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Density fluctuations are monitored by small-angle light scattering during the crystallization of 0.22-
mm-radius, hard colloidal spheres. Measured structure factors show an intensity maximum at finite-scattering
vectors. The shape of the intensity distribution scales at early times during nucleation and growth and again at
large times during ripening. At intermediate times there is a crossover region where scaling ceases to be valid.
Both the amplitude and the position of the maximum intensity show quasi-power law behavior in time. The
values of the observed exponents are within the range expected for classical growth models. The breadth of the
intensity distribution increases with increasing volume fraction, suggesting greater crystal polydispersity with
increasing volume fraction. The lower volume fraction intensity distributions suggest that crystals have a
compound or internal structure, while the observed decrease in characteristic length in the crossover time
regime may indicate breakup of crystals to this smaller internal structure. The results of measurements are
compared with results calculated for nucleation and growth of crystals in suspensions of hard spheres. Results
also are compared with earlier measurements made on samples containing 0.50-mm radius spheres. Differences
in the two systems are discussed in terms of interparticle potential, polydispersity, and gravitational effects.
@S1063-651X~96!09610-9#

PACS number~s!: 64.70.Dv, 81.10.Fq, 82.70.Dd

I. INTRODUCTION

The dynamics of crystallization, the disorder-to-order
transition from a metastable fluid to a crystalline solid, is
very rapid and difficult to characterize in simple atomic sys-
tems. Only recently have advances in instrumentation per-
mitted kinetic studies of crystallization in metallic glasses by
using x-ray diffraction with millisecond time resolution@1#.
In complex fluids crystallization dynamics is orders of mag-
nitude slower and the lattice constants are on the order of the
wavelength of light. Thus time-resolved optical analogues of
x-ray diffraction@2–6# and microscopy@7# have proved use-
ful in characterizing homogeneous nucleation and growth in
these systems.

In colloidal systems the suspended particles order into
crystalline lattices from initially shear melted@8# amorphous
metastable fluid states. These samples differ from pure
atomic systems in that the sample volume is fixed by the
suspending fluid, and crystallization occurs at fixed volume
rather than fixed pressure. Furthermore, the particles ex-
change energy and momentum with the solvent. Any latent
heat produced is rapidly dissipated by the solvent with neg-
ligible change in temperature. Finally, the colloidal particle
interactions are essentially repulsive due to charge stabiliza-
tion or steric stabilization to prevent particle aggregation.
Despite these differences between atomic and colloidal sys-
tems, we expect the essential features of the phase transition
to be similar in atomic and complex fluid systems.

Most homogeneous colloidal crystallization work has fo-
cused on the crystal order parameter, a nonconserved param-
eter used to characterize the disorder-to-order phase transi-
tion. Aastuenet al. @2# have made direct observations of
growing crystallites in aqueous suspensions of charge stabi-
lized polystyrene spheres as a function of particle volume
fraction. The size of the crystals was found to be directly
proportional to the elapsed time, indicating interface-limited
growth. The velocity increased and saturated with increased
sample volume fraction and was characterized by the classi-
cal Wilson-Frenkel growth law. Dhontet al. @4# used time-
resolved light scattering to monitor the first-order Bragg
peak during crystallization in suspensions of slightly charged
silica particles. Interface-limited growth was assumed im-
plicitly and a classical analysis made to determine induction
times, nucleation and growth rates, and the sizes and num-
bers of the crystals as a function of particle volume fraction.
The nucleation rate density was found to have a much
weaker dependence on volume fraction than predicted@9#.

Recently a conserved parameter, the particle density, has
been monitored during the crystallization process@5,6,10#.
Small-angle light-scattering~SALS! measurements were
made during the crystallization process in suspensions of
sterically stabilized spheres in a solvent that has nearly the
same index of refraction as the particles. The observed scat-
tered intensity distribution had a maximum at finite-scattered
wave vector and was observed to scale over nearly the full
observation time. As a result, the experimental data were
represented by the position and magnitude of the intensity
maximum as a function of time. Two distinct time regimes
were observed and termed ‘‘nucleation and growth’’ and*Deceased.
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‘‘ripening.’’ In the nucleation and growth region the inten-
sity maxima were observed to follow a power-law increase
in time with an exponent of 4 for volume fractions equal to
or less than the melting value. Similarly the position of the
maximum moved towards zero scattering angle with increas-
ing time, following an inverse square-root time dependence
near melting volume fractions. Thus a characteristic length
was increasing as the square root of time and was consistent
with diffusion-limited rather than interface-limited growth.
The intensity growth exponent was explained in terms of a
constant nucleation rate and the diffusion-limited growth of
crystals.

In the ripening region, the growth of the maximum inten-
sity was much slower with an exponent of unity or less. The
exponent for the position of the maximum was one-third for
volume fractions less than the melting value. This is consis-
tent with the exponent for Ostwald ripening in a two-phase
region. For volume fractions greater than melting the expo-
nent was observed to be one-half, consistent with the expo-
nent for growth through domain-wall motion. Dynamical
scaling was also examined and found to give the expected
scaling exponent of 3 for this three-dimensional system for
volume fractions equal to the melting value or less. For
larger volume fractions, the exponent was observed to be 2
and is not yet understood.

In this work we present results of similar small-angle light
experiments for suspensions of smaller radii colloidal par-
ticles. A number of samples closely spaced in volume frac-
tion were studied. The growth exponents for both the inten-
sity and the characteristic length were larger than those
found at corresponding volume fractions for the previously
studied 0.50-mm-radii particles. All samples exhibited a de-
crease in scattered intensity and reduction in characteristic
length in the crossover region between nucleation-and-
growth and ripening. This combined with changes observed
in the shape of the small-angle intensity distribution suggest
crystal breakup or dissolution in the crossover region before
ripening commences. The intensity distribution shape func-
tions became broader as the volume fraction of particles in-
creased. This is attributed to a larger polydispersity of the
scattering entities with increasing volume fraction.

In Sec. II the samples, experimental apparatus, and pro-
cedure are discussed. This is followed by a presentation of
the results. Finally we compare the data with theory for clas-
sical crystallization in suspensions of hard spheres and with
measurements taken for suspensions with larger radii
spheres. The differences are discussed in terms of interpar-
ticle potential, polydispersity, and gravitational effects.

II. EXPERIMENT

A. Particles

The colloidal suspensions used in these experiments con-
tained uniformly sized polymethylmethacrylate~PMMA!
spheres coated with a thin (;10-nm! layer of poly-12-
hydroxystearic acid@11#. This coating provided sufficient
steric stabilization to prevent flocculation. The particle radius
was determined to be 215 nm with a polydispersity of 7%
relative standard deviation by dynamic light scattering on
diluted suspensions. The solvent was a mixture of tetralin
~46 wt %! and decalin~54 wt %! in a ratio adjusted to closely

match the index of refraction of the suspended particles. Ex-
act matching was not possible due to the difference in the
refractive index of the particle core and coating. Also, the
matching point is sensitive to temperature and probing wave-
length. However, samples with particle volume fractions on
the order of 50% appeared clear to the eye and showed a
total scattering of less than 50% of the incident light for a
path length of 10 mm at a wavelength of 633 nm. The losses
were due primarily to small-angle and Bragg scattering.

Samples having different particle concentrations were
prepared by loading optical quality cuvettes~10 mm
310 mm350 mm! with an index-matched stock sample of
known weight of each solvent and particle component. The
particles were then centrifuged to the bottom of each cuvette,
and different weights of the supernatant were withdrawn to
obtain a series of samples having particle weight fractions
fw ranging from 0.391 to 0.491. The particles were redis-
persed by vigorous agitation of the cuvettes, which were then
left undisturbed for approximately two months. During this
time crystallization commenced and the crystals that were
more dense than the amorphous phase settled. The phase
diagram shown in Fig. 1 was determined using the sedimen-
tation tracking method of Paulin and Ackerson@12#. The
volume fractionf5(0.494/0.395)fw has been rescaled from
the weight fraction to make the freezing point coincide with
the value for hard spheres,f f50.494@13#. It is seen that this
rescaling brings the melting pointfm50.5560.01 into close
agreement with that for hard spheres (0.54560.02). The re-
quired rescaling was larger than that for PMMA particles
having twice the radius@12# but was the same order as that
required for similar sized particles~325 nm in radius! sus-
pended in mixtures of decalin and CS2 @14#. It is believed
that absorption of tetralin or CS2 into the particle coating~or
core! may be responsible for this effect@14–16#. The weight
of each cuvette was monitored to account for any change in
particle volume fraction due to solvent evaporation over the
duration of these experiments.

FIG. 1. Phase diagram for the colloidal system used in the ex-
periment. The freezing point is fixed at 0.494, as described in the
text, and a fit determines the melting point to be a volume fraction
of 0.55.
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B. Small-angle light-scattering setup

The small-angle light-scattering setup shown in Fig. 2
was modified slightly for some measurements from that re-
ported previously@6#. A small HeNe laser beam~5 mW,
polarized! was spatially filtered and expanded using a micro-
scope objective (203) and a pin hole~25-mm-diameter! in a
commercial mechanical~Newport! unit. A single ‘‘best
form’’ lens (f580 mm, antireflection coated for 633 nm!
refocused the filtered beam onto the detection screen. An
aperture adjusted to coincide with the first diffraction mini-
mum (;9 mm! produced by the pinhole was placed just
before the sample. Careful aperture adjustment minimized
diffraction both from the aperture and from scattering by
sample cell walls. The detection screen was adjusted to lie
between 0.68 and 1.25 m from the sample. The distance
chosen depended on the particular sample.

Scattered light was detected in either a transmission or
reflection geometry. In the reflection geometry used previ-
ously @6#, the focused primary beam passed through a 2–5
mm hole in the center of the screen to a distant beam stop.
The smaller hole sizes were needed for the relatively smaller
scattering patterns produced by larger crystals of the lower
volume fraction samples. Scattered light was detected by a
charge-coupled-device~CCD! video camera placed slightly
off axis, typically just below the main beam and close to the
sample. In the transmission geometry the primary beam was
incident on a beam stop placed directly on the detection
screen. The CCD video camera was placed on axis with the
beam a distance of 60 cm behind the detection screen.

Measurements in either geometry gave identical results,
except that the magnitude of the scattered light was approxi-
mately sixfold larger in the transmission geometry. This
larger intensity proved useful for the relatively weak scatter-
ing produced by the larger volume fraction samples. These
two arrangements kept the geometric distortions negligible
for the observed small-angle scattering. The camera resolved
192 by 165 pixels, and exposure times were kept close to
200 ms. The scale of the scattering wave vector
q54pnsin(u/2)/l was calibrated by placing a grating with
200 lines/in. in the position of the sample and detecting the
positions of the diffracted maxima using two orthogonal ori-
entations of the grating. Here the index of refraction of the
solvent is given byn, the incident laser wavelength byl,
and the scattering angle byu.

C. Data analysis

Data analysis followed the same procedure developed
previously@6#. The CCD video camera was driven by a per-

sonal computer that accepted the digitized image data having
8-bit resolution and stored the data on magnetic disks. Frame
rates varied from one frame every 20 sec~immediately after
shear melting! to one every hour at large times. At the end of
a data collection run, the processing involved careful center-
ing of the series of scattering images followed by the calcu-
lation of radial intensity distributionsI (q).

To eliminate detector dark count, low angle static scatter-
ing produced by the sample cuvette, and a small amount of
residual static scattering from the optical system, a radial
intensity distribution from an early image was subtracted
from each of the other intensity distributions. Typically the
chosen image exhibited the smallest intensity values
throughout the usefulq range. In most cases all early images
were almost equivalent. However, index-of-refraction
changes, associated with temperature equilibration or sample
flow relaxation after shear melting, can produce scattering
changes in this time range and must be avoided. The tem-
perature of the samples was maintained to within61 °C.
After compensating for differences in optical setup, aper-
tures, and exposure times, all intensities can be represented
approximately on the same scale. Because the smaller par-
ticle samples studied here exhibit nucleation and growth on a
faster time scale than the previously reported samples with
larger radii particles, faster initial frame rates were required
to obtain image data suitable for subtraction.

Background-subtracted intensity distributions evidenced a
ring structure with a maximum in the intensity at finite wave
vector qm . The value of the maximum and its position
changed with time, as shown in Fig. 3. The value of the
maximumI m was determined by fitting a second-order poly-
nomial to the data in a limited region around the peak. The
ring position could be characterized most accurately by the
larger wave vectorq1/2, where the intensity distribution fell
to half its maximum value.I m andq1/2 were studied as func-
tions of time and also used to obtain scaled structure factors
as follows:

S~Q,t !5I ~q,t !/I ~qm ,t !, Q5q/q1/2~ t !. ~1!

FIG. 2. Optical setup used for small-angle light-scattering. The
different camera positions correspond to transmission and reflection
geometries. The transmission geometry setup has six times the in-
tensity of the reflection geometry .

FIG. 3. Measured light scattering intensity as a function of scat-
tering vector and time for sample p3 (f50.549). Three distinct
regions are observed: nucleation and growth (t,510 sec!, cross-
over (510,t,19 2000 sec!, and ripening (t.19 2000 sec!.
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III. RESULTS

A. Time dependence

Figures 4 and 5 show, respectively, the parametersI m and
q1/2 for the intensity maximum and location as a function of
time elapsed since the cessation of shear melting. The double
logarithmic scales demonstrate the large dynamic range of
the data and any approximate power-law growth behavior.
For all samples theI m show the same qualitative form. There
is an inital rapid growth to a maximum value followed by a
decrease to a lower value. When runs are made to suffi-
ciently large elapsed times,I m again evidences an increase in
value. For purposes of discussion we will consider this be-
havior to consist of three parts, as done in previous studies
@6#: ~1! an ‘‘initial nucleation and growth’’ region from zero
time to the time where the maximum in scattered intensity
I m occurs,~2! a ‘‘crossover’’ region from the time of the first
maximum to approximately the point whereI m begins the
second increase in value, and~3! the ‘‘ripening’’ region
where the large elapsed time increase inI m occurs. Any
breaks in these intensity data correspond with adjustments in
the beam intensity to avoid saturating the CCD video camera
as the scattered intensity increases. The symbols correspond
to those in Fig. 7.

In the nucleation and growth regions,I m exhibits nearly
power-law growth in elapsed time with an exponent
4.6660.02 (f50.531) at one of the lowest volume fractions
and increasing to a maximum value of 7.1560.16
(f50.545) before decreasing to 5.5760.23 (f50.549) for
a sample near melting and further decreasing to 3.660.1
(f50.551) for the fully crystallized sample. At the larger
volume fractions,I m remains fairly constant for a large range
of elapsed time~two days! in the crossover region, while at
the lower volume fraction measured,I m is not constant for a
similar range of crossover time. In the ripening region the
data at the largest measured elapsed times may be character-
ized by linear or sublinear power-law behavior. The quoted

error in the exponential values is determined from the best fit
to the data.

In Fig. 5, q1/2 is shown as a function of elapsed time,
where it is seen that all volume fractions appear to have the
same qualitative behavior. The characteristic wave vector
initially decreases in magnitude, indicating the growth of a
characteristic length. However, this wave vector evidences a
minimum and then increases with increasing elapsed time.
This implies a decrease in the characteristic length in this
elapsed time region. At sufficiently large elapsed times, the
characteristic wave vector again decreases, indicating a
growth of the characteristic length. Like theI m data, these
data may be discussed in terms of three regions. The initial
growth of a characteristic length scale corresponds to a
nucleation and growth region. The time where the character-
istic length scale decreases to the time where it again in-
creases corresponds to a crossover region. A ripening region
corresponds to the large elapsed times where the character-
istic length scale increases. This identification is somewhat
ambiguous, since theI m maximum and theq1/2 minimum do
not occur at exactly the same time, the minimum being later
in time. With this descrepancy in mind we will use this ter-
minology~nucleation and growth, crossover, and ripening! to
discuss the time-dependent data.

In the nucleation and growth regionq1/2 decreases with an
approximate power-law behavior ranging from 0.7560.02
(f50.531) at the smallest volume fraction measured to
1.0160.08 (f50.549) for the sample near the melting
point. In the crossover region the characteristic length re-
mains fairly constant, as does the intensity for the larger
volume fractions. For the lower volume fractions the charac-
teristic length changes, as does the intensity. For the largest
elapsed times we compare the data with decreasing power-
law exponent of 1/3. While the data approximate this power-
law behavior, it is not clear if this is the ultimate asymptotic
behavior of the data. Measurements at even larger elapsed

FIG. 4. Peak intensityI m(t) as a function of time for different
volume fraction samples. Power lawst7 ~dotted line!, t4.5 ~dashed
line! in the early time region, andt1 ~solid line! in the late time
region are indicated.

FIG. 5. Characteristic scattering vectorq1/2(t) as a function of
time for different volume fraction samples. Power lawst20.75 for
low concentration samples~dotted line!, and t21 for samples near
the melting point~dash line! in the early time region andt21/3 ~solid
line! in the late time region are indicated.
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times would require better temperature control and laser sta-
bility.

B. Scaling

The normalized or scaled structure factor is shown in Fig.
6 using the data in Fig. 3 for a sample near the melting point
(f50.549). From these data we conclude that the scattered

intensity does not scale over the full time domain, because it
cannot be completely characterized byI m ,q1/2 and a single
shape function. However, the scaling is punctuated. For lim-
ited time regions, scaling is observed to hold. These regions
correspond to the initial nucleation and growth phase for
times less than 600 sec and to the ripening phase for times
greater than 150 000 sec. Despite the great time lapse sepa-
rating the two regions, the shape function indicated by the
solid lines in Fig. 6 is very similar. The crossover region is
much less settled where the shape function, being much
broader, deviates markedly from that observed in the other
two regions. Furthermore, it changes rapidly to this form,
which shows approximate scaling in the time range between
600 and 6000 sec, but evolves slowly at larger elapsed times
to the ripening form.

The shape functions also depend on the volume fraction,
as shown in Fig. 7. A double logarithmic plot ofS(Q) is
given as a function ofQ and parametrized by volume frac-
tion. The shape function for each volume fraction is shifted
by an order of magnitude from the neighboring ones for
clarity of presentation. As the volume fraction decreases, the
scattered intensity maximum moves to smaller angles and
cannot be resolved reliably with our apparatus for volume
fractions less than 0.525. As the volume fraction increases,
the shape function broadens in all scaling time domains. To
make more quantitative comparisons the data have been fit-
ted by the Furukawa form@17#

S~Q,f!5
@11g~f!/2#Q82

g~f!/21Q821g~f! , ~2!

where

Q85 f ~f!Q. ~3!

Here the exponentg(f) and the scale parameterf (f) are
fitting parameters that depend on volume fraction. Table I
presents values forg(f), and values forf (f) are redundant
since they are a result of the definition ofq1/2 not being at the
intensity maximum. Due to solvent evaporation during the
duration of these experiments a given sample could be used
to obtain data at several different volume fractions, and these
are included in Table I. The form of Eq.~2! is quadratic in
the smallQ8 limit. The data in the nucleation and growth
region, where smallQ8 data is most accessible, are reason-
ably consistent with this form. In the ripening region the
larger characteristic lengths make this region less accessible.
For the larger volume fraction samples measured, the Fu-
rukawa form gives a reasonable fit to the data for the full
Q8 range. However, at the lower volume fractions, there is a
more complicated largeQ8 asymptotic dependence, which
may be constructed from two power-law decays with differ-
ent exponents. In Table I values ofg(f) are given for a fit
that neglects the largeQ8 asymptotic behavior and a result in
parenthesis that fits to the largeQ8 values. For the smaller
volume fraction sample (f50.539) we see an evolution
from the complex decay behavior in the nucleation and
growth region at largeQ8 values to a single power-law decay
in the ripening region. We do not want to argue any general
significance for using the Furukawa form~and, in fact, the
exponents are far different from those usually found in

FIG. 6. Structure factors for data in Fig. 3 in three time
regions, ‘‘nucleation and growth’’~a!, ‘‘crossover’’ ~b!, and ‘‘rip-
ening’’ ~c!. Time regions are shown, as well as the Furukawa scal-
ing functionF(Q) ~line! as a guide to the eye.
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liquid-gas and fluid demixing transitions!, but we find it a
convenient form to fit the data.

IV. DISCUSSION

The motivation for this work was to check previous re-
sults with a different system, to expand the scattering vector

space available to our apparatus by effectively reducing the
crystal size, to reduce the effects of sedimentation by using
smaller-size particles, and to expand the range of volume
fractions studied. However, measurements at large volume
fractions were ultimately limited by diminished sample scat-
tering with either size particles. At smaller volume fractions,
crystallite sizes typically were larger for the smaller-particle

FIG. 7. Structure factors for various volume fraction samples in three time regions, ‘‘nucleation and growth’’~a!, ‘‘crossover’’ ~b!, and
‘‘ripening’’ ~c! time regions, and Furukawa scaling functionF(Q) ~line!. For clarity each data set is shifted by an order of magnitude from
the neighboring curves. Note the lack of fit with the Furukawa form for the lower volume fraction samples at large scattered wave vector.
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systems and confounded our attempts to improve apparatus
resolution. The region between nucleation–growth and rip-
ening, the ‘‘crossover region,’’ became more pronounced for
the smaller-particle samples and limited our ability to study
ripening compared to the larger-particle systems. We now
make more explicit these differences with earlier work and
offer explanations in terms of possible deviations from hard-
sphere behavior, sample polydispersity, and gravitational ef-
fects.

A. Comparison with previous hard-sphere studies

The data presented here for 0.22-mm-radius particle
samples extend and contrast with the earlier small-angle
light-scattering studies made for suspensions containing
0.50-mm-radius particles@6#. Other than the differences in
particle radius, the same solvents, PMMA particle cores, and
steric stabilizers are used in both of these sample systems.
Numerous studies on both systems indicate that they ap-
proximate suspensions of hard colloidal spheres@12,14–16#.
Qualitatively, the crystallization process is similar. After ces-
sation of shear melting, there is a rapid increase in the inten-
sity of forward-scattered light. The intensity distribution is in
the shape of a ring that exhibits scaling and collapses in size
during the ‘‘nucleation and growth’’ phase. There is a
‘‘crossover’’ region followed by a ‘‘ripening’’ phase. The
shape function in the nucleation and growth region is found
to be similar to that in the ripening region for the larger
volume fraction samples.

A comparison of the two different radii samples is given
in Fig. 8. The reduced elapsed timetc5D0tc /a

2 taken to
reach the maximum intensityI m ~beginning of the crossover
region! is shown in Fig. 8~a! as a function of volume frac-
tion. Herea is the particle radius,D0 is the dilute-solution
particle diffusion constant, andtc is the elapsed time to the
maximum inI m . The reduced wave vectorqmina at the be-
ginning of the crossover region is a local minimum for the
smaller radii particles and is shown as a function of volume
fraction in Fig. 8~b!. In Fig. 8~c! an estimate of the nucle-
ation rate density is given using values presented in Figs.
8~a! and 8~b!. During nucleation and growth it is assumed
that crystal positions are random~uncorrelated! and that the
small-angle scattering is produced by the crystal form factors
@6,10#. The growth process produces a depletion zone around
each crystal, and this leads to a maximum in the small-angle
scattering at finite wave vector. Model calculations have
been made for crystal-depletion zone structures that conserve
the total particle number@10# and these giveR51.8/q1/2 as
an estimate of crystal sizeR. If the equilibrium complement
of the crystal is realized attc and assumingqmin51.8/Rc
remains valid, then the nucleation rate densityN in the co-
existence region is given by

N5
~f20.494!/~0.54520.494!

4pRc
3tc/3

. ~4!

This is simply the fraction of sample filled with crystal di-
vided by the size of the average crystal and the elapsed time
of the measurement.

Recently a classical theory for the nucleation and growth
of colloidal crystals has been proposed@9,34# and evaluated
numerically ~with some modifications! for suspensions of
hard spheres@23#. Within this classical theory the critical
nucleus sizer * reduced by the particle radiusa is given by

r * /a58pg f2sa
2/3fs~m f2ms!, ~5!

and the free-energy ‘‘barrier to nucleation’’ at this critical
size is given by

DG~r * !5~4pg f2sa
2/3!~r * /a!2. ~6!

Here the averaged crystal surface tension is given byg f2s
and the difference in chemical potential between the meta-
stable fluid and crystal bym f2ms , while the crystal volume
fraction isfs . The chemical potentials and the surface en-
ergy are known from computer simulations of hard spheres
@13# and analytic calculations@37,36,34#. The nucleation rate
density is given by

N5b@Ds~f f !/a
5#f f

5/3exp@2DG~r * !/kT#, ~7!

whereDs(f f) is a self-diffusion constant that may be esti-
mated from experiments@34# andb is a parameter expected
to be of order unity, although in application of classical
theory to atomic systems it may vary from unity by several
orders of magnitude@38#. Crystal growth is assumed to fol-
low a Wilson-Frenkel law,

dX/dt5d$12exp@~m f2ms!/kT#%, ~8!

whereX is the crystal diameter reduced by the particle ra-
dius, t5D0t/a

2 is the reduced time introduced previously,
andd5aDs(f f)/2D0 is a reduced velocity witha an adjust-
able parameter thought to be of order unity. The self-
diffusion constant in the Wilson-Frenkel law need not be
identical to the one presented in the nucleation rate density.

The theory is compared with experiment for growth by
using the ‘‘known’’ values for the surface tension and
chemical potentials, but adjusting the parameterd so that the
sizeRc at time tc agrees with the experimentally observed
values. These sizes and times are shown in Fig. 8 for the two
different sized particle suspensions. For pure hard spheres
d is a function of volume fraction only, and we find that a fit
to the small-particle growth data givesd values approxi-
mately the same~within ;2x) as those for the larger-particle

TABLE I. The values in Eq.~2! corresponding to various volume fractions for different samples in three time regions.

Sample p2 p7 p7 p4 p4 p4 p4 p3 p3 p3

f 0.525 0.533 0.537 0.539 0.540 0.545 0.546 0.548 0.549 0.552
Nucl. and growth region 4.0 4.1 4.0~3.4! 4.0~3.5! 4.0~3.0! 2.9 2.2 2.2 1.8 1.3
Crossover region 3.1 3.7 3.6 2.8 3.0 2.75 1.8 1.9 1.1 1.1
Ripening region 2.9 1.82 1.53
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samples at the same volume fraction. The reduced nucleation
rate density theoretical results are also shown using a form
for the self-diffusion constant,Ds(f)5D0(12f/0.58)1.74,
given by van Duijneveldt@34# and assumingb is unity.
Clearly the two different particle sizes give different results,
and the theory could fit either~but not both! equally well if
one has complete freedom to adjustb. The theory shows a
much stronger dependence on volume fraction than the data
as the freezing point is approached.

The source of the discrepancies between the two different
particle size systems merits further comment. While it has
been claimed that these particle systems are close approxi-
mations of hard-sphere systems, it has also been argued that
the stabilizing layer introduces some ‘‘softness’’ into the in-
teraction that becomes more important as the ratio of the
stabilizing layer thickness to the particle radius increases
@18#. The rate of crystallization has been reported to increase
in silica particle systems when this ratio is increased@3#.
Furthermore, charge stabilized particle suspensions, though
at much lower particle volume fraction, have soft interpar-
ticle interactions and evidence a rapid crystal growth that is
linear in elapsed time to produce rather large crystals@7#.
Another indication of softness could be the increase in scal-
ing factor applied tofw to obtain f as particle size de-
creases. These observations may lead one to suspect that
softer interparticle interactions between the smaller particles
are responsible for the observed differences reported above.
However, the rate of nucleation is actually slower for the
smaller particles@Fig. 8~c!# when scaled to account for par-
ticle size. Furthermore, the phase diagram is consistent with
that for hard spheres where the coexistence region width is
10% of the freezing value. For softer repulsive potentials the
coexistence region is expected to become relatively more
narrow@19,20#. Other studies of the width of the coexistence
region, which change ratio of stabilizing layer thickness to
particle radius for PMMA core particles and a poly~12-
hydroxystearic acid! coating, show similar hard-sphere be-
havior @16#. In addition, low shear viscosity measurements
on PMMA particles by Mewis@18# show expected hard-
sphere behavior. At large stresses or volume fractions the
softness of the interaction may need to be taken into account,
but this ‘‘softness’’ does not seem to be important for non-
sheared samples undergoing crystallization. We conclude
that ‘‘soft’’ interparticle interactions are not the primary
cause for the observed differences between the large- and
small-particle suspensions.

Another factor that could influence the crystallization
properties of the suspensions is the polydispersity. It is mea-
sured to be 7% for the small-particle samples and 5% for the
larger-particle samples@6#. This is not a large difference but
may be significant. As polydispersity increases, both the
nucleation rate and the growth rate may be reduced. A single
large particle in the presence of small ones can distrupt or
delay the formation of a critical nucleus of smaller particles,
until the larger particle has diffused out of the way. Simi-
larly, the growth rate is slowed, because not every particle is
the right size to fit into the growing front of a crystal. Evi-
dently the self diffusion constants appropriate for nucleation
and growth in monodisperse suspensions should be modified
to include this slower diffusive process. Polydispersity can
also slow the ripening process, because ‘‘misfits’’ are ex-

FIG. 8. The elapsed time to theI m maximum given byDtc /a
2

~a!, the reducedq1/2 minimum given byqmina ~b!, and the nucle-
ation rate density given byN ~c! as a function of volume fraction
for 0.49 mm (s) and 0.22mm (d) radius particles. The solid
curve in ~c! is the predicted value from classical nucleation theory
for hard spheres withg f2s50.16kT/a2, b51, and the self-
diffusion constant described in the text. The open and solid squares
in ~a! and ~b! at f50.52, 0.54, and 0.56 are from computer simu-
lations with d50.1, 0.05, and 0.004 for the open squares and
d50.04, 0.026, and 0.013 for the closed squares, respectively.
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pelled from crystals into the grain boundaries. These impu-
rities act to pin the boundaries and slow the ripening.

The reduced nucleation rate density noted in Figure 8 for
the smaller particle samples are in agreement with these ar-
guments, since the polydispersity is larger for these samples.
The larger crystal sizes observed in the smaller-particle
samples result from the reduced nucleation rate density,
which allows more volume for a crystal to grow into before
the onset of ripening. For sufficiently high polydispersities,
the order-disorder transition is suppressed@39#. However, in
our studies the polydispersity is not sufficiently large to evi-
dence any narrowing of the coexistence region for the
smaller-particle samples. Thus we conclude that polydisper-
sity is a candidate for the observed differences measured in
the two different size particle samples but a quantitative
theory needs development. Evidently polydispersity has no
significant influence on the growth rate.

Another difference between the two sample systems is the
effect of sedimentation. In dilute suspension the sedimenta-
tion velocity is given by the ratio of buoyant weight of the
particle to the Stokes’ drag@21# and is proportional to the
particle radius squared. When sedimentation velocities are
scaled by this number, the values obtained depend only on
particle volume fraction@12#. Thus the ratio of the sedimen-
tation velocities of the small to the large particles is 0.19, and
this fivefold difference is evident in the time taken to char-
acterize the phase diagram for each system~13 d vs 62 d,
respectively, from the sedimentation data of large-particle
samplep4 @6# and small particle samplep7, which have
almost the same concentration!. No measurable sedimenta-
tion is observed in these systems until elapsed times corre-
sponding to ripening, as can be seen in Fig. 9. However, at
tc the onset of the crossover region, the samples have prob-
ably realized the equilibrium complement of crystal and
must simply phase separate over a long period of time into
colloidal-liquid and colloidal-crystal-rich regions. For the
volume fractions studied~greater thanf;0.52), the samples
contain ;50% crystal or more in equilibrium. Assuming
uniformly sized spherical particles and placing them at the
vertices of a cubic lattice, one finds that the separation be-

tween surfaces of nearest-neighboring particles is less than
2% of their diameter. Thus very little sedimentation is re-
quired to achieve large percolation clusters of crystals. These
networks would be sensitive to gravitationally induced
stresses. Since the gravitational forces on particles are pro-
portional to the bouyant weight, restructuring is expected to
occur faster in the larger-particle samples. Indeed, the cross-
over region is smaller or absent in the larger-particle
samples. We believe this is the primary cause of the differ-
ences in time to ripening in the two different systems. How-
ever, polydispersity could also slow the ripening by trapping
‘‘misfits’’ in the grain boundaries, but the ‘‘pinning’’ of
grain boundaries can give a smaller power-law growth be-
havior than that observed here.

B. Small times

The intensity maximumI m initially increased, propor-
tional to the fourth power of the elapsed time in the larger-
particle systems for volume fractions at and below the melt-
ing point. Above the melting point the power-law exponent
was difficult to determine because the data were near the
noise floor of the apparatus. The exponent appeared to be
somewhat less and on the order of 3. For the same time range
the characteristic wave vectorq1/2 showed little measurable
change at the largest volume fractions but decreased with a
power-law exponent of 0.5 at the melting point and a slightly
larger exponent at the smallest volume fractions studied.
These exponents suggested a diffusion-limited growth pro-
cess in contrast to the linear growth observed in charge sta-
bilized particle suspensions@2#. A simple crystal growth
model was introduced to explain these data@5,10#. It was
assumed that randomly positioned single crystals and associ-
ated depletion zones produced the small-angle scattering.
The magnitude of the scattering is proportional to the sixth
power of the crystal size times the number of scatterers. This
size is proportional to the reciprocal of the characteristic
wave vector and a constant rate of nucleation is assumed.
With these assumptions one finds

I m;q1/2
26t;t6a11, ~9!

wherea is the exponent characterizing the time dependence
of the wave vector. Fora50.5 the growth exponent for the
intensity is 4.0, as observed@6#.

For the small-particle samples the growth exponents for
I m are found to be larger, being 4.66 atf50.531, increasing
to a maximum of 7.15 atf50.545, and then decreasing to
5.75 at the melting point. The noise floor limited accurate
determination of growth exponents forf.0.552, which ap-
peared smaller (;3.3) than that determined at the melting
point. The characteristic wave-vector exponentsa were also
found to be larger, approximately 0.75 at lower volume frac-
tions up to 1.01 at the melting point.

To determine the validity of the model summarized by
Eq. ~9!, we plot the intensity growth exponent and 6a11 as
a function of volume fraction in Fig. 10. At the lower volume
fractions these exponents agree with the model, suggesting a
constant nucleation rate, as assumed previously for the
larger-particle systems. Near melting, however, the expo-
nents differ by order unity, indicating only an initial burst of

FIG. 9. This plot compares the time evolution ofI m(t) in sample
p4 with the observed sedimentation. Measurable sedimentation is
observed only well into the ripening range.
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nuclei. This has also been suggested as an explanation for the
behavior of the largest volume fraction of the larger-particle
samples@6#.

A range of exponents similar to those measured fora has
been observed recently@23# in calculations of crystal growth
based on the classical theory of nucleation and growth
adapted to suspensions of hard spheres@9#. In these calcula-
tions the volume fraction and the speed with which particles
become incorporated into the growing crystal determine
whether the growth is diffusion limited (a50.5), interface
limited (a51.0), or has an approximate power-law behavior
with an intermediate exponent. For growth in the coexistence
region with a large incorporation rate, the growth is diffusion
limited with a50.5. For smaller incorporation rates the
growth is slower and not diffusion limited. The growth
evolves as an approximate power law with exponent
a.0.5. Thus the slower growth of the smaller-particle
samples~due to polydispersity?! is consistent with the larger
growth exponents. The maximum growth exponents we
found in our model calculations for the smaller-hard-sphere-
particle suspensions were forf50.52, from a50.58 at
d50.5 to a50.74 at d50.05; for f50.54, a50.75 at
d50.05; and forf50.56, a50.55 atd50.005. With in-
creasing volume fraction, the growth exponent increases
slightly as do the experimental data. However, for volume
fractions greater than freezing, the theoretical value is much
reduced from unity, due to finite-size effects. The growth
never has time to approach the limiting value because of
competition with neighboring crystals for metastable fluid.

The crossover region for the smaller-particle samples is
similar for all volume fractions studied in the coexistence
and fully crystalline phases. At the beginning of the cross-
over, the intensity maximumI m decreases with increased
elapsed time, whileq1/2 increases in value, indicating a de-
crease in the characteristic length scale. The same behavior is
observed for the larger-particle samples for volume fractions
less than approximately 0.54. However, for volume fractions
at or above melting in the larger-radii-particle systems,I m
exhibited a brief inflection and no decrease in value with

increasing elapsed time. Correspondingly,q1/2 became con-
stant before decreasing again in the ripening region. The
shape function evidenced deviations from the early and late
elapsed time forms similar to that shown in Fig. 6. Given the
relationship between scattered intensity and characteristic
length scale in Eq.~9!, the decrease in scattered intensity
would seem to correlate with the observed decrease in char-
acteristic length scale. For the smaller volume fraction
samples (f,0.535), the intensity maximumI m andq1/2 re-
verse directions at the same time (tc). However, as the con-
centration of crystals becomes large enough that depletion
zones overlap, the proposed scattering mechanism for the
nucleation and growth region is corrupted. This is suggested
for volume fractionsf.0.535 by the fact that the intensity
maximumI m begins its decrease beforeq1/2 reaches its mini-
mum ~largest characteristic length!. Thus we picture inde-
pendent, spatially uncorrelated nuclei to form and grow ini-
tially; but as the sample fills with crystals and depletion
zones overlap and control the growth of crystals, the crystals
become spatially correlated. The crossover region represents
the change from a length scale correlated with the ‘‘size’’ of
individual crystals to a length scale correlated with the
‘‘separation’’ between neighboring crystals. Since the crys-
tals are in contact in the ripening region, the latter length
scale is also a measure of crystal ‘‘size.’’

Bragg scattering from the first-order peak has been moni-
tored during the crystallization process for a similar hard-
sphere suspension@40#. This method works best for volume
fractions at melting or larger due to the large number of
crystallites scattering to the diode array detector. The small-
angle scattering works better for smaller volume fractions
where there is increased scattered intensity due to increased
crystal size, in general. Thus the two methods complement
one another. The integrated intensity of the Bragg peakX is
a measure of the crystal fraction. It shows a rapid increase
with exponentm53 at volume fractionf50.530 and expo-
nentm54 at volume fractionf50.548 followed by a satu-
ration or very slow increase. The reduced times for this
change in behavior correlate well with the reduced time in
Fig. 8. The argument given in Eq.~9! should be modified for
Bragg scattering to readX;t3a11 if the nucleation rate is
assumed constant. The growth exponents then become
a50.66 and 1.0 for volume fractionsf50.530 and 0.548,
where we found via SALSa50.63 anda51.0, respectively.
This interpretation gives the same growth exponents deter-
mined by both methods. If the peak width is used as a mea-
sure of the crystal size, then the growth exponents are half
the values cited above and the nucleation rate increases ap-
proximately with the square of the elapsed time. However, it
is in this volume fraction range that these growth-law mea-
surements are the least reliable in the Bragg scattering
method. Also, the Bragg measurements detect only those
crystal planes that are oriented to scatter to the detector,
while SALS is sensitive to the whole crystal structure. These
planes may grow differently than the crystal as a whole.
Finally we note that the saturation ofX abovetc indicates
that crystallization is completed by this time and this as-
sumption leading to Eq.~4! is valid.

C. Late times

The extended crossover region for the small-particle
samples has limited our ability to characterize the ripening

FIG. 10. Intensity growth exponent (s) and 6a11 (d) as a
function of volume fractions.
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region. For three samples (f50.540, 0.549, 0.552) data
runs have been extended to more than two weeks. In the last
week, I m approaches a nearly linear increase with elapsed
time, whileq1/2 decreases with a power law near one-third.
This is similar to the behavior observed in the larger-particle
samples at the melting point. It may be understood@5# as a
ripening process where nearly equilibrium values of liquid
and crystal are present, but larger crystals grow at the ex-
pense of smaller ones. For example, if the characteristic crys-
tal size isR, then the scattering intensity for a single crystal
will go like R6, the number of scatterers likeR23, and the
total scattered intensity asR3. This total intensity increases
linearly in time if q1/2

21;R;t1/3. The growth exponent equal
to 1/3 is common in coarsening processes, especially where
the order parameter is conserved~known as Lifshitz-Slyozov
ripening @24#!. Crystallization is described by a noncon-
served order parameter, but evidently, the small-angle scat-
tering and the crystallization process are controlled by a con-
served quantity, the particle density. In contrast with the
larger-particle samples this growth exponent extends into the
fully crystalline region~volume fraction 0.552!. In the fully
crystalline region the larger-particle samples evidenced a
larger exponent (;1/2) that may increase further with in-
creasing volume fraction. This larger exponent might be ex-
pected in fully crystalline samples~Lifshitz-Allen-Cahn be-
havior @25#!.

D. Scaling and dynamical scaling

Dynamical scaling is often observed@26–30# in nonequi-
librium phase transformations or coarsening processes. At
sufficiently large times the scattered intensity distribution is
given by

I ~q,t !5q1/2
2d~ t !F@q/q1/2~ t !#, ~10!

whered is the dimensionality of the system andF is a shape
function. In Fig. 11, the measured peak intensityI m is plotted
as a function of the corresponding characteristic scattering
vector q1/2 value in the ripening region for sample volume
fractions 0.540, 0.549, and 0.552. The limited data for each

sample are compared with the solid line representing a
power-law behavior with exponent 3.0. All samples mea-
sured show reasonable agreement with an exponent corre-
sponding to three-dimensional space. While larger-particle
samples showed the same dynamical scaling in the coexist-
ence region and near the melting point, the exponent was
close to 2.0 for the largest volume fractions. This exponent
value remains unexplained.

The shape functions do not have universal form but de-
pend on the underlying physical process. General arguments
@17# giveF;q2 as the small wave-vector limit for scattering
from conserved quantities like particle density. On the other
hand, the large-wave-vector behavior for spinodal decompo-
sition @31,32# is expected@17# to go asF;q24 due to well-
defined surfaces and scattering in the Porod limit@33#. In
electrorheological fluids@35# the large-wave-vector behavior
goes asF;q23 due to Porod scattering from essentially
two-dimensional objects. For irreversible aggregation pro-
cesses@30#, the large-wave-vector limit goes asq2df due to
the fractal dimensiondf of the scattering clusters. In our
samples we expect the small-wave-vector behaviorF;q2;
however, due to the large characteristic size in the ripening
region we could not confirm this behavior with the present
apparatus. The large-wave-vector behavior suggestsF;qb

where 1,b,4. We believe this results from scattering from
a polydisperse collection of crystallites. The polydispersity
increases with increasing volume fraction but grows self-
similarly at a given volume fraction. We do not have a theo-
retical model for the crystal size distribution but note that the
classical theory of nucleation predicts a lower barrier to
nucleation as the volume fraction~undercooling! of the
metastable state increases. This lower barrier is conducive to
a more polydisperse or broader distribution of nucleus sizes.

In the nucleation and growth time regime, the lower vol-
ume fraction samples evidence a more complex behavior in
the large-Q8 portion of the intensity distribution, as seen in
Fig. 7. When the data are fit near the maximum intensity
with g;4.0 in the Furukawa function, it is clear that a
smaller exponent is needed to fit the largestQ8 intensities.
Preliminary microscopy studies for these lower volume frac-
tion samples indicate that there is some substructure within
the crystals@22#. Thus, this complex intensity distribution
may indicate both scattering from crystals~near the maxi-
mum! and from the substructure~for the high-Q8 tail!. In the
crossover and ripening regions this complex behavior is
eliminated. Because this transformation is accompanied by a
decrease in the characteristic length as noted for Fig. 5, it is
natural to suggest that the crystals are breaking up into the
smaller substructures. The breakup may result from gravita-
tional stresses or dissolution of crystal at internal defects.
The computer calculations@23# of crystal growth indicate
that these crystals should be compressed to higher than equi-
librium osmotic pressures so internal stresses are expected to
be present.
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