
Clustering properties of d-dimensional overlapping spheres

J. Quintanilla* and S. Torquato†

Princeton Materials Institute and Department of Civil Engineering and Operations Research, Princeton University,
Princeton, New Jersey 08544

~Received 18 June 1996!

Various clustering properties ofd-dimensional overlapping~i.e., Poisson distributed! spheres are investi-
gated. We evaluatenk , the average number of connected clusters ofk particles ~called k-mers! per unit
particle, fork52,3,4 andvk , the expected volume of ak-mer, fork52,3,4 by using our general expressions
for these quantities ford51, 2, or 3. We use these calculations to obtain low-density expansions of various
averaged cluster numbers and volumes, which can be obtained from thenk andvk . We study the behavior of
these cluster statistics as the percolation threshold is approached from below, and we rigorously show that two
of these averaged quantities do not diverge ford>2. @S1063-651X~96!02411-7#

PACS number~s!: 61.41.1e, 64.60.Ak, 61.46.1w, 05.40.1j

I. INTRODUCTION

A prototypical model of continuum percolation is a sys-
tem of spatially uncorrelated, equal-sized spheres in one,
two, and three dimensions@1–14#. In this model, spheres of
equal size are centered on the points of a stationary Poisson
process. Since the spheres are allowed to overlap, clusters of
various sizes and volumes are formed, as depicted in Fig. 1.
This model has been given a variety of names, including
‘‘fully penetrable spheres,’’ ‘‘randomly overlapping
spheres,’’ the ‘‘Swiss-cheese model,’’ and the ‘‘Poisson blob
model.’’ We shall henceforth refer to this model asoverlap-
ping spheres. Certain types of ‘‘connectedness’’ functions
and related quantities have been analytically and numerically
determined for this model@3–12,15,16#.

In this paper we present integral representations of the
average number densitynk of a k-mer ~a cluster comprised
of k spheres! and the average volumevk of a k-mer for
overlapping spheres ind dimensions. Thenk have been used
to estimate the percolation threshold and critical exponent of
various overlapping particle systems@1#, rigorously bound
the mean cluster density@11#, and study surface tension in
percolation models@17#. We use a constructive paradigm to
efficiently evaluate these integral expressions fornk and
vk . To illustrate this paradigm, we derive exact analytical
results for the quantitiespk and vk in one dimension. In
higher dimensions, however, these quantities are integrals
that cannot be evaluated analytically and we have to settle
for numerical evaluation. We find that the constructive para-
digm yields integrals free of the redundancies inherent in
previous work@16# and so these integrals can be numerically
evaluated more efficiently. The effort to perform these nu-
merical integrations increases ask and the number of dimen-
sions increase, and therefore efficient computation of these
integrals becomes imperative. With this approach, we are

able to computen4 and correctly evaluatev2, v3, andv4 for
any sphere number densityr. Our evaluations of these quan-
tities are in excellent agreement with Monte Carlo simula-
tions that we also perform.

We also will study various cluster statistics related to the
average number of particles and average volume of the clus-
ters within the system. We will considerQ, the average num-
ber of particles contained in a cluster chosen at random,S,
the average number of particles in the cluster of a particle
chosen at random,VQ , the average volume of a randomly
chosen cluster, andVS , the average volume of the cluster
containing a randomly chosen particle. The ‘‘particle-
averaged cluster number’’S and the ‘‘particle-averaged clus-
ter volume’’VS both diverge at the percolation threshold~the
minimum density at which a cluster of infinite size and vol-
ume exists@15,16#!. However, the ‘‘average cluster number’’
Q and ‘‘average cluster volume’’VQ remain finite at the
percolation threshold for spatial dimensiond>2. The cluster
statisticS, sometimes called the mean cluster size, is a well-
known quantity in percolation theory and has been studied
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FIG. 1. Schematic of fully penetrable disks. There are five

monomers, four dimers, two trimers, and a 4-mer.
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extensively for overlapping spheres in two and three dimen-
sions @1–6#. Also, VS has been approximated by Fanti,
Glandt, and Chiew@8# for overlapping spheres in three di-
mensions. To our knowledge, the average cluster number
Q and the average volume volumeVQ have heretofore not
been evaluated. Using our exact low-density expansions of
nk andvk , we compute low-density expansions ofQ, VQ ,
andVS for any dimensiond.

It is believed thatS andVS obey a power law near the
percolation threshold. Under this assumption, the low-
density expansion ofS has been used to estimate the perco-
lation threshold and critical exponent@1#. Based on our study
of Padéapproximants of these cluster statistics, we suggest
that a similar analysis may also be applicable toVS .

In Sec. II we define the quantities that will be used
throughout this report. In Sec. III we discuss the asymptotic
behavior and certain inequalities involving the cluster statis-
ticsQ, S, VQ , andVS . In Sec. IV we consider the calcula-
tions of the expected number ofk-mers in the system; we
obtain exact analytical results in one dimension and integral
expressions in higher dimensions that require numerical
evaluation for arbitrary densityr. In Sec. V we calculate the
expected volume of ak-mer for any dimensiond. Finally, in
Sec. VI we discuss how cluster statistics derived from the
nk andvk may be used to estimate the percolation threshold
and critical exponents for overlapping disks (d52) and
spheres (d53).

II. DEFINITION OF CLUSTERING QUANTITIES

We now define the quantities that will be investigated in
this article. Our model is a system of overlapping equal-sized
spheres, i.e., spheres whose centers are determined by a Pois-
son process with given rater. The common diameter of the
spheres will be denoted bys. The reduced density is defined
in terms of the sphere number densityr by

h5rV1 , ~1!

where

V15
pd/2

G~11d/2! S s

2 D d ~2!

is the volume of a sphere of diameters in d dimensions.
Finally, the volume fraction of the void phase and particle
~sphere! phases are respectively given by

f15e2h, f2512f1 . ~3!

We now define the statistics describing clusters, which
will be evaluated in this article. A cluster is defined to be a
complete set of particles which are connected, that is, for any
two particles in the set, a path can be drawn between their
centers that lies entirely within the particles, and no such
path can be drawn between any particle center in the set and
any particle center outside the set. The probability that a
given particle is part of ak-mer ~a cluster containingk par-
ticles! is denoted bypk , so that

(
k51

`

pk51. ~4!

The probability that a given particle is the leftmost@18# par-
ticle of ak-mer is denoted bynk . We can also interpretnk to
be the average number of leftmost spheres ofk-mers per unit
number of particles or, equivalently, the average number of
k-mers per unit number of particles. The two quantitiespk
andnk are related by

pk5knk . ~5!

In this paper, we consider these quantities to beensemble
averages, that is, they are averaged over all realizations of
the ensemble.

The average number ofk-mers per unit volume is given
by

rk5rnk ~6!

and the average number of clusters per unit volume is there-
fore

rc5 (
k51

`

rk . ~7!

Also, it is clear that

r5 (
k51

`

krk . ~8!

The probability that a randomly chosencluster is a k-mer is
denoted byqk , which is given by

qk5
nk

(
i51

`

ni

. ~9!

The average cluster numberQ is the average number of
particles in a randomly chosen cluster. Using the above defi-
nitions, it is given by

Q5 (
k51

`

kqk5

(
k51

`

knk

(
k51

`

nk

5S (
k51

`

nkD 21

. ~10!

This quantity also can be related to the number of particles
N and the number of clustersM for a given realization under
the thermodynamic limit:

Q5 lim
M ,N→`

N/M . ~11!

We also consider the particle-averaged cluster numberS
~also referred to as the mean cluster size!, which is the aver-
age number of particles in the cluster containing a randomly
chosenparticle. This cluster property is given by

S5 (
k51

`

kpk5

(
k51

`

k2nk

(
k51

`

knk

5 (
k51

`

k2nk ~12!
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for densities below the percolation threshold.
The expected volume of ak-mer is denoted byvk and so

the fraction of space occupied by the particles is given by

f25 (
k51

`

rkvk ~13!

below the percolation threshold. We also define the analogs
of Q andS for the cluster volume

VQ5

(
k51

`

nkvk

(
k51

`

nk

~14!

and

VS5

(
k51

`

knkvk

(
k51

`

knk

5 (
k51

`

knkvk . ~15!

The first cluster statisticVQ is the average cluster volume or
the average volume of a randomly chosen cluster. On the
other hand,VS is the particle-averaged cluster volume, de-
fined to be the average volume of the cluster containing a
randomly chosen particle.

III. CRITICAL BEHAVIOR AND INEQUALITIES

It is well known that the particle-averaged cluster number
is given in terms of the pair-connectedness functionP2(r )
for any statistically homogeneous system via the relation
@19#

S511rE P2~r !dr . ~16!

The quantityr2P2(r )dr1dr2 is the probability of finding any
pair of particles of the same cluster in the volume elements
dr1 and dr2 centered onr1 and r2, respectively, where
r5r22r1. Relation~16! is the connectedness analog of the
compressibility equation of equilibrium statistical mechan-
ics. We will directly verify ~16! for fully penetrable rods in
the Appendix.

Since P2(r ) becomes long ranged at the percolation
threshold f2

c , it follows that S diverges to infinity as
f2→f2

c . Indeed, it is believed thatS obeys the power law

S}~f2
c2f2!

2g, f2→f2
c ~17!

in the immediate vicinity of the percolation threshold. In this
expression,g is a universal exponent for both lattice and
continuum percolation dependent on the spatial dimension
d. For example,g543/18 ford52 andg51.8 ford53; see
Refs.@1,2,20# and references therein.

The definition ~10! of the average cluster numberQ
weighs clusters of large size less heavily than the definition
~12! and so

Q,S511rE P2~r !dr . ~18!

This relation implies thatQ cannot grow as rapidly asS at
the percolation threshold. In fact, we can show thatQ does
not diverge at the percolation threshold ford-dimensional
overlapping spheres whend>2. This is proved simply by
observing that

(
k51

`

nk.n15f1
2d.0 ~19!

for anyf2,1, where we have used~29!. Therefore, in view
of ~10!, Q does not diverge at the percolation threshold un-
less it is equal to unity, which is true only whend51. There-
fore, sincef2

c,1 for d>2, Q cannot diverge asf2 ap-
proachesf2

c . Physically, this means that at any density,
including above the percolation threshold, the number of
clustersM is proportional to the number of particlesN in the
thermodynamic limit ford>2, given in~11!.

The particle-averaged cluster volumeVS also becomes in-
finite as the percolation threshold is approached from below,
and we assume that it has the asymptotic form

VS}~f2
c2f2!

2v, f2→f2
c . ~20!

Assuming the validity of power laws~17! and ~20!, we can
relate the critical exponentsg andv to one another, as we
now describe. By comparing~12! with ~15!, we observe that
VS<SV1 sincevk<kV1. Therefore, if the critical exponents
exist, we conclude that

v<g. ~21!

We also notice the inequality

VQ,VS , ~22!

which is similar to ~18! for the cluster numbers. Finally,
sinceVQ<QV1, VQ remains finite as percolation threshold is
approached from below ford>2. This also has a physical
interpretation similar to the above argument that was applied
to Q.

In order to study the behavior ofQ, S, VQ , andVS , we
will obtain low-density expansions of these cluster statistics.
To do this, we discuss in Secs. IV and V how the individual
nk andvk can be evaluated.

IV. PROBABILITY OF FINDING A k-MER nk

In this section we calculate the probabilitynk related to
finding ak-mer in the system. This probability can be com-
puted rather handily in one dimension. We also write a for-
mal integral expression for calculating this probability in two
or more dimensions; however, these integrals cannot be cal-
culated analytically and hence require numerical evaluation.
This expression is somewhat simplified by a constructive
paradigm, viewing the model as an arrival process. These
simplifications allow us to numerically evaluate the prob-
abilities more efficiently.
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A. Exact results in one dimension

Consider a system of overlapping rods with densityr
such that each rod has lengths. We will often refer to a
given rod by the position of its center or midpoint. Then the
probability that a given particle is the leftmost particle in a
k-mer is given by

nk5f1
2~12f1!

k21. ~23!

To prove this, suppose the center of a given particle is
located atr 1. Then this particle is the leftmost particle of a
k-mer exactly when the region@r 12s,r 1) is empty of cen-
ters, the next center afterr 1, denoted byr 2, occurs some-
where in (r 1 ,r 11s#, the next center afterr 2, denoted by
r 3, occurs somewhere in (r 2 ,r 21s#, . . . , the next center
after r k21, denoted by r k , occurs somewhere in
(r k21 ,r k211s#, and, finally, the region (r k ,r k1s# is
empty of centers. These events are independent since the
positions of the centers are generated by a Poisson process.
Since this process has densityr, we conclude that

nk5e22rsE
r1

r11s

dr2re
2r~r22r1!E

r2

r21s

dr3

3re2r~r32r2!
•••E

r k21

r k211s

drkre
2r~r k2r k21!

5e22rsE
r1

r11s

dr2E
r2

r21s

dr3•••E
r k21

r k211s

drk

3rk21e2r~r k2r1!5f1
2~12f1!

k21 ~24!

by induction.
Using Eqs.~5!, ~6!, ~9!, ~10!, and ~12!, we obtain the

following cluster statistics for overlapping rods on the line:

pk5kf1
2~12f1!

k21, ~25!

rk5rf1
2~12f1!

k21, ~26!

qk5f1~12f1!
k21, ~27!

Q5S51/f1 . ~28!

Comparing Eq.~28! with ~17!, we see thatf2
c5g51. We

also see thatQ diverges at the percolation threshold; this is

consistent with~10! sincenk50 atf150. We can use~28!
to directly verify the equality of~16! for fully penetrable
rods; this is shown in the Appendix.

Formulas~25!–~28! are in agreement with the results of
Roach@21#, who obtainedpk by considering a sequence of
Bernoulli trials. Such an argument, however, cannot be rig-
orously applied to the formation ofk-mers in higher dimen-
sions, which we now consider.

B. Extension to higher dimensions

We have illustrated the constructive paradigm by calcu-
latingnk for overlapping rods. We now extend this paradigm
to calculatenk in higher dimensions. The expressions we
obtain cannot be evaluated analytically, so we will use nu-
merical means to evaluate them.

In d dimensions, a given sphere is a monomer exactly
when the sphere ofradius s centered at the given sphere
contains no other sphere centers, so

p15n15exp@22drV1#5f1
2d . ~29!

For k>2, Givenet al. @11# claimed and Penrose@16# later
rigorously proved, in any dimension, that

pk5
rk21

~k21!! E dr12E dr13•••E dr1k

3exp@2rVk~r
k;s!#I ~r k;s/2!, ~30!

whereVk(r
k;s) is the union volume ofk spheres with radius

s centered atr k5r1•••r k andI (r
k;s/2) is the indicator func-

tion for k spheres with centers atr k and radiuss/2 forming
a single cluster.~Given et al. suppressed all prefactors and
the indicator function in their expression.!

The previous integral evaluation~24! is equivalent to Pen-
rose’s expression in one dimension; this can be shown by
ordering the arrivals of the rod centers. In other words, by
considering the centers of the rods as an arrival process, we
were able to evaluate this integral expression and hence de-
terminepk analytically. We now use this arrival method to
calculatepk in higher dimensions, which again will yield an
expression equivalent to Penrose’s, but this expression will
be more efficient for numerical integration. We find that

pk5 (
15k0,•••,ki5k

pk~k0 , . . . ,ki !, ~31!

where

pk~k0 , . . . ,ki !5c~k0 , . . . ,ki !E
B
1

k12k0
dr12•••dr1k1EC~k0 ,k1!k22k1

dr1~k111!•••dr1k2•••EC~ki22 ,ki21!ki2ki21

dr1~ki2111!•••dr1k

3exp@2rVk~r
k;s!# ~32!
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and

c~k0 , . . . ,ki !5
rk21

~k12k0!! •••~ki2ki21!!
. ~33!

In this expressionk051, ki5k,

Bi5Bs~r i !, ~34!

the sphere with radiuss centered atr i , and

C~k,l !5~Bk11ø•••øBl !\~B1ø•••øBk!. ~35!

We present the proof of~31! elsewhere@22#, but we will
illustrate the proof by consideringp3. There are two ways
that a cluster containing a particle centered atr1 could exist.
The two centersr2 and r3 could both lie inB1, or only one
centerr2 in B1 and one more center inB2\B1. To ensure that
the cluster has only three particles, the regionV3(r

3;s) must
be otherwise empty for both cases. We conclude that

p35
r2

2!EB1dr12EB1dr13exp@2rV3~r
3;s!#

1r2E
B1

dr12E
B2\B1

dr13exp@2rV3~r
3;s!#. ~36!

Similarly, we find thatp4 is given by

p45
r3

3!EB1dr12EB1dr13EB1dr14exp@2rV4~r
4;s!#

1
r3

2!EB1dr12EB1dr13E~B2øB3!\B1

dr14exp@2rV4~r
4;s!#

1
r3

2!EB1dr12EB2\B1

dr13E
B2\B1

dr14exp@2rV4~r
4;s!#

1r3E
B1

dr12E
B2\B1

dr13E
B3\~B1øB2!

dr14

3exp@2rV4~r
4;s!#. ~37!

With sufficient patience one can obtain similar expres-
sions in terms of these subintegrals for the higherpk . The
inherent difficulty with this procedure is parametrizing the
domains of integration. Once this is accomplished, however,
this expression eliminates all redundancies and hence lends
itself to more efficient numerical integration.

1. Two-dimensional results

The integrals determiningnk require knowledge of
Vk(r

k;s), the union area ofk circles of equal radius. To
calculateVk , it is sufficient to obtain expressions for the
intersectionof j circles for j<k. Kratky @23# showed that the
area of intersection of four or more circles can be reduced to
a linear combination of the areas of intersection of two and
three circles. Using this result, we can evaluate the inte-
grands of the above integrals exactly and then use numerical
integration to finally obtain thenk .

Figure 2 shows theoretical predictions ofn2, n3, andn4
and direct Monte Carlo simulation of these quantities. As we
see, simulation and theory are in excellent agreement.

Using heuristic reasoning, Roach suggested thatnk can be
approximated by

nk'
p1~12p1!

k21

k
, ~38!

wherep1 is given in ~29!. This formula indeed provides a
good approximation ton2, n3, andn4 for small to medium
values off2, but does not estimatenk well for largef2.

2. Three-dimensional results

Kratky @24# also stated that the intersection volumes of
five or more spheres of equal radius can be expressed as a
linear combination of intersection volumes of two, three, and
four spheres. The volume of the intersection of three spheres
@25–28# and four spheres@29# are known analytically. Using
these results, we can again evaluate the integrands of the
above integrals analytically and then numerically obtain the
nk . A graph comparing the theoretical predictions ofn2,
n3, andn4 in three dimensions to computer simulations is
shown in Fig. 3.

FIG. 2. Average number ofk-mers per unit particle~i.e., nk) in
two dimensions. The solid dots are simulation data.

FIG. 3. Average number ofk-mers per unit particle~i.e., nk) in
three dimensions. The solid dots are simulation data.
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Roach’s heuristic argument can also be applied to this
three-dimensional model and so~38! can be used as an ap-
proximation ofnk . This turns out to be an excellent approxi-
mation ofn2, n3, andn4 for f2,0.05; however, its accuracy
diminishes asf2 increases above this value.

V. AVERAGE VOLUME OF A k-MER vk

We now consider the average volume of a givenk-mer. In
any dimension, the expected union volume of ak-mer can be

expressed in terms of a conditional expectation on the posi-
tions of its k constituent spheres. After giving the general
expression for any dimension, we directly calculate the av-
erage volume of ak-mer vk in one dimension. We then nu-
merically evaluate the lowervk in two and three dimensions.

The average volume of ak-mer is the conditional expec-
tation of the volume ofk spheres, given that thek spheres
indeed form a cluster. From~30!, given thatk particles form
a k-mer, the conditional probability density function of the
locations of thek particles is given by

f ~r12, . . . ,r1k!5

rk21

~k21!!
exp@2rVk~r

k;s!#I ~r k;s/2!

rk21

~k21!! E dx12E dx13•••E dx1kexp@2rVk~x
k;s!#I ~xk;s/2!

. ~39!

Since

vk5E dr12•••E dr1kVk~r
k;s/2! f ~r12, . . . ,r1k!, ~40!

from the definition of conditional expectation, we conclude that

vk5
E dr12•••E dr1kVk~r

k;s/2!exp@2rVk~r
k;s!#I ~r k;s/2!

E dr12•••E dr1kexp@2rVk~r
k;s!#I ~r k;s/2!

. ~41!

This is somewhat different from the expression described by Givenet al. @11#, which suppresses the indicator functions and
ignores the conditional expectation and hence the denominator.

We now directly calculatevk in one dimension by using the arrival process paradigm described in Sec. IV. We find that

vk5

E
r1

r11s

dr2E
r2

r21s

dr3•••E
r k21

r k211s

drk~s1r k2r 1!e
2r~2s1r k2r1!

E
r1

r11s

dr2E
r2

r21s

dr3•••E
r k21

r k211s

drke
2r~2s1r k2r1!

5sS kf121

f121
1
k21

h D . ~42!

As expected, this expression is consistent with the known
cumulative distribution function of the length of ak-mer in
systems of overlapping rods@21#.

As the densityr tends to zero, the expected length of a
one-dimensionalk-mer tends tos(k11)/2. This may be sur-
prising at first glance; after all, at very low densities,
k-mers will not exist fork>2. However, we are not now
calculating the probability thatk-mers exist; instead,we are
calculating the expectation of the volume of a k-mer given
that the k-mer exists.

In higher dimensions, we again must settle for numerical
evaluation of thevk . To do so, we use the same decompo-
sition scheme underlying~31! of Sec. IV to break both the
numerator and denominator of~41! into subcases. These sub-
expressions are then integrated numerically to obtain the
vk .

In Figs. 4 and 5, we plot the lowervk in two and three
dimensions, respectively. As we see, thevk decrease toV1 as

the inclusion~cluster! volume fractionf2 increases to 1.
This is not surprising: as the volume fraction of the spheres
increases, we would expect the separation distances of a
k-mer to decrease.

From the graphs of thevk for k<4 and computer simu-
lations for largerk, a decent empirical approximation for
vk at small volume fractions appears to be

vk~0!'
11k~2d21!

2d
V1 , ~43!

whered is the number of dimensions. However, this does not
provide a rigorous upper bound on thevk . A precise deter-
mination ofvk and its derivative ath50 should provide an
excellent upper bound and approximation ofvk for even in-
termediate values ofh.
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VI. LOW-DENSITY EXPANSIONS OF CLUSTER
STATISTICS

In the previous sections, we have considered a procedure
to numerically evaluate thenk and vk in any dimensiond.
We will now use this procedure to obtain low-density expan-
sions of the cluster statisticsQ, S, VQ , andVS , which were
defined in Sec. II. Our approach is similar to that of Haan
and Zwanzig@1#, who obtained the low-density expansions
of thenk from the virial theory of the equation of state of a
hard-sphere fluid and then obtained the low-density expan-
sions of 1/Q andS. Such low-density expansions are impor-
tant since they are exact to an accuracy of the above numeri-
cal integrations and hence can be used as a benchmark for
approximate approaches.

In one dimension,Q and S were given by~28!. Using
~24! and ~42!, we also obtain

VQ5
f2s

f1h
52

f2s

f1ln~12f2!
~44!

and

VS5
2f2s

f1h
2s52

2f2s

f1ln~12f2!
2s. ~45!

Notice thatVQ diverges at the percolation threshold for this
one-dimensional system; this is consistent with the discus-
sion of Sec. III. Also, there is a logarithmic contribution in
the denominator ofVS . Therefore, in one dimension,VS
does not obey a power law asf2 approaches the percolation
threshold. The presence ofh in the denominator, however,
would not preclude power-law behavior in higher dimen-
sions, sincehc,` for d>2.

Haan and Zwanzig@1# used the coefficients in the low-
density expansion ofS to estimate the percolation threshold
and critical exponent forS. They did this by using~12! and
by obtaining the low-density expansions of thenk from the
virial theory of the equation of state of a hard-sphere fluid. In
principle, the same analysis could be performed, using the

above integral expressions, on the particle-averaged cluster
volumeVS . This would be done by using the Taylor-series
expansion

nk5(
j50

`

~21! j
rk211 j

k! j ! E dr12E dr13•••E dr1k

3@Vk~r
k;s!# j I ~r k;s/2!. ~46!

The integrals of~46! can be decomposed in a fashion similar
to ~31! and then numerically evaluated. Similarly, the expan-
sions of thenkvk can be obtained from the numerator of~41!.
The evaluation of each coefficient will require approximately
the same computational effort as the computation ofnk itself.
Finally, these coefficients can be used to obtain the low-
density expansions of the cluster statisticsQ, S, VQ , and
VS . We present these expansions in Table I ford52 and in
Table II ford53. As expected, our expansions for thenk are
in agreement with the expansions obtained by Haan and
Zwanzig @1#.

FIG. 4. Expected area of ak-mer in units ofV1 in two dimen-
sions. The solid dots are simulation data.

FIG. 5. Expected volume of ak-mer in units ofV1 in three
dimensions. The solid dots are simulation data.

TABLE I. Coefficients in the expansions ofnk , vk , Q, S,
VQ , andV for fully penetrable disks. Recall thatn15e24h from
~29!, and thatv15V1 trivially. The series expansions forvk , VQ ,
andVS are expressed in units ofV1, the area of a single disk. The
expansions forQ, S, VQ , andVS are derived from~10!, ~12!, ~14!,
and ~15!, respectively.

h0 h1 h2 h3 h4

n2 2 211.3079 32.2915 262.0415
n3 4.8720 235.3346 129.6895
n4 13.022 2114.823
n5 36.728

v2 1.75 20.1295 20.0273 0.0028
v3 2.5071 20.257 20.055
v4 3.268 20.4

Q 1 2 2.436 2.432 2.2
S 1 4 6.616 8.834 11
VQ 1 1.5 1.603 1.5
VS 1 3 4.548 5.9
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Taking the Pade´ approximants@30# in h for these low-
density expansions, we can obtain estimates of the percola-
tion thresholds of overlapping disks and spheres, which are
roughly 0.68 and 0.30, respectively, from computer simula-
tions. We show the singularities of the@0,1#, @1,1#, and
@2,1# approximants ofQ, S, VQ , andVS in Table III for
d52 and in Table IV ford53. We notice that the singulari-
ties of Q andVQ occur abovethe percolation threshold in
three dimensions. This is not surprising sinceQ andVQ do
not diverge at the percolation threshold, as discussed in Sec.
III. We also notice that the estimates ofhc from VS are
somewhat larger than the estimates fromS, as expected,
sinceVS,SV1, which was also discussed in Sec. III.

Fanti, Glandt, and Chiew@8# obtained a series expansion
for VS for three-dimensional overlapping spheres in terms of
the one-point–one-particle connectedness function. They
then evaluatedVS to account for binary overlaps under the
superposition approximation. They were not, however, con-
cerned with the individualnk andvk . Their expression is

VS5
V1Sf2

h
. ~47!

If we generalize this expression tod dimensions, we obtain

VS5
Sf2

h

pd/2

G~11d/2! S s

2 D d ~48!

after using~2!. We see from~28! and ~45! that this expres-
sion, generalized to one dimension, is off by a factor of 2.

To our knowledge, the asymptotic behavior ofVS near the
percolation threshold has not been studied quantitatively
with high precision. It would be useful in future studies to
determine ifVS shares the same critical exponent asS ~that
is, if v5g).
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APPENDIX: COMPRESSIBILITY EQUATION FOR FULLY
PENETRABLE RODS

In ~16! we stated the compressibility equation, which in
dimensionless units can be stated as

S511hE
0

`

P2~z!dz, ~A1!

whereP2 is the pair-connectedness function andz5r /s is
dimensionless distance. We now directly verify this result.
For fully penetrable rods,P2 is simply

P2~z!5H 1, z,1

C2~z21!, z>1,
~A2!

whereC2 is the two-point cluster function@7#. For fully pen-
etrable rods, this function is given by@12,31#

C2~x!511 (
k51

m

~21!kf1
k

3S @h~z2k11!#k21

~k21!!
1

@h~z2k11!#k

k! D ,
~A3!

wherem is the positive integer that satisfiesm21<x,m.
We recall thatf15e2h for fully penetrable rods. We also
note that then-point connectedness function for this system
can be expressed as

Pn~x1 , . . . ,xn!5 )
i51

n21

P2~xi112xi !, ~A4!

TABLE III. Roots of Pade´ approximants ofQ, S, VQ, andVS

for fully penetrable disks. ForS andVS , this provides an estimate
on the reduced density percolation thresholdhc. The approximate
correct value ishc51.13.

@0,1# @1,1# @2,1#

Q 0.500 0.82 1.00
S 0.250 0.60 0.75
VQ 0.667 0.94 1.05
VS 0.333 0.66 0.77

TABLE IV. Same as in Table III, except for fully penetrable
spheres. The approximate reduced density percolation threshold is
hc50.35. The roots of the@2,1# approximants ofQ and VQ are
greater thanhc.

@0,1# @1,1# @2,1#

Q 0.143 0.363 0.41
S 0.125 0.235 0.27
VQ 0.286 0.38 0.43
VS 0.143 0.24 0.28

TABLE II. Same as in Table I, except for fully penetrable
spheres. For this system,n15e28h from ~29!.

h0 h1 h2 h3 h4

n2 4 249 302.2238 21250.5030
n3 22 2359.4203 2959.1209
n4 139.7867 22842.60
n5 964.68

v2 1.875 20.1574 20.1025 20.0270
v3 2.7578 20.3080 20.2073
v4 3.64 20.5

Q 1 4 11 26.7432 61.6
S 1 8 34 125.3660 436
VQ 1 3.5 9.1667 21 140
VS 1 7 29.0048 102 800
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wherex1,x2,•••,xn .
Direct integration ofP2 shows that

E
0

`

P2~z!dz5
f2

f1h
~A5!

and so we obtain~49! upon comparison with~28!. To obtain
this integral, we have used the identity

eh511 lim
n→`

(
k50

n21
~21!khk11

~k11!!
@~n2k11!k11e2kh

2~n2k!k11e2~k11!h# ~A6!

for x.0. This identity can be derived using the method of
subtracted singularities@32,33# and the generating function

f ~z!5
f1exp~2zhf1!2exp~22zhf1!

hf1@12z exp~2zhf1!#
1

12f1

hf1~12z!
.

~A7!

We also notice that we have directly verified that the integral
of C2 diverges at the percolation threshold, as expected@7#.
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