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Shape of the tip and the formation of sidebranches of xenon dendrites
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Experimental studies of the growth of three-dimensional xenon dendrites into a supercooled pure melt are
presented. The shape of the dendrite tip and the origin of sidebranching are investigated. It is found that the
shape in the tip region is not axisymmetric showing a fourfold symmetry. Four fins grow along the dendrite
starting immediately behind the tip. Sidebranches develop at the ridges of these fins. The contour of the fins is
not parabolic and can be described in dimensionless units, i.e., measured in units of the tigrraujua
power lawz=al|x|#, with a=0.58+0.04 and3=1.67+ 0.05, wherez is oriented along the growth direction of
the dendrite ana is the width of the fins. Selective amplification of thermal noise as well as tip splitting has
been discussed in the literature as possible origins of sidebranching. It is found that xenon dendrites grow in a
stable mode and do not show any temporal oscillations in either the tip velocity or the curvature of the dendrite
tip. Therefore, tip splitting can be excluded as an origin of sidebranching. The distance between the tip and the
first sidebrancizgg of a dendrite has been determinegs is used to estimate the noise strength needed to form
sidebranches as observed in experiments with xenon dendrites. The experimental resmlsai.amdz_SB,
have been compared with analytical studis Brener and D. Temkin, Phys. Rev.5, 351 (1995]. Quan-
titative agreement between experiment and theory is found. It is concluded that the formation of sidebranches
is initiated by thermal fluctuations. Dendritic structures may be characterized by parameters that describe the
“integral” dendrite. The fractal dimension is an example of such an integral parameter. The averaged fractal
dimensiond; of the contour of a dendrite was determined for various supercoolings in the range of 20 mK
<AT=150 mK. The contour is fractal over a range of more than two orders of magnitude in length scale. The
fractal dimension isl{=1.42+0.05 and does not depend on supercoolj§&j.063-651X%96)01011-7

PACS numbds): 68.70+w, 64.70.Dv, 81.10.Fq

I. INTRODUCTION nonequilibrium growth patterns has been a long-standing
question. Although the relevant differential equations and

Dendritic growth is one of the most common forms of boundary conditions have been known for a long time, the
solidification observed in nature. Dendrites are crystals thafionlinearities and instabilities occurring during the solidifi-
develop complex, time-dependent shapes. Snowflakes apation process have made it difficult to understand even
well-known examples of dendrites. Dendrites often havequalitatively how these shapes arise.

“treelike” shapes, as in the case of metal dendrites and of The basic mechanism for the surface instability that leads
rare gas dendrites. Figure 1 shows the tip area a xenon dei® the formation of sidebranches is the following. Assuming
drite, as grown in our experiments. Xenon crystallizes in ghat diffusion controls the solidification process and the
fcc structure leading to a nonaxisymmetric dendrite with agrowth rate increases with increasing supercooling. Then the
fourfold symmetry. Four fins can be seen to grow along the
dendrites and the sidebranches develop at the ridges of thes
fins.

Dendritic solidification is an example for phase transitions
at conditions far from equilibrium. Dendritic growth often
occurs when a material crystallizes from a supercooled mels
or supersaturated solution and the growth is limited by dif-
fusion. For example, dendritic growth is commonly encoun-
tered when metals and alloys freeze under small thermal gra
dients, as occurs in most casting and welding processes
Furthermore, in alloys, the details of the dendritic morphol-
ogy is directly related to material properties, such as tough-
ness and corrosion behavior. Although the effects of the ini-
tial dendritic microstructure can be modified by subsequent
heat treatments, the final material properties of alloys are
generally sensitive to the details of the original dendritic mi-
crostructure. Therefore, the understanding and control of
dendritic solidification is of great technological interest.

Dendritic growth is also of theoretical interest as an ar-
chetypical example of a pattern forming system, where a F|G. 1. Xenon dendrite grown at a supercooling of 123 mK. The
complex spatial pattern evolves from initially homogeneousip is not axisymmetric and four fins start immediately behind the
starting conditions. The origin of dendritic shapes and otherip.
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crystal grows along the steepest gradient of the diffusiorries on dendritic growth. Finally, in Sec. V, these results are
field and forms highly ramified structures. discussed. In our studies we have focused our considerations
Ultimately, this morphological instability of the solidifi- on the tip region, i.e., the region without sidebranches close
cation front is limited by capillary forces, and it is the inter- to the tip. We determined the shape of the tip region of
play between capillarity and kinetic effects that somehowxenon dendrites with high spatial resolution and found that
produces the complex growth patterns that we see in naturé1e shape deviates considerably from a parabola. In Sec. IV,
For general reviews about dendrites and solidification seegxPerimental evidence is given that xenon dendrites grow in
for example[1,2]. Even though dendritic growth patterns are & Stable mode and that thermal noise is the origin of side-
due to a morphological interface instability, they are notPranching. To answer the question about the origin of side-

completely random, showing remarkably regular pattern?.ramhing' we have performed measurements of the tip ra-

and deterministic behavior. The big unsolved part of thedluS R and the tip velocityy, to find out whether xenon

problem in dendritic solidification is how these regular den_dendrites grow in a stable mode or tip oscillations can be
dritic patterns are selected. A well-known example for theobserved. Theoretical models that assume that amplification
f thermal noise is the origin of sidebranching make predic-

occurrence of such regular patterns in dendritic growth ar® o . L
snowflakes. Although no two snowflakes look alike, all of tions of the amplification rate, i.e. growth rate, of the initial

them have six regularly spaced sidebranches of equal lengt uctations that form the sidebranches later. In the experiment

The so-called velocity-selection problem is an examplet e amplification rate is not accessible directly, but can be

for the occurrence of deterministic behavior in dendritic M&asured indirectly by measuring the distance between the

growth. Many experiments with various substances werdiP and the first sidebranchsg, where the first sidebranch

performed[3—5] to measure the tip velocityg, and the ra- reaches a Iength ofR; see Sec IIE. Furthermore, we show
dius of curvature of the tifR of growing dendrites. It was that the fractal dimension is a useful parameter to character-

found thatv, andR are uniquely determined by the super- ize th_e de_ndrite, especiall_y in th_e regio_n far away from _the
cooling or the supersaturation. The question how this uniqugendrlte tp, yvhere nonlinear Interactions between side-
dynamical operating state of the growing dendrite is selecte ranches are important and coarsening takes place.
has been the topic of intensive research during the past years.

Recently, the velocity-selection problem seems to have Il. DENDRITIC SOLIDIFICATION

been solved with the development of microscopic solvability i ) .
theory. For a review sef]. But many other questions are Most theoretical studies of dendritic growth assume a sta-

still open. The exact shape of the dendrite tip is among thdonary growth in a pure supercooled melt of infinite exten-
topics under discussion. Most theoretical studies assume th3iP" [2,11]. For a pure substance the fundamental mecha-
the dendrite tip can be represented by a rotational paraboloi'Sm _ controlling the solidification process is thermal
but experiments often show that this assumption is not vali@iffusion. The latent heat that is released during solidification
and that the shape is non-axisymmetric deviating consideleats the material in the neighborhood of the; _S(_)I|d|_f|cat|on
ably from a rotational paraboloi@—9] (Fig. 1). Other ques- front and must be removed before further solidification can

tions under discussion are the dynamics and the origin of2ke place. o
dendritic sidebranching. What is the basic mechanism re- The dimensionless thermal diffusion field around the den-

sponsible for the initiation of sidebranches? Two mechadrite is usually chosen to be

nisms have been discussed, which might induce the forma-

tion of sidebranches: tip splitting, which includes oscillations _T-T.
in the growth rate, and the amplification of fluctuations at the u= Lic, ’
sides of the dendrite.

In our studies we focus our considerations on the growthyhereT is the local temperature anf, is the temperature
of three-dimensional xenon dendrites growing into a volum&gy away from the dendrite. The ratio of the latent hedb
of pure supercooled melt. The exact shape of the dendrite tig,e specific heat of the liquid, is used as the unit of super-

and the origin of sidebranching are investigated. We haV%ooIing. The fieldu satisfies the diffusion equation
chosen xenon as a model substance for several reasons. Rare

gases are simple substances amenable to detailed experimen-

. . - - . au
tal studies. Rare gases form simple liquids, i.e., liquids that — =DyVu, 2)
are composed of spherical atoms or molecules that are at
chemically inert. The most typical examples of substances
forming simple liquids apart from rare gases are alkali metalsvhereDy,=\, /¢, is the thermal diffusivity, with\| being the
[10]. Therefore, rare gases can be used as transparent modieérmal conductivity.
substances for metals. Rare gases have a low melting en- In the case of a solution, growth is limited by the diffu-
tropy. Therefore, they do not form facets and they are comsion of the solute and not by thermal diffusion. Thermal
patible with most theoretical models of dendritic solidifica- diffusion can be ignored as it is much faster than the diffu-
tion that assume a rough surfd&. In Sec. Il, a review of sion of the solute. As a result, the concentration of the solute
dendritic growth theories is presented with special emphasidefines a diffusion field that plays almost exactly the same
on the results of theoretical models, which will be verified inrole as the thermal diffusion field, with Dy, replaced by the
our experiments. The setup of our experiment is described idiffusion constant of the solute. This leads to a mathematical
Sec. lll. In Sec. IV, the results of our measurements on xeeescription of the problem that is almost identical to the case
non dendrites are presented and compared with current theof the growth from a pure supercooled melt. Therfore we

@
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restrict ourselves to the presentation of the theory of denmoving at the steady-state growth velocity aéfddenotes
dritic solidification from the pure supercooled melt. &(r’,t—17). Moreover,p is the so-called Réet number de-

Far away from the dendrite the diffusion fielduis=0  fined in Eq.(11) and the curvatura{é&} is given by
according to Eq(1). At the solidification front, boundary

conditions are given by heat conservation and the local equi- —_v vé 3
librium temperature at the interface. The heat conservation w{€= ' [l+(V§)2]172 ) ®

can be written as
~ . HereV denotes the two-dimensional gradient. The symmet-
Lon=AnNVTs—AnVT, (3 ric model is the starting point for many theoretical studies of

wherev,, is the normal growth velocity is the unit vector dendritic growth[2].

normal to the interface, and, and \ ¢ are the thermal con-
ductivities of the liquid and the solid, respectively. The con-
dition of the local equilibrium temperature at the interface The ansatz that the shape of a dendrite can be satisfacto-

A. The Ivantsov solution

[2] can be written as rily approximated by a rotational paraboloid was suggested
originally by Papapetro{il2]. An initial analytical approach
U=A—dox—B(vn), 4 tothe steady-state dendritic heat flow problem was presented

by Ivantsov[13,14. Ivantsov neglected the anisotropy, the

Gibbs-Thomson effect, and kinetic effects and found that the

AT Tp—T. diffusion field around the dendrite can be solved exactly in
= (5) axisymmetric parabolic coordinates. Ivantsov’s solution is a

where the first term is the dimensionless supercooling

Lic Lici shape-preserving dendrite growing at a constant tip velocity
T is the equilibrium melting temperature of the plane inter-Vtp- o . .
face. The second term on the right-hand side ofEgjis the In this apprquatlon the mterfacg of. the dendrltg has the
Gibbs-Thomson correction for the melting temperature at §0rm of a rotational paraboloid and is given by the isotherm
curved surfacex is the curvature of the interface and U=A. 9)
do: '}/SICITm/LZ (6)

In lvantsov’'s solution the supercooling is related to the

is the capillary length, which is proportional to the surfacePeclet numbem

free energy of the solid-liquid interfacg,,. The third term

on the right-hand side of Ed4) is a kinetic correctiong _ o[
describes a departure from local equilibrium at the moving A(p)=pe fp
interface and,, is the velocity of the moving interface nor-

mal to the interface. Kinetic effects and anisotropies of surwith the Pelet number defined as

face properties influencg and vy, and play an important

role in some recent dendritic growth theories; see Sec. Il C. vipR

The diffusion equation and the moving boundary conditions P=2p, 11

lead to a rather complicated, nonlinear and nonlocal integro-

differential equation that cannot be solved dil’eCtly W|thOUtThe physica| meaning of the Ivantsov solution has been a
further approximations. USUa.”y, kinetic effects and Some'puzz|e for many years. On the one hand, it was found in
times even anisotropies of surface properties were neglectethrly experiments that the tips of real dendrites, especially
to simplify the problem. In the symmetric modg2], the  those formed of materials with relatively low crystalline
thermal properties of the liquid and the solid are assumed t@njsotropies such as most metals and several organic materi-
be the same. This assumption greatly simplifies some of thgs, |ooked more or less like rotational paraboloids. More-
mathematics without losing too many important physical feapyer, several experiments seemed to indicate that Ivantsov’s
tures. In the symmetric model the equation of motion can bgelation Eq.(10) was satisfied4]. On the other hand, Ivants-

eV
——dy’, 10
y y (10

written in closed form as oVv's solution is incomplete insofar as it provides only infor-
d mation on the produat;,R, as can be seen in EQL1). This

A— —Ox{g(r,t)} means that a continuous family of solutions Rfand vy,
R is found, whereas, in reality, experiments show a unique

growth velocity v, and a unique tip radiuR at a given
32~ dr supercooling. Furthermore, it turned out that lvantsov’s so-

L Iy lution is manifestly unstable against sidebrancHih§].
% f dzr’exp( _ 2£[|r_r/|2+(§_§/ + 7-)2] B. Stability constant o*
.
Considerable theoretical efforts have been directed to an-
><(1+'§'), (7) ~ swering the question whether a second equation or length

scale exists, which, combined with the Ivantsov solution,
where&(r,t) denotes the instantaneous position of the solidi-might select the unique dynamic operating state encountered
fication front at timet as observed in the frame of referencein experiments. The introduction of surface tension as an
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additional term in Eq(9) led to a maximum in the ,(R) approximation. The effects of microscopic crystal structure
curve. It was suggested that this maximum velocity may corand growth kinetics are ignored and the effects of noise and
respond to the dynamical operating state selected by the sysidebranching are also not included, which may play an im-
tem. But this maximum-velocity hypothesis was disprovedportant role at very small supercooling. Second, the present
by the experiments with succinonitrile of Glicksman, experiments do not confirm the predicted dependence of
Schaefers, and Ayefd6]. o* (a)>a’™ on the anisotropy strengti [20]. This may be

A more successful attempt to find a description of thedue to the difficulty to obtain experimental values of the
operating state is due to Langer and IMuKrumbhaar with ~ anisotropy sufficiently precise to permit definitive tests of the
the mariginal-stability hypothesigl5]. Langer and Mler-  theory. Up to the present the microscopic solvability theory
Krumbhaar analyzed the stability of parabolic dendritescannot be considered to be confirmed in all parts by experi-
treating surface tension as a linearized perturbation, an@hents.
found that the continuum of lvantsov’s solutions is divided
into a stable and an unstable region. It is assumed that the D. Nonaxisymmetric dendrites
dynamical operating state selected by the physical system
corresponds to the point of mariginal stability dividing the
stable and unstable regions. This hypothesis led to an ad
tional relation between;, andR:

The solvability theory in two dimensions has proven that
n anisotropy of the surface tension is necessary to obtain
table growtH{6]. Commonly, the anisotropy of surface ten-
sion is introduced by allowing the capillary length to depend
2D do on the orientatiord. In the case of a fourfold anisotropy, the
* = (12  capillary length is given by

vtipRZ .
do(ﬂ)zdo[l—a005{40)], (13)

o* is usually referred to as the stability, selection, or scaling
constant. For cubic crystals it was found that the value of thgynere o is the anisotropy strength arﬁ is the averaged
stability constanir* can be estimated to* ~0.026, which capillary length. A straightforward extrapolation of the two-
is of the same order of magnitude as found in experimentgimensional theory to the three-dimensional case is not pos-
[11]. In theories it is usually assumed thet is independent  gjpje pecause the anisotropy of surface tension gives rise to a
of supercooling, but as,R” is proportional to the volume  nonaxisymmetric shape of the dendrite. This fact compli-
solidification rate, which should vanish fdr—0, o* should  cates the theory of three-dimensional nonaxisymmetric den-
show a dependence on supercooling at least in the limiyrites considerably. A numerical approach to the three-
A—0. _ o ) dimensional nonaxisymmetric dendrite problem was

Experimentally, it is found that the value of* varies presented by Kessler and Levifizl]. Whereas in the two-
from substance to substance and seems to depend on supgimensional case the solvability condition is associated with
cooling for some substanc¢8,5,8,17. It has been found the smoothness of the tip, in the three-dimensional nonaxi-
[7-9] that R is not a well-defined quantity. Therefore the symmetric case a solvability condition must be satisfied for
discussion whether or nat;,R*=const should be discussed each of the azimuthal harmonigg2]. Kessler and Levine

again considering a careful redefinition of the quanity made several approximations and performed a two-mode cal-
culation. The crucial point is that enough degrees of freedom
C. Solvability theory are found to satisfy all solvability conditions.

_ . The first analytic theory of three-dimensional, nonaxisym-
F_urther development in the theory of dendritic pattern sy atric dendritic growth has been developed by Ben Amar
lection was started with the so-called microscopic solvability,p, 4 Brener22]. The solvability condition for this problem

theory[6]. The main insight of this theory is that the surface provides a selection of both the growth velocity and the in-

tension acts as a singular perturbation that imposes a solyaitace shape. The selected shape for a dendrite with a cubic

ability condition on the pertu_rbed steady-_state solutions. "hnisotropy can be written in cylindrical polar coordinates
contrast to the Ivantsov solution, only a discrete set of solu(Z r,¢) as

tions exists and only one of these solutions is dynamically

stable[6,18]. It is found that there are no stable solutions in i

the case of isotropic surface tension and that the anisotropy 2(r,¢)=— =+ >, AyrMcogme), (14

of the surface free energy is a prerequisite for the existence 2 ’m

of a solution. It is interesting to note that the same stability

constants™ found in the theory using the mariginal stability where all lengths are in units of the tip radiRs An impor-

hypothesis Eq(12) is the relevant stability parameter again. tant aspect of Eq.(14) is that the correction terms

This happens because one is looking for a small surface-"cos(ng) grow faster than the underlying Ivantsov solu-

tension-induced correction to the shape of the Ivantsov paion. Therefore this approximation is valid near the tip only

rabola, and in limit of small R#et numbers, one encounters and further away from the tip strong deviations from the

an equation quite similar to the one that arises in the marlvantsov parabola appear for any nonvanishing anisotropy.

ginal stability hypothesi§11]. This is in contrast to the two-dimensional case, where for
It has been stateld 9] that microscopic solvability theory small anisotropies the selected shape is close to the Ivantsov

has definitely resolved the dendritic pattern-selection probparabola everywhere. In the theory of Ben Amar and Brener

lem. However, there are several reasons calling for cautiorthe first nonzero term of the shape correction found in the

First, the underlying set of continuum equations is only anlimit of small anisotropy ¢<<1) is
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1 wherel is the macroscopic diffusion length, which is given
fo=—r%+ 1—1r4cos(4¢). (15  byl=2D/v for a plane interface advancing with the growth
velocity v. In this theory the basic principles have been de-
veloped to show how an initial, large enough perturbation
grows and develops, as observed in sidebranching of den-
drites. The origin of the initial perturbations that induce the
formation of sidebranches has been a long-standing question.
yThe theoretical aspects of this question are considered in this
section and experimental results concerning the origin of
sidebranching are presented in Sec. IV.

This formula represents a correctékbroth plus first order
shape for dendrites with cubic symmetry. It is independent o
anisotropy strength. It will be shown in Sec. IV A that this
form can be used to fit the contour of the dendrite tip ver
close to the tiplup to 2R away from the tip. The shape of
the tip over distances of at leastRL8rom the tip can be

described by a power law, as given in the following para- Two different scenarios that might induce the initial per-

graph. ) X . o
Recently, Brener has developed an analytical solution foFurbatmr)s and .the formation of ;ldebranch_es have pe_en dis
cussed in the literature. In the first scenario, tip splitting or

the whole three-dimensional dendritic growth problem. Thed namical tio oscillations have been proposed as the origin
construction of the solution involves the existing three- y P prop 9

dimensional selection theory of the dendrf@3] plus a of sidebranching. In this case it is argued that nonlinear as-

matching of the tail region to this tip. In the case of a Crys_pects of the equation of motion can lead to a stable oscillat-

. o 2~ ing growth mode[25], which can act as the source of the
talline fourfold symmetry it is found that there are four fins sidebranching. Tip splitting has been observed during growth

Srom solutions in thin cuvettef26] and is well known to
ppeeur in viscous fingering phenomena. Tip oscillations lead
tH a more or less periodic appearance of the sidebranches and
40 a correlation between sidebranches growing on opposite
sides of the dendrite. However, in many experiments no such
2 q tip oscillations and no correlation between the sidebranches
f S are observed.
Xl s?3/1—¢* In the second scenario, sidebranching is assumed to be
(16) driven by selective amplification of noig@7—-29. Numeri-
cal and analytical studies of the two-dimensional boundary

where the contour of the fins is given by the position of themodel with both kinetic and surface tension anisotropy

shape can still be described by Ed4), but further away
from the tip, where the shape begins to deviate strongly fro
the lvantsov paraboloid, the shape is described in Cartesi
coordinates X,y,z) as

%\ 1/5
y<x,z>=<s|z|/3>2'5(—*) ( X)

g
g, Xtip

top of the fins show that a single perturbation of the tip moves away from
the tip withv,. Therefore, continually generated perturba-
Xridge Z) = (5]2|/3)33( % 1% )1, (17)  tions are needed for a continuous train of sidebranches. Simi-

lar results have been obtained by numerical and analytical
studies of two-dimensional nonlocal models.

We will show that our experiments allow us to rule out tip
splitting in the case of xenon dendrites growing into a three-
dimensional volume. Therefore, we focus our considerations
on the amplification of noise.

Langer[28] studied the time-dependent behavior of side-
branching deformations for an axisymmetric dendrite in the
three-dimensional symmetric model; see Ef. The first

for the contour of the fins. The dimensionless prefaetd  step in this analysis is a linearization about the Ivantsov pa-
expected to be of order unify23]. In Sec. IVA, this result gpola

will be used in a comparision with our experimental data of
the tip shape of xenon dendrites. It is found that the shape is 7= E(r 1) = — 1212+ &(r) + &4(1 1), (20)
almost independent of the material and growth parameters
close to the tip Eq(15) as well as in the region further away
from the tip Eq.(18), where all lengths are measured in units
of R.

where the functioro () is given by the two-dimensional
selection theory. The ratio} (@)/o* («) is independent of
the anisotropy strength in the limit of small «. Rewriting
Eq. (17) leads to

z=a|x|>® (18

where bothéy(r) andé&,(r,t) are small correction terms. The
time-independent functiogy(r) is a smooth shape correc-
tion due to nonzero surface tension ahdr,t) is the time-
dependent perturbation. As usual, lengths are measured in
E. Sidebranching units of R and times inR/vy, .

The occurrence of sidebranching in dendritic growth can The analysis of the equation of motion in the WKB ap-
in principle be attributed to the so-called Mullins-SekerkaProximation lead to the following result: The perturbations
instability [24]. Mullins and Sekerka showed that a planargenerated near the tip grow in amplitude, stretch, and spread
solidification front growing in a supercooled or supersatu-2s they propagate down the dendrite in such a way that they
rated melt is morphologically unstable. The interface is unfémain stationary in the laboratory reference frame. In the
stable against infinitesimal small perturbations if the wavelinear approximation the amplitude of the perturbations
length of the perturbations is larger than the characteristic 9rows exponentially with the distanzefrom the dendrite tip

stability length\ ¢ of the system, which is given by with an exponent proportional tdz*/o**). This behav-
ior implies that noise in the solidifying medium is selectively

Ne=2m(dgl) Y2 (19 amplified in such a way that a fluctuating train of side-



5314 U. BISANG AND J. H. BILGRAM 54

branches is produced, which is in qualitative agreement with
experimental observations. Moreover, Langer studied the re-
sponse to thermal fluctuations in order to test whether ther- 2000
mal fluctuations are strong enough to account for the experi-
mentally observed sidebranching.

An advantage of the symmetric model, in contrast to other 1500+
models, such as the boundary-layer model, is that the sym-
metric model is based on a realistic description of the ther- 10004
mal field and there is no difficulty in adding thermal fluctua- S
tions. The appropriate procedure for introducing thermal
noise into a system like that is to add a fluctuating heat 500+ -~ |z
sourceS(r,z,t) to the thermal diffusion equation. The auto- 1R| B
correlation function of the source term is chosen so that the & [
known thermodynamic fl.uctatlonsgf thg diffusion field are -IOW _5'00 0 500 lOIOOx (um)
reproduced. The fluctuation strenddhis given by[28]

z (um)

FIG. 2. Rotated and translated contour of a xenon dendrite.
. e (22) along the growth direction andis the width of the dendritezgg is
LpR the mean distance between the tip and the position where the side-
branches have a root-mean-square amplitudeRofRLis the radius
kg is the Boltzmann constant. Langer simply repeated thef curvature at the tip.

analysis of the time-dependent behavior of sidebranching de-

< 2|(BT2C| Dth

formations mentioned above, but now wighadded as an Brener and Temkin extended the analysis of the time-
additional stochastic term to the equation of mofifg. (7)]  dependent behavior of sidebranching taking into account
and obtained the actual nonaxisymmetric shape of a three-dimensional

dendrite [29]. They used an analytic approach that has
o 1 —— veae. ]2 [ 20\ been developed in Ref30] and is slightly different from
(€1(r))2~SCo™ Vo ¥ex 3|35% (22)  the above-mentioned approach of Lanf@8]. According to
Brener and Temkin, the root-mean-square amplitude
for the root-mean-square amplitqui(r))l’_z of the side- (gf(z,y))l’2 for the sidebranches generated by thermal fluc-

branches generated by thermal fluctuatiddss a constant tuations can be written as

of order unity. o 2(5/3)9/10 9(3\%s
It is not possible to verify the growth rate of sidebranches (gf(z,y))1’2~8ex —| 129 1 _(_)
as predicted by Eq22) in an experiment directly. Equation 3y30* 415
(22) is valid only close to the tip, and in this region the 5
sidebranches are too small to measure the growth rate di- e y
rectly. One way to test the predictions of the growth rate of X( 1/9-1) |435H (24

sidebranches is to ask how far down along the dendrite one

must go in order to find a root-mean-square amplitude of thavhere ¢=x,y,z are the spatial, Cartesian coordinates of the

sidebranches to be equal to some arbitrarily chosen, visiblgendrite ands is the same fluctuation strength as introduced

fraction of R. For this purpose, we use the mean distancen Eq. (21). The important point in Eq(24) is that the am-

Zgg between the tip and the position where sidebrancheglitude grows exponentially as a function de|@™ o* 1),

have a root-mean-square amplitude(gf(z)%"2 of about  which is faster than in the axisymmetric cd88], where the

1R; see Fig. 2zsg can be used as a measure for the growthamplitude grows exponentially as a function of

rate of sidebranches. The larger the growth rate, the smalle(qz|1/4/g* Y2 Brener and Temkin argue that the effect that

Zs and vice versa. Following the theory of Lang@B], the  the growth rate is faster in the nonaxisymmetric case might

position of the first sidebranch is given by resolve the puzzle that experimentally observed sidebranches
. have much larger amplitudes than can be explained by ther-

5) In*(SC) 23 [n;g;.nmse in the framework of the axisymmetric approach

Again zsg can be used to test the predicted growth rate of
for an axisymmetric dendrite in the framework of the sym-sidebranches Eq(24). In the framework of Brener and

0_*2

ZsB~ 5

metric model. Temkin the positioresg of the first sidebranch is found to be
By comparing the predictions of E(R3) with the experi- .75/

mental results of Huang and Glicksma], Langer found Z_SB*( 70*) | nC—S|5’2. (25)

that thermal noise seems to be too small by 1-2 orders of 252(3)%4

magnitude to explain the experimentally observed side-

branching. However, the slow decreasezgf with increas- The position of the first sidebranchsg can be measured
ing supercooling is supposed to be in qualitative agreemerdirectly in dendritic growth experiments and can be used to
with experimental observations. Langer proposed tip oscillatest the theoretical predictions of Ref28], [29] [Egs. (23
tions as an alternative model to describe sidebranching. and(25)].
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F. Fractal structure usually delivers good results. Even with this improvement,

Far away from the dendrite tip, where the sidebranched?® POX dimension has the drawback that its computation
are larger, nonlinear interactions between neighbored sidd®duires much storage space and computing time. Therefore,
branches are becoming important and coarsening takes plad®X counting is rarely used to calculate the fractal dimension
It is found that, in the region far away from the tip, the of Iarge fractal sets. For xenon dendrlt_es, however, box
parameters that characterize individual sidebranches, such §8unting can be used, as the fractal set, i.e., the contour of
the length or the spacing of sidebranches, do not lead t§'€ dendrite, is small, consisting only of about 30004000

reproducible result§7]. This behavior is typical for dynami- data points. o
cal chaotic systems. It is found that “integral” parameters, A Second widely used method, which is known as the
which describe properties of the integral dendrite, are suitSOr"elation dimension method, has been developed by Grass-

able to characterize dendrites as these “integral” parameter@€rger and Procaccigz]. The approach relies on correlation
take account of the nonlinear interactions among the differfunctions and is more efficent than box counting. The corre-

ent sidebranches. Integral parameters are, e.g., the volume gfion functionC(r) is defined as
the surface area or the contour length of a projection of a 1
dendrite[7]. Another integral parameter is the fractal dimen- — e — .

sion d; of the dendrite. For a review of fractals and fractal c(r rllmwmji,jzzl H(r=bi=xD), @9
dimensions see Ref31]. There are two widely used meth-

ods to determine the fractal dimension of an experimentalvherer is a radius of a hypersphere in timedimensional
data set, e.g., the box counting method and the “correlatiommbedding space) is the number of points in the fractal set,
dimension” method. The “box counting” method can easily gnq x; 7;1 are coordinates of points in the séd. is the

—

be derived from the definition of the fractal dimension Heavyside function defined byl (x)=1 for positivex and
INN(e) 0 otherwise. Roughly speakin@,(r) measures the density
di=lim ———, (26)  of points within a “circle” with radiusr as a function of
e—on(Ye) r. Grassberger and Procaccia showed that

whereN(e) is the minimum number of “boxes(squares or C(r)~r?, (30)
circles in two dimensionsneeded to cover the entire fractal

set. e corresponds to the size, e.g., length or diameter, obr taking the logarithm on both sides

these boxes. In physical systems it is not possible to take the

limit e— 0, but for smalle the number of boxell(€) has an InC(r)~wvlnr, (32)

asymptotic behavior of the form . ) ) ) o ] )
wherev is the correlation dimension. This linear relationship

1 can be used to estimate the fractal dimensiorit is found
N(e)~ - (27)  that in generatl;> v, although usuallyd;~ v [32]. As in the
case of box counting, the linear relationship E8{) holds
Taking the logarithm on both sides of E@7) leads to the 0nly over a limited range and again the range is limited by
linear relationship the tip radius and the overall dimensions of the dendrite.
Numerical calculations of fractal dimensions are often
INN(€)~ —dslne, (28)  difficult and sometimes may lead to inconclusive results,
e.g., if too few data points are availalld3]. To obtain a
which can be used to calculate the fractal dimensipnThe  physically meaningful and reproducible fractal dimension
fractal dimension calculated in this way is commonly calledthe scaling range should be more than one order of magni-
box dimension. In practice, the linear relationship of 28  tude. Furthermore, one may use more than one method to
holds only over a limited range. The scaling behavior breakgalculate the fractal dimension in order to check the results.
down for values ofe smaller than the typical minimal dis- Brener, Miller-Krumbhaar, and Temkin proposed a phase
tances of the system such as the pixel size and for values diagram for the selection of growth patterns in diffusional
€ larger than size of the entire system. In the case of thgrowth[34]. This classification scheme gives the dependence
fractal dimension of xenon dendrites, the scaling range i®f the growth habit on supercooling and anisotropy. It dis-
limited, on the one hand, by the the tip radius or the pixelcriminated between fractal structures with fractal dimension
size, depending on magnification, and, on the other hand, bg;<<d, with d being the dimension of the space where the
the overall size of the dendrite. experiment takes place, and nonfractal structures, which are
When computing the box dimension, it is not always easycalled compact. It is argued that a “true” fractal can occur in
to find a minimal covering of the fractal set. There is anthe limit of A=0 only, where the correlation length becomes
equivalent way to compute the box dimension that avoidsnfinite. In analogy to equilibrium phase transitions this can
this problem. Instead of looking for a minimal covering of be understood as a critical point. Fe= 0 self-similar frac-
the set with boxes of side, one covers the fractal set with a tal properties may still exist over an intermediate range of
square mesh of side i.e., regularly placed, nonoverlapping length scales. Furthermore, a distinction was made between
boxes of sidee, and determines the the numbiMe) of  dendritic structures with a pronounced orientational order
these nonoverlapping boxes needed to cover the entire setnd structures without an apparent orientational order, which
Afterward the fractal dimension is computed as before. Al-are called seaweed. It is found that at small anisotropies the
though the covering of the set is not minimal, this methodstructure is dendritic, whereas the structure becomes compact
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at larger anisotropies. The structure is fractal at small supettures of the simulated dendrites look much like three-
coolings and seaweedlike at larger supercoolings. Thereforelimensional xenon dendrites. Kobayashi included a sort of
at small supercoolings and small anisotropies a fractal dereubic anisotropy and found, as in the case of xenon den-
dritic structure of the growing crystal is expected. For verydrites, that four fins grow along the dendrite stem and that
large supercoolings the phase diagram breaks down, as {Re sidebranches develop at the ridges of these fins. Koba-
this region growth is controlled by attachment kinetics. yashi used the so-called phase field model. The big advan-
If one assumes that thermal diffusion or solute diffusiontage of the phase field model, compared to other models, is
are the only rate controlling processes in dendritic solidificainat the interface is represented only implicitly. Therefore,

tion, which is the case for xenon dendrites, then it seems tg, . equations of motion become much simpler, as there are
be a consequent development to study the dendritic solidifiho more moving boundary conditions. This féct makes it

cation in the framework of diffusion-limited aggregation ; : i~ - :

. .~ possible to simulate dendritic growth qualitatively in three
(DLA) [31]. DLA structures arise naturally when studying dimensions. The phase figfdr ,t), which is an order param-
phenomena such as electrochemical deposition, viscous fil%—ter represents the phasé (’)f the solidifying material
gering, chemical dissolution, and the rapid crystallization Ofp(r ’t)=0 means liquid and(r,t)=1 means solid, where '
Ia}va_[35]t. 'tl'_hte_ rulle defrl1n|n_g DLQ‘ lst|mpIe, lll'(ke many mlod- r is the position and the time. The interface of the crystal is
€S In statistical mechanics. kandom walkers are re easei%presented in(r,t) by the transition layer connecting the

i

from a Igrge circle surrounding the growing clus'ger placed a quid and the solid phase and can be determined by differ-
the origin. When a random walker touches a site at the N3 ntiating the phase fielg(r 1)
terface of the cluster, it sticks and the cluster has grown b 9 P e

! : ; : : Y The main problem about the phase field model is the finite
one patrticle. In two dimensions this type of aggregation pro-

cess produces clusters that have a fractal dimension éPiCkneSSE of the interface. For quantitative simulations it is
d;=1.71. DLA is very sensitive to noise and anisotropies c)frequwed thak is much smaller than the typical lengths of the

. : . , . ._ system, i.e.,e<R in dendritic solidification. Quantitative
the underlying discrete lattice. Various techniques for nois€: ; .

. : ) : . Simulations are not possible at present as small values of
reduction and suppression of lattice anisotropies have been . L : .
: : : ... demand for a small grid mesh size increasing the computing
invented[35]. Nittmann and Stanley have studied dendrltlc,[ime and size of memory needed for the simulations. which
solidification in the framework of DLA and simulated the re bevond the ca abilit)i/es of combuters available tdda
growth of two-dimensional dendrites and found patterns thaf y P P Y-
resemble two-dimensional projections of real dendfig&.

A fractal dimension ofl;=1.5 was found in the simulations.

Arneodo et al.. studied the statistical properties of two- The experimenta| Setup is similar to the one used in pre-
dimensional aniSOtropiC diffusion-limited aggregates grownyious experiments with xenon dendrim. For our experi_
in a strip[37]. They found an anisotropy induced crossoverments we have chosen xenon as a model substance. The
from isotropic DLA clusters with a fractal dimension of chojce of pure xenon has several advantages in comparison
d;=5/3 to dendritic fractal patterns with a fractal dimensioniqg (i) solute systems andi) the growth of dendrites from
of dy=3/2. organic materials.
(i) For a pure system the tip radilsis typically of the
_ ) order of 50 um [3,4], whereas in solute systerfsis typi-
G. Simulations cally 2 um [8,43]. The optical resolution is limited by dif-
During the past years, many computer simulations havéaction. The maximum optical resolution that can be
been performed. The nonlinear nature of the equations dchieved in experimental systems is of the order of the wave-
motion in dendritic growth makes analytic studies difficult length of light, which is about 0.5.m in the visible spec-
and often numerical simulations have proven to be the onlyrum. Thus pure systems can provide data on the shape of the
way for further progress. Several models have been used fdip with much higher accuracy than solute systems with com-
simulations: the geometric modg38], the boundary layer parable growth velocities. In addition to that, in solute sys-
model [27,39, or fully nonlinear modeld40]. Numerical tems both concentrations and temperature have to be con-
simulations were carried out for the fully nonlinear modeltrolled, whereas in pure systems temperature has to be
and the dependence of the growth velocity on anisotropy wasontrolled only and the homogenization of temperature is
investigated[41]. Most of these simulations are limited to much faster than solute homogenization because of the high
two dimensions. This is due to the enormous computinghermal diffusivity.
power needed for these simulations. Even two-dimensional (i) Xenon can be purified easily because rare-gas purifiers
simulations require often the fastest supercomputers, makingre available, which are used in semiconductor processing.
three-dimensional simulations virtually impossible. How- Finally, xenon does not decompose at the melting tempera-
ever, diffusion in two dimensions is qualitatively different ture in contrast to many organic materials.
from diffusion in three dimensions. Because of this it is not Selected properties of xenon are summarized in Table I.
easy, or almost impossible, to compare results of twoAs far as we know, experimentally determined values of the
dimensional simulations to experimental results of threesolid-liquid interfacial free energys of xenon do not exist.
dimensional dendrites. Only a rough estimate can be made if one assumesythiat
Kobayashi nevertheless succeeded in simulating thregsroportional to the heat of fusioh per surface atonf44].
dimensional dendritic growthi42]. The simulations were However, the capillary lengthly, which is an important
performed for various noise and anisotropy strengths. Folength scale in dendritic growth theories, is proportional to
certain values of the noise and anisotropy strength the picy [Eq. (6)]. Therefore, experimental measurementsygf

IIl. EXPERIMENTAL SETUP
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TABLE |. Selected properties of xenon.

Molecular weight M 131.30 g/mol
Triple-point temperature T, 161.3897 R
Triple-point pressure P: 0.816901 bt
Triple-point molar volume I’ V(1) 44.31 cni/mol®
Triple-point molar volume §)’ Vn(S) 38.59 cni/mol®
Heat of fusion L 2299 Jimdf
Melting entropy AS, 14.24 J/mol K
Jacksona-factor @ Jackson 1.71 i
Specific heat() cp(l) 44.6 J/mol ¥
Specific heat §) cp(s) 36.0 J/mol ¥
Thermal conductivity ) A 0.734x 1078 W/cm K&
Thermal conductivity §) N 4.76x10°3 W/cm K®
Thermal diffusivity () De() 7.29x10°4 cnéls
Thermal diffusivity ) D(S) 4.96x10°3 cné/s
Refractive index k) n 1.3957 f
Refractive index §) Ng 1.4560 g
Solid-liquid interfacial free energy Vsl 1.073x10°8 Jlenth
Capillary length do 4.9x10°8 cm
Unit of supercooling (C) 59.2 K
8Referencd45]. 9Referencd57].

bReferenced52]. PEstimate according to Reffi44].

‘Referencd53]. iMaterials witha<2 are usually not faceting in con-
dReferencd54]. tact with the melt.

*Referencd55]. Il liquid; s, solid

'Referencd56].

and its anisotropy would be important for a further verifica- Trivedi and Mason5] have shown that the effect of con-
tion of dendritic growth theories. For dendritic growth ex- tainer walls will be negligible foAT>8.5x 10~ ° K. During
periments it is essential to have a thermally well controlledthe experiment the growth vessel is filled with pure, liquid
surrounding of the xenon. For this purpose we use a cryostaienon. The temperature of the melt is measured by two
as depicted in Fig. 3. Liquid nitrogen can be used for coolingysed-in platinum resistors in the growth vessel and ac mea-
because xenon has a relatively high melting point comparedyring techniques.
to the other rare gases. The experiments are performed at conditions close to the
The cryostat consists of a double-walled glass vessely e noint (T,=161.3897 K. Triple points of rare gases are
V.Vh'Ch IS sgrrounded by liquid nitrogen. The_ glass vessgl 'Svell defined, they are used as calibration points in thermom-
filled with isopentane as t.herr.nogtatmg liquid. We US€ 1S0- try [45]. Special attention is paid to the purity of the xenon.
pentane as the thermostating liquid because of its large liqui he xenon gas with a purity of 99.998% was supplied by

range (—159.9° C to +27.9° C, at atmospheric pressure | .
The space between the walls of the vessel is filled with helinde: Cmbl, COz, Oz, Ny, Hy, and H,0 are extracted by

lium gas. The gas pressure is used to control the therm% rare-gas pur_|f|er 10 99.9999% pno_r_to every r[A_ﬁ]. .
contact between the isopentane and the liquid nitrogen, Thé€refore no disturbance of the dendritic growth by impuri-
helium pressure is chosen in such a way that the isopentariS has to be expected. _ o _
is cooled slightly too much. This cooling is compensated by At the beginning of the experiment the liquid xenon is
counterheating with about 10 W. The temperature stability ofooled toT., several mK below the melting point and crystal
the xenon that can be achieved this way is better tha@rowth is initiated by the capillary injection technique. A
+10 * K during several hours. This temperature stability iscapillary is inserted from above into the growth ves$ey.
neccessary. For example;, can be measured with a preci- 4). At the upper end of this capillary, a seed is nucleated by
sion of about+2%. Asvﬁp~ATl-745 and typical supercool- cooling with a Peltier element. This seed grows down inside
ings are in the range 20 mKAT<150 mK, the control pa- the capillary. The seed exits the capillary in the middle of the
rameter, i.e., the supercooling, has been known to abowgrowth vessel and starts to grow freely, dendritically into the
+1%. supercooled melt with the initially homogenous temperature
The growth vessel is immersed completely in the isopenT.,. The main stem of the dendrite grows along {0&1]
tane and a laminar flow is induced in the isopentane by airection.
stirrer, providing a homogeneous temperature distribution The capillary is rotatable. This allows us to orient the
around the growth vessel. The volume of the growth vessel idendrites in such a way that two of the fins are in the object
about 100 cri This volume is large enough to be consideredplane, i.e., the crystallographj@01] axis is oriented along
“infinite.” This has been verified in earlier studid8,5]. the optical axis of the optical system. A rotatable capillary is
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FIG. 4. Growth vessel. 1, liquid xenon; 2, rotatable capillary; 3,
upper end of capillary where nucleation occurs; 4, Peltier element
for cooling; 5, fused-in platinum resistdtemperature senspr6,
periscope; 7, illumination system; 8, mirror; 9, helium atmosphere.

growing dendrite. Monochromactic light improves the con-
trast. Light with a wavelength of 546 nm, for which the
achromats of the periscope were designed, was chosen for
illumination. This illumination leads to highly contrasted
pictures with a dark dendrite and a bright backgroyig).

1).

FIG. 3. Cryostat. 1, growth vessel; 2, periscope; 3, illumination  The dendrites are imaged on the chip of a charge coupled
system; 4, temperature sensor in the thermostating liquid; 5, stirrefevice (CCD) camera, which is interfaced to a commercial
driven from outside the cryostat; 6, heater; 7, a big mass of stainless\/HS video recorder with a time code generator. The pic-
;teel .to reduce the vibration.s of the stiri@he growth. ves.sell IS tures from the video tape are digitized with a frame grabber
flxed independently of the §t|rrer sys_t}:n‘a's, thermostating liquid: ~ (Matrox). The frame grabber is working with a resolution of
|_sope.ntane; 9 tube to provide a laminar flow of the th.ermos_tatl_ng512x 512 pixels, 8-bit gray scale. High optical magnification
Irl]?tLrJ(l)d,e%]O, adjustable vacuum to control cooling power; 11, liquid has been chosen to provide the resolution pfrd per pixel

gen. at the digitized pictures. The resulting magnification of the
digitized pictures is calibrated with the outer, known diam-

crucial for the determination of the nonaxisymmetric shapester of 0.385 mm of the inserted capillary. However, for the
of the dendrite tip. measurements of the fractal dimension a lower magnification

The optical system consists of an illumination system anchad to be used to allow the whole dendrite to be imaged on
a self-built periscope for the observation of the growing den-a picture. Because of the limited number of pixels of the
drite. The periscope consists of a system of achromatic len€CD camera the resolution of the digitized images was lim-
pairs. The optical resolution of the periscope isgdm, ited to about 1m per pixel in this case.
which is close to the theoretical limit. The resolution was In the next step the contour of the dendrites is extracted
tested by means of a graticule. from the digitized video pictures. In previous measurements

The periscope and the illumination system are placedvith xenon dendrite$7] edge detection was performed by
separately in glass tubdander helium gas atmospheren  first thresholding the image and then following the contour in
opposite sides of the cylindrical growth vesgEigs. 3 and the resulting binary image. This procedure has the disadvan-
4). Both the periscope and the illumination system are at théage that an arbitrary value for the threshold has to be chosen
same temperature as the liquid xenon in the growth vessemanually. Furthermore, this procedure extracts the contour
separated from the liquid xenon by optical windows only.correctly for highly contrasted images only. In our analysis
Therefore undisturbed images with high resolution of theof tip oscillations, where time sequences of several hundred
growing dendrite are obtained. pictures had to be extracted, it was not feasible to choose a

The difference between the refractive indices of liquidthreshold for every picture manually. Therefore a new, fully
and solid xenon is onlAng=0.0589. Because of this small automatic algorithm for contour extraction was developed.
difference, a special illumination system is needed to obtain The algorithm works by convolving the image with a La-
pictures with high contrast. We use an illuminated, diffusiveplacian of a Gaussian. This transformation applies the La-
scattering glass plate that is imaged in a plane behind thplacian operator and filters the image with a Gaussian at the
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1200 —— S found that the larger thél the smaller the fitted curvature,
- i.e., Rincreases with increasirtd. In order to obtain a well-
1000 : defined reproducible value for the tip radius, one has to de-
T I fine some kind of averaging. Considering only a small por-
800~ o] tion very close to the tip, one uses only very little data points
- 600; 7] of the contour, therefore one obtains large statistical errors.
g I Averaging over a larger range of the dendrite tip means the
<4001 4 inclusion of many data points that do not approximate well
- the parabola fit at the very tip. Dougherty and Goll&
200 & have fitted over an arbitrary length of the dendrite of
H=23R. This is a possible compromise. Using a parabola for
or ) 7 fitting, Hurlimann et al. [7] have determined the tip radius

400 _3'00 _2'00 _1'00' 0 1(')0 ' 2(')0 3(')0 200 R as a function of the fitting heightl for various values of
H. A linear dependence of the tip radius bhwas found.
Hurlimann et al. extrapolated the tip radius fdi—0, ob-
taining a well-defined limiting tip radiuR;, in this way,

X (um)

FIG. 5. Data of the contour of a dendrite in the tip region are
compared with a power-law fit with3=1.67. The size of the
squares is much larger than the error of the measurements. The
plotted parabola demonstrates that the shape deviates considerably

from the parabolaH indicates the fitting height. In experiments with xenon dendrit¢%] the dependence of
Rip on supercooling is found to be

lim R(H) =Ry, (32)
H—-0

same timd47]. The filtering of the image with a Gaussian is
necessary as the Laplacian operator is very sensitive to noise Ryp=(5.2+0.4) X AT 083003 (33)
in the intensity of the image. Now the edge points can be o '

marked as the zero crossings of the Laplacian, i.e., thghere Ryp is measured in micrometers andr in degrees
points where the Laplacian switches from positive t0 negaye|yin. It is interesting to note that;,R2, = const in the case
tive values and vice versa. This algorithm guarantees thajs ;1 limiting tip radiusR; petp

ip -

closed an'd only one-pixel-wide contours of thg dendri.tes are’ tor a petter approximation of the tip shape, we have tried
detected in a robust way. The drawback of this algorithm i, fi seyeral low-order polynomials of the form
that convolving the image with a Laplacian of a Gaussian is
computationally very demanding, but with a fast workstation n

this problem can be solved. The edge detection was per- z=>, ax, (34)
formed on asilicon graphicsworkstation. Taking about 10 i=0

min per image, the whole time sequence of images could be

extracted in a batch mode overnight. Afterward, the extractetVith n in the range 3-7z is measured along the growth

contour data have been analyzed with mathematical standagtirection andx is the width of the dendrite; see Fig. 2. Fits

software packages such M8PLE and MATHEMATICA.. with polynomials of order higher than=7 have proven to
be numerically unstable. We have found that a low-order
IV. EXPERIMENTAL RESULTS polynomial can approximate the shape of the dendrite in the
tip region much better than a simple parabola[#i8,49.
A. Tip shape However, the tip radiuR calculated by means of polynomial

Xenon crystallizes in a fcc structure leading to a nonaxi-fits still shows a dependence on the fitting heightsed for
symmetric dendrite with fourfold symmetry. Even the tip fitting. The dependence on the fitting height is much
region is not axisymmetric. Four fins grow along the den-Smaller than in the case of a parabola fit, but nevertheless it

drite, starting immediately behind the tip. The sidebranche§annot be neglected. The tip radisof the polynomial fits

grow at the ridges of these firfsig. 1). was c_alcula_ted using thg for_mula of the radius of curvature in
In agreement with earlier studies with pure m@lf and  two dimensions, which is given by

experiments with crystallization from a soluti¢8], we find Lo

that the contour of the dendrite, even in the tip region, does R= E: [1+F7 (7] (35)

not have a parabolic shafieig. 5. In all our experiments we K f(x) '

orient the dendrites in such a way that two of the fins are in

the object plane, i.e., the crystallograpp@1] axis is ori-  Furthermore, the calculated tip radiRsshows a dependence

ented along the optical axis of the periscope. There is a funen the order of the polynomial used for fitting and no order

damental difficulty in quantifying the dendrite tip shapes. Inof the polynomials can be found that fits the contour best,

order to obtain the radius of curvature at the tip, it is necest.e., has the smallest standard deviation or the smallest, or

sary to use data points obtained from regions of the contouno, dependence d® on the fitting heightH. This makes it

away from the very tip. Fitting the contour of the dendrite tip even more diffcult to determine a tip radius in a well-defined

by a simple parabola for the calculation of the tip radiusreproducible way. Based on these experimental results we

leads to a dependence of the tip radius on the fitting heightonclude that the shape of the contour in the tip region can-

H. H is the distance from the tip, along theaxis, up to not be described accurately by a parabola or a low-order

which data points of the contour are included for fitting. It is polynomial.
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As an alternative we tried to fit the contour by a power ——
law of the form 100 ;

z=alx|?. (36) 80

T

A power-law fit can be seen as a generalization of the simple 60
parabola fit, coinciding fod=2 with the parabola fit. The g -
main advantage of the power law fit is that there are only two % 40
fitting parameters and 8, whereas polynomial fits of order :
n haven+1 fitting parameters. Polynomial fits introduce 20
many additional fitting parameters and the physical meanings

of these parameters are not obvious. For the power-law fit ot

the physical meanings of the two parameterand 8 are

T

+

1 2 1

known and theoretical predictions exj&3]. -150  -100  -50 0 50 100 150
Using images with high resolution (dm per pixe), we x (um)

performed this power-law fit for several dendrites grown at

various supercoolings in the range 20 mKT<150 mK FIG. 6. Data of the contour{) of a dendrite very close to the

and found that the contour in the tip region can be approxXitip (H<2R) are compared with a power-law fit, a parabolic fit, and
mated much better with the power-law fit than with a pa-a parabolic fit with an additional correction term due to anisotropy.
rabola or a low-order polynomial fit. An exponent of All three fits match the contour within experimental error and it
B=1.67+0.05 is found for all dendrites independent of su-cannot be distinguished between the three fits. The error bar in the
percooling[50]. Figure 5 shows the contour of a xenon den-inset shows the average error v# um of the contour points.
drite in the tip region as found in our experiments. The
power-law fit with 3=1.67 is plotted in this figure. The pa- the prediction that close to the tip the shape remains para-
rabola plotted in Fig. 5 demonstrates that the shape of thbolic, but because of the limited resolution of our images, we
contour deviates considerably from a parabola Hor 2R. are not able to distinguish between the three(ffig. 6) and
The standard deviation of the power-law fit is only 1.5it cannot be decided whether the shape is really parabolic or
pm, which is close to the resolution of the image dataif the power-law fit is valid up to the very tip point.
(~1 um). In contrast to the parabola or polynomial fits the  The prefactora characterizes the tip just like the tip ra-
power-law fit does not depend on the fitting hei¢tht This  dius R, but the prefactom can be determined with much
can be seen from the fact that the power-law fit approximatehigher precision thaR, as the determination of the prefactor
the contour beyond the range used for fitting. In Fig. 5 con-a is not restricted to a limited region of the dendrite as it is
tour points up to a fitting height of 25Qum are used for the the case foR. Therefore, we use the prefactarinstead of
fit. A power-law fit matches the contour beyond that regionR in the discussion about tip oscillations. However, for com-
at least toH = 18R within the precision of the measurements. parison with theories we had to use the more traditional tip
The fit starts to deviate from the contour in the region whereadiusR.
the first sidebranches appear. The valugBef1.67 of the For the determination of the prefactor, we useda|x|?
fitted contour of the fins is in good agreement with the anawith 8=1.67 fixed. Fitting both paramete and the pre-
lytical studies of Brener and Temkin presented in Sec. Il Dfactor a simultaneously is not possible as they are coupled
Brener and Temkin predict that the contour of the fins ofnonlinearly, which makes the fit very sensitive to the errors
nonaxisymmetric dendrites with cubic symmetry can be dein the data points and the fit becomes unstable. In Fig. 7 the
scribed by a power law Eq18) with g=5/3. prefactora is plotted vs the dimensionless supercoolingf

Moreover, we use our data to test the prediction that eveg andx are measured in units &, the prefactor is dimen-
for nonaxisymmetric dendrites very close to the tipsjonless and we find that=0.58+0.04 is constant indepen-
(H<2R) a parabolic, axisymmetric tip shape is still pre- dent of supercooling. This experimental result is again in
served 21,22. Very close to the tip the contour extraction is agreement with the theoretical predictions of Brener and
less precise- 4 um because of the reduced sharpness of theremkin[29], where a dimensionless prefactor of order unity
images in this region that is due to the larger thermal gradiis predicted, independent of supercooling and anisotropy in
ents around the tip that disturb the imaging process. Figure fhe limit of small anisotropy.
shows the data of the contour of a xenon dendrite in the
region very close to the tipH<2R). A power-law fit with
B=1.67 and a parabola fit are plotted together with a fit as
proposed by Ben Amar and Brener, which is a parabolic fit Tip splitting and dynamical tip oscillations have been pro-
with an additional correction term due to anisotropy Bdp).  posed as the origin of sidebranchifgee Sec. Il If such

All three fits match the contour data within experimentaltip oscillations exist, oscillations in the tip velocity;, and
errors. Therefore, very close to the tip the shape of the conn the tip radiusR during growth have to be expected. In
tour can be approximated by a parabola and a radius of cuprder to decide whether sidebranches are initiated by oscil-
vature Ry, can be determined in this limited region in a re- latory growth, we have determined time sequences of the
producible way. However, statistical errors becomeprefactora(t) and the tip velocity, during times compa-
significant, as only a small number of data points can be usexhble to the time it takes the tip of the dendrite to grow by
in the determination oRy,. Our data are compatible with about 10®.

B. Tip oscillations
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FIG. 9. Instantaneous tip velocityy, vs time for a dendrite
FIG. 7. Dimensionless prefactar vs the dimensionless super- grown at AT=141.6 mK. v;,=6.48£0.18um/s is constant in
cooling A. a is independent of supercooling. The mean value istime, indicating stable growth.

a=0.58+0.04. . . A
0.2 s are shown in the smaller inset plot in Fig. 8. In both

cases the prefact@(t) is constant in time within the preci-

For th termination of the prefacta(t), only the ti . . ;
or the dete ation of the prefacta(t), only the tip sion of our measurements-Q%), showing no oscillatory

region of the growing dendrite, i.e., the region without side- . : e
branches close to the tip, was imaged on the chip of a CCl?ehawor. Therefore, no tip oscillations can _be observed on a
camera that was moved with a constant calibrated velocity t |m|e sc?lt?] ra;gtlng frtcr:m O|2t S Ejosgg/;as Om(;rzmtes. The mean
follow the dendrite tip. The image field of our optics is much value of the data in the plot &=1). e

larger than the size of the CCD chip. High optical magnifi- To check our results we ha\(e .performed the same mea-
cation was chosen to provide the resolution fri on the surements but used the tip radiBsinstead of the prefactor

video pictures. In regular intervals images of the growinga for the characterization of the tip. A sixth-order polynom

dendrite were digitized and the contour of the tip was ex-Vas used to determir(t). Again we find thaR(t) is con-

tracted from each image. In the next step the extracted corpi@nt in time within*3%. The larger error oR(t) is a
tour was transformed by a rotation and a translation in sucffonsequence of the fact that the prefact() can be deter-
a way that the tip point coincided with the origin and the Mined with a higher precision theR(t). . .
fourfold symmetry axis of the dendrite was oriented along . | N€ measurement afy,(t) was performed in a slightly

the z axis of the frame of referendig. 2). After the trans-  different way compared to the measuremena(). A mov-
formation, the power lavz=a(t)|x|#, with 8=1.67, was INg camera would have interfered with the velocity measure-

fitted to the contour to determine the prefacagt). Figure 8 ments. Therefore, the CCD camera was 'held fixed in t.he
shows the prefactoa(t) vs time for a dendrite grown at a laboratory frame of reference and the velocity of the dendrite
supercooling ofAT=116.3 mK. We have performed this was measured, while the dendrite grew through the field of
procedure for long measuring times with a sampling interva iew of the camera. However, a camera with a fixed position

of 2 s. Data for short time scales with a sampling interval of 1as a drawback. When the dendrite tip is about to leave the
field of view of the CCD camera, the camera has to be

moved to reposition the dendrite tip in the center of the im-
- . : . y . - T age. During repositioning of the camera, no tip velocity mea-
0.56 surements can be performed. A parabola with a fitting height
’ H=2R was fitted to the tip to determine the coordinates of
the tip point. A parabola fit is sufficient as in the very tip
region no noticeable difference to the other fits is found. The
sampling rate is limited by the spatial resolution of the CCD
camera, i.e. the minimum time between two successive im-
ages is given by the time it takes the dendrite to move across
one pixel. The tip velocity;, was determined by measuring
the displacement of the tip over time intervals where the tip
050 0.54 ™ 0 i grows about 10um. Shorter time intervals would lead to
) significant statistical errors ing,. In Fig. Qv vs time is
: b : : : plotted for a dendrite grown at a supercooling of 141.6 mK.
100 200 300 400 The tip velocity is constant in time withit: 3%, indicating
Time (s) stable growth. The mean valueuig, = 6.48+0.18um/s. The
gaps in the data points in Fig. 9 are due to the periodic
FIG. 8. Dimensionless prefactarvs time for a dendrite grown repositioning of the camera.
at AT=116.3 mK. The sampling interval is 2 s for the large plot ~We conclude that xenon dendrites grow in a stable mode.
and 0.2 s for the smaller inset plot. The dendrite tip does not show any indication of an oscilla-

0.54

0.52
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-————— p=(7.4+1.4)x 10 1A1:060:0028 (39
100 |, d
@ L ] . . . . :

w %0 | were measured in previous experiments with xenon dendrites
g | ] [3,7]. The only undetermined value is the consté@ntThe
B 6ol T ] theoretical value ofC is of order unity. We seC=1 and
£ T ] obtain from Eq.(23)
£ 4of 1 _
8 Zsg~0.002 28In(0.0022A 196 |4 (40)
g 20F : ° “ - ° o o g °
o— a - . . .
A I for the position of the first sidebranch as a function of the

0 — supercooling. In Fig. 10 the dashed line shaygcalculated
0.0005  0.00L  0.0015 0.002  0.0025 according to Eq(40). The mean value afsg of about 70 is
Dimensionless Supercooling A much too large, i.e., the growth rate of the sidebranches pre-
dicted by the Langer is much too small to explain the experi-
FIG. 10. Position of the first sidebranghg in units of R vs the ~ Mentally observed sidebranchingsg=18) and we would
dimensionless supercoolig zgg is constant and the mean value is have to setC~50 to find agreement with the experiment.
zgg=18+3. The dashed line showsg according to the theory of  However, settingC~ 50 is not permissible a€ is assumed
Langer, Eq.(40). The solid line showssg as expected from the to be of order unity. The result, that the growth rate predicted
theory of Brener, Eq(41). by Eq. (40) is much too small to explain the observed side-
branching, is in agreement with an earlier estimate of Langer
tory behavior in the prefacta or v, within the precision of o8] | anger mentions that values of in the range
our measurements. Therefore, tip oscillations can be ext0'— 107 would be necessary to make it consistent with ex-

cluded as the origin of sidebranching. perimental data of succinonitrile. Langer concluded that ther-
mal fluctuations are not strong enough to produce the side-
C. Sidebranching branches.

(i) However, for a nonaxisymmetric dendrite the ampli-
cation rate can be much larger. As mentioned in Sec. Il E,
rener and Temkiri23] have found that the amplitude of
uctuations grows exponentially as a function of

2/5 _x 1 T
of about R (Fig. 2; see Sec. IlE This mean distancegg (12*/¢* %), which is much faster than the growth of the

for a specific dendrite was obtained by extracting severa‘i’mpl.iwdhe of ﬂut]fttlj_ations 2385 It is ex;l)ected from Fhﬁ axisym-
contours of the dendrite at different growth times and byMetric theory o angef28], namely, exponentially as a

: 1/4; % 1/ H H H H
averaging the positions of all contours, We measured thfnction of (2"« ). The important point is that in the

mean distancasg at various supercoolings in the range 20theow of Brener, the amplification rate is calculated for a

mK<=AT=150 mK. Figure 10 shows the position of the first nonaxisymmetric dendrite with four fins and a contour of the

sidebranclzgg in units of R as measured in our experiments f|_ns of z=a|x|*% As xenon dendrites do have exaC‘_'y this
with xenon dendrites vs the dimensionless supercoaling kind of shape(Sec. IVA)’ this theory seems well applicable
zgg does not depend on supercooling and the mean value fg the_ case of three—dmensppal xenon (;Iendrlltes. .
Zsg=17.5+3. We compare these data with theoretical pre- Using E_q.(25) for the posmqn of the first sidebranch in
dictions of (i) Langer and(i) Brener. the nonaxsymmetnc case, with the same vaIueg and the

(i) Following the theory of Langer, the position of the first Same fluctuation strength as above &hel 1, we obtain
sidebranch is given by E@R3) for an axisymmetric dendrite.

A possibility to test whether sidebranching is driven by _.
selective amplification of thermal noise is to measure thel!
mean distance between the tip and the position where th
sidebranches have a root-mean-square ampli@g(ez)Z)_l’2

For smal_l.lﬁelet numpers 0<<1), the dimerllsionlless noise Zog~0.0261In(0.00221 108|512 (41)
strengthS introduced in Sec. Il E can be written in the form
[28]

for the position of the first sidebranch as a function of super-
— (T 43 cooling. As can be seen in Fig. 18olid line), we find good
o, (37 agreement between this calculation and our data within ex-
perimental error. The dependencezgf, on supercooling, as
where predicted by the above-mentioned theories of Langer and
Brener, cannot be verified with our data because our mea-
_ deg 12 surement of the position of the first sidebranch is not precise
0=\ kge,| enough. o
Our measurement ofgg shows quantitative agreement
All parameters in Eqs(37) and (38) are experimentally with the analytic work of Brener and Temkij@9] for a non-
known and can be used to calculatg,. Using Table | we axisymmetric dendrite with cubic symmetry. Therefore we
obtainT=T,=161 K andT,=151 K. Moreover, the stabil- conclude that thermal noise initiates the formation of side-
ity constanto® ~0.02 and the Reet number branches.

(39)
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FIG. 12. Correlation functiorC(r) vs the length scale. The

FIG. 11. Number of “boxes”N(¢€) vs the length scale of the - -
slope of the linear fit iss==1.488+0.004.

boxes. The slope of the linear fit i51.44+0.03.

D. Fractal dimension mize the statistical errors, we calculated the fractal dimen-

We determined the fractal dimension of the contour of theSiOn at several “ages™ of a specific dendrite and then aver-
area of projection of a xenon dendr[t&l]. In the first step, 2aged in order to get the averaged fractal dimensinand
the contour of the dendrite was extracted from a digitizedv for a given supercooling. Figure 13 shodisand v calcu-
image and afterward box counting was used to calculate thkated for various supercoolings. The results of both methods
fractal dimension. To simplify the algorithm the contour wasare shown together.

covered with a square mesh of sidevheree was chosen to From these experimental results we conclude that the
be e=2"X(pixel size), withn=0,...,9 for a 51X512 fractal dimension does not depend on supercooling. Both
pixel image. Figure 11 showsNe) plotted versus lafora  methods lead to the same results within the errors of the data.
xenon dendrite grown at a supercoolingof =61.1 mK. However, the correlation method seems to give systemati-

The data points can be approximated by a straight line anda|ly slightly higher values. We do not understand why this

the slope of the linear fit is-1.44+0.03 with a correlation happens. Theory would requiv?sd_f. We suppose that this
edisagreement might be an effect of a systematic error in the

e has been ignored in the fit, &ds of order of the tip radius algorithm. Averaging over data obtained at various super-

R for this data point, which is at the theoretical limit of the coolings leads tod;=1.42+0.05 (box dimensiop and 7

scaling range. Although the linear fit is not perfect, we find . . . )

that the contour is fractal over a range of more than two_oln';i?é?ftg:og;elggﬁ_nsiﬂﬁ;?ni?ha-rhﬁ/::qggezr;?uqeb?he
orders of magnitude in length scale and more than three orlc—en th scale is chanaed in aII. dimengions in thFe): same wa
ders of magnitude in the number of “boxes” scale. The frac- 9 9 Y

tal dimension isd;~1.4 according to Eq(28). The scaling Dendrites grown at various temperatures are self-similar;

range is limited at the lower end by the radius of curvature,they scale wittR.

which is the typical length of the smallest structures of a
dendrite, and at the upper end by the overall size of the

. 2.0 T T T T T T T T T T T T T
dendrite. -

To verifiy our results we also used the correlation method 18¢ ]
developed by Grassberger and Proca¢8ec. Il B. Figure L6 . 2.0 §§ e ®,00 o o ]
12 shows a plot of 16(r) versus Im. C(r) has been calcu- g§l4f g2 "2 of 2o % .
lated for the contour of a xenon dendrite. The data points are Z 1.2} .
on a straight line, which means again that the contour is § 1oL i
fractal over a range of more than two orders of magnitude in 2 gl ]
length scale. The slope of the linear fit corresponds to the £ 0'6 . ]
“correlation dimension” »=1.488-0.004. The correlation & 1 ]
coefficient of the linear fit is 0.9996. The fact that both meth- 04 ]
ods lead, within the errors of the data, to the same results 02| ]

strongly indicates that the contour is indeed fractal over a 0.0 ' S . : .

range of more than two orders of magnitude in length scale. 20 40 60 80 100 120 140 160

Using both methods, we have calculated the fractal dimen- Supercooling (mK)

sion at different times during the growth of a xenon dendrite.

We find that after a short transient time at the beginning, FIG. 13. Averaged box dimensiaﬂ_}=1.42t0.05 (O) and the
when the dendrite starts growing out of the capillary, theaveraged correlation dimension=1.51+0.08 (O) vs the super-
fractal dimension is constant in time, i.e., there is no timecooling of the melt. The error bar in the inset shows the average
dependence of the fractal dimension during growth. To mini-error of the data points.
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V. DISCUSSION whereX andZ are the unscaled coordinates as measured in

A. Tip shape the experiment. A simple rearrangement leads to

R
RR

Up to now most theoretical studies on dendritic growth -
assume an axisymmetric, parabolic tip of the dendrite, based z=a
on the famous Ivantsov solutigd3]. However, it is known
from experiment$3,7,8| since many years that the tip shape and the unscaled prefactaftA) is given to be
deviates from a parabola, but it was commonly assumed that - o3
this deviation may be neglected. Our results show that the a(Ad)=aR™ " (45)
deV|at|pn from a parabohc shape is S|gn|f|cant_ and that_ it ISThis leads to
essential to take into account the nonparabolic, honaxisym-
metric tip shape to understand three-dimensional dendritic R,(A)=3a(A)"32=a"3R(A) (46)
growth.

La Combeet al. [9] investigated the tip region of pure, for the scaling behavior oR,(A). Therfore,R, andR pro-
three-dimensional succinonitrile dendrites. Using a parabolaide the same physical information and are related by the
fit, a dependence of the tip radiéson the fitting heightH proportionality constanti™¥?~2.4, independent of super-
was found, similar to the one reported by fimannet al.  cooling.

[7]. It was concluded that this dependence is due to the non-
parabolic shape of the tip and a fourth-order polynomial was B. Sidebranching

used for a more accurate determination of the tip radius. . o .
In contrast to La Combet al, we find that the shape of We find quantitative agreement of our experimental data

the dendrite tip cannot be approximated accurately by a |0\A,sz_SB with the theoretical predictions of Brener and Temkin
order polynomial and we use a power-law fit instead. The-29)- AS far as we know, the theory of Brener and Temkin
power-law fit matches the contour within the resolution of(29] iS the first analytic treatment of a nonaxisymmetric den-
our data (-1 xm) and there is no dependence of the fit ondrite in three dimensions for a material with cubic symmetry.

the fitting heightH. Highly contrasted images with high This theory describes the formation of four fins along the

resolution were used to extract the contour of the tip. Theredei['eds”te' as observed in our experiments with xenon den-

fore, we conclude that the contour of the fins has the shapgr ,
z=a|x|#, with a=0.58+0.04 andB=1.67+0.05. The val- .In a further test of the.th.eoryif Brgner and.Temkm one
uesa and 8 have been predicted by Brener and Ten{i2€] might compare the predictions afg with experimental re-

and therefore the physical meanings of these parameters ﬁﬁlts obtained from dendrites grown from other substances to

known, whereas in the case of a polynomial fit of degreececk whether the theory predicts the dependenapbf

: . L the material properties and noise strength in the right way.
n, the physical meanings of the ¢ 1) fitting parameters are , .
unknO\?vny g €1 gp To perform a comparison with the theory of Brener and

However, the problem with a nonparabolic dendrite tip isTemkln similar to the one with xenon dendrites, we used the

. o - : i tal data for three-dimensional succinonitrile den-
that the tip radius is not a well-defined quantity anymore. FofXPernment .
a tip with a power-law shape wit# 2, the curvature, and gT'teS7 obftallanefd gy that(iﬁmbet atl [9]- \é\/e ef::mz?_tetfrqgw
therefore the tip radiuR, becomes singular at the tip point ig. 7 of Ref.[9] that the position where the first side-

(x=0). This is a serious problem as the tip radius is thebranches have a root-mean-square amplitudeRofslabout

important length scale in dendritic growth. The prefacior 300um. The dendrite was grown at a supercooling of 0.46

used in the previous sections, which was made dimensionlegs At this supercoplmg, the tip radlu_s IS 25um and_we _ge_t
by measuring all lengths in units &%, cannot be used to 2s8~ 11.5=3. With the properties of succmon_ngne
define a length. We propose to use the unscaled andim=331 K, Tq=1280 K,C=1, 0~0.02, andp=5x10
temperature-dependent prefacign) to define a new length @nd using Eq(25), we obtainzsg=14.5 for the position of
R,, which might be used in place of the traditional tip radiusthe first sidebranch measured in unitsRaf This is compat-

R.a(A) has the dimension afength 23 R, can be defined ible with the theory of Brener. We cannot perform a quanti-
as @ tative comparison between experiment and theory as we did

it for xenon because we have only one single data point for
R,(A)=3a(A) %2 (42)  succinonitrile and our estimate a@kg is not very precise.
Although succinonitrile and xenon have rather different ma-
R, andR are of the same order of magnitude and have thderial properties, Brener’s theory describes correctly the side-
same temperature dependence_ The S|m||ar|ty betyreamd branChing behavior for both substances. This result SuggeStS
R, is a consequence of the fact that the dimensionless préhat Brener's theory describes correctly the sidebranching
factor a is constant and independent of Supercoo'{@c_ behavior of dendrites for any pure substance with cubic sym-
IVA) if all lengths are scaled by the tip radi®&A). The  Metry.
notationR(A) indicates that the tip radius depends on super-
cooling. The shape of the contour in the tip region can be C. Fractal dimension

written as[see Eq.(18)] The result that sidebranching is initiated by thermal noise
_ ~ 53 is consistent with the observation that sidebranches on oppo-

( z ) =a( X ) (43) site sides of the dendrite are not correlated. The spatial Fou-
R(A) R(A)) rier transform of the shape of the dendrite has a broad con-

xR (44)
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tinuous background, which is typical for a dynamical chaoticcontour ofz~|x|>® for a three-dimensional nonaxisymmetric
system. Integral parameters, such as the fractal dimensiodendrite with cubic symmetry. Only very near the tip
have proven to be useful for the characterization of sucl{H<2R) the contour can be approximated by a parabola fit

dynamical, chaotic systems. and forH—0 the experimental data are in agreement with
The value 1.4 for the fractal dimension of xenon dendritesvtipRzzconst.
is not compatible with the fractal dimensidp=1.71, which We have determined the tip velocity;,(t) and the di-

is found in two-dimensional, isotropic DLA. The reason for mensionless prefactas(t) as a function of time. In both
this discrepancy may be that two-dimensional, isotropiccasesv,(t) and the prefactom(t) are constant in time,
DLA is too simplistic to describe three-dimensional dendritic showing no oscillatory behavior within the resolution of ex-
solidification. The fractal dimension of 1.4 is in approximate perimental data. The dendrite grows in a stable mode. Thus
agreement with the two-dimensional simulations of dendritictip oscillations can be excluded from being the origin of
growth of Nittmann and Stanle)86] (Sec. Il B, which pre-  sidebranching. Our determination of the position of the first
dict a fractal dimension of 1.5, and the two-dimensional,sidebranchzgg shows quantitative agreement with the ana-
anisotropic DLA simulations of Arneodet al. [37], which  Iytic work of Brener Temkin[29] for a nonaxisymmetric
predict a fractal dimension ad;=3/2 for dendritic growth  dendrite with cubic symmetry. Therefore we conclude that
patterns. However, these results should not be overestimateldermal noise initiates the formation of sidebranches.

as in these simulations two-dimensional volume fractals are Further away from the dendrite tip, where the side-
calculated, whereas in the case of xenon dendrites we studiéglanches are becoming larger, many fewer theories and ex-
the contour of the projection of a three-dimensional dendritgperimental data are available. In this region nonlinear inter-
and it is not clear how the contour is related to the two-actions among different sidebranches are important and
dimensional volume. Our results are in agreement with theoarsening takes place. We find that integral parameters such
predictions of the phase diagram proposed by Breneras the volume, the surface area, and the contour length of the
Muller-Krumbhaar, and Temkifi34] (Sec. IIF for the se-  projection, which were determined in earlier measurements
lection of growth patterns in diffusional growth. They predict with xenon dendritef7], are good parameters to describe the
fractal growth patterns for crystals with small anisotropywhole dendrite. The fractal dimension is another integral pa-
growing at small supercoolings. This is in agreement withrameter. We find that the contour of a xenon dendrite is
xenon dendrites that are found to be fractal. Xenon has onlfractal over more than two orders of magnitude of length

a small anisotropy, as it is a very simple, monoatomic subscale and has a fractal dimensidp=1.42+0.05. Both box
stance with van der Waals forces only. Furthermore, all xezounting and correlation method lead to the same results

non dendrites in our experiments are grown at very smalliinin the errors of the datal; is independent of supercool-
supercoolings. Larger supercoolings are not possible becauggy "The fact that xenon dendrites are fractal is in agreement

of heterogeneous nucleation of crystals at the walls of thg i, he predictions of the phase diagram of Breperal.
growth vessel. Therefore, it is not possible to verify the Preé134] for the selection of growth patterns in diffusional

dictgd crossovefr34| from fractal structures at small SUPer- growth, where fractal growth patterns are predicted for
coolings to seaweedlike structures at larger supercoolings. crystals with small anisotropy grown at small supercoolings.
Thus we conclude that integral parameters are good

VI. SUMMARY parameters for the characterization of dendritic solidification.

It may be that integral parameters can be used in other

Anisotropic surface properties lead for the xenon den )
structure-forming phenomena.

drites to a nonaxisymmetric shape with fourfold symmetry.
Four fins grow along the main stem of the dendrite, starting

immediately behind the tip. The contour of these fins is not ACKNOWLEDGMENTS
parabolic and can be described by a power lawalx|?,
with a=0.58+0.04 andB=1.67+0.05 independent of su- Our gratitude goes to our colleagues and collaborators.

percooling. This result is in excellent agreement with theWe thank Dr. H.R. Ott for his support. This work was sup-
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