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Stability of cylindrical vesicles under axial tension
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In recent experiments, a thifpresumably cylindrical tubular “tether” is mechanically pulled from a
roughly spherical fluid-phase lipid-bilayer vesicle. As a first step to understanding these experiments in terms
of the commonly used models for vesicle shapes, we examine the mechanical stability of cylindrical vesicle
surfaces under axial tension. This should be an adequate description of the extruded tether under the influence
of the pulling force, and it provides a starting point for the calculation of the full vesicle shape. It turns out that
there is not much difference between an isolated cylindrical vesicle and one where the spherical part of the
whole shape is taken into account in an approximate way, giving us reason to believe that our calculation is
also relevant to the tether-pulling experiments. Comparison of our results with the experiments shows that the
observed tethers fall comfortably within the predicted range of cylindrical stalji063-651X96)11511-7

PACS numbegps): 82.70-y, 87.22.Bt, 68.15te

I. INTRODUCTION quently moved away, a long tether is pulled from the vesicle,
without significantly perturbing the shape of the remainder
In recent years, much has been accomplished in the uref the vesicle.(A schematic picture of the geometry of the
derstanding of vesicle shapes. The stationary shapes of freedxperiment is shown in Fig. 1The precise structure of such
suspended closed vesicles of spherical topology have beentether is not known, since in most cases it is so narrow that
calculated using various moddl$,2]. In principle, equilib- it is observable optically only as an interference pattern. It is
rium always selects the shape of lowest total energy at givenormally assumed that it consists of an ordinary bilayer and
values of the control parametefgesicle volumeV, surface that it has a(roughly) cylindrical shape. By observing the
areaA, etc). In practice, two(or more shapes characterized amount of material that disappears from the “tongue” in the
by the same control parameters may be simultaneouslpipette as the tether is drawn out, the radius of the tether can
stable, provided that they are ba#il) locally stable and that be calculated. Typically, it is of the order of 25 r{rhl].
energy barriers are large on the scale of thermal energies These tether-pulling experiments have heretofore been
kgT. At true bifurcations or when energy barriers becomeanalyzed in terms of various simplified modgls2—-14,
comparable tkgT, abrupt shape transformations can occur.which assumed stable cylindrical structure, but not until now
Particular attention has been paid to two such shape transfoir the context of the general theoretical shape models re-
mations called budding and vesiculation. A variety of experi-ferred to above. A calculation has been done to examine the
ments have now provided many examples of locally stabletability of cylindrical tube$6], but no connection was made
and/or equilibrium shapes and of shape transiti@}s with the tether-pulling experiments. It is important to deter-
A particularly simple shape that has attracted some theamine whether shapes like thise., a long, narrow cylindri-
retical attention is the cylindrical shape, usually seen experical tube connected to a roughly spherical vesiale, in fact,
mentally as a tube or “string” connected to one or two
larger assemblies of membrane matef#l Theoretical in-
terest here has focused on the stability of free tUbe&, on
tubes composed of chiral lipid§], and on a dynamic insta-
bility of tubular vesicles induced by perturbing them with a
laser bean8]. In this paper we study static experiments in
which a vesiclgor a part of a vesicleis seen to consist of a
tubular segment of membrane under longitudinal tension.
One particular type of experiment exhibiting tubular
shapes is that in which a tether is mechanically pulled from a
vesicle[9—11]. In these experiments some of the vesicle ma-
terial (e.g., a swollen red blood cell or a phospholipid

vesiclg is sucked into a pipette, forming a “tongue” which FIG. 1. Sketch of a typical tether-pulling experiment. The

anchors the vesicl_e and acts as a re_servoir of Slﬁrface area f\9t=.(sicle is partially sucked into a pipette, and a tether is pulled out of
the rest of the vesicle. A glass bead is then manipulated SO &Si, the opposite directionL is the length of the tetheR, is its

to touch the vesicle and stick to it. When the bead is subsezngiys, andr, is the pulling force./ is the distance between the
mouth of the pipette and the far end of the tethgyis the volume
of the part of the vesicle that is inside the pipetiejs the aspira-
“Present address: Dept. of Chemistry, Baker Laboratory, Cornelion pressure inside the pipette, apgl is the pressure outside the
University, Ithaca, NY 14853-1301. pipette.
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consistent with the accepted, modern vergidhof the usual  The first term is the Canham-Helfrich curvature endrtf,
Canham-Helfrich free-energy function&ll5]: Otherwise, where « is the local bending elasticityG,; and C, are the
one would have to conclude either that the theory was wrongrincipal curvatures, an€, is the spontaneous curvature.
or that the actual, microscopic structure of the experimenThe integral is over the surface of the whole vesicle. The
tally observed tether was in some way more complicatedsecond term is the ADE term, whereis the so-called non-
perhaps, e.g., a flattened tube made out of a single leaf of thgca| pending elasticityA is the area of the whole vesicle,
vesicle bilayer, a bilayer tube that requires additional stabiznqp is the distance between the two leaves of the bilayer.
lization by short-range forces across its diameter, or, indee A is the total area difference over the entire vesicle be-

a tube with some kind of spatial modulation along its le.ngth'}ween the inner and outer leaves of the bilayer, given by
It is of particular importance to have a good understanding o

the shapes seen in these experiments, because they are com-
monly used to obtain measurements of the bending moduli
x and k of the bilayer[10—13. From a theoretical point of AA:DJ dA(C,+C)). 2)
view, it is convenient that the direction of the force along the w
cylinder gives the problem axisymmetry, since analytic cal-
culations are limited to axisymmetric shapes. . . .
In order to understand thg equilibrium sphapes found in thé*”o i the preferred“relaxed”) value of this area differ-
experiments, it is a useful first step to focus on the cylindri-6Nce, based on the difference between the number of lipid
cal part of the shape and to investigate its stability as a sepgtolecules in the two leave2]. The term—Fo/ represents
rate unit. Even though the tubular parts of the shapes seen i€ effect of the forcé, (>0) that pulls on the tether; is
experiments are not isolated, one would expect them to b€ distance from the end of the pipette to the far end of the
close to shapes that are stable by themselves. We shall arg[féher(see Fig. 1. The last term comes from the difference
that, in this situation, the remainder of the vesicle can bd€tween the aspiration pressyuginside the pipette and the
viewed as a reservoir of surface area and volume for the tub"@Ssurep, outside the pipetteAp,=p,—p; (>0). Vj is
and, thus, can be taken into account in an approximate Wa)t,he_volume of the vesicle tongqe inside the plpt_atte. We have
without having to go into the details of the overall shape. wePMitted from the energy functional the Gaussian curvature
will consider in what follows both isolated cylinders and térm, since the topology of the whole vesicle does not
cylinders connected to such a reservoir. The results for thesg'ange in the course of the experiment. The surface area and
two different cases will turn out to be the same, thus givingVOlum_e of the whole vesicle are regarded as fixed during the
us some confidence that they are valid for a range of cylin€Xperiment. o
drical shapes in different circumstances. To eliminate the 1he integral terms appearing in Ed$) and(2) and the
effects of the ends of the cylinder, we will consider its length!e€ngth/” can each be written as a sum of two parts, one that
to be much larger than its radigas is so in the experiments depends only on the propert_les of the tether and anqther that
so that we only study the intrinsic stability of the cylinder dépends only on the properties of the rest of the vesicle. The
itself. full energy (1) can, therefore, be split up in a similar way,
The purpose of this paper is to extend the earlier investi€xcept for one term: Expanding the ADE term gives rise to a
gation by Ou-Yang and Helfricf6] into the stability of cy-  Cross term proportional tAAAA,, which depends on the
lindrical tubes and to apply it to the tether-pulling experi- Properties ofooth parts ¢ andr) of the vesicle. In order to
ments discussed above. The extension consists of addingdgcouple completely the two parts of the vesicle that we
term representing the force pulling on the tether, as in th&an write F,=F+F,), we shall assume thakA, in this
experiments, and generalizing the energy functional by ini€rm is constant, i.e., that it does not vary when a small
cluding the so-called area-difference-elastii§DE) term. fIL!ctuatlon is ap.plle_d to the vesicle shape. One can check that
In the discussion we will apply the results of the calculationthis approximation is good by following Reff14] and mod-
to the experimental situation by substituting representativé&!ing the rest of the vesicle | as a sphere outside the pipette

values for the experimental quantities. plus a cylindrical tongue inside. Then, a simple model cal-
culation shows that the terms we neglect in takiy, to be
Il. THE ENERGY FUNCTIONAL constant here are about five orders of magnitude smaller than

o . , - the relevant dominant terms. The upshot of this approxima-
Our aim is to obtain an energy functional describing theyjo s that the part of the ADE term which refers to the
tether ¢) which takes into account the rest of the ves|cletether can now be written as A(A—A_AO)Z, where

(r) in an effective, approximate way. We will derive such an-—— _ . . :
expression from the energy functional for the whole vesicleﬁrﬁoe_féﬁ{%e ?e'?rf]; gl?)vrv(et\ti]teh egfcﬁgseariie;&ed area differ-
(w), showing along the way what approximations are in? Having now written the enerrgF as the.sum of two
volvec_i. We assume that t_he energy of _th_e whole vesicle I%erms that refer separately to the tvéther and the rest of the
described by the area-difference-elasticihDE) energy

functional[2] plus two additional terms describing an axial vesicle, we introduce one more approximation. The tether
pulling force and a pressure difference between the insid nd the rest of the vesicle are still connected by the fact that
and outside of the pipettig. 1 e surface area and volume of the whole vesicle are con-

served. So, if the surface area of the tetAechanges by a
K , KT ) small amountSA; the surface area of the rest of the vesicle
FWZEJWdA(ClJFCZ_Co) +5ap2(AA—AA) changes by- 8A, (and similarly for the volumg Since the
surface area and volume of the rest of the vesicle are much
—Fo/—ApyVp. (1)  larger than those of the tether, it effectively forms a reser-
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voir, and we expect its energy to change approximately linthe normal to the surface of that cylinder. The perturbation
early with the changes of surface area and volthes ap- =(z,¢) may now be expanded as
proximation would break down if there was an unexpected
coupling between fluctuation modes in the tether and in the
rest of the vesicle Hence, if we are only interested in fluc-
tuations in the shape of the tether, we can replace the term
F, by two terms that couple to the surface area and volum&herek,=2=n/L andL is the length of the cylindez and
of the tether,X;A—P,V;. The (effective surface tension ¢ run from O toL and O to 27, respectively. Since we are
and pressure difference are given bY;=dF,/dA; interested in the properties of a cylinder which is long com-
=—0F, [0A,= -3, and P,=-4F,/oV,=4dF,/oV, pared to its radius, we entirely neglect the shape at the end-
=—P,. (A calculation using the same S|mple model referredeints.
to above shows that both; and P, defined in this way are Expanding the surface area, volume, bending energy, and
positive, as one would expect intuitively. area difference of the shape given by E4).to orders? and,

The upshot of this is that we can finally write an effective at the same time, introducing a change of cylinder length,
energy functional for the tether alone, taking the rest of the’L, gives
vesicle into account approximately. This functional is given

e(z,¢)= Es gl(knztme), (5)

27 L
by 5A:5U d¢f dz\/§>
0 0
zfj dA(C;+C,—Cp)2+ WZ(AA—AAO)Z =2mlegot2m(Ry+ €00 0L
2 2AD
—FoL+SA—-PV, 3) E |&n.ml2(KZR5+m?), (6)

where we have dropped the subsctipsince, unless other- . L (R
wise noted, all quantities from now on will refer to the tether. sv= 5( f d¢f dzf rdr)
Here,> andP are the effective surface tension and pressure 0 0 0
difference[16] for the tethedetermined by the properties of

the reservoir, as discussed in the preceding paragrépts =27LRogg ot m(R3+ 2Rpeq o) oL+ 7L l&n.ml?
the surface area of the whole vesicleA is the preferred nm
area difference of the tether; ahds the length of the tether. (7)

Except for the specific interpretations Af AA,, 2, and R )
P, there is nothing left in the energy function(8) that refers _ m A2
explicitly to the geometry of the tether-pulling experiment. 5E_5( fo d¢f0 dz(C1+C2~Co) \/§>
Therefore, the same functional can be used to describe a L
vesicle that is in contact with any kind of reservoir, the only _ km KT 2
difference being the specific values and interpretation of - (1 RaCo )SO'OJFR_O(l_ROCO) oL
these four parameters. Note that one could interRretnd
P, not as an effective surface tension and pressure differ-
ence, but as Lagrange multipliers used to enforce constraints
of constant surface area and volume of the tether. In that
case, the description would be appropriate for an isolated ®
cylindrical vesicle. It will turn out that the results for the o L
stability of the cylindrical shape are essentially the same for SAA= 5( Df d¢f dz(C,+C,) \/§>
both these situations, thus showing that the presence of a 0 0
reservoir of volume and surface area does not influence the
stability of the tether shape. This was found earlier for a —2aDSL+ ZLTDZ |&n ml k2R, 9)
cylinder without tensiorj6].

KT
_ﬁ(l_RO )8005L+ 3 2 |8n ml Qnmv
0

where
Ill. STABILITY ANALYSIS

We will now examine the stability against small shape Qnm=[3(CiR5—1)—2CoRo](kiR5+m?) + (K;R5+m?)?
fluctuations of a cylindrical vesicle described by the bending _ 2
energy(3). The shape of the cylinder with fluctuations can be +2(CoRo—1)m™+1 (10

expanded around a perfect cylinder as and /g is the metric on the surface of ttiperturbed cylin-

R der. Equation$6)—(8) agree with expressions found by Ou-
R(z,¢)=Ro(z,$)+(z,¢)No(Z, ), (4)  Yang and Helfric 6], who proceeded by developing general
forms for the first and second variations and then specializ-
> _ : . ing to cylindrical geometry.
where Ry(z,$) = (Rocos, Resing, 2) describes an unper- Substituting all of this into Eq(3) and expanding the

turbed cylinder of radiuf, andﬁo(z,¢)=(005¢, sing, 0) is  ADE term gives
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SF=8VF+ 8PF+0(e?), (11) +
- f
with 14
stable ©9
SVF= 5L[ Re —(1—RyCo)?+27RyS — mR3P—Fy T
+4ET3L(1 A )J+ { K7TL(1 R2C2) 2] : ' ' ' Cp 4
— —Aap €00) ~ o2z (L~
A RS 00 1
03) (F12+1,0)
+-4
+27L3 - ZWLROP] , (12) @
52 Kk 22
F:80'05L _?(1_ROCO)+27T2_27TR0P (f/2'3,2) T-8
0
2xkm  wL 1
+ 02—t =2 |ennl®
on,m T-12
‘ K2RZ+m?)S — RyP
X ﬁanm (kiRo+m%)2 =Ry FIG. 2. Plot of scaled Ky,P) space {=FgR,/

KT, p:PRglx), showing the regioriinside the bold lineswhere
Al cylindrical shapes are locally stable, and, for those regions where
_ (1—Aao)kﬁRS], (13)  they are not stable, the valuekR3,|m|) of the most unstable
RoA mode. Further to the right, outside the area of the figune;0
remains the most unstable mode. Further to the left, there is a suc-
and where we have defined a reduced version of the preession of bands where modes with consecutively higher values of
ferred area differencedag= AAO/ZTI'LD |m| are the most unstable.
The requirement that the first variation Bfbe zero im-
plies that and P should satisfy

(16) the coefficient of5L2, 2km/A, is clearly positive, so

E 2k iy the condition that the cylindrical shape should be locally
pP= _02_ 53(1-RoCo)— ———(1-Aay), (19 stable becomes simply thBt, ,,=0 for all n, m. In examin-
7Ry Ro ARG ing By, ,, for various values ofn, we can consider the num-

ber k,Rp=27nRy/L to be a continuous variable, since
L>R,. To test stability, then, it will suffice to find the mini-
mum of B, ,, for each integem over the continuous variable
k,Ro and to examine its sign. This is determined by the
Substituting these expressions into the second variation, Egalues of two scaled parameterd,=Fy,R,/x7 and
(13), gives p=PR3/«. Looking separately atm=0, |m|=1, and
Im|>1 reveals that there, indeed, is a region in
(f,p)-space wherd,, ,=0 for all m andn. This region is
shown in Fig. 2. The figure also shows, over the region
where the cylindrical shape is not stable, which mode is the
where most unstablgi.e., which has the most negative value of
Bn.m). Note that the mode with,R,=0 and|m|=1 has
Fo B, m=0 everywhere. This neutral mode corresponds to a
Bnm 7(k2R0+ m?—1)%+ W_R()kﬁsz)’L PRy(m*~1). translation of the whole cylinder and does not sig%al a shape
(17)  instability. Modes with|m|=1 and arbitrarily smalk,R,
have values oB, ,, that are arbitrarily close to zero. These
This result for5?F has been derived assuming tiatand  modes correspond to bending of the cylinder on longer and
P are an effective surface tension and pressure due to tHenger length scales.
reservoir, so that the tern¥A— PV are real contributions to It is useful to comment briefly on the physical signifi-
the energy, Eq(3). We will consider below the alternative cance of the instabilities which bound the region of stability
case, where the surface area and volume of the cylinder af cylindrical tethers, as illustrated in Fig. 2. This region is
kept fixed. bounded below by the horizontal axis, indicating that fluid-
If we considerF,, 2, and P to be given for a certain membrane tethers are only stable under tensioa.,
experimental situation, then the two stationarity equationd=¢>0), as is, perhaps, not surprising. What our calculation
(14) and(15) determine the radiuBR, and the lengti. of the  shows here is that the initial instability that occurs at this
tether under those conditions. In the second variation Egooundary is towards a mode wiflm|=1 and k,R,= f/2.

K
S =RyP+ = (1-R3C)). (15)
2R2

L 2k
0P == |enml’BamtoLZ—,  (16)
Roam ™ ’ A
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The vertical part of the right-hand boundary of the stable IV. COMPARISON WITH EXPERIMENTS

region occurs aP=«/R,. When the internal PrESSUTE €X= ~ Now that we have established the region of cylindrical-
ceeds the externgl pressure _by more _than th_|s a_mount_, tI?Sther stability(Fig. 2), it is important to see whether or not
.tether can Iqwer Its energy ;lmply by_mcreasmg Its radlus'the parameters of the tether-pulling experimggtd 1] lie in

i.e., the stationary valu®, [given implicitly by Egs.(14) __this region. If they dawhich will turn out to be the case

and (15)] becomes a_l_sadd_le rather than a I_ocal ENergy MiNizhan the previous interpretation of these experiments stands;
mum, as can be verified directly by evgluatmg the_ enéﬁ)y if they did not, then(assuming the theory to be correcthe

for cylindrical geometry. For & f<2, this uniform instabil- interpretation would have to take into account noncylindrical
ity is preempted by one wittknRo=f/2+1, giving the gy ctures. Such a comparison of theory with the tether ex-
curved part of the right-hand stability boundary. The left- yeriments can at best be semiquantitative, since many quan-
hand stability boundary occurs f&=—3«/R}, i.e., when tities are only roughly known and, indeed, the values found
the external pressure exceeds the internal pre¢d6ieThe  for some quantities depend on the model used to interpret the
fact that this instability occurs in the sectork,Ry,  experiments. On the other hand, as we shall see, it will turn
=0, m=2) indicates that the initial collapse of the cylinder out that the experiments do not fall anywhere near the
is towards a flattened, ribbonlike shape. On the Fpe=0, boundaries of the stability region, so that precise parameter
these results are in accordance with earlier work by Ou-Yangalues are not required to verify stability.

and Helfrich[6], who did a similar calculation for the spon- ~ The following order-of-magnitude estimates for param-
taneous curvature modek&0) without the pulling force eter values seem fairly reliablex~«x~10"" J; Ry

Fo. ~2.5X10 8 m; Fy=3%x10 ' N; A=~10 ° m?; L~10"° -

If the analogous calculation is done for the alternative 7X10°* m. The scaled preferred area differente, is
case, where the surface area and volume of the cylinder afgund to be of order 111], albeit with large fluctuations
kept fixed, so thak andP are to be interpreted as Lagrange around that value, part_lcularly.II is small. The dlf_ference
multipliers, almost the same expressidfs-(17) are recov- _betv_veen_the pressure in the pipette and the out_S|de pressure
ered. The conditions for making the first variation vanish areiS given in Ref.[11] asAp,~40 N/n¥. The effective pres-
of course, the same, so tHatand P must again satisfy Egs. Sure P can be estlme_lted in the simple model referred to
(14) and (15). To find the relevant second variations, someabove, and the result is thBt=Ap,,. A similar estimate for
care must be taken: Using the energy functional includinghe effective surface tension giv&s~Ap,VA/4m. We will
the termsS A— PV would lead to a wrong result. Instead, the further assume that the spontaneous curvature is such that
constraints orA andV must be taken into account explicity CyRy<1, since it seems unlikely that the membrane would
in the perturbation. The result is again E6) but without  have a preference for curvature on a length scale as small as
the term @,m)=(0,0) and the term proportional téL2. Ro.

These two terms correspond, respectively, to variations in Using these parameters, we find that, for short tethers
the radius and length of the cylinder. Such variations are théL<5x10° m), the left-hand side of E¢14) and the last
only ones that preserve the symmetry of the unperturbeterm on the right-hand side are negligible compared with the
cylindrical shape. It can be shown generally that for perturfemaining two terms. That equation then reduces to
bations whichbreakthe symmetry of the unperturbed shapeFoRy/«k7=2, showing that the radius of the tether is in-
[in this case all §,m) # (0,0)], the contribution to the second versely proportional to the pulling force, as was derived be-
variation is the same irrespective of whetf®rand P are  fore [13] and verified experimentally9,10]. On the other
Lagrange multipliers or the effectiver rea) surface tension hand, for long tethersL(=4x 10~* m), the ADE term in Eq.
and pressure differencl7]. The presence or absence of (14) is no longer negligible, and the simple inverse propor-
these two terms makes no difference for the stability of thetionality of tether length to pulling force is no longer valid.
cylinder: The 6L? term is positive and the term with When this is the case, the effect of the ADE term provides a
(n,m)=(0,0) is essentially indistinguishable from the next method to measure botk and x, as was done by Waugh
one, (1,m)=(1,0), since(for largeL) k,R, can be consid- etal. [11]. An estimate of the surface tension gives
ered to be continuously variable. Therefore, the stable area~10"% N/m, which agrees with E(15) and is the same
shown in Fig. 2 is valid regardless of wheth&ror V are  order of magnitude as theeffective tension mentioned in
kept fixed or, instead, are coupled to a reservoir. This inserthe literaturg 9]. Finally, we note that=FyR,/x7~2, and
sitivity to the treatment of the coupling between the tethemp= PRS/x%lO‘Z. Thus the axial tension is positive and the
and the rest of the vesicle reinforces our confidence that thdimensionless pressure difference is small, so the observed
results are valid for the full geometry of the tether-pulling tethers fall comfortably inside the expected regior(lo€al)
experiments. cylindrical stability shown in Fig. 2.

An example of an instability in an isolated cylinder is  We conclude from the above analysis that the tethers ob-
discussed in Ref5]. There, it is shown that, fdF;=0 and  served in tether-pulling experimen®-11] may consistently
CoRp>1 (which corresponds here 8>0), a modulation be interpreted within the ADE mod¢R] as locally stable,
along the length of the cylinder develops. It can be showrtylindrical objects, without invoking any addition&é.g.,
that the initial wave vector of this modulation, whépR,  short-ranggforces. It seems likely that the full vesicle shape
first exceeds 1, does, indeed, satikfRo=1, as would be (see Fig. 1 can also be understood within this context, but
expected from Fig. 2. Beyond that, shapes develop for whiclhis proposition remains to be testéuhd it would, of course,
the modulation is no longer infinitesimal, and the presenbe necessary to include the forces of constraint where the
discussion no longer applies. tongue is sucked into the pipekteNote that the distinction
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between the behavior of short and long tethers, which wasmall to be resolvable optica)lyto be inferred from the de-
observed and analyzed in R€14], is a result of a competi- formation of the remainder of the vesicle, which is large
tion between the ADE term in E@3) and the local-bending enough to be visible.

(Canham-Helfrich term. Indeed, it is precisely this compe-

tition which allows separate measurementoénd « in the

tether-pulling experiments; conversely, the consistency of ACKNOWLEDGMENTS
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