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Using our recently published statistical theory concerning the phase diagram of a low-conducting colloidal
suspension subject to uniform electric fields@Phys. Rev. E52, 1669~1995!#, we examine how the long-range
electric-field-induced interparticle interactions affect the spatial arrangement of particles in such a suspension
under the action of anonuniformac electric field. We find the conditions under which the resulting dielectro-
phoresis innonuniformelectric fields is accompanied by an electric-field-induced phase transition in the
suspension. Moreover we predict that, in the case of positive dielectrophoresis, the particles will form chainlike
aggregates aligned parallel to the electric field lines and attracted towards the higher electric-field region;
whereas, for negative dielectrophoresis, the particles will form disklike aggregates aligned perpendicularly to
the electric-field lines and repelled from the higher electric-field region. The theory also provides some insight
regarding the dependence of the particle aggregation on the frequency of the applied nonuniform ac electric
field. The predictions of the theory are consistent with the characteristic patterns of cell aggregation observed
previously in high-gradient electric fields generated in microelectrode systems.@S1063-651X~96!09611-0#

PACS number~s!: 82.70.Dd, 47.55.Kf, 47.65.1a, 64.75.1g

I. INTRODUCTION

The past decade has seen a spectacular increase in the use
of dielectrophoretic phenomena in colloidal suspensions. The
term dielectrophoresisis used to describe the electric-field-
induced motion of polarized but electrically uncharged par-
ticles in nonuniformelectric fields@1#. The essential feature
that distinguishes dielectrophoretic from electrophoretic ef-
fects lies in the fact that the former are also observed in ac
electric fields where the polarization of the electrodes and the
electrolysis of the suspending fluid are eliminated. Also, the
charge properties of the particle surface, which, although vi-
tal in electrophoresis, are almost impossible to control, are
not as significant in dielectrophoretic separations since, in
the latter case, the dielectrophoretic force depends primarily
on the differences between the values of the dielectric con-
stant and of the conductivity of the particles and those of the
suspending fluid.

The dielectrophoretic force experienced by a nonconduct-
ing spherical particle immersed in a nonconducting liquid
under the application of a nonuniform electric fieldE~r ,t!
can be expressed as@1,2#

Fp5
3

2
vp« fb¹E2~r ,t !. ~1!

Here b5(«p2« f)/(«p12« f) is the polarizability of a par-
ticle, vp is the particle volume, and«p and «f are, respec-
tively, the dielectric constants of the particle and of the sus-
pending fluid where, for brevity, we have included the
permittivity of the vacuum«0, as a multiplier in the defini-
tion of the dielectric constant. For a conducting particle im-
mersed in a conducting liquid, Eq.~1! still applies provided
that the polarizability parameterb for the dielectrophoretic
force is taken to depend on the frequency of the applied ac
electric field, i.e.,b5b~v! @1#. In any event, the particle is
attracted towards or repelled from the high electric-field re-

gions depending, respectively, on whetherb.0 ~positive di-
electrophoresis! or b,0 ~negative dielectrophoresis!.

The use of dielectrophoretic phenomena in techniques for
manipulating and separating colloidal suspensions, cells, bio-
particles, and micro-organisms as well as for investigating
the biophysical properties of biological materials constitutes
currently an active area of research@3–16#. Also, dielectro-
phoretic separation can be useful in mineral processing, pe-
troleum refining, the recovery of insulating materials, and for
removing catalyst fines and corrosion products from indus-
trial streams~see, for example,@17,18#!.

To date, however, the interpretation of the experimental
data concerning the spatial particle arrangement in colloidal
suspensions under the application of nonuniform ac electric
fields @3–18# has been based on Eq.~1!. But, since this equa-
tion refers to the force acting on a single particle in a non-
uniform electric field, it can be used to interpret the experi-
mental data on dielectrophoretic phenomena only when the
application of a nonuniform electric field to a suspension
does not induce aggregation of the particles, i.e., when the
electric field is relatively weak and the interparticle electric
interactions are negligible. Thus, it is impossible to~i! ex-
plain why the particles start aggregating in nonuniform
strong electric fields and~ii ! evaluate the effects of the ag-
gregation on the spatial particle arrangement in dielectro-
phoresis. This is a serious drawback because it appears that,
without the existence of electric-field-induced aggregation, it
is not possible to achieve a high selectivity of the particle
separation in nonuniform electric fields@14–16#.

In this paper we shall examine the effects of the long-
range electric-field-induced interparticle electric interactions
on the spatial arrangement and aggregation of particles in a
colloidal suspension under the action ofnonuniformelectric
fields by adapting, to this case, our recent results pertaining
to the statistical theory of the phase diagram of a low-
conducting colloidal suspension subject touniform electric
fields @19#. Specifically, as shown in Ref.@19#, Sec. V, when
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the ratio of the average energy of the electric-field-induced
interparticle interactions and the thermal energy exceeds a
critical value, an increase in the particle concentration leads
to a decrease in the osmotic pressure of the particles. This
destabilizes the initially random spatial arrangement of the
particles in the suspension and leads, in turn, to a phase
separation of the suspension into low- and high-
concentration phases.

Here, we shall analyze the appearance of this phase tran-
sition in anonuniformac electric field and shall examine its
influence on the spatial arrangement of the particles for two
limiting cases which arise in a wide variety of recently de-
veloped techniques for the manipulation and separation of
cells, bioparticles, and micro-organisms@6–16#. One of
them, referred to as an open particle system, is relevant to a
situation in which an electric field acts only over a small
portion of the colloidal suspension with the result that the
particles far from this region do not redistribute, whereas in
the other, referred to as a closed particle system, the electric
field acts over the whole of the suspension.

In Sec. II A, we shall derive the equations for the quasi-
equilibrium spatial arrangement of the particles in a colloidal
suspension subject to a nonuniform ac electric field, while in
Sec. II B we shall examine the conditions under which the
resulting dielectrophoresis is accompanied by an electric-
field-induced phase transition. Finally, in Sec. III, we shall
compare the predictions of the theory with the characteristic
patterns of cell aggregation observed previously in high-
gradient electric fields generated in microelectrode systems.

II. ELECTRIC-FIELD-INDUCED
PHASE TRANSITIONS IN NONUNIFORM

ELECTRIC FIELDS

A. Quasiequilibrium spatial arrangement of the particles

Due to the Brownian motion of the particles, their con-
centration and therefore their osmotic pressure are spatially
uniform in the absence of an electric field. But, when a non-
uniform ac electric field is applied, the particles will be at-
tracted towards or repelled from the high electric-field re-
gions depending, respectively, on the sign ofb @see Eq.~1!#.
Also, as shown later, this particle spatial redistribution can,
under certain conditions~see Fig. 3!, be accompanied by an
electric-field-induced particle aggregation. The accumulation
of the particles in one area, which leads to a corresponding
increase in the particle osmotic pressure, will cease after a
transit timet tr when the induced osmotic pressure gradient
counterbalances the dielectrophoretic force. Let the electric
field vary over a characteristic lengthL. Then, as a rough
approximation,t tr equals the time taken for a particle to
move over a distanceL under the action of the dielectro-
phoretic force, Eq.~1!, and the Stokes drag force, hence,
t tr;(L/a)2(3h f /« fbE

2), where hf is the viscosity of the
suspending liquid. For the typical set of parameters
E553105 V/m, «f /«053, hf5231023 Pa s,b~v!50.6,L51
mm, anda51 mm, we estimate thatt tr;1 h, and we con-
clude, therefore, that equilibrium can be reached in a reason-
able period of time.

Now, for ac electric fieldsE~r ,t!5E0~r !sinvt, the mode
of the periodic time variations of the spatial particle arrange-
ment which is eventually established depends on the relative

magnitude of the three time scalesta , te , and td , where
te52p/v is the electric-field time cycle,ta is the character-
istic time for the electric-field-induced aggregation, and
td;1 p

2/DBr is the time needed for a particle to drift over
distances equal to a characteristic interparticle distance 1p
under the action of the Brownian forces. Here
DBr5kBT/6ph fa is the Brownian diffusion coefficient of a
single particle of radiusa, with kB being Boltzmann’s con-
stant andT is the temperature. To evaluate the value ofta ,
we can use the relation obtained in Ref.@19#, Sec. V, for a
colloidal suspension subject to a sufficiently strong uniform
electric field,ta;[h fj(c)/C(v)« fE

2#, wherej(c) is a con-
centration dependent coefficient andC~v! is a frequency de-
pendent coefficient which enters into the expression for the
averaged energy of the electric-field-induced interparticle in-
teractions. The quasiequilibrium state of the spatial arrange-
ment of the particles, which is established following the tran-
sient period as a result of the applied nonuniform ac electric
field, corresponds therefore to the limiting case whentd is
much larger than bothte andta . Under these conditions, the
time-averaged dielectrophoretic force is counterbalanced ev-
erywhere by the time-averaged thermodynamic force respon-
sible for the osmotic pressure gradient. For the representative
set of parameters given above andT5300 K, c50.2 @giving
j(c)'16#, andC~v!50.5, we find thatta;10 ms and that
td;10 s for 1p5a. Thus, the particles will retain their qua-
siequilibrium spatial arrangement provided that the fre-
quency of the ac field exceeds 0.1 Hz.

We next turn to the task of obtaining the equation for a
quasiequilibrium spatial arrangement of the particles in a
slightly nonuniform ac electric field. This will be achieved
by using the results of the statistical theory of the free energy
of a disordered colloidal suspension in uniform dc and ac
electric fields developed in Ref.@19#, Sec. IV.

We recall that, according to Ref.@19#, Sec. II, the free
energyF, of N particles in a colloidal suspension, is defined
as a function of the volumeV, the temperatureT, the volume
concentration of the particlesc5vpN/V, and the strength of
an electric fieldE~r ,t!, by means of

F5
kBT

vp
f 0~c!V2W~c,E!V, ~2!

where the first term in Eq.~2! refers to the free energy of the
particles in the absence of the electric field andW~c,E! de-
notes the increase in the electric energy per unit volume of a
colloidal suspension due to the interaction of the particles
with the applied electric field as well the long-range electric-
field-induced interparticle interactions. For example, as was
shown in Ref.@19#, Sec. IV, the expression for the ensemble
average of the electric energyW~c,E!, for a nonconducting
suspension reduces to the well-known equation derived from
macroscopic electrodynamics@2#

W5 1
2 @«s~c!2« f #E

2, ~3!

where«s(c) is the dielectric constant of the suspension.
Now, the osmotic pressure of the particles can be evalu-

ated from the equation of the free energy by means of
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P52F]F]VG
N,T,E

5
kBT

vp
cZ~c!1W2c

]W

]c
, ~4!

whereP052(kBT/vp)( f 02c f08), the osmotic pressure of
the particles in the absence of an electric field, has been
replaced by an equivalent expression containing the com-
pressibility factorZ(c), with Z(c)→1 at infinite dilution.
Using the limiting value off 0(c) for a dilute colloidal sus-
pension,f 0(c)→c ln(c/e) at c→0, we obtain

f 0~c!5c ln
c

e
1cE

0

c Z~c!21

c
dc. ~5!

The ratio between the electric and the entropic terms in Eq.
~4! reflects the relative contribution of the electric field to the
osmotic pressure. For example, for a nonconducting colloidal
suspension, the physical meaning of this ratio becomes ap-
parent asc→0 where, on account of Eqs.~3! and ~4!, it
equalsLc, whereL5@vpE

2«s9(0)/2kBT#, with «s9(0) denot-
ing the second derivation of«s(c) at infinite dilution, which
is the same as the ratio of the energy of the interparticle
interactions per unit volume@the energy of the electric inter-
action between two particles (1/2)vpE

2«s9(0), times the par-
ticle concentrationc#, and the thermal energykBT.

Finally, the Gibbs free energy of the particlesG5F
1PV, and the chemical potential of a particlem5(dG/dN),
follow from Eqs.~2! and ~4!, respectively, hence

m5kBT f082vp
]W

]c
. ~6!

When the particles have reached their quasiequilibrium
spatial arrangement in a nonuniform time-variable electric
field, the chemical potential becomes independent of posi-
tion. Therefore, on account of Eq.~6!, the quasiequilibrium
particle concentration distribution must satisfy

f 08@c~r !#2
vp
kBT

]W

]c
@c~r !,^E2~r ,t !& te#5const, ~7!

where f 08 and (]W/]c) are evaluated atc5c~r !, and
^E2(r ,t)& te refers to the time-averaged local value of the
square of the strength of the electric field. Therefore, as seen
from Eq. ~7!, the determination of the quasiequilibrium par-
ticle concentration distribution is reduced to finding the spa-
tial variation of the time-averaged local value of the square
of the strength of the electric field sincec(r )
5c(^E2(r ,t)& te).

To this end, using the expression¹m50, which is equiva-
lent to Eq.~7!, and the relationc f095Z1cZ8, we obtain that

FZ1cZ82c
vp
kBT

]2W

]c2 G dc

d^E2& te
5c

vp
kBT

]2W

]c]^E2& te
.

~8!

The termc(vp/kBT)(]
2W/]c2) in brackets on the left-hand

side of Eq.~8!, which originates from the term (]P/]c)¹c,
reflects the concentration dependence of the osmotic pressure
of the particles in an electric field due to their long-ranged
electric-field-induced interparticle interactions, while the

term on the right-hand side of Eq.~8!, which arises from the
term @]m/]^E2(r ,t)& te#¹^E2(r ,t)& te, reflects the presence of
the dielectrophoretic force exerted on the particles per unit
volume of suspension due to their interaction with an applied
nonuniform electric field. Actually, the parameter
(]2W/]c]^E2& te) represents the effective polarizability of a
particle in a suspension.

For a closed particle system, i.e., when the applied elec-
tric field acts over the whole colloidal suspension, the par-
ticle concentration distribution to be found from Eq.~8! must
also satisfy the requirement that the number of particles be
conserved, i.e., that

E
Vs

c~r !dr5vpN, ~9!

whereVs is the volume occupied by the suspension under the
action of an electric field.

Now, let V~E2! be the volume of the suspension within
which the time-averaged square of the local strength of the
electric field ^E2(r ,t)& te is less than or equal to the given

value E2, i.e., V(E2)5*E2>^E2(r ,t)& te
dr . But, since c(r )

5c(^E2(r ,t)& te), by using the functionV~E2! we can convert
the integral over the suspension volume on the left-hand side
of Eq. ~9! into an integral over the time-averaged squared
strength of the electric field and thus arrive at

E
minVs

~^E2~r ,t !& te!

maxVs
~^E2~r ,t !& te!c~E2!

dV~E2!

dE2 dE25vpN. ~10!

It is worth pointing out that the functionV~E2! is the only
characteristic of the spatial distribution of the electric field in
the system which influences the spatial arrangement of the
particles. Moreover, it makes no difference whether the area
of the fixed value of the strength of the electric field is a
simply connected region or not.

For an open particle system, i.e., when the electric field
acts only over a small portion of the suspension outside of
which the particle concentration remains equal toc0, the
integral condition Eq.~9! is replaced by the requirement that
Eq. ~8! is subject to the boundary condition

c→c0 as ^E2& te→0. ~11!

In addition, if, for the example of a nonconducting colloi-
dal suspension,c!1, in which caseZ'1, then«s8'3« fb,
and the electric interaction between particles can be ne-
glected in comparison with the thermal energy so that

cvp
kBT

]2W

]2c U
c50

5
c«s9~0!vp^E

2~r ,t !& te
2keT

!1,

hence Eq.~8! is equivalent to the simple expression

c

vp
Fp5¹P, ~12!

where (c/vp)Fp with Fp given by Eq.~1! is the dielectro-
phoretic force exerted on the particles per unit volume of the
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suspension, and the osmotic pressureP equals (kBT/vp)c.
For this special case then, the solution to Eq.~8! subject to
Eq. ~11!, leads to the Boltzmann distribution of the particles
in a nonuniform electric field@1#

c5c0 expS 3vp« fb^E2~r ,t !& te
2kBT

D . ~13!

In our subsequent numerical calculations we shall use the
Carnahan-Starling equation@20#

Z~c!5
11c1c22c3

~12c!3
, ~14!

which applies for a suspension of hard spheres in the disor-
dered state as long asc remains below approximately 0.5.
We recall that the compressibility factor for hard spheres
diverges at random close packing according to@20#

Z~c!'
A

cm2c
where A;1.85 andcm;0.64. ~15!

But since we shall not examine in detail the concentration
profile whenc approaches its value for closest packing, we
shall not take into account that the exact expression forZ(c)
could depart from that given by Eqs.~14! or ~15! due to the
occurrence of a possible transition from a disordered state,
for c,0.50, to an ordered face-centered-cubic solid for 0.55
,c,0.74 @20#.

For the sake of simplicity, we performed numerical cal-
culations on a few examples and only for the simplest case of
a nonconducting colloidal suspension where the electric en-
ergy is determined by Eq.~3!. For «s(c), we made use of
two expressions. One of them arises from the microstructural
theory developed in Ref.@19#, Sec. IV, which allows us to
calculate the first terms in the expansion of the electric en-
ergy of a suspension in powers of the particle concentration

«s~c!5« f@113bc13b2F1~b!c21•••#,

where F1~b!511b f 1~b!. ~16!

This theory leads to a definite expression forf 1~b! which
varies from 0.432 forb520.5 to 0.498 forb51. The expan-
sion of the electric energy in powers ofc, as given by Eq.
~16!, applies only provided thatubcu!1. The other expres-
sion for«s is Maxwell’s well-known equation for the dielec-
tric constant

«s~c!5« f

112bc

12bc
, ~17!

which also follows from the mean-field approximation devel-
oped for calculating the electric energy of a suspension@19#,
Sec. IV. Both Eqs.~16! and ~17! yield «s8'3« fb for c!1.

B. Lines of equal chemical potential in the phase diagram

To examine how the long-range electric-field-induced in-
terparticle interactions affect the quasiequilibrium spatial ar-
rangement of the particles in dielectrophoresis, we use the
results of a statistical theory@19# concerning the phase dia-

gram of a colloidal suspension subject touniform electric
fields in the region 0<c<cm andE2>0, wherecm is taken
from Eq. ~15!. The trajectories of Eq.~8! represent the lines
of equal chemical potential@see Eq.~7!# in this phase dia-
gram.

As seen from Eq.~8!, when the term in the brackets on the
left-hand side is positive, the particle concentration is in-
creasing or decreasing withE2 according to whether the par-
ticle effective polarizability is positive or negative. Note that
~]2W/]c]E2! equals~1/2!«8(c) for the case of a nonconduct-
ing suspension@see Eq.~3!#. But, from the mean-field ap-
proximation Eq. ~17!, it follows that «s85@3b« f /(1
2bc)2#, hence the sign of«s8 is everywhere equal to that of
b. Similarly, by retaining the first three terms in Eq.~16!, we
obtain from the microstructural theory, that«s853b« f@1
12bF1(b)c#. Although, it might seem from the above, that
«s850 atc521/2bF1(b), this would be unacceptable since
21/2bF1~b!.1 for b,0. Consequently, the sign of«s8 is
also everywhere equal to that ofb. In view of the fact that,
«s8→3b« f asc→0, we see that within the region 0<c<cm ,
«s8 does not change its sign which is determined solely by the
sign ofb. Moreover, we also shall suppose that, in general,
the particle effective polarizability~]2W/]c]E2! does not
change its sign in the phase diagram of the suspension for
0<c<cm andE2>0.

Now, the curve

Z1cZ82c
vp
kBT

]2W

]c2
50 ~18!

determines the isocline of the vertical slope of the trajecto-
ries of Eq. ~8!, whereas the straight linesc50 and c5cm
determine the isoclines of the horizontal slope of the trajec-
tories of Eq.~8!. Thus, Eq.~18!, which is actually equivalent
to ~]P/]c!50, represents the critical line in the phase dia-
gram of a colloidal suspension beyond which the random
spatial arrangement of the particles becomes unstable, and an
electric-field-induced aggregation will occur@19#, Sec. II.
Then, the suspension will separate into two phases with the
coexistence region lying between the particle concentrations
given by the two roots of Eq.~18!. As seen from Eq.~18!, for
this to happen, the long-range electric-field-induced interpar-
ticle interactions should increase the average energy of the
suspension, i.e., (]2W/]c2) should be positive~see Ref.@19#,
Sec. V in more detail!. But, for sufficiently high frequencies,
the electric energy of the particles becomes the same as that
for a nonconducting suspension Eq.~3!, and, thus, we obtain
that (]2W/]c2)5(1/2)«s9(c)E

2.0 for v→`. Therefore,
there always exist threshold values of the strength and of the
frequency of an ac electric field, above which the particles
having a dielectric constant different from that of the sus-
pending liquid will start aggregating as soon as the electric
field has been applied. On the other hand, for low frequen-
cies, (]2W/]c2) could become negative@19#, Sec. V. Thus
for a low frequency, the electric-field-induced aggregation of
the particles will occur only if the dielectric constants and
conductivities of the particles and of the liquid lead to a
positive value of (]2W/]c2) at this frequency. The condi-
tions for this to occur in dc electric fields are given in Ref.
@19#, Sec. V. For example, the particles having a dielectric
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constant larger than that of the suspending liquid do not ag-
gregate in dc electric fields unless their conductivity is larger
than that of the suspending liquid, as was observed in elec-
trorheological fluids@19#.

In addition, an analysis based on the influence of the pon-
deromotive forces on the type of aggregation pattern@19#,
Sec. V, shows that there exists a tendency for chainlike for-
mations aligned parallel to the electric field when the particle
polarizability b~v!, in Eq. ~1!, is positive and disklike for-
mations aligned normal to the electric field whenb~v! is
negative.

The critical point at which the particle concentration of
the coexisting phases coincide and Eq.~18! has a multiple
root, corresponds to the inflection point ofP as a function of
c, i.e., (]P/]c)5(]2P/]c2)50. The parameters of the
critical point, namely,ccr andEcr

2 , are determined from

Z1cZ82c
vp
kBT

]2W

]c2
50,

2Z81cZ92
vp
kBT

S ]2W

]c2
1c

]3W

]c3 D50, ~19!

which follows from Eq.~18!. ForE2>Ecr
2 , Eq. ~18! has two

roots. With increasingE2, the particle content in the low-
concentration phase becomes very small, and sinceZ→1 as
c→0, Eq. ~18! yields

c
vp
kBT

]2W

]c2 U
c50

~E2!51 ~20!

for this part of the curve. In contrast, the particle content in
the high-concentration phase increases withE2. Then, on us-
ing Eq. ~15! we obtain that

cm2c5OS FAY vp
kBT

]2W

]c2 G21/2D
for this part of the curve. Describing phase transitions in the
high-concentration phase is beyond the scope of our analysis,
however, because it requires knowledge of the free energy of
an ordered polarizable system.

Let us analyze now how the specific type of the concen-
tration dependence of the suspension dielectric constant
«s(c) influences the critical line in the phase diagram for the
specific case of a nonconducting suspension where the elec-
tric energy is given by Eq.~3!. As was shown in Ref.@19#,
Sec. II, Eqs.~19! yieldsccr50.13 andLcr521.20 for the case
«s9(c)5const, while the dependence ofLcr and ccr on b,
when «s(c) is given by Eq.~17! is shown in Fig. 1. Note
that, asb→0, the parametersccr and Lcr attain the same
values as those given for the case«s9(c)5const, i.e.,
Lcr→21.20 andccr→0.13. Moreover, an increase inb from
b520.5 to b51 leads to a decrease inLcr from 25.24 to
11.66 and to an increase inccr from 0.11 to 0.27.

ForL.Lcr , Eq.~18! has two roots which give the respec-
tive particle concentrations in the two coexisting phases. Fig-
ure 2 shows this dependence for a few values ofb, when
«s(c) is given by Eq.~17!. Clearly, the particle content in the
low-concentration phase becomes very small with increasing
L/Lcr , andL;1/c for this part of the curve according to Eq.

~20!. In contrast, the particle content in the high-
concentration phase increases dramatically withL/Lcr in that
atL/Lcr'2, c'0.5, which corresponds to that of an ordered
face-centered-cubic solid state of a colloidal suspension of
hard spheres in the absence of an electric field. It means that,
the high-concentration phase could actually experience a
disorder-order transition at these values ofL/Lcr .

The results given above demonstrate that the qualitative
features of the critical line are rather insensitive to the spe-
cific form of the concentration dependence of«s(c). Thus,
changes in the function«s(c) predominantly influence the
values ofccr andLcr but not in a major way.

FIG. 1. The dependence of the parameters of the critical point
ccr ~a! andLcr ~b! on the particle polarizabilityb when «s(c) is
given by Eq.~17!.

FIG. 2. The dependence of the particle concentrationc on
AL/Lcr in the low- ~the left part of the curve! and high-
concentration~the right part of the curve! phases for indicated val-
ues ofb when«s(c) is given by Eq.~17!.
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To examine the behavior of the trajectories of Eq.~8! in
the phase diagram of a colloidal suspension, let us consider
the conditions under which those trajectories intersect the
critical line. As seen from Eq.~8!, the slope of such a trajec-
tory becomes infinite at the intersection point, i.e., the trajec-
tory becomes vertical. But since the critical line has an infi-
nite slope only at the critical point, there exists only one
limiting trajectory of Eq.~8! tangent to the critical line. This
is the trajectory passing through the critical point. To find the
asymptotic behavior of the limiting trajectory near the criti-
cal point, we expand the terms of Eq.~8! in powers of
~c2ccr! and (̂ E2& te2Ecr

2 ) and integrate the resultant equa-

tion with boundary conditionc5ccr at ^E
2& te5Ecr

2 . As a re-
sult, we obtain that

~c2ccr!
1/3'pcr~^E

2& te2Ecr
2 !, ~21!

where

pcr5

6S cvpkBT

]2W

]c]^E2& te
D
cr

F3Z91cZ-2
vp
kBT

S 2 ]2W

]c2
1c

]3W

]c3 D G
cr

.

Moreover, letctr be the intersection point of the limiting
trajectory with the vertical lineE250. According to Eq.~7!,
the value ofctr can be evaluated from the equation

f 08~ctr!5 f 08~ccr!2
vp
kBT

]W

]c
~ccr ,Ecr

2 !, ~22!

thus,ctr is smaller or larger thanccr according to whether the
particle effective polarizability~]2W/]c]E2! is positive or
negative. Note that, for a nonconducting suspension, the sec-
ond term on the right-hand side of Eq.~22! equals
Lcr@«s8(ccr)/«s9(0)#. But since it is proportional to 1/b and,
therefore, tends to7` whenb→60, we can estimatectr by
using the first term in the expression forf 08(ctr) for ctr→0 at
b.0 and forctr→cm at b,0, which follows from Eqs.~5!
and~14! and Eqs.~5! and~15!, respectively. Thus we obtain
that

lnctr'F f 082Lcr

«s8

«s9~0!G
ccr

for b.0,

A

cm2ctr
'F f 082Lcr

«s8

«s9~0!G
ccr

for b,0.

Figure 3 illustrates the behavior of the trajectories of Eq.
~8!, which, as was said earlier, are the lines of equal chemical
potential, in the phase diagram of a colloidal suspension. It
can be seen that the limiting trajectory separates the trajec-
tories into two families. Those of the first, which intersect
the axisE250 at c,ctr for ~]2W/]c]E2!.0 @Fig. 3~a!# and
at c.ctr for ~]2W/]c]E2!,0 @Fig. 3~b!#, will intersect the
curve ~]P/]c!50, but those of the second family, which in-
tersect the axisE250 at c.ctr for ~]2W/]c]E2!.0 @Fig.
3~a!# and atc,ctr for ~]2W/]c]E2!,0 @Fig. 3~b!#, will not.
It is worth pointing out that, as seen from Fig. 3,E2/Ecr

2→`

at the intersection point of a trajectory belonging to the first
family with the critical line, while the corresponding value of
c approaches zero for~]2W/]c]E2!.0 and cm for
~]2W/]c]E2!,0.

The appearance of the two families of trajectories of Eq.
~8! implies the existence of two different types of spatial
arrangements of the particles under the application of a suf-
ficiently high nonuniform electric field to a colloidal suspen-
sion. For one of them, dielectrophoresis will be accompanied
by an electric-field-induced phase transition in a suspension
whereas, for the other, it will not. In the first case, the spatial
arrangement of the particles will change abruptly with an
increase in the strength of an electric field when the trajec-
tory of Eq.~8! in the phase diagram intersects the critical line
~]P/]c!50 ~Fig. 3! whereas, in the second case, the corre-

FIG. 3. The lines of equal chemical potential in the phase dia-
gram of a colloidal suspension for~]2W/]c]E2!.0 ~a! and for
~]2W/]c]E2!,0 ~b!. 1 is the critical line where aggregation will
first occur, 2 is the limiting trajectory of Eq.~8!, 3 is the trajectory
of Eq. ~8! which leads to a phase transition when it intersects 1,
whereas 4 is the trajectory of Eq.~8! along which a phase transition
does not take place.~vpE

2/2kBT! is the ratio of the electric energy
to the thermal energy.
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sponding change in the spatial particle concentration will be
smooth. Figure 4 illustrates the limiting trajectories of Eq.
~8! for a nonconducting suspension whenb520.5 andb51
for the case when«s(c) is given by Eq.~16!.

For an open particle system@Eq. ~8! subject to Eq.~11!#,
the condition for the appearance of the phase transition in
dielectrophoresis is determined only by the value ofc0, for,
as seen from Fig. 3, phase transition will occur whenc0,ctr
for ~]2W/]c]E2!.0 and whenc0.ctr for ~]2W/]c]E2!,0.
On the other hand, for a closed particle system@Eq. ~8! sub-
ject to Eq. ~10!#, the appearance of a phase transition will
depend on the average particle concentration in the suspen-
sion. But, since an increase inN in the integral constraint,
Eq. ~10!, corresponds to a vertical shift of the corresponding
trajectory describing the particle concentration distribution
on the diagram in Fig. 3, there exists a critical value of the
number of the particlesNtr , such that a phase transition will
occur wheneverN,Ntr if ~]2W/]c]E2!.0 and N.Ntr if
~]2W/]c]E2!,0. This value ofNtr is determined by

vpNtr5E
minVs

„^E2~r ,t !& te
…

maxVs
„^E2~r ,t !& te

…

ctr~E
2!
dV~E2!

dE2 dE2, ~23!

which follows from Eq.~10!, wherectr~E
2! is the limiting

trajectory on the phase diagram in Fig. 3. Moreover, when
the values of the strength of the electric field are close toEcr ,
the limiting trajectory Eq.~23! can be approximated by Eq.
~21!, hence, in this case,

Ntr'
Vs

vp S ccr1 pcr
1/3

Vs
E
minVs

„^E2~r ,t !& te
…

maxVs
„^E2~r ,t !& te

…

3~E22Ecr
2 !1/3

dV~E2!

dE2 dE2D ,
wherepcr is given by Eq.~21!.

It is worth pointing out again that, if the particle
concentration in the suspension approaches zero for
~]2W/]c]E2!.0 and cm for ~]2W/]c]E2!,0, the value of
E2/Ecr

2 , at which the phase transition occurs, approaches in-
finity ~Fig. 3!.

III. DISCUSSION AND COMPARISON
WITH EXPERIMENTAL DATA

The analysis presented above extends the theory@19# of
electric-field-induced phase transitions in colloidal suspen-
sions to the case of dielectrophoretic phenomena. Recall that
as shown in Ref.@19#, Sec. V, the theoretical predictions
given there are consistent with the currently available experi-
mental data on electrorheological fluids. However, it is worth
pointing out that this theory is not limited to electrorheologi-
cal fluids. For example, the predicted dependence on the par-
ticle size of the threshold electric field needed to trigger the
electric-field-induced aggregation in dilute suspensions, i.e.,
E2;1/vp @see Eq.~20!#, is in accord with the observed de-
pendence in biological materials@3,4#.

We also found@see Eq.~12!# that the long-range electric-
field-induced interparticle interactions do not influence the
spatial arrangement of the particles in a nonuniform electric
field only when c(vp/kBT)(]

2W/]c2)uc50~E
2!!1. Under

these conditions, the particle concentration distribution in a
nonconducting suspension is given by the Boltzmann equa-
tion Eq. ~13!. For typical situations pertaining to dielectro-
phoretic experiments in colloidal suspensions@5–16#,
E553105 V/m, «f /«053, T5300 K, particle radius 1mm
and b50.6, we obtain from the above expression that
electric-field-induced interparticle interactions are negligibly
small only forc!1024. But, for higher concentrations, their
contribution becomes significant. The electric-field-induced
interparticle interactions will then lead to the aggregation of
the particles when the line of equal chemical potential for a
nonuniformelectric field in the phase diagram of the colloi-
dal suspension@the trajectory of Eq.~8!# intersects the criti-
cal line @Fig. 3~a! for ~]2W/]c]E2!.0 and Fig. 3~b! for
~]2W/]c]E2!,0#. In this case, the particles withb.0 will
form chainlike aggregates aligned parallel to the electric-
field lines whereas the particles havingb,0 will form disk-
like aggregates aligned perpendicularly to the electric-field
lines ~see@19#, Sec. V for details!. As seen from Figs. 3~a!
and 3~b!, for particle aggregation to happen, the particle con-
centration in a suspension should be sufficiently small for
~]2W/]c]E2!.0 or sufficiently large for~]2W/]c]E2!,0.
These predictions of the theory are consistent with the char-

FIG. 4. The limiting trajectories of
Eq. ~8! at b520.5 and atb51 and the
critical line ~]P/]c!50 when «s(c) is
given by Eq.~16!.
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acteristic patterns of cell aggregation observed in high-
gradient electric fields in the interdigitated microelectrode
systems @6–14#, specifically ‘‘pearl-chain’’ patterns at
~]2W/]c]E2!.0 and ‘‘diamond’’ patterns at ~]2W/
]c]E2!,0 as they were named in@8#.

Although Eq.~3! together with Eqs.~16! or ~17! do not
account for the frequency dependence of the effective polar-
izability of a particle in a suspension which is induced by the
conductivity of the particles and that of the liquid, they pro-
vide some insight on how a particle aggregation pattern is
affected by the frequency of the applied electric field as was
observed in@6–16#. For example, as was shown in Refs.@8,
9#, it is possible to vary the polarizability parameterb by
changing the frequency of the applied electric field from a
negative to a positive value. Therefore, the main qualitative
features of the dependence of the aggregation pattern on the
frequency of the applied electric field can be analyzed on the
basis of the dependence of the aggregation pattern on the
polarizability parameterb. Specifically, at frequencies rather
close to those for whichb50, the particles will not aggregate
at all according to our analysis since, under such conditions,

Lmax'
3vp« fb

2maxVs~^E
2~r ,t !& te!

kBT
,Lcr .

Hence, two frequencies will exist, one for a positive and the
other for a negative value ofb, for which the trajectory of
Eq. ~8! will touch the critical line@Figs. 3~a! and 3~b!# and,
thus, particle aggregation is predicted to occur at higher and

at lower frequencies, respectively. Therefore, the local par-
ticle concentration in the regions of the higher~for b.0! and
of the lower ~for b,0! strength of the electric field will
increase with a further increase inubu. Such a change in the
spatial particle arrangement was observed in@8–10#. An ad-
ditional abrupt change in the particle concentration distribu-
tion will happen in a closed particle system whenLmin ex-
ceedsLcr , i.e.,

Lmin'
3vp« fb

2minVs~^E
2~r ,t !& te!

kBT
.Lcr ,

since in this case all the particles will be incorporated into
aggregates. It is conceivable that such a transition took place
in experiments@8# at frequencies below 500 Hz where it was
observed that all the particles collected on the electrode sur-
face to form a diamond pattern.

To understand the effects of conductivity on the spatial
arrangement of the particles in nonuniform electric fields, it
would be necessary to consider the general case of the theory
@19#. The results obtained in the present paper provide a
framework for embarking on such a generalization.
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