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The structure observed in concentrated polymeric micelles results from interactions between coronal chains
that develop as micelles are brought to approach distances where the chains either compress or interdigitate.
One powerful model for polymeric micelles comprises spherical particles with chains tethered to their core at
a specified surface density. This treatment combined with self-consistent field theory provides an estimate of
the pair interaction potential between micelles. These pair interaction potentials allow modeling of the structure
and thermodynamic properties that depend on the overall micelle concentration. We perform neutron scattering
experiments to measure the short-range correlations in the liquid, through the static structurg(fgctand
compare these results with models that rely on a solution of the Ornstein-Zernike equation subject to a
Rogers-Young closure. A description of the homogeneous liquid serves as the basis for employing density
functional theory(DFT) to estimate the free energy of the solid. In this investigation, we use the modified
weighted density approximation of Denton and Ashcféfys. Rev. A39, 4701(1989] to estimate the free
energy of the solid for each of our micellar systems to predict the liquid-solid phase transition. Although we
experimentally observe transitions to face-centered-c{ibi¢ and body-centered-cubibcc) crystals depend-
ing on the length of the corona relative to the core, we only predict a simple liquid-fcc transition with the DFT
method. The nature of the transition suggests a simple perturbation result using the hard sphere as the reference
system. Despite the inability to predict the bcc lattice type, both DFT and hard-sphere models accurately
predict coexistence over the entire range of our experimggi€63-651X96)09811-X

PACS numbses): 61.12.Ex, 61.25.Em, 83.70.Hq, 64.70.Dv

[. INTRODUCTION tablished the perception that the range of the repulsion dic-
tates the nature of the liquid-solid transition.

The ability to predict phase transitions offers one of the Another important soft-sphere potential is the Yukawa re-
most stringent tests for an accurate model of the thermodypulsion which corresponds to a screened Coulombic interac-
namic properties of real systems. Much of this research fotion u(r)=~exp(— «r)/r, where 1k is the screening length.
cuses on combining model pair-interaction potentials withRobbins, Kremer, and Gregt3] performed MD simulations
simulation methods such as Monte Ca(MC) [2] or mo-  on this system and found stable body-centered-c(iizic) at
lecular dynamicsMD) [3,4]. The simulations yield exact low screening(small ) and face-centered-cubitfcc) at
results for model pair interactions preserving pairwise addilarge x. Charged colloidal particles forming fcc and bcc ar-
tivity [5], when finite size effects are considered. rays can be successfully modeled with this potertid].

One of the more important findings from simulations are  Along with the Lennard-Jones potentigl5,16, the
the liquid-solid transitions occurring in systems having re-Yukawa and inverse-power potentials represent the most
pulsive interaction potentials. Perhaps the most exhaustivihoroughly investigated model systems with complete phase
investigation involves the inverse-power potentials where theliagrams. Although model potentials such as the finite step
potential energyu(r) decays as " [6—8]. This model po- repulsion[17] and two-species soft core modgl8] also
tential spans long-range interactions such as the oneiave complete phase diagrams, they suffer from having lim-
component plasma when=1 to short-range interactions in- ited physical analogs. The phase diagrams for other models,
cluding hard spheres whemapproaches infinity. Extensive such as the Gaussian core studied by Stillinger and Weber
studies of hard spheres show a temperature-independ€i9,20, are still incomplete.
first-order transition from liquid to face-centered crystal with  The computationally time-consuming nature of MD and
a freezing volume fraction of 0.494 and a melting volumeMC simulations has propelled the field into less computa-
fraction ¢;, of 0.545[9-11]. One unique feature of the tionally intensive methods to predict thermodynamic proper-
inverse-power system is that their freezing transition is quitdies. This includes liquid-state theorigxl] based on integral
sensitive to the range of the repulsifl. In particular for  equations and density functional algorithfi@g] for predict-
3<n<6, the systems exhibit a stable body-centered-cubiding liquid-solid transitions. While these methods are approxi-
(bco phase. Although Hoover, Young, and Grover con-mate, they yield estimates of the thermodynamic properties
cluded that the bcc phase was stable fem3<7, Laird and  approaching the accuracy of traditional simulation schemes.
Haymet[12] later showed thah=6 represents the largest The density functional theor§DFT) has gained broad appli-
value of n having a stable bcc phase. Although very few cability because it relies on information about the homoge-
physical analogs exist for<8n<<6, this pioneering work es- neous liquid to predict the free energy of the solid phase. The

algorithm for relating the free energy of the solid to the uni-
form liquid defines both the method and its accuracy. Al-
* Author to whom correspondence should be addressed. though several versions of density functional theory exist
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TABLE |. Aggregation numbers and length scales describing polymeric micelles compdgrgyPI
diblocks in decane.

Polymer ReA Rr(A) R,(A) Re(A) 2R, Expt. lattice Lind. ratio
d-PS/PI fa P(q) S(q) DLS SCF R-Y type 0,

15 K/15 K 80 74 63 195 185 0.111 bcc 0.171
19 K/8 K 270 116 100 184 189 0.139 fcc 0.139
20 K/10 K 235 117 103 220 207 0.133 fcc 0.157
33 K/22 K 335 150 136 362 329 0.100 fcc 0.137
36 K/36 K 245 142 141 467 432 0.084 bcc 0.189
44 K/22 K 420 204 197 484 401 0.125 fcc 0.184
40 K/40 K 90 106 78 296 275 0.100 bcc 0.182
45 K/45 K 130 137 145 450 472 0.090 bcc 0.165

[22], the weighted-density approximation of Curtin and Ash-isoprene. Although the micelles coexist with free chains, the
croft [23] is both tractable and accurate; the modifiedcritical micelle concentration is so smalapproximately
weighted density approximatigiWDA) [1] provides close 10 3to 10 2 wt. % polymej the solutions are dominated by
agreement with MD results for hard-sphere systems. micelles at all concentrations investigated hgeaging from
Laird and Kroll[24] applied several DFT methods to the 0.5 to 30 wt. %. More importantly, the micelles have a
inverse-power potential with mixed results. All methods narrow range of aggregation number and can subsequently
were unable to predict a stable bcc phase, even under condie treated as monodisperse spherical parti@é§ Portions
tions where MD simulation results clearly show that the bccof deuterated decari€ambridge isotopes, 99% deuterajion
phase is most stable. Only the weighted density approachesd hydrogenated decane are mix@il07 mole fraction
[1,23] provided a stable solution for all values ofin the  deuterated decapeo match the coherent scattering density
inverse-power potential. They suggest that as the interactioof hydrogenated polyisoprene. As a result, the intensity mea-
increases in range, the DFT is unable to accurately map theured from these suspensions are described by the scattering
interactions of the liquid onto the strongly correlated solid.from constant density, sphericatpolystyrene cores and the
In this case, the interaction potential extends over severapatial correlations developing at liquidlike concentrations.
lattice spacings and may explain the failure of the DFT to The small angle neutron scattering experimei@ANS
predict a stable bcc phase for long-range potentials despitsere performed at beam line NG7 at the National Institute of
the relatively accurate prediction of the hard-sphere transiStandards and Technolog@iIST). Details about the beam-
tion. line facility are given elsewherg7]. All intensity measure-
With this in mind, the goal of this paper is twofol¢l) ments were taken at an incident wavelengthAef7.00 A
utilize pair-interaction potentials to understand the liquid-(ANN=0.11; full width at half maximum The sample to
solid (fcc and bcg transition observed in concentrated solu- detector distance was 11.0 meters giving a scattering vector
tions of polymeric micelles, ant?) apply the density func- qg[q=(4w/\)sin(6/2), where@ is the scattering angleausing
tional theory to determine its applicability in systems with q to range from 0.005 Al to 0.1 A"%. Data were placed on
repulsions extending over a finite range. We characterize then absolute scale by cross referencing with the NIST silica
interactions between polymeric micelles with self-consistenstandard using standard reduction technig&8. In addi-
field equations(SCPH for tethered-chain systems. Liquid tion, all experiments were performed at room temperature.
state models offer predictions of the short-range correlations Experiments on monodisperse suspensions obey a simple
that are compared to small angle neutron scattering experferm for the scattering intensity representing a product be-
ments at various liquid concentrations. The liquid-statetween the form factor and the structure fadi®]
theory models the thermodynamics of the homogeneous lig-
uid through the radial distribution function. This information
serves as the basis for predicting the liquid-solid transition I(a)=pP(q)S(q). 1)
using the MWDA method.

The form factorP(q) accounts for the intramicellar interfer-

Il. EXPERIMENT ence describing the spherical shape of the particle mied
. . . roportional to the number density of particles. The static

A series of highly ~monodisperse, perdeuteratedsycyre factorS(q) describes the interference arising from
polystyrene-polyisoprene(d-PS—P) diblock copolymers jyiermicellar interference, the short-range spatial correlations
with varying bloc_k sizes and ratios were synthesmed by Fresent in liquidlike micellar suspensions.
conventional, anionic polymerization techniqiiS]. The Characterizing these micellar suspensions at dilute con-
molecular weights for these dlblopk copolymers are reporte@entrations(o.l to 0.5 wt. % polymerserves two purposes.
in Table I. In all cases the polydispersity index is below orgjnce o correlations between particles exists, the measured

equal to 1.03. When these diblocks are suspended in decangyensity depends only on the intramicellar interference
a solvent preferential for the polyisoprene block, the copoly-

mers aggregate into spherical polymeric micelles comprising
a dense core ofl polystyrene and a diffuse corona of poly- [(q)=pP(q), 2
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calculate the pair interaction potentials by solving for the
2) free energy for a pair of polymeric micelles as a function of
104 their separation. Thus, in analogy with other colloidal sys-
= tems, the influence of the Pl corona is described in terms of
& the interaction potential between the cores. The interaction
potential is zero for separations greater than the overall di-
ameter of the micelle and the range depends on details asso-
ciated with the core curvature, surface density, and degree of
polymerization of the Pl block. The pair potentials for the
micelles formed from the diblocks stated in Table | were
presented previouslf40] and are used here for the liquid-
state and density functional theories.

Ill. RESULTS AND DISCUSSION

A. Liquid-state theory

As described in Sec. Il, scattering at dilute concentration
provides sufficient characterization of each micellar system
to utilize self-consistent mean field calculations to define the
pair interactions between micelles. Within this model, we

FIG. 1. (8) SANS form factor for micelles formed fromPS—P|  calculate the increase in free energy caused by compressing
20 K—10 K diblocks in core contrast decatachieved by mixing Or interdigitating the coronal layers as a function of center-
portions ofd-decane andh-decang at 0.5 wt. %. The lines corre- to-center separations. This provides a pair-interaction poten-
spond to the form factor for polydisperse spheres of core radius dfial for the liquid-state theory, thus allowing the prediction of
117 A using a Schulz distribution with a polydispersity ind&of  the thermodynamic state of the micellar suspensions ob-
90. (b) The form factor in PI contrast decane where only the micel-served at liquidlike concentrations.
lar corona scatters. The line is a fit to the density profile from the We predict the structural and thermodynamic properties
SCF model illustrated in the inset. of a homogeneous solution by solving for the radial distribu-
ion functiong(r), at a specified density, and our SCF pair

";!'Or‘]”'”g the siapf_tratlon oftgo;m and st(;uct:ture_noebztra]r\(/aed earl_teraction potentialu(R) [5,21). The radial distribution
\gher concentrations, so that we can cetermi XPEMnction measures the local probability of finding another
mental static structure factor for the liquidlike concentrations

N article some distance from a reference particle. As a result,
reported in this work. Secondly, we can model the form fac-p P

. . : . ial distribution function represents a composite of di-
tor using constant density, solid-sphere models subject to the radial distributio P P

e ) S ct and indirect particle interactions. These interactions are
Schulz distribution functiof30,31]. We present in Fig. () . . , L .
the form factor ford-PS—PI 20 K—10 K micelles in decane decomposed into separate interaction functions: a direct

. . . . . I : il ¢
with the scattering contrast matched to the Pl chains so thagtorrelanon functionc(r), describing the direct influence o

only the core shows; the line is the micellar core fit with the y?re) pgglsilﬁb?nng at?])é (i)rtl?lﬁgnig '(;]fd'(;izt ;Z:triec Ilzt'?)?] f;r?gg]oer}

ir?glu Iszi S([jg]r Igﬁ?&gﬁjg ?nﬁgﬁ;?t. iﬁgn\,?éntlr?g sthlsc\ilmlliggtizc:rrrg; through a third particle, and a total correlation functho(m)

coreyradiusR and aggregation zumbé;& We F;ee no evi- =g(r)—1, including both direct and indirect contributions.
c .

c | A ) Ornstein and Zernike developed a convolution integral equa-
dence of a virial contribution at low concentrations between[ion relating all particle interaction]

0.1% and 0.5%; thus we can use Zimm analysis to determine
the aggregation number. The aggregation number does not
seem to vary significantly with concentration. Our best evi- y(r12)=h(r12)—c(r12)=pf c(rogh(rigdrs, (3
dence for this is the correspondence between missing peaks
in the x-ray diffraction pattern for the ordered arrays and thewhere the total correlation functiam(r), can again be rep-
minima in the form factors for the dilute micell¢26]. resented by higher order direct and indirect correlation func-
This information goes into our self-consistent fié®ICH  tions. Applying this method recursively generates an infinite
calculations[33—-39 of chains tethered to spherical cores series expansion in powers of the particle density that depend
[36—38. These SCF models require the number of segmentsn higher order integrals of the direct and indirect correlation
N, for the solvated chaiN=M,p,/(68K,); hereK, is the functions. Solving the Ornstein-Zernike equation requires a
Kuhn ratio, (1.57[39] for Pl in decang the curvature rela- closure to relate two of the correlation functions to each
tive to the PI segment length, (R./b; b=8.28 A) and the  other through the pair-interaction potential. Since the infinite
tethered-chain surface density,p?/(47R2)]. Given this  series expansion represents the influence of specific clusters
information, we determine the Pl concentration profiles fromthat can be expressed diagrammatically, the closure relations
the SCF calculation. An illustration of the ability of the SCF amount to assigning the cancellation between certain clus-
model to depict the tethered PI layer is shown in Fih)l ters. The quality of the closure then defines the accuracy of
where we show the form factor for a dilute suspension ofintegral equations for describing liquid-state properties.
d-PS—PI 20 K-10 K micelles in decane with the scattering Although several closure relations exist to the Ornstein-
length density matched to th#-PS cores. The PI volume Zernike equation, two of the most common include the
fraction profile used for the fit is shown in the inset. We thenPercus-YevickPY) [41,5,21]
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g(r)=exd — Bu(r)][1+ y(r)] (4 ner, the Rogers-Young relation uses the PY method at short
distances and transforms to the HNC method at large sepa-

and the hypernetted cha{hiINC) [42,5,2] rations at a rate determined ByThe value of/ is adjusted to
achieve thermodynamic consistency through agreement be-

g(r)=exgd —Bu(r)]exd y(r)] () tween the osmotic compressibility calculated from EG.

and (8). The resulting thermodynamic properties, including

r.ela_tlons. The HN.C relatlon. appears to' best describe thfhe radial distribution function, agree with molecular dynam-
liquid-state properties of particles interacting through longer-

range potentials such as the one-component plasma. The ﬁ?@%ﬁﬁiﬂ?ﬁgiéﬁ;fﬁg%g ;Tr]gdc?)ln?tc))itr?irr:tgl]éﬁ iﬁ%raction po-

closure has effectively described the liquid-state prOpertie?ential calculated at discrete separations from SCF theory
of hard-sphere particles, a system with a short-range intera%ith the Rogers-Young closure to determine the radial dis-
tion potential. Thiele and Wertheif#3,44], however, dem-

L tribution function for our polymeric micelles at liquidlike
onstrated the limitations of the PY closure on hard'Spher%oncentrations. To accomplish this goal, we modify Gillan's

systems b%{ comparing the pressure calculated from the preﬁiethod[Sl], a numerical basis for calculating the radial dis-
sure equation tribution function from a discrete interaction potential. In this
p 2 e g method, the indirect correlation function is broken into
p u(r) ) . .
—=p——=——= | r——g(r)4mredr (6)  coarse and fine parts. The coarse part is expressed as a set of
kT 6kT Jo ar seven to ten orthonormal basis functions with unknown ex-
pansion coefficients. The fine part of the indirect correlation

with that calculated from integration of the compressibility function is solved using Picard’s method. We iterate until the

equation differences are less than 18 or 10%°. To achieve thermo-
1 9P 1 1 dynamic consistency, we employ Gillan’s method at a par-
— = = (7) ticular value of¢, calculate the osmotic compressibility from
KT dp 1+47-er’m[g(r)—1]r2dr S(q=0) both the pressure and compressibility equation, and apply
0 Newton-Raphson to generate a next best guess.faWe

accept convergence when the compressibility calculated

and demonstrating a lack of agreement observed at higheéfom both equations agrees to within 2%. Table | shows the
densities. Although Carnahan and Starl[d®] arrived at a  values of¢ required to achieve thermodynamic consistency
simple and accurate equation of state for hard-sphere sysor the interaction potentials describing our micellar systems.
tems, the lack of agreement in the pressure derived from two One feature of the convolution integral formalism is that
independent equations, referred to as thermodynamic incofhe Fourier transform of the Ornstein-Zernike equation re-
sistency, is regarded as an important problem for liquid-stateuits in a simple algebraic expression
theories to overcome.

In recent years significant advances in integral theories H(q)=C(q)+pC(q)H(Qq). (11
have addressed the issue of thermodynamic consistency. One
successful approach was developed by Rogers and Yourfgor a liquidlike suspension the theoretical structure factor
[46]. This approach imposes a simple restriction of thermobecomes
dynamic consistency with respect to one variable, the os-
motic compressibility. The osmotic compressibility is calcu- S(q)=1+pH(q), (12)
lated directly from Eq.7) while that determined from the

pressure Eq(6) is allowing direct comparison of the experimentally measurable

structure factor with our liquid-state models. Figuréa)2

1 9P p (= au(r) shows a comparison of experimentally measured structure
T a0 1- 3KT J’ r ar g(r)4mrr2dr factors with the model structure factors for micelles compris-
P ing diblocks with a 20 000 molecular weighdtpolystyrene
p2 (= au(r) dg(r) , block and a 10 000 molecular weight polyisoprene block at
~eKT J' r —r aredr. (8)  various overall polymer concentrations. We extrapolate the
0

model structure factors to wave vectors below those experi-

The Rogers-Young elton i a hybrid method mixing hel 721 Ac0esse becsuse e yALSHLZ) e e
PY and HNC closures such that the radial distribution func-h hi - ith FI)I ; "W ; h
tion is given by ow this varies with overall micelle concentration. These

micelles have a mean aggregation number of 235 diblocks

exd y(nf(r)]-1 and a core radius of 117 A. By measuring the scattered in-
g(r)zexp{—ﬁu(r)]r 1+ - , (90 tensity at several concentrations we can test the validity of
(r) the SCF pair-interaction potentials. The model structure fac-

tor is obtained by adjusting the volume fraction and core
radius via a Marquardt-Levenberg nonlinear regression sub-
f(r)=1—exp(—r). (10)  Ject to the Rogers-Young closure for the interaction poten-
tial. This thermodynamic radiu®k; dimensionalizes the
At r=0, f(0)=0 and the Rogers-Young recovers the PY clo-structure factor with respect to the scattering vectoiVe
sure relation. Ag increasesf(r) approaches unity and the find that the value oR; converges to a consistent value with
closure relation approaches the HNC equation. In this manvariations of less than 3% for all systems; however, in some

where
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S(q)

T
-3
30 40x10 0 2 4 6 8

(a) 1/2R,

FIG. 3. Radial distribution functions for the micelles formed
from dPS—PI 20 K-10 K diblocks in decane as a function of sepa-
ration distance scaled upon the core diameter. The radial distribu-
tions result from using the SCH(r) [40] potentials subject to the
Rogers-Young closurg46] for the polystyrene core volume frac-
tions indicated in Fig. 1.

mined core radius from dilute solution scattering. If we cor-
rect the volume fraction to account for this variation, then we
obtain excellent agreement between experimental and model
core volume fractions.
=200+ . . . v, The agreement between experimental and model structure
0 10 20, 30 40x10 factors establishes the accuracy for modeling the thermody-
(o) q A namic properties of the liquid state. In Fig. 3 we demonstrate
the radial distribution functions for the micelles comprising
FIG. 2. (8) SANS static structure factors for micelles formed 20 000—10 00Gd-PS—PI diblocks at the respective concen-
from dPS-Pl 20 K-10 K diblocks in core contrast decanetrations. We can predict the pressure of the liquid state as a
(achieved by mixing portions ofi-decane anch-decang at the  function of density with these distribution functions through
following polystyrene core volume fraction@®pg: ®ps=0.014  Eq. (6). The density relates to the core volume fraction as
(D), ®ps=0.024 (@); Ppg=0.036 (+); Pps=0.048 (A);  Pp=(7/6)p(2R,)3. Owing to the different molecular
®pg=0.068(0); Pps=0.088(M). The lines correspond to fits using weights of Pl in each micellar system, the range of the re-
the SCFu(r) potentials[40] subject to the Rogers-Young closure pylsion is correspondingly altered, changing the core volume
[46]. (b) The Fourier transform of the direct correlation function fractions where the pressure diverges, as shown in Fig. 4.
derived from Eq.(20) for experimental data compared with results Accurately predicting the pressure of the micellar liquid is
from the Rogers-Young closure. The Fourier transform of the direchecessalry to estimate the excess free energy of the liquid.

correlation function represents the homogeneous property influenel-he total Helmholtz free energy is the sum of the excess
ing the MWDA result through Eq(19).

-1504

Ple’) l}dp’ (13)

micelles this value underpredicts the core radius by as much £&(p)= fp
p'KT

as 15% from our dilute characterization. 0
The thermodynamic core radius is the means of placing

the interaction potential on a dimensional basis. One shortand ideal free energy for the liquid

coming of the SCF model is the presumptive nature of the

interface. We idealized the polymeric micelles by determin- fid=In(p)— 1. (14)

ing core radii and tethering densities, and calculated pair

interactions for spheres with polyisoprene chains tethered to

perfectly sharp interfaces. In reality, the micelles are dense B. Density functional theory

cores of polystyrene with some modest interfacial region for Density functional theory allows the prediction of the

the effective tethering junction. According to our contrast . : . :
i o 4 : thermodynamic properties of an inhomogeneous solid based
match experiments, we expect this interfacial region to be or

the order of 5 to 10 A. Although the form of the interaction on information about thg homog_ene_ous liquid. This theory
; S o relates the second functional derivative of the free energy to

potential should be quite insensitive to the presence of thﬁ1 : X :

! . . . . : e direct correlation function

interfacial region, we expect the interface to directly influ-

ence the actual dimensional length of the pair-interaction po- S2EeX

tential. Thus we anticipate as much as 5% deviation between lim -8 W

the thermodynamic core radius and our experimentally deter- ps—p P P

=cP(r,r"). (15)
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‘ : ; a=0 corresponds to a uniform liquid ardapproaching in-
{ / / finity signifies that the particles are fixed at their lattice po-
i‘ sitions.

Applying the MWDA largely amounts to satisfying the
following relation:

P /pkT

= — ; G2 -2
p=p4l 2610(5) EG exp —G“/2a)C(G;p) |,
(19

whereC(q) is the Fourier transform of the direct correlation
function evaluated at the corresponding values of the RLV
0 . . . . . . . for the proposed effective density. Sin€G€q) is input into
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 the density functional theory, it is important to model it ac-
P curately. One benefit of our scattering experiments is that we
measure the static structure factor which is closely related to
FIG. 4. The reduced pressure for each micellar liquid as a functhe Fourier transform of the direct correlation functi@i]
tion of the reduced density. The pressure is determined by solving
for g(r) using Gillan's method51] subject to the Rogers-Young 1
closure[46] and applying Eq(6). The symbols correspond to the C(q)= m
micelles comprising the followingPS—PI diblocks in decane: 15

K-15 K (2); 19 K-8 K (@); 20 K/10 K (>); 33 K/22 K(O); 36 \we show a comparison of the experimentally determined
KI36 K (x); 44 KI22 K (+); 40 K/40 K (+); 45 K/45 K (©). Fourier transform of the direct correlation function with the

e ) model in Fig. Zb). The ability to model the direct correlation
In the limit where the density approaches that of an actugy,,ction allows us to apply the MWDA to our micellar sys-
liquid, Eqg. (15) is exact. Although all density functional oms.

theories rely on Eq(15) as their foundation, several methods The value off () is calculated from the pressure given
have developed over the years to apply this relation to th% 0

: . Eq. (6). Essentially, Eq(19) yields an effective density
inhomogeneous solid. The second order methods based Onfé each value ofx subject to one true density for the solid.

truncated Taylor-series expansion offer simpler calculationﬁ.he exact value ofr becomes important for two reasons
but can be quite inexact ar]d yield unphysmal resiiss 52, First it determines the ideal contribution to the Helmholtz
The more successful weighted density approadig2d| free energy

both assume that the excess Helmholtz free energy of the

(20

inhomogeneous solid is equal to that of the liquid evaluated BFd
at some effective density ~N =3 In(alm)-3, (21
ex
F_:fgx(p)_ (16) such that the total Helmholtz free energy is a sum of the
N excess and ideal contributions and becomes a function of the

localization parametet.. The total free energy, the sum of
The weighted density approximatidiVDA) offers a more Eqgs. (16) and (21), is then minimized with respect ta.
explicit theoretical formalism but is more computationally Secondly,« is directly related to the mean-square displace-
involved. The second version, known as the modifiedment at freezing. The Lindemann paramdtet], defined as
weighted density approximatiofMWDA), gives a simpler the square root of the mean-square displacement divided by
procedure with essentially equivalent results to the originathe nearest neighbor distance, offers some insight about the

weighted density approximation. mechanical stability of a solid. A critical value for the Lin-
The solid phase is represented by a sum of normalizedemann ratio equal to approximately 0.13 was established
Gaussians centered about their lattice sResuch that empirically for the melting of a solifi21]. Table I lists the

Lindemann ratios for our polymeric micelles using the
MWDA approach. Although these values are slightly higher
ps(N)=(al m)¥2Y, exp(—a|r—R[?), (170 than the critical ratio, they represent reasonable estimates
R and verify the general applicability of the MWDA method to
our polymeric systems.

with the following Fourier components The direct correlation function, excess free energy, and its
5 first derivative serve as the necessary input for the MWDA
pc=ps exp(— G 4a), (18)  prediction of the liquid-solid phase transition in polymeric

micelles. The phase transition is determined by calculating
whereG denotes the values of the reciprocal lattice vectordhe total Helmholtz free energy for each phase and using a
(RLV) for the solid[53]. The exact values o& depend on double tangent construction to satisfy the equal pressure rule.
the lattice type and overall density of the solid phase. Thd=igure 5 shows the free energy predictions for the micelles
localization parametetr determines the widths of the Gaus- comprising 20 K—10 Kd-PS—PI diblocks. The free energies
sians and is a measure of the nonuniformity of the solidare a function of the polystyrene core volume fraction since
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FIG. 5. Total free energy of the liquid--) and an fcc solid—)
for micelles comprisinglPS/PI 20 K/10 K diblocks in decane de-
tailing the liquid-solid transition using the MWDA of Denton and FIG. 6. Semiguantitative phase diagram for polymeric micelles
Ashcroft[1]. According to this model, we predict a freezing core detailing regions of orde(®) and disorder©). The (*) symbols
volume fraction of 0.088 and a melting core volume fraction of denote concentrations where diffraction data no longer corre-
0.095. sponded to either a bcc or fcc lattice and may represent concentra-
tions where micellar structure is modified. The lines represent the

the pair-interaction potential is nondimensionalized by th_ecoexistence curves for the freezing and melting volume fractions as

core radius. Specifying the interactions between micelles i fnciion of hydrodynamic layer thickness to core radius
this way establishes an analogy to charge stabilized coII_0|d§<|_>h,RC) according to Eqs(24) and (25). The (X) symbols indi-
studied as a function of the bare colloid volume fractioncate predictions of melting and freezing volume fractions deter-
where the electric double layer caused by the presence @fined by density functional theory for each micellar system inves-
counterions is responsible for the pair interaction potentialtigated experimentally.

For micelles formed from suspending 20 K—10d<PS—PI

diblocks in decane, the freezing volume fraction is 0.088 angystems, even for those systems where the bcc phase is ob-
the melting volume fraction is 0.095. served experimentally. Since Laird and Kri&H] discovered

We applied this method to our micellar systems and arghat these DFT theories do not predict a stable bcc for
able to summarize our results in the phase diagram with exnverse-power potentials, this raises suspicion about the ac-
perimental results and the DFT predictions in Fig. 6. In ancuracy of the DFT result.
earlier papef26], we presented this semiquantitative phase To explore whether the fcc prediction is an artifact of the
diagram based exclusively on experimental results. We preDFT method or accurately represents the stable phase based
pared several micellar systems at various core volume framn simulation results, we compared these micelles to their
tions and performed scattering experiments to determineghermodynamically equivalent inverse power potentials.
their phase[26,40. Each vertical column of data corre- Since the inverse-power potential is well understood and the
sponds to experiments on a particllRS—PI in decanemi-  formation of a stable bcc phase occurs fioless than 6, we
cellar system. The best way to summarize these results is igecided to compare the liquid-state pressures as a function of
put the different molecular weight polymers on a commoneffective density. In this case the effective density is deter-
basis. We do this by using the PS core volume fraction as themined by calculating the thermodynamic radius that causes
concentration variable as it is independent of any model fothe second virial coefficient in the pressure expansion to
overall micellar size. The interaction potential is then sum-match
marized by a measure of its range relative to the micellar
curvature. We supplemented these experiments with small 1 *
angle neutron, contrast matching experiments to determine Reft= §(3f0 {1-exd—u(n)/kT]redr |
the core radius and dynamic light scattering to specify the
hydrodynamic layer thickness of the corona. The ratio of thesuch that the effective volume fraction becomes
layer thickness (L),=R,—R.) to the core radiusR.) of-
fers an experimental measure of the length scale of the re-
pulsion relative to the curvature.

The phase diagram presented in this way splits into two
regions where we observe a liquid-bcc transition at largePlotting the reduced pressure as a function of effective vol-
range relative to curvature and the formation of fcc arrays atime fraction(Fig. 7) we can compare the pressures to that of
smaller range or larger core radius. The DFT method predictte hard spherén=x). Increasing the range of the potential
the volume fraction for the phase transition for each systemeduces the pressures from the hard-sphere result. One can
and this is denoted on the phase diagram by(#jesymbols. see that fom=6, the maximum inverse power for the for-
Unfortunately, the DFT only predicts a liquid-solid transition mation of a stable bcc phase, the deviations are quite pro-
favoring the formation of fcc crystals for all our micellar nounced. Interestingly, our micellar systems all fall within a

13
(22)

m 3
q)effzg P(2Ref)”. (23
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FIG. 7. Comparison of liquid pressures as a function of effective  FIG. 8. A plot of B (R.¢/R;,) as a function of the ratio of hy-
volume fraction for our micelleg---) and the inverse power law drodynamic layer thickness to core radiuvd X/R.). This plot
systemsn—o(—), N=12 (---), n=9 (- - -), andn=6 (----). demonstrates the constancy Bffor our micellar systems and the

applicability of Egs.(24) and(25).
narrow range between the inverse 12 potential and the hard-

sphere result. Since this region is associated with IIqUId'fC(fhermore, the static structure factor is related to the Fourier

transitions, the DFT predictions may be accurate despite OYtansform of the direct correlation function; this is the input
observation of a bcc phase for some of our micellar systems.

Since we predict only the formation of an fcc phase, theiecessary for the density functional theory. Application of

phase diagran can e simply moceled i terms of haclhe (VDA method peccts & - sol wansiion favor,
sphere perturbation theory with E(p2) defining the effec- ﬁ by this grou )éven fors ste?/ns where diffractio[; results
tive hard-sphere radius. The hard-sphere phase transition tl% y by group y

first order with a freezing volume fraction of 0.494 and ace{a}rr:g Sv%rn(ogfs tLr:itrz tgﬁ df(lir:gl?t(;(;%gzztrbz;(e:sla}tﬁieeiér]lébiIit of
melting volume fraction of 0.545. If we assume a simple y

relationship between the hydrodynamic radius and effectiv FT methods to predict the stable formation of the bcc phase

hard-sphere radius, the phase transition becomes or inverse-power potelnt|als, even for condmo_ns where mo-
lecular dynamics predict that the bcc phase is more stable.

0.494 They suggested that the inability to accurately model the
(24 correlations over long distances explains the fallibility of
density functional theory. This suggestion implies that DFT

I
PS B3(1+(L)n/R)3

and may predict a stable bcc phase for some interaction potential
yet to be discovered. It was our hope to test the ability of the
0.545 DFT theory to predict the ordering transition observed in our
P B3(1+(L)n/Ro)3’ (25 polymeric micelles particularly the formation of the bcc

phase. We felt that because the interaction potentials in our

whereB=R./R,,. The value ofB appears to be relatively po_Iymeric micelles act over a finite distance spepified by the
constant at 0.94 for all of our experimental micellar systemgnicellar coronal chains that the DFT method might be able
we show B=R/R, in Fig. 8 for different values of © describe t_he particle correlatiorjs more accurately than it
(L)y/R,. We are thus able to provide a simple and surpris-does for the inverse-power potentials. N
ingly accurate effective hard-sphere coexistence curve for Our own investigations of the disorder-order transition

our phase diagram in Fig. 6. with MWDA suggests that the method works reasonably
well for our polymeric micelles. Comparisons of the reduced
IV. CONCLUSION pressure with the effective density for our systems and the

inverse-power potentials indicate that, in terms of the range
Our understanding of the phase behavior of polymericof the micellar interaction potentials, the DFT theory appro-
micelles benefits greatly from the predictions of pair interac-riately predicts a stable fcc phase. The fact that we experi-
tions using self-consistent mean field equations for tetherethentally observe a stable bcc phase for some of our micellar
chains. The range of the interaction potential is determinedystems implies that a more fundamental assumption may
from the properties of the coronal layer offering mediumnot be valid. Perhaps pairwise additivity for the potential
range repulsions that dictate the nature of the liquid-solicenergy is not preserved. We must remember that the pair-
transition. We have used these interaction potentials to prénteraction potential is defined by the interaction of tethered,
dict the thermodynamic properties of the liquid state usingoolymer chains and that increasing the concentration in these
integral equations. The Rogers-Young closure allows accusystems may adjust the thermodynamic behavior of the indi-
rate prediction of the liquid state properties that are tested byidual chains. Yet, despite the complex nature of the inter-
monitoring the short-range correlations apparent in the miactions in polymeric micelles, the application of pairwise
cellar liquid through small angle scattering experiments. Furimodels allow much insight into the nature of disorder-order
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transitions in polymeric micelles including acceptable pre-solid transition, it would allow a direct and accurate com-
dictions of the coexistence curves. parison of the free energy of the bcc solid relative to the fcc.

Predicting the preference for lattice tylecc or fco in
these micellar systems still remains a challenging and in-
triguing aspect of research on the ordering of polymeric mi-
celles. Since the experiments clearly demonstrate a prefer- This work was supported by NSF CTS-9413883. We ac-
ence for the lattice type based on a consideration of th&nowledge the support of the National Institute of Standards
length of the corona relative to core radius, we may have t@and Technology, U.S. Department of Commerce, in provid-
resort to more complex models to delineate between micelleing the facilities used in this experiment. We also wish to
that favor the formation of bcc crystals over the fcc crystalsthank Min Y. Lin and Eric K. Lin for their help in the small
One possible approach is fully three dimensional SCF calcuangle neutron scattering experiments. We are especially in-
lations of the free energy of micelles placed on either an fcaebted to Eric K. Lin for performing the SCF calculations
or bec lattice. Although such a study may not provide liquid-that made this investigation possible.
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