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Clustering properties of d-dimensional overlapping spheres
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Various clustering properties af-dimensional overlappingi.e., Poisson distributedspheres are investi-
gated. We evaluate,, the average number of connected clustersk gfarticles (called k-merg per unit
particle, fork=2,3,4 andv,, the expected volume of lemer, fork=2,3,4 by using our general expressions
for these quantities fod=1, 2, or 3. We use these calculations to obtain low-density expansions of various
averaged cluster numbers and volumes, which can be obtained from gmv, . We study the behavior of
these cluster statistics as the percolation threshold is approached from below, and we rigorously show that two
of these averaged quantities do not divergedar2. [S1063-651X96)02411-7

PACS numbes): 61.41+e, 64.60.Ak, 61.46-w, 05.40:+]|

I. INTRODUCTION able to compute, and correctly evaluate,, v, andv, for
any sphere number densijty Our evaluations of these quan-

A prototypical model of continuum percolation is a sys- tities are in excellent agreement with Monte Carlo simula-
tem of spatially uncorrelated, equal-sized spheres in oneions that we also perform.
two, and three dimensiorid—14]. In this model, spheres of e also will study various cluster statistics related to the
equal size are centered on the points of a stationary Poiss@fyerage number of particles and average volume of the clus-
process. Since the spheres are allowed to overlap, clusters @s within the system. We will consid€Y, the average num-
various sizes and volumes are formed, as depicted in Fig. e of particles contained in a cluster chosen at randgm,
This model has been given a variety of names, includingne ayerage number of particles in the cluster of a particle

“fully penetrable spheres,” “randomly overlapping
spheres,” the “Swiss-cheese model,” and the “Poisson bIobChosen at randonVo, the average volume of a randomly

model.” We shall henceforth refer to this model agerlap- chosen cluster, anl¥s, the average volume of the cluster

: : : “ " P containing a randomly chosen particle. The ‘“particle-
ping spheresCertain types of “connectedness” functions d clust be and the “oartic] dcl
and related quantities have been analytically and numericall§fV€'a3€C cluster numbeisand the “particie-averaged clus-
determined for this moddB—12,15,16 er volume” V¢ both diverge at the percolation threshélde

In this paper we present integral representations of théninimu_m density at which a cluster of infinite size and vol-

average number density, of a k-mer (a cluster comprised Ume exist415,16)). However, the “average cluster number
of k spheres and the average volume, of a k-mer for Q and “average cluster volumeVg remain finite at the
overlapping spheres i dimensions. The, have been used percolation threshold for spatial dimenside2. The cluster
to estimate the percolation threshold and critical exponent oftalisticS, sometimes called the mean cluster size, is a well-
various overlapping particle systerfis], rigorously bound known quantity in percolation theory and has been studied
the mean cluster densifyL1], and study surface tension in
percolation model§17]. We use a constructive paradigm to

efficiently evaluate these integral expressions ffigr and

vy. To illustrate this paradigm, we derive exact analytical Q
results for the quantitiep, and v, in one dimension. In

higher dimensions, however, these quantities are integrals

that cannot be evaluated analytically and we have to settle

for numerical evaluation. We find that the constructive para-

digm yields integrals free of the redundancies inherent in

previous work 16] and so these integrals can be numerically
*Present address: Department of Mathematics, University of @

evaluated more efficiently. The effort to perform these nu-
merical integrations increaseslasnd the number of dimen-
sions increase, and therefore efficient computation of these
integrals becomes imperative. With this approach, we are
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extensively for overlapping spheres in two and three dimenThe probability that a given particle is the leftm$&8] par-
sions [1-6]. Also, Vg has been approximated by Fanti, ticle of ak-mer is denoted by, . We can also interpret, to
Glandt, and Chiew8] for overlapping spheres in three di- be the average number of leftmost spherek-ofers per unit
mensions. To our knowledge, the average cluster numbarumber of particles or, equivalently, the average number of
Q and the average volume volumg, have heretofore not k-mers per unit number of particles. The two quantitigs
been evaluated. Using our exact low-density expansions aindn, are related by

ng andv,, we compute low-density expansions Qf Vg,

and Vg for any dimensiord. Pk=kng. )

It is believed thatS and Vg obey a power law near the . . .
percolation threshold. Under this assumption, the Iow—In this paper, we consider these quantities toebsemble

density expansion o8 has been used to estimate the perco_averages that is, they are averaged over all realizations of

lation threshold and critical exponéfif]. Based on our study theTEnsembIe. ber it vol o
of Padeapproximants of these cluster statistics, we sugges[t) € average number &-mers per unit volume 1s given
that a similar analysis may also be applicable/to y

In Sec. Il we define the quantities that will be used pe=pNi (6)
throughout this report. In Sec. lll we discuss the asymptotic
behavior and certain inequalities involving the cluster statisand the average number of clusters per unit volume is there-
ticsQ, S, Vo, andVs. In Sec. IV we consider the calcula- fore
tions of the expected number &fmers in the system; we .
obtain exact analytical results in one dimension and integral
expressions in higher dimensions that require numerical pc:gfl P
evaluation for arbitrary density. In Sec. V we calculate the
expected volume of k-mer for any dimensionl. Finally, in  Also, it is clear that
Sec. VI we discuss how cluster statistics derived from the
n, andv, may be used to estimate the percolation threshold =
and critical exponents for overlapping diskd=2) and P:gfl Kpi.- ®)
spheres d=3).

)

The probability that a randomly chosetusteris ak-mer is

Il. DEFINITION OF CLUSTERING QUANTITIES denoted byqg,, which is given by
We now define the quantities that will be investigated in Ny
this article. Our model is a system of overlapping equal-sized Ox="= (9)
spheres, i.e., spheres whose centers are determined by a Pois- 2 n
son process with given raj@ The common diameter of the =T
spheres will be denoted hy. The reduced density is defined
in terms of the sphere number densityoy The average cluster numbe€r is the average number of
particles in a randomly chosen cluster. Using the above defi-
n=pVi, () nitions, it is given by
where *
di2 d * kzl kny i -1
o g =
= — = k = ) = n . 10
ViI=r1rdn) 2) @ Q= 2, ka (;1 k) (10

E Nk
is the volume of a sphere of diameterin d dimensions. k=1

Finally, the volume fraction of the void phase and particleThs quantity also can be related to the number of particles
(spherg phases are respectively given by N and the number of clustel for a given realization under
=7, dy=1—y. 3) the thermodynamic limit:

We now define the statistics describing clusters, which
will be evaluated in this article. A cluster is defined to be a
complete set of particles which are connected, that is, for anyye also consider the particle-averaged cluster nuner
two particles in the set, a path can be drawn between theiia|so referred to as the mean cluster sizehich is the aver-

centers that lies entirely within the particles, and no suchhge number of particles in the cluster containing a randomly
path can be drawn between any particle center in the set anghosenparticle. This cluster property is given by

any particle center outside the set. The probability that a
given particle is part of &-mer (a cluster containings par-
ticles) is denoted byp, , so that

Q= lim N/M. (11)
M,N— o

® 2 kznk ©

. s=> kpk:;—:k}) k2n, (12)
=1

gl pe=1. 4) S kn

=~
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for densities below the percolation threshold.
The expected volume of lkemer is denoted by, and so Q<S= 1+PJ Po(r)dr. (18)
the fraction of space occupied by the particles is given by

w This relation implies tha® cannot grow as rapidly &S at
_ the percolation threshold. In fact, we can show tQatloes
¢ gl PKUk (13 not diverge at the percolation threshold fd+dimensional
overlapping spheres whet=2. This is proved simply by
below the percolation threshold. We also define the analogsbserving that
of Q andS for the cluster volume

d
k§=‘,l NNy = g2 >0 (19

Vo=—= (14 for any ¢,<1, where we have usg@9). Therefore, in view
2 Ny of (10), Q does not diverge at the percolation threshold un-
less it is equal to unity, which is true only wher=1. There-
and fore, since$5<1 for d=2, Q cannot diverge as, ap-
proaches¢5. Physically, this means that at any density,
o including above the percolation threshold, the number of
2 knog = clustersM is proportional to the number of particldkin the
V= k:i _ 2 KN . (15) thermodyngmic limit fod=2, given in(11). _
k=1 The particle-averaged cluster volurdg also becomes in-
kgl kny finite as the percolation threshold is approached from below,
and we assume that it has the asymptotic form

The first cluster statisti¥, is the average cluster volume or c Y c
the average volume of a randomly chosen cluster. On the Vsx (3= 2) “ b 3. (20
other hand Vg is the particle-averaged cluster volume, de-

fined to be the average volume of the cluster containing &Ssuming the validity of power lawgl7) and(20), we can
randomly chosen particle. relate the critical exponentg and w to one another, as we

now describe. By comparind.2) with (15), we observe that
Vs=SV, sincev, <kV;. Therefore, if the critical exponents
exist, we conclude that

It is well known that the particle-averaged cluster number

lll. CRITICAL BEHAVIOR AND INEQUALITIES

is given in terms of the pair-connectedness functitygr) 0<1y. (21
for any statistically homogeneous system via the relation
[19] We also notice the inequality

S=l+pf P,(r)dr. (16) Vo<Vs, (22)

_ _ 3 o which is similar to (18) for the cluster numbers. Finally,
The quantityp?P,(r)dr,dr, is the probability of finding any  sinceVo=<QV;, V, remains finite as percolation threshold is
pair of particles of the same cluster in the volume elementgpproached from below fad=2. This also has a physical
dr; and dr, centered onr; and r,, respectively, where interpretation similar to the above argument that was applied
r=r,—r;. Relation(16) is the connectedness analog of theto Q.
compressibility equation of equilibrium statistical mechan-  |n order to study the behavior @, S, Vg, andVsg, we
ics. We will directly verify (16) for fully penetrable rods in  will obtain low-density expansions of these cluster statistics.

the Appendix. To do this, we discuss in Secs. IV and V how the individual
Since P,(r) becomes long ranged at the percolationn, andv, can be evaluated.

threshold ¢35, it follows that S diverges to infinity as
¢b,— ¢5. Indeed, it is believed tha obeys the power law IV. PROBABILITY OF FINDING A Kk-MER n,

Sx(p5— o), o b5 17 In this section we calculate the probability related to
finding ak-mer in the system. This probability can be com-
in the immediate vicinity of the percolation threshold. In this puted rather handily in one dimension. We also write a for-
expression,y is a universal exponent for both lattice and mal integral expression for calculating this probability in two
continuum percolation dependent on the spatial dimensioor more dimensions; however, these integrals cannot be cal-
d. For exampley=43/18 ford=2 andy=1.8 ford=3; see culated analytically and hence require numerical evaluation.
Refs.[1,2,20 and references therein. This expression is somewhat simplified by a constructive
The definition (10) of the average cluster numbe&p paradigm, viewing the model as an arrival process. These
weighs clusters of large size less heavily than the definitiorsimplifications allow us to numerically evaluate the prob-
(12) and so abilities more efficiently.
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A. Exact results in one dimension consistent with(10) sincen,=0 at ¢;=0. We can usg28)
Consider a system of overlapping rods with density to directly verify the equality of(16) for fully penetrable

such that each rod has length We will often refer to a 0dS; this is shown in the Appendix. .

given rod by the position of its center or midpoint. Then the  Formulas(25)—(28) are in agreement with the results of
probability that a given particle is the leftmost particle in a R0ach[21], who obtainedp, by considering a sequence of
k-mer is given by Bernoulli trials. Such an argument, however, cannot be rig-

orously applied to the formation ¢-mers in higher dimen-
sions, which we now consider.
_ 42 k-1
M= $a(l= )™ 23 B. Extension to higher dimensions
We have illustrated the constructive paradigm by calcu-
To prove this, suppose the center of a given particle isating n, for overlapping rods. We now extend this paradigm
located atr;. Then this particle is the leftmost particle of a to calculaten, in higher dimensions. The expressions we
k-mer exactly when the regidir;—o,r;) is empty of cen-  obtain cannot be evaluated analytically, so we will use nu-
ters, the next center after, denoted byr,, occurs some- merical means to evaluate them.
where in (,,r;+ o], the next center after,, denoted by In d dimensions, a given sphere is a monomer exactly
rs, occurs somewhere im{,r,+o], ... , the next center when the sphere ofadius o centered at the given sphere
after ry_,, denoted by r,, occurs somewhere in contains no other sphere centers, so
(rg—1,rx-1t+o], and, finally, the region r(,ry+o] is
empty of centers. These events are independent since the
positions of the centers are generated by a Poisson process. p;=n;=exg —2%V,]= ¢§d, (29
Since this process has densjtywe conclude that

For k=2, Givenet al. [11] claimed and Penrogd 6] later
rigorously proved, in any dimension, that

r+o rrt+o
ng= e_ZP‘T drzpe_P(rZ_rl) dr3
r r

1 2 pk—l
X pe Pa=r2). .. jrk_ﬁgdrkpe*p(rk*rkfl) pk:(k—l)! f drlzj drag--- J A
Tk—1
Xexd — pVi(r* o) 11 (r o/2), (30
_ *Zpa'frl-'—o'd fr2+ad J‘rk,1+0'd
—€ 0o f2 r fa et Tk whereV,(rk; o) is the union volume ok spheres with radius
et 12 1 o centered at“=r;---r, andl (r¥;o/2) is the indicator func-
X p e Pk = gp3(1— ¢y) (24 tion for k spheres with centers at and radiuss/2 forming

a single cluster(Given et al. suppressed all prefactors and
the indicator function in their expression.

The previous integral evaluatidg4) is equivalent to Pen-
rose’s expression in one dimension; this can be shown by
ordering the arrivals of the rod centers. In other words, by
considering the centers of the rods as an arrival process, we
De=Kd2(1— by)< L 25) were able to eva_luate this integral expressio_n and hence de-

K 1 1 ' termine p, analytically. We now use this arrival method to

= p 21— k2 (26) calculat_epk in hi_gher dimensions, which aggin will yiel_d an

Pe=PP1 ! ' expression equivalent to Penrose’s, but this expression will

by induction.
Using Egs.(5), (6), (9), (10), and (12), we obtain the
following cluster statistics for overlapping rods on the line:

Q= br(1— )< 1 27 be more efficient for numerical integration. We find that
Q=S=1dy. (28) P= > pulko, . ki), (3D)
1=ko<---<kj=k

Comparing Eq.(28) with (17), we see thaip5=y=1. We
also see tha® diverges at the percolation threshold; this is where

(k,...,k-):c(k,...,k-)f _,dryp---dr f dr c.odr f darq . .dr
Pk(Ko i 0 i Bil k12 1k, Clg ket 1(ky+1) 1k, Cll g ks Lk _4+1) 1k

X exf — pVi(r’o)] (32)
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Average number of k-mers per unit particle
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FIG. 2. Average number df-mers per unit particléi.e., n,) in
two dimensions. The solid dots are simulation data.

and
Pkt
A (e AT (T ey
In this expressioky=1, k; =K,
Bi=B,(ri), (34)
the sphere with radius centered at;, and
C(k,)=(Bygs1U---UB)\(BLU---UBy). (35

We present the proof d31) elsewherd?22], but we will
illustrate the proof by considerings. There are two ways
that a cluster containing a particle centeredjatould exist.
The two centers, andrg could both lie inB4, or only one
centerr, in B; and one more center B,\B,. To ensure that
the cluster has only three particles, the regitr3; o) must
be otherwise empty for both cases. We conclude that

2
p
p3=§f drlZJ’ drgex] —pV3(r3o)]
*JBy By
"’sz drlzf drygexd —pVs(rdo)].  (36)
By B,\By
Similarly, we find thatp, is given by

3
p

p4=§J drlzj drlSJ' dryexd —pVa(rt;o)]
*JB; B, Bq

3

p
+—|f drlzf dr13j drexg —pVa(r4;o)]
2! ), B, (B,UB3)\B;
P
+_If drlzf drlgf dr14eXF[—pV4(r4;0')]
2! ), B,\B; B,\B;
+p° drlzf d"13f dryg
B, B,\B; B3\(B,UBy)

xex — pVa(r; o). (37)
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FIG. 3. Average number d-mers per unit particléi.e., n,) in
three dimensions. The solid dots are simulation data.

With sufficient patience one can obtain similar expres-
sions in terms of these subintegrals for the highgr The
inherent difficulty with this procedure is parametrizing the
domains of integration. Once this is accomplished, however,
this expression eliminates all redundancies and hence lends
itself to more efficient numerical integration.

1. Two-dimensional results

The integrals determiningn, require knowledge of
V,(r* o), the union area ok circles of equal radius. To
calculateV,, it is sufficient to obtain expressions for the
intersectionof j circles forj<k. Kratky [23] showed that the
area of intersection of four or more circles can be reduced to
a linear combination of the areas of intersection of two and
three circles. Using this result, we can evaluate the inte-
grands of the above integrals exactly and then use numerical
integration to finally obtain the, .

Figure 2 shows theoretical predictions of, n;, andn,
and direct Monte Carlo simulation of these quantities. As we
see, simulation and theory are in excellent agreement.

Using heuristic reasoning, Roach suggestedihatan be
approximated by

1— k—1
N~ Pa( kpl) 7 (39
wherep; is given in(29). This formula indeed provides a
good approximation tm,, nz, andn, for small to medium
values of¢,, but does not estimate, well for large ¢..

2. Three-dimensional results

Kratky [24] also stated that the intersection volumes of
five or more spheres of equal radius can be expressed as a
linear combination of intersection volumes of two, three, and
four spheres. The volume of the intersection of three spheres
[25—28 and four spherel29] are known analytically. Using
these results, we can again evaluate the integrands of the
above integrals analytically and then numerically obtain the
ne. A graph comparing the theoretical predictions rof,
ns, andn, in three dimensions to computer simulations is
shown in Fig. 3.
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Roach’s heuristic argument can also be applied to thiexpressed in terms of a conditional expectation on the posi-
three-dimensional model and $88) can be used as an ap- tions of its k constituent spheres. After giving the general
proximation ofn, . This turns out to be an excellent approxi- expression for any dimension, we directly calculate the av-
mation ofn,, ng, andn, for ¢,<0.05; however, its accuracy €rage volume of &-merv, in one dimension. We then nu-

diminishes asp, increases above this value. merically evaluate the lower, in two and three dimensions.
The average volume of lemer is the conditional expec-
V. AVERAGE VOLUME OF A k-MER v, tation of the volume ok spheres, given that thie spheres

indeed form a cluster. Froit80), given thatk particles form
We now consider the average volume of a gikemer. In  a k-mer, the conditional probability density function of the
any dimension, the expected union volume &fmer can be locations of thek particles is given by

Pkt
Wexq—pvk(rk;a)]l(rk;a/a
f(rlz,...,rlk): k=1 . (39)
(k——l)'f Xmzf dXy3z- - - f dxykexd — pVi(X; ) 11 (X5 0/2)
Since
Uk:f dr12~ .. f drlka(rk;a/Z)f(rlz, C ,rlk), (40)
from the definition of conditional expectation, we conclude that
f dry, - - f dr, Vi(r’ a12)exd — pVi(r€ o) 11 (r%; o/2)
V= (41)

fdru'"fdrlkeXF[_PVk(rkiU)]l("kio'/z)

This is somewhat different from the expression described by Gatenh. [11], which suppresses the indicator functions and
ignores the conditional expectation and hence the denominator.
We now directly calculate, in one dimension by using the arrival process paradigm described in Sec. IV. We find that

rt+o rato fy—1t+o
f drzf dry-- f dr(o+r—r,)e PRotnry
r ry M1 (k¢1—1 k—l)
=0 + .

rh+o rr+o r_++o —
f ' drzf ? dr3...f SR TIPS LS $1—1 7
r r r

1 2 k-1

V= (42

As expected, this expression is consistent with the knownhe inclusion(clustey volume fraction ¢, increases to 1.
cumulative distribution function of the length ofkamer in  This is not surprising: as the volume fraction of the spheres

systems of overlapping rod21]. increases, we would expect the separation distances of a
As the densityp tends to zero, the expected length of ak-mer to decrease.
one-dimensionak-mer tends tar(k+ 1)/2. This may be sur- From the graphs of they for k<4 and computer simu-

prising at first glance; after all, at very low densities, lations for largerk, a decent empirical approximation for
k-mers will not exist fork=2. However, we are not now vk at small volume fractions appears to be
calculating the probability thdt-mers exist; insteadye are
calculating the expectation of the volume of a k-mer given
that the k-mer exists

In higher dimensions, we again must settle for numerical
evaluation of thev,. To do so, we use the same decompo-
sition scheme underlyin@31) of Sec. IV to break both the
numerator and denominator @f1) into subcases. These sub- whered is the number of dimensions. However, this does not
expressions are then integrated numerically to obtain therovide a rigorous upper bound on thg. A precise deter-
Uk- mination ofv, and its derivative atyj=0 should provide an

In Figs. 4 and 5, we plot the lower, in two and three excellent upper bound and approximationugffor even in-
dimensions, respectively. As we see, thelecrease t&/; as  termediate values of.

1+k(29-1)
vk(o)*—zd—Vly (43
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FIG. 4. Expected area of kemer in units ofV; in two dimen- FIG. 5. Expected volume of &-mer in units ofV; in three
sions. The solid dots are simulation data dimensions. The solid dots are simulation data.

above integral expressions, on the particle-averaged cluster
volume Vg. This would be done by using the Taylor-series
expansion

In the previous sections, we have considered a procedure

VI. LOW-DENSITY EXPANSIONS OF CLUSTER
STATISTICS

to numerically evaluate the, andv, in any dimensiord. n=S (_1)J-Pk_1+’J' dr J’ dr J’ dr

We will now use this procedure to obtain low-density expan- e klj! 12 13 1k
sions of the cluster statisti€3, S, Vo, andVs, which were _

defined in Sec. Il. Our approach is similar to that of Haan X[Vi(r%; o) 1 (r¥; o12). (46)

and Zwanzig[1], who obtained the low-density expansions _ . . -

of the n, from the virial theory of the equation of state of a 1€ integrals of46) can be decomposed in a fashion similar
hard-sphere fluid and then obtained the low-density expari® (31 and then numerically evaluated. Similarly, the expan-
sions of 1Q andS. Such low-density expansions are impor- SIONS of thenw, can be obtained from the numerator(4l).
tant since they are exact to an accuracy of the above numerl € evaluation of e?Ch coefiicient will require apprquately
cal integrations and hence can be used as a benchmark fij€ Same computational effort as the computation,afself.

approximate approaches. Flnal!y, these goefficients can be use_d to obtain the low-
In one dimensionQ and S were given by(28). Using density expansions of the clu_ster _statlst(Qs S, Vg, an_d
(24) and (42), we also obtain V5. We present these expansions in Table Ider2 and in

Table Il ford= 3. As expected, our expansions for theare
in agreement with the expansions obtained by Haan and
v _$20 $20 (44) Zwanzig[1].
® ¢in $1In(1— o)

TABLE |. Coefficients in the expansions af,, v,, Q, S,
Vq, andV for fully penetrable disks. Recall that, =e~*” from
(29), and thatv, =V, trivially. The series expansions fof,, Vq,
andVg are expressed in units &f;, the area of a single disk. The

and

2¢,0 2¢,0 expansions foQ, S, Vg, andVg are derived fron(10), (12), (14),
Vg=————0=— 77—~ —0. (45 and(15), respectively.
b1m $1In(1—¢,)
7° 7 7 7 7'

Notice thatVq diverges at the percolation threshold for this
one-dimensional system; this is consistent with the discus?? 2 —11.3079  32.2915 -62.0415
sion of Sec. lll. Also, there is a logarithmic contribution in N3 48720  —35.3346  129.6895
the denominator oVg. Therefore, in one dimension/g N4 13.022  -114.823
does not obey a power law @s approaches the percolation Ns 36.728

threshold. The presence af in the denominator, however,
would not preclude power-law behavior in higher dimen-v2
sions, sincep®<o for d=2. 3

1.75 —0.1295 -0.0273 0.0028
2.5071 -0.257 —0.055

Haan and Zwanzidgl] used the coefficients in the low- 04 3.268 04
density expansion df to estimate the percolation threshold Q 1 2 2.436 2.432 2.2
and critical exponent fo8. They did this by usind12) and s 1 4 6.616 8.834 11
by obtaining the low-density expansions of thefrom the v 1 1.5 1.603 15
virial theory of the equation of state of a hard-sphere fluid. Iny 1 3 4.548 5.9

principle, the same analysis could be performed, using the
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TABLE Il. Same as in Table I, except for fully penetrable TABLE IV. Same as in Table Ill, except for fully penetrable

spheres. For this system;=e" 87 from (29). spheres. The approximate reduced density percolation threshold is

7°=0.35. The roots of th¢2,1] approximants ofQ and Vg are
7° 7t 7 7 7 greater thary;®.

n, 4 —49  302.2238 —1250.5030 [0,1] [1.1] [2,1]

n; 22 —359.4203  2959.1209

Ny 139.7867  —2842.60 Q 0.143 0.363 0.41

ns 964.68 S 0.125 0.235 0.27
Vg 0.286 0.38 0.43

vy 2.7578 —0.3080 -0.2073

Uy 3.64 -0.5

To our knowledge, the asymptotic behavionf near the

2 1 g ;jr 12265'7;63:0 ig'g percolation threshold has not been studied quantitatively
v 1 a5 9.1667 '21 140 with high precision. It would be useful in future studies to
Q ' ' determine ifVg shares the same critical exponentSa&hat
Vg 1 7 29.0048 102 800 is, if w=1y)
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ties of Q and Vqy occurabovethe percolation threshold in
three dimensions. This is not surprising sif@eandVq do  \ppENpIx: COMPRESSIBILITY EQUATION FOR FULLY
not diverge at the percolation threshold, as discussed in Sec. PENETRABLE RODS
[ll. We also notice that the estimates gf from Vg are
somewhat larger than the estimates fr@nas expected, In (16) we stated the compressibility equation, which in
sinceVs<SV;, which was also discussed in Sec. lll. dimensionless units can be stated as

Fanti, Glandt, and ChieW8] obtained a series expansion
for V¢ for three-dimensional overlapping spheres in terms of
the one-point—one-particle connectedness function. They
then evaluated/g to account for binary overlaps under the
superposition approximation. They were not, however, conwhere P, is the pair-connectedness function andr/o is
cerned with the individuah, andv, . Their expression is dimensionless distance. We now directly verify this result.

For fully penetrable rods?, is simply

©

S=1+ nfo P,(z)dz, (A1)

VS
VS: 17’¢2. (47) 5 ( ) |1, z<1 (Az)
202)=

) ) ) ) . ) Cy(z—1), z=1,
If we generalize this expression tbdimensions, we obtain

di2 d whereC, is the two-point cluster functiof¥]. For fully pen-
v :% 77 g (48) etrable rods, this function is given §2,31]
S p I'(1+d/2)\2
m
after using(2). We see from28) and (45) that this expres- Ca(x)=1+ >, (—1)kepk
sion, generalized to one dimension, is off by a factor of 2. k=1

. [n(z—k+ D) [p(z—k+1)]
TABLE lll. Roots of Padeapproximants oQ, S, Vg, andVg k=11 + K ,
for fully penetrable disks. FoB andVg, this provides an estimate ) ’
on the reduced density percolation threshgfd The approximate (A3)
correct value isy®=1.13.

wherem is the positive integer that satisfies—1<x<m.
[0.1] [1,1] [2,1] We recall that¢;=e~7” for fully penetrable rods. We also
note that then-point connectedness function for this system

Q 0.500 0.82 1.00 can be expressed as
S 0.250 0.60 0.75 P
VQ 0.667 0.94 1.05

n—1
Vs 0.333 0.66 0.77 Pa(x1, -« Xo) =TT Pa(xis1=x), (Ad)
=1




54 CLUSTERING PROPERTIES OB-DIMENSIONAL ... 5339

wherex; <X,<---<X,. n—l(_ Yhgtt
) A . =1+ |i —k+ k+15—kn
Direct integration ofP, shows that e’=1 r![r:o IZ,O —(k+1)! [(n=k+1)“""e
_(n_k)k+1e7(k+1)n] (A6)

o b for x>0. This identity can be derived using the method of
J P,(z)dz= —Z (A5)  subtracted singularitig82,33 and the generating function
0

b17m
D18XP(—Zn 1) —eXp(—2Zn¢,) 1-¢,

f(z)= + .
O g zed—zné)] | 71—
(A7)
and so we obtaii49) upon comparison witli28). To obtain  We also notice that we have directly verified that the integral
this integral, we have used the identity of C, diverges at the percolation threshold, as expefted
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