a tether is not known, since in most cases it is so narrow that
it is observable optically only as an interference pattern. It is
normally assumed that it consists of an ordinary bilayer and
that it has a~roughly! cylindrical shape. By observing the
amount of material that disappears from the ‘‘tongue’’ in the
pipette as the tether is drawn out, the radius of the tether can
be calculated. Typically, it is of the order of 25 nm@11#.

These tether-pulling experiments have heretofore been
analyzed in terms of various simplified models@12–14#,
which assumed stable cylindrical structure, but not until now
in the context of the general theoretical shape models re-
ferred to above. A calculation has been done to examine the
stability of cylindrical tubes@6#, but no connection was made
with the tether-pulling experiments. It is important to deter-
mine whether shapes like this~i.e., a long, narrow cylindri-
cal tube connected to a roughly spherical vesicle! are, in fact,
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FIG. 1. Sketch of a typical tether-pulling experiment. The
vesicle is partially sucked into a pipette, and a tether is pulled out of
it in the opposite direction.L is the length of the tether,R0 is its
radius, andF0 is the pulling force.l is the distance between the
mouth of the pipette and the far end of the tether,Vp is the volume
of the part of the vesicle that is inside the pipette,pi is the aspira-
tion pressure inside the pipette, andp0 is the pressure outside the
pipette.
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consistent with the accepted, modern version@2# of the usual
Canham-Helfrich free-energy functional@15#: Otherwise,
one would have to conclude either that the theory was wrong
or that the actual, microscopic structure of the experimen-
tally observed tether was in some way more complicated,
perhaps, e.g., a flattened tube made out of a single leaf of the
vesicle bilayer, a bilayer tube that requires additional stabi-
lization by short-range forces across its diameter, or, indeed,
a tube with some kind of spatial modulation along its length.
It is of particular importance to have a good understanding of
the shapes seen in these experiments, because they are com-
monly used to obtain measurements of the bending moduli
k and k̄ of the bilayer@10–13#. From a theoretical point of
view, it is convenient that the direction of the force along the
cylinder gives the problem axisymmetry, since analytic cal-
culations are limited to axisymmetric shapes.

In order to understand the equilibrium shapes found in the
experiments, it is a useful first step to focus on the cylindri-
cal part of the shape and to investigate its stability as a sepa-
rate unit. Even though the tubular parts of the shapes seen in
experiments are not isolated, one would expect them to be
close to shapes that are stable by themselves. We shall argue
that, in this situation, the remainder of the vesicle can be
viewed as a reservoir of surface area and volume for the tube
and, thus, can be taken into account in an approximate way,
without having to go into the details of the overall shape. We
will consider in what follows both isolated cylinders and
cylinders connected to such a reservoir. The results for these
two different cases will turn out to be the same, thus giving
us some confidence that they are valid for a range of cylin-
drical shapes in different circumstances. To eliminate the
effects of the ends of the cylinder, we will consider its length
to be much larger than its radius~as is so in the experiments!,
so that we only study the intrinsic stability of the cylinder
itself.

The purpose of this paper is to extend the earlier investi-
gation by Ou-Yang and Helfrich@6# into the stability of cy-
lindrical tubes and to apply it to the tether-pulling experi-
ments discussed above. The extension consists of adding a
term representing the force pulling on the tether, as in the
experiments, and generalizing the energy functional by in-
cluding the so-called area-difference-elasticity~ADE! term.
In the discussion we will apply the results of the calculation
to the experimental situation by substituting representative
values for the experimental quantities.

II. THE ENERGY FUNCTIONAL

Our aim is to obtain an energy functional describing the
tether (t) which takes into account the rest of the vesicle
(r ) in an effective, approximate way. We will derive such an
expression from the energy functional for the whole vesicle
(w), showing along the way what approximations are in-
volved. We assume that the energy of the whole vesicle is
described by the area-difference-elasticity~ADE! energy
functional @2# plus two additional terms describing an axial
pulling force and a pressure difference between the inside
and outside of the pipette~Fig. 1!

Fw5
k

2EwdA~C11C22C0!
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k̄p

2AD2 ~DA2DA0!
2

2F0l 2DppVp . ~1!

The first term is the Canham-Helfrich curvature energy@15#,
wherek is the local bending elasticity,C1 andC2 are the
principal curvatures, andC0 is the spontaneous curvature.
The integral is over the surface of the whole vesicle. The
second term is the ADE term, wherek̄ is the so-called non-
local bending elasticity,A is the area of the whole vesicle,
andD is the distance between the two leaves of the bilayer.
DA is the total area difference over the entire vesicle be-
tween the inner and outer leaves of the bilayer, given by

DA5DE
w
dA~C11C2!. ~2!

DA0 is the preferred~‘‘relaxed’’ ! value of this area differ-
ence, based on the difference between the number of lipid
molecules in the two leaves@2#. The term2F0l represents
the effect of the forceF0 (.0) that pulls on the tether;l is
the distance from the end of the pipette to the far end of the
tether~see Fig. 1!. The last term comes from the difference
between the aspiration pressurepi inside the pipette and the
pressurepo outside the pipette,Dpp5po2pi (.0). Vp is
the volume of the vesicle tongue inside the pipette. We have
omitted from the energy functional the Gaussian curvature
term, since the topology of the whole vesicle does not
change in the course of the experiment. The surface area and
volume of the whole vesicle are regarded as fixed during the
experiment.

The integral terms appearing in Eqs.~1! and ~2! and the
lengthl can each be written as a sum of two parts, one that
depends only on the properties of the tether and another that
depends only on the properties of the rest of the vesicle. The
full energy ~1! can, therefore, be split up in a similar way,
except for one term: Expanding the ADE term gives rise to a
cross term proportional toDAtDAr , which depends on the
properties ofboth parts (t and r ) of the vesicle. In order to
decouple completely the two parts of the vesicle~so that we
can writeFw5Ft1Fr), we shall assume thatDAr in this
term is constant, i.e., that it does not vary when a small
fluctuation is applied to the vesicle shape. One can check that
this approximation is good by following Ref.@14# and mod-
eling the rest of the vesicle (r ) as a sphere outside the pipette
plus a cylindrical tongue inside. Then, a simple model cal-
culation shows that the terms we neglect in takingDAr to be
constant here are about five orders of magnitude smaller than
the relevant dominant terms. The upshot of this approxima-
tion is that the part of the ADE term which refers to the
tether can now be written as (DA2DA0)

2, where
DA05DA02DAr is now the effective preferred area differ-
ence for the tether alone~with DAr taken fixed!.

Having now written the energyFw as the sum of two
terms that refer separately to the tether and the rest of the
vesicle, we introduce one more approximation. The tether
and the rest of the vesicle are still connected by the fact that
the surface area and volume of the whole vesicle are con-
served. So, if the surface area of the tetherAt changes by a
small amountdAt the surface area of the rest of the vesicle
changes by2dAt ~and similarly for the volume!. Since the
surface area and volume of the rest of the vesicle are much
larger than those of the tether, it effectively forms a reser-
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voir, and we expect its energy to change approximately lin-
early with the changes of surface area and volume~this ap-
proximation would break down if there was an unexpected
coupling between fluctuation modes in the tether and in the
rest of the vesicle!. Hence, if we are only interested in fluc-
tuations in the shape of the tether, we can replace the term
Fr by two terms that couple to the surface area and volume
of the tether,S tAt2PtVt . The ~effective! surface tension
and pressure difference are given byS t5]Fr /]At
52]Fr /]Ar52S r and Pt52]Fr /]Vt5]Fr /]Vr
52Pr . ~A calculation using the same simple model referred
to above shows that bothS t andPt defined in this way are
positive, as one would expect intuitively.!

The upshot of this is that we can finally write an effective
energy functional for the tether alone, taking the rest of the
vesicle into account approximately. This functional is given
by

F5
k

2E dA~C11C22C0!
21

k̄p

2ĀD2 ~DA2DA0!
2

2F0L1SA2PV, ~3!

where we have dropped the subscriptt, since, unless other-
wise noted, all quantities from now on will refer to the tether.
Here,S andP are the effective surface tension and pressure
difference@16# for the tether~determined by the properties of
the reservoir, as discussed in the preceding paragraph!; Ā is
the surface area of the whole vesicle;DA0 is the preferred
area difference of the tether; andL is the length of the tether.

Except for the specific interpretations ofĀ, DA0, S, and
P, there is nothing left in the energy functional~3! that refers
explicitly to the geometry of the tether-pulling experiment.
Therefore, the same functional can be used to describe a
vesicle that is in contact with any kind of reservoir, the only
difference being the specific values and interpretation of
these four parameters. Note that one could interpretS and
P, not as an effective surface tension and pressure differ-
ence, but as Lagrange multipliers used to enforce constraints
of constant surface area and volume of the tether. In that
case, the description would be appropriate for an isolated
cylindrical vesicle. It will turn out that the results for the
stability of the cylindrical shape are essentially the same for
both these situations, thus showing that the presence of a
reservoir of volume and surface area does not influence the
stability of the tether shape. This was found earlier for a
cylinder without tension@6#.

III. STABILITY ANALYSIS

We will now examine the stability against small shape
fluctuations of a cylindrical vesicle described by the bending
energy~3!. The shape of the cylinder with fluctuations can be
expanded around a perfect cylinder as

RW ~z,f!5RW 0~z,f!1«~z,f!nŴ 0~z,f!, ~4!

where RW 0(z,f)5(R0cosf, R0sinf, z) describes an unper-

turbed cylinder of radiusR0 andnŴ 0(z,f)5(cosf, sinf, 0) is

the normal to the surface of that cylinder. The perturbation
«(z,f) may now be expanded as

«~z,f!5(
n,m

«n,me
i ~knz1mf!, ~5!

wherekn52pn/L andL is the length of the cylinder.z and
f run from 0 toL and 0 to 2p, respectively. Since we are
interested in the properties of a cylinder which is long com-
pared to its radius, we entirely neglect the shape at the end-
points.

Expanding the surface area, volume, bending energy, and
area difference of the shape given by Eq.~4! to order«2 and,
at the same time, introducing a change of cylinder length,
dL, gives

dA5dS E
0

2p

dfE
0

L

dzAgD
52pL«0,012p~R01«0,0!dL

1
pL

R0
(
n,m

u«n,mu2~kn
2R0

21m2!, ~6!

dV5dS E
0

2p

dfE
0

L

dzE
0

R0
r dr D

52pLR0«0,01p~R0
212R0«0,0!dL1pL(

n,m
u«n,mu2,

~7!

dE5dS E
0

2p

dfE
0

L

dz~C11C22C0!
2AgD

52
kpL

R0
2 ~12R0

2C0
2!«0,01

kp

R0
~12R0C0!

2dL

2
kp

R0
2 ~12R0

2C0
2!«0,0dL1

kpL

R0
3 (

n,m
u«n,mu2Qn,m ,

~8!

dDA5dSDE
0

2p

dfE
0

L

dz~C11C2!AgD
52pDdL1

2pLD

R0
2 (

n,m
u«n,mu2kn

2R0
2 , ~9!

where

Qn,m5@ 1
2 ~C0

2R0
221!22C0R0#~kn

2R0
21m2!1~kn

2R0
21m2!2

12~C0R021!m211 ~10!

andAg is the metric on the surface of the~perturbed! cylin-
der. Equations~6!–~8! agree with expressions found by Ou-
Yang and Helfrich@6#, who proceeded by developing general
forms for the first and second variations and then specializ-
ing to cylindrical geometry.

Substituting all of this into Eq.~3! and expanding the
ADE term gives

54 5465STABILITY OF CYLINDRICAL VESICLES UNDER . . .



dF5d~1!F1d~2!F1O~«3!, ~11!

with

d~1!F5dLH kp

R0
~12R0C0!

212pR0S2pR0
2P2F0

1
4k̄p3L

Ā
~12Da0!J 1«0,0H 2

kpL

R0
2 ~12R0

2C0
2!

12pLS22pLR0PJ , ~12!

d~2!F5«0,0dLH 2
kp

R0
2 ~12R0

2C0
2!12pS22pR0PJ

1dL2
2k̄p3

Ā
1

pL

R0
(
n,m

u«n,mu2

3H k

R0
2Qn,m1~kn

2R0
21m2!S2R0P

1
4k̄p2L

R0Ā
~12Da0!kn

2R0
2J , ~13!

and where we have defined a reduced version of the pre-
ferred area difference,Da05DA0/2pLD.

The requirement that the first variation ofF be zero im-
plies thatS andP should satisfy

P5
F0

pR0
2 2

2k

R0
3 ~12R0C0!2

4k̄p2L

ĀR0
2 ~12Da0!, ~14!

S5R0P1
k

2R0
2 ~12R0

2C0
2!. ~15!

Substituting these expressions into the second variation, Eq.
~13!, gives

d~2!F5
pL

R0
(
n,m

u«n,mu2Bn,m1dL2
2k̄p3

Ā
, ~16!

where

Bn,m5
k

R0
2 ~kn

2R0
21m221!21

F0

pR0
kn
2R0

21PR0~m
221!.

~17!

This result ford (2)F has been derived assuming thatS and
P are an effective surface tension and pressure due to the
reservoir, so that the termsSA2PV are real contributions to
the energy, Eq.~3!. We will consider below the alternative
case, where the surface area and volume of the cylinder are
kept fixed.

If we considerF0, S, and P to be given for a certain
experimental situation, then the two stationarity equations
~14! and~15! determine the radiusR0 and the lengthL of the
tether under those conditions. In the second variation Eq.

~16! the coefficient ofdL2, 2k̄p3/Ā, is clearly positive, so
the condition that the cylindrical shape should be locally
stable becomes simply thatBn,m>0 for all n, m. In examin-
ing Bn,m for various values ofm, we can consider the num-
ber knR052pnR0 /L to be a continuous variable, since
L@R0. To test stability, then, it will suffice to find the mini-
mum ofBn,m for each integerm over the continuous variable
knR0 and to examine its sign. This is determined by the
values of two scaled parameters,f5F0R0 /kp and
p5PR0

3/k. Looking separately atm50, umu51, and
umu.1 reveals that there, indeed, is a region in
( f ,p)-space whereBn,m>0 for all m andn. This region is
shown in Fig. 2. The figure also shows, over the region
where the cylindrical shape is not stable, which mode is the
most unstable~i.e., which has the most negative value of
Bn,m). Note that the mode withknR050 and umu51 has
Bn,m50 everywhere. This neutral mode corresponds to a
translation of the whole cylinder and does not signal a shape
instability. Modes withumu51 and arbitrarily smallknR0
have values ofBn,m that are arbitrarily close to zero. These
modes correspond to bending of the cylinder on longer and
longer length scales.

It is useful to comment briefly on the physical signifi-
cance of the instabilities which bound the region of stability
of cylindrical tethers, as illustrated in Fig. 2. This region is
bounded below by the horizontal axis, indicating that fluid-
membrane tethers are only stable under tension~i.e.,
F0.0), as is, perhaps, not surprising. What our calculation
shows here is that the initial instability that occurs at this
boundary is towards a mode withumu51 and knR05 f /2.

FIG. 2. Plot of scaled (F0 ,P) space (f5F0R0 /
kp, p5PR0

3/k), showing the region~inside the bold lines! where
cylindrical shapes are locally stable, and, for those regions where
they are not stable, the values (kn

2R0
2 ,umu) of the most unstable

mode. Further to the right, outside the area of the figure,m50
remains the most unstable mode. Further to the left, there is a suc-
cession of bands where modes with consecutively higher values of
umu are the most unstable.
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The vertical part of the right-hand boundary of the stable
region occurs atP5k/R0

3. When the internal pressure ex-
ceeds the external pressure by more than this amount, the
tether can lower its energy simply by increasing its radius,
i.e., the stationary valueR0 @given implicitly by Eqs.~14!
and ~15!# becomes a saddle rather than a local energy mini-
mum, as can be verified directly by evaluating the energy~3!
for cylindrical geometry. For 0, f,2, this uniform instabil-
ity is preempted by one withknR05 f /211, giving the
curved part of the right-hand stability boundary. The left-
hand stability boundary occurs forP523k/R0

3, i.e., when
the external pressure exceeds the internal pressure@16#. The
fact that this instability occurs in the sector (knR0

50,m52) indicates that the initial collapse of the cylinder
is towards a flattened, ribbonlike shape. On the lineF050,
these results are in accordance with earlier work by Ou-Yang
and Helfrich@6#, who did a similar calculation for the spon-
taneous curvature model (k̄50) without the pulling force
F0.

If the analogous calculation is done for the alternative
case, where the surface area and volume of the cylinder are
kept fixed, so thatS andP are to be interpreted as Lagrange
multipliers, almost the same expressions~6!–~17! are recov-
ered. The conditions for making the first variation vanish are,
of course, the same, so thatS andP must again satisfy Eqs.
~14! and ~15!. To find the relevant second variations, some
care must be taken: Using the energy functional including
the termsSA2PV would lead to a wrong result. Instead, the
constraints onA andV must be taken into account explicitly
in the perturbation. The result is again Eq.~16! but without
the term (n,m)5(0,0) and the term proportional todL2.
These two terms correspond, respectively, to variations in
the radius and length of the cylinder. Such variations are the
only ones that preserve the symmetry of the unperturbed
cylindrical shape. It can be shown generally that for pertur-
bations whichbreak the symmetry of the unperturbed shape
@in this case all (n,m)Þ(0,0)#, the contribution to the second
variation is the same irrespective of whetherS and P are
Lagrange multipliers or the effective~or real! surface tension
and pressure difference@17#. The presence or absence of
these two terms makes no difference for the stability of the
cylinder: The dL2 term is positive and the term with
(n,m)5(0,0) is essentially indistinguishable from the next
one, (n,m)5(1,0), since~for largeL) knR0 can be consid-
ered to be continuously variable. Therefore, the stable area
shown in Fig. 2 is valid regardless of whetherA or V are
kept fixed or, instead, are coupled to a reservoir. This insen-
sitivity to the treatment of the coupling between the tether
and the rest of the vesicle reinforces our confidence that the
results are valid for the full geometry of the tether-pulling
experiments.

An example of an instability in an isolated cylinder is
discussed in Ref.@5#. There, it is shown that, forF050 and
C0R0.1 ~which corresponds here toP.0), a modulation
along the length of the cylinder develops. It can be shown
that the initial wave vector of this modulation, whenC0R0
first exceeds 1, does, indeed, satisfyknR051, as would be
expected from Fig. 2. Beyond that, shapes develop for which
the modulation is no longer infinitesimal, and the present
discussion no longer applies.

IV. COMPARISON WITH EXPERIMENTS

Now that we have established the region of cylindrical-
tether stability~Fig. 2!, it is important to see whether or not
the parameters of the tether-pulling experiments@9,11# lie in
this region. If they do~which will turn out to be the case!,
then the previous interpretation of these experiments stands;
if they did not, then~assuming the theory to be correct!! the
interpretation would have to take into account noncylindrical
structures. Such a comparison of theory with the tether ex-
periments can at best be semiquantitative, since many quan-
tities are only roughly known and, indeed, the values found
for some quantities depend on the model used to interpret the
experiments. On the other hand, as we shall see, it will turn
out that the experiments do not fall anywhere near the
boundaries of the stability region, so that precise parameter
values are not required to verify stability.

The following order-of-magnitude estimates for param-
eter values seem fairly reliable:k'k̄'10219 J; R0

'2.531028 m; F0'3310211 N; Ā'1029 m2; L'1025 –
731024 m. The scaled preferred area differenceDa0 is
found to be of order 1@11#, albeit with large fluctuations
around that value, particularly ifL is small. The difference
between the pressure in the pipette and the outside pressure
is given in Ref.@11# asDpp'40 N/m2. The effective pres-
sure P can be estimated in the simple model referred to
above, and the result is thatP'Dpp . A similar estimate for
the effective surface tension givesS'DppAĀ/4p. We will
further assume that the spontaneous curvature is such that
C0R0!1, since it seems unlikely that the membrane would
have a preference for curvature on a length scale as small as
R0.

Using these parameters, we find that, for short tethers
(L&531025 m!, the left-hand side of Eq.~14! and the last
term on the right-hand side are negligible compared with the
remaining two terms. That equation then reduces to
F0R0 /kp52, showing that the radius of the tether is in-
versely proportional to the pulling force, as was derived be-
fore @13# and verified experimentally@9,10#. On the other
hand, for long tethers (L*431024 m!, the ADE term in Eq.
~14! is no longer negligible, and the simple inverse propor-
tionality of tether length to pulling force is no longer valid.
When this is the case, the effect of the ADE term provides a
method to measure bothk and k̄, as was done by Waugh
et al. @11#. An estimate of the surface tension gives
S'1024 N/m, which agrees with Eq.~15! and is the same
order of magnitude as the~effective! tension mentioned in
the literature@9#. Finally, we note thatf5F0R0 /kp'2, and
p5PR0

3/k'1022. Thus the axial tension is positive and the
dimensionless pressure difference is small, so the observed
tethers fall comfortably inside the expected region of~local!
cylindrical stability shown in Fig. 2.

We conclude from the above analysis that the tethers ob-
served in tether-pulling experiments@9–11# may consistently
be interpreted within the ADE model@2# as locally stable,
cylindrical objects, without invoking any additional~e.g.,
short-range! forces. It seems likely that the full vesicle shape
~see Fig. 1! can also be understood within this context, but
this proposition remains to be tested~and it would, of course,
be necessary to include the forces of constraint where the
tongue is sucked into the pipette!. Note that the distinction
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between the behavior of short and long tethers, which was
observed and analyzed in Ref.@14#, is a result of a competi-
tion between the ADE term in Eq.~3! and the local-bending
~Canham-Helfrich! term. Indeed, it is precisely this compe-
tition which allows separate measurement ofk and k̄ in the
tether-pulling experiments; conversely, the consistency of
the experiments is a test of the ADE model. Finally, we
remark that it has recently become possible to manipulate
these phospholipid tethers in the lab to produce nanoscale
‘‘microplumbing’’ and to build what is effectively a pico-
Newton force balance@18#. A quantitative theoretical under-
standing of the tethers and the way they connect to the rest of
the vesicle allows the axial force on the tether~which is too

small to be resolvable optically! to be inferred from the de-
formation of the remainder of the vesicle, which is large
enough to be visible.
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