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Point defects are likely to be generated in the process of filling a capillary tube subject to homeotropic
conditions on the boundary. There is plenty of experimental evidence to hold that, when two defects with
opposite topological charge happen to be closer than a critical distance, they attract each other. At first, they
move very slowly; then, as the distance between them becomes less than a diameter, their relative speed
increases dramatically, until they annihilate one other. In this paper we describe, by means of a simple
dynamical model, the attraction and annihilation of two defects in an infinite tube. We write the balance
between the rate of change in the elastic free energy and the energy dissipated in the director motion. Hence,
we derive and solve the differential equation that describes the evolution in time of the distance between the
defects. The outcomes of our analysis confirm many qualitative aspects of the experimental evidence.
@S1063-651X~96!11111-9#

PACS number~s!: 61.30.Jf

I. INTRODUCTION

A topological chargemay be assigned to all point defects
in ordered media, as illustrated, for example, in@1,2#. Here,
to be specific, we focus attention on nematic liquid crystals,
though the main ideas underlying this paper could also be
applied to other similar media.

When the manifold employed to describe nematics is the
unit sphereS2, the topological charge of a point defect is a
relative integer. Inspired by the suggestive analogy with
electric charges, one expects that defects with opposite topo-
logical charge feel an attractive force, which draws one
closer to the other, until they coalesce, and possibly annihi-
late each other, leaving no trace of their existence, if the total
charge vanishes.

Sound mathematical reasons have been provided to show
that equilibrium configurations with prescribed point defects
of opposite charge cannot be stable, and must evolve in time
reducing the distance between the defects, so as to reduce the
elastic free energy stored in the region where the interaction
between them takes place. Here we take the elastic free en-
ergy per unit volume as given by

sF5 1
2Ku¹nu2, ~1!

whereK is a positive modulus andn is the unit vector field
representing the director; this is the form taken by the well-
known Frank’s formula in theone-constant approximation.
Brezis, Coron, and Lieb show in@3# that the minimum of the
elastic free energy in the whole space with prescribed point
defects of a given charge isnot attained, but there is a mini-
mizing sequence with energy converging to the infimum of
the energy functional, which for a pair of defects with
charges11 and21 is proportional to the distance between
them. Translated into the language of physics, this result
means that the defects in atopological dipoleare not at equi-
librium ~as the energy fails to attain its minimum!, and the

force they feel is constant~as the infimum of the energy is
proportional to the distance between them!. A naı̈ve argu-
ment to this effect was already brought up by Brinkam and
Cladis in their review article@4#. To put this conclusion in
the right perspective, the reader should heed that for them the
director field around a topological dipole is subject to no
boundary condition whatsoever, neither on the walls of a
container, nor at infinity, as an asymptotic data. In the prob-
lem that concerns us below the dipole is within a capillary
tube subject to homeotropic conditions for the director on the
lateral boundary. Thus it should be no surprise if we find that
the force experienced by the defects fails to be constant.

More generally, it was proven by Hardt, Kinderlehrer, and
Lin in @5# that if there is a sequence of equilibrium configu-
rations for the director, each involving point defects which
come closer to each other as the sequence index grows, and
eventually cancel out as the index diverges, then the defects
cannot be stable for every configuration in the sequence.
This simply means that the coalescence of defects, even
when they move extremely slowly, cannot be regarded as a
quasistatic process, being a sequence of equilibrium states
unfit to describe it mathematically. Once more this teaches
us the same lesson: coalescence and annihilation of defects is
an intrinsically dynamical phenomenon.

In @6# Ericksen makes this point even clearer, calling upon
an unpublished work by Cladis and Walters, who observed
the evolution in time of a pair of opposite charged defects in
a capillary tube so treated as to make the director normal to
the wall: ‘‘Starting a bit less than 4 diameters apart, the two
@defects# start moving toward each other, at a rate of a diam-
eter per thousand minutes, slow enough to make it somewhat
reasonable to consider using static theory to analyze the be-
havior at early times. However, when the distance between
them becomes a bit less than a diameter, the relative velocity
starts to increase dramatically, until they come together and
annihilate each other.’’
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Our paper aims at proposing a mathematical model which
describes this phenomenon through a peculiar dynamical
system where the defects behave, in a sense, like particles. In
Sec. II we recall from@7# and@8# a class of director fields in
a capillary tube fit to mimic both a11 defect and a21
defect. The fields in this class are determined by the shape of
a surface within the capillary, which we call thejoint, where
an orientationescapedalong the axis and one pointing to-
wards the lateral boundary are smoothly joined together. In
Sec. III we determine the optimal joint for a point defect of
either sign: it minimizes the elastic free energy stored in a
cylinder sufficiently high to be treated as infinite. Though
nonlinear, the equilibrium equation for the joint can be
solved exactly, which makes our model ductile enough and
its outcomes fully predictive. In Sec. IV we apply this model
to a topological dipole. We minimize the elastic free energy
when the distance between the defects is held fixed: within
our special class the infimum of this functional is indeed
attained; from it, we derive the force felt by the defects,
which is proportional to the logarithm of the distance be-
tween them. In Sec. V, employing the dissipation principle
posited in@9# by Leslie to give yet another derivation of the
dynamical equations for nematics, we arrive at the differen-
tial equation that governs the relative motion of the defects,
whence, in Sec. VI, we describe how they annihilate one
another. In Section VII we collect the main conclusions of
this paper, also attempting to compare the predictions of our
mathematical model and the first experimental findings we
are aware of: we discuss the issues now being addressed to
make the agreement between them more than merely quali-
tative.

II. JOINTS

Here we describe a class of director fields exhibiting a
point defect along the axis of a cylinder: we first focus at-
tention on a11 defect, a21 defect being easily obtained
from it. The fields we consider are all axisymmetric and
subject to the homeotropic anchoring condition on the lateral
boundary of the cylinder. The idea underlying the geometric
construction employed below is finding an explicit junction
between a field escaped along the axis, as the one discovered
by Cladis and Kle´man @10# and Meyer@11#, and the radial
field pointing towards the wall of the cylinder. This is
achieved by introducing ajoint, an axisymmetric free surface
where the two fields adapt one to another without jumps.
Figure 1 illustrates the prototype of such a joint: it separates
two regions, one peripheral and the other central: the director
is a planar radial field in the peripheral region, and an es-
caped field in the central region, differently rescaled on every
section through a plane orthogonal to the axis. Clearly, at the

lowest point of the joint there is a defect of the director, as it
is a point where the director should simultaneously be paral-
lel to the axis and to all radii.

Reversing upside down both the joint and the arrows rep-
resenting the director field in Fig. 1, we obtain the prototype
of a 11 defect, as illustrated in Fig. 2. In the class we em-
ploy, the two joints converging on the defect need not be
symmetric, nor need they meet smoothly, as implied in Fig.
2. The shape of each joint is completely free and will be
determined below by solving a variational problem: it may or
may not bear an angular point on the defect. In Fig. 2 we see
a11 defect; a21 defect is obtained from it by reversing all
the arrows upside down relative to the transverse section of
the cylinder, so that a domain escaped upwards turns into
one escaped downwards, and vice versa. It is thus clear how
a sequence of alternating defects can be generated by using
fields alternately reversed.

We now give an explicit representation for the building
block of this construction. We first consider a cylindrical tile,
which will then be repeatedly employed along a capillary
tube: we denote byR its radius and byh its height. We put
the defect at the center of its lower base, as in Fig. 1, and we
represent in cylindrical coordinates the longitudinal section
of a joint through the functionr5r 0(z), wherez varies in
the interval @0,h# while r 0 takes values in the interval
@0,R#.

In the local frame of cylindrical coordinates (er , eq , ez)
we express the directorn through the formula

n5coswer1sinwez , ~2!

where the anglew is given by

w~r ,q,z!5H p

2
22 arctanS r

r 0~z! D for 0,r,r 0~z!

0 for r 0~z!<r<R.
~3!

In the inner region delimited by the joint, Eq.~3! ~top line!
represents the well-known field of Cladis and Kle´man in a
cylinder of radiusr 0(z). If r 0(h)5R, as in both Fig. 1 and
Fig. 2, the field on top of the joint is the usual Cladis and
Kléman’s, which can be smoothly extended in a cylinder of
radiusR as a field independent ofz, radially oriented only on
the lateral boundary. It is indeed the presence of the joint that
makesw depend onz.

By ~3! the elastic free energy stored in both regions ad-
jacent to the joint ultimately depends on the functionr 0,

FIG. 1. Prototype of ajoint, that is, an axisymmetric free surface
which separates a peripheral region, where the director is a planar
field, and a central region, where the director is an escaped field.

FIG. 2. Prototype of a11 defect, composed by the joint in Fig.
1 and that obtained from it through a reflection.
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which describes the shape of the joint. We denote byEh this
energy, which is the integral of~1! over the cylinder of ra-
diusR and heighth. As shown in Sec. 2 of@8#, where the
mathematical details of this class of director fields have al-
ready been presented,Eh5pKEh , whereEh is a functional
of r 0:

Eh@r 0# :5E
0

hH a~r 08!22 lnS r 0R D12J dz ~4!

with a prime denoting differentiation with respect toz and
a :52 ln221 a positive number magically emerging from
the integration of the energy density over the radial variable.
We often callEh the energy of a joint of heighth: it is
invariant under reflection of both the joint and the director.

The Euler-Lagrange equation forEh can easily be inte-
grated once, leading to

a~r 08!252 lnS r 0R D1C, ~5!

whereC is an arbitrary constant. The condition this equation
is subject to forz50 is clearly

r 0~0!50, ~6!

which prescribes the point where the defect lies, whereas that
for z5h requires a few words to be justified. It is

r 08~h!50, ~7!

which represents the natural equilibrium condition at a free
end point, as the radiusr 0(h) of the cross section of the joint
where it reaches the prescribed heighth is free to be so
chosen as to minimize the energyEh . Let

r :5
r 0~h!

R
. ~8!

It follows from ~5! and ~8! that

C5 lnr, ~9!

which makesr the constant to be determined in@0,1#. By
separation of variables, Eq.~5! can be solved for the inverse
of the functionr 0(z); denoting such a function byz0(r ), we
obtain

z0~r !5rRAaE
ln~rR/r !

1` e2x

Ax
dx, ~10!

which is our explicit representation for an equilibrium joint.
It satisfies~6!; moreover, by~8!, it follows from ~10! that

h5rRAaE
0

1`e2t

At
dt5rRAap. ~11!

Thus,r is given a unique value, which through~10! deter-
mines a unique joint, provided thath<AapR. The shape of
this joint is smooth everywhere. In particular, it is flat on the
defect and tangent to the cylinder of radius (h/Aap), where

it reaches the heighth, as is easily seen by taking the limits
for r→0 andr→rR in the derivative with respect tor of the
function in ~10!.

We compute the energy of the equilibrium joint by using
~5! in ~4!, where the integration variable is changed intoz
with the aid of~10!; recalling ~9! also, we arrive at

Eh5~32 lnr!rRAap, ~12!

wherer is related toh through~11!.
If h.AapR, there is no equilibrium joint of heighth. In

our model, this lack of existence, typical of nonlinear varia-
tional problems, will have an effect on the interaction be-
tween two opposite charged defects. AsAap.1.101, the
defects feel no force when they are farther apart than ap-
proximately 1.1 diameter of the capillary. Before drawing
the dynamical consequences of this fact, in the following two
sections we apply our construction to two simple static situ-
ations.

III. SINGLE DEFECT

Consider an infinite cylinder of radiusR, which accom-
modates a11 defect along its axis and enforces the homeo-
tropic anchoring for the director on the lateral boundary. Fig-
ure 3 illustrates a portion of this cylinder, whose height is
taken to beH54AapR for reasons which will become clear
below. Being higher than 2AapR, there is no pair of equi-
librium joints stretching through the whole of it on both sides
of the defect. The highest equilibrium joint corresponds to
choosingr51 ~that is,C50) in ~10!; by ~11!, its height is
AapR. Both joints in Fig. 3 are thus tangent to the cylinder;

FIG. 3. A 11 defect structure in a cylinder of height
H54AapR. The joints reach their maximum height and end tan-
gent to the cylinder.
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below and above them, two escaped director fields are dis-
played, pointing in opposite directions.

IV. TOPOLOGICAL DIPOLE

We say that two defects of charges11 and21 constitute
a topological dipole. Here we study how they interact while
sliding along the axis of a capillary tube. As above, we re-
strict our attention to a cylinder of heightH54AapR,
where two defects can be tightly accommodated along with
their joints ~see Fig. 4!. Within our model, there is no point
in considering higher cylinders when we deal with a dipole,
as the structures here associated with both defects would not
interfere with one another as long as the distanced between
the defects remains bigger than 2AapR. To see this better,
one should consider that whend.dc , bringing the defects
closer to one another would require rearranging the directors
so that strips of escaped field between the defects are taken
away from them to reappear below the lower joint or above
the upper one, while taking the defects farther apart would
require bringing back the escaped strips. Clearly, no change
in the total elastic energy is involved in either of these re-
arrangements, and so the defects feel no force; they may
freely fluctuate in the capillary, each unaware of the presence
of the other. In Fig. 4,d5dc ; the defects justseeeach other
and are to interact in a way we now describe.

If d,dc , each of the symmetric joints connecting the
defects is highd/2,AapR. When at equilibrium, they both
meet smoothly on a circular cross section of radius

rR5
d

2Aap
. ~13!

Figure 5 illustrates one of these equilibrium configurations in
a cylinder of heightH; both outer and inner joints are de-
scribed by a function as in~10! or its opposite, wherer is set
equal to 1 for the outer joints (C50), and is given by~13!
for the inner ones (C,0). To compute the total elastic free
energyF(d) stored in the cylinder where the defects interact,
we apply ~12! to the four joints here involved in our con-
struction, and we recall that the energy associated with Cla-
dis and Kléman’s director field in the upper and lower strips,
each high (1/2)(H2d22AapR), amounts to

2pK~H2d22AapR!, ~14!

whereH andR are again the height and radius of the cylin-
der. Bringing together all these contributions to the elastic
free energyF(d), we obtain

F~d!52pK$~32 lnr!rAapR2d1AapR1H%, ~15!

where r depends ond through ~13!. The derivative of
2F(d) with respect tod is the force felt by each defect

f ~d! :5pK ln
d

dc
, ~16!

which is attractive, beingd,dc .
The sign off (d) has a direct consequence on the absolute

energy minimizers; wered free to decrease fromdc to 0, the
elastic free energy would decrease as well, indicating that the
absolute minimizer would bear no defect, as the defects in a

FIG. 4. A topological dipole together with the joints through
which the defects are accommodated in a cylinder of height
H54AapR. The distance between the defects isdc52AapR, so
that they justseeeach other.

FIG. 5. The equilibrium configuration of the joints describing
two defects at a distanced,dc inside a cylinder of height
H54AapR. For the outer jointsr51, while for the inner ones
r,1.
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dipole would annihilate each other ford50. This, however,
is a process which needs to be phrased in an appropriate
dynamical context.

V. DYNAMICS

Our dynamical model rests upon the dissipation principle
on which Leslie@9# has recently rebuilt the classical theory
for nematic flows. In the case of interest to us the hydrody-
namic macroscopic flow is negligible, as the motion of de-
fects is primarily due to a rearrangement in time of the di-
rector field. Thus Leslie’s dissipation principle takes a
simpler form,

Ḟ1W50, ~17!

saying that the time rate of the elastic free energyF stored
within a fixed region in space balances out the energyW
dissipated in the same region by the viscous torques acting
on the director. As is customary in nematic liquid crystals,
the molecular inertia being negligible, no account is taken in
~17! for the kinetic energy of the director motion. LetW be
the energy dissipated per unit volume. In the absence of
flow, for a director field represented as in~2!, W reduces to

W5g1S ]w

]t D
2

, ~18!

whereg15a32a2.0 is the difference between two Leslie
coefficients~cf., e.g., Chap. 5 of@12#!.

Another assumption is essential to our development. We
take each of the configurations traversed by a topological
dipole while the defects come closer to each other to be the
equilibrium configuration corresponding to the current dis-
tance between the defects. Thus~17! will eventually turn into
a first-order differential equation ford.

To compute the energy dissipated in the same cylinder of
heightH where in the preceding section we found the equi-
librium configurations for the director, we first need to con-
sider a generic joint as in Sec. II, but movable, so that the
anglew may depend on time through the joint itself. This is
achieved by lettingr 0 in ~3! depend also ont, besidesz.
Precisely as we arrived at~4!, we can now compute the en-
ergyWh dissipated in a joint of current heighth; it is given
by

Wh52pg1aE
0

hS ]r 0
]t D 2dz, ~19!

wherea is the same magic number as above. Like~12!, also
this integral can more conveniently be expressed in terms of
z0, the inverse function ofr 0 defined in ~10!, which now
depends ont too, as doesr

Wh52pg1aE
0

rRS ]z0
]t D 2

U ]z0
]r U dr. ~20!

We compute an integral like this for each joint in Fig. 5,
taking care, in representing the variousz0’s, to regard as

immobile only the center of symmetry of the dipole and to
taker as 1 or as in~13!, according to which joint is being
considered. Adding them up, for the total energy dissipated
in the process we obtain

W52pg1~ap!3/2R3~lr11!ṙ2, ~21!

wherel is defined by

l :5
4

p3/2E
0

1`

$2e23x21pf2~x!x2e2x2%dx ~22!

in terms of the probability integral

f~x! :5
1

Ap
E
0

x2e2y

Ay
dy. ~23!

A numerical computation yieldsl.1.445.
In ~21! r actually depends ond through ~13!, and so it

decreases asd does. Thus the effective viscosity
g :5g1(lr11) decreases as the defects approach one an-
other, suggesting that their motion should become faster and
faster as time elapses.

Since hereḞ52 f (d)ḋ, combining~17!, ~16!, and ~21!,
we deduce the differential equation that within our model
governs the dynamics of a topological dipole. It is conve-
nient to express it as an equation for the dimensionless pa-
rameterr, rather than ford

T~lr11!ṙ5 lnr, ~24!

where

T :5ap
g1R

2

K
, ~25!

is a relaxation time, which depends on both the material and
the size of the capillary. Collecting data from pp. 105 and
231 of @12#, we easily see that forp-methoxybenaylidene-p-
n-butylaniline ~MBBA ! at room temperature in a tube of
radius approximately 100 microns,T is of the order of min-
utes.

VI. ANNIHILATION

We now describe the evolution in time of the distance
between the defects. Letd0,dc be the initial value ofd; it
corresponds to the initial valuer05(d0/2AapR) of the pa-
rameterr. An integration by separation of variables in~24!
shows thatr vanishes in a finite time

ta :5TE
2 lnr0

1` 1

x
~le22x1e2x!dx, ~26!

which is theannihilation time. Let

t :5
ta2t

T
~27!

be the dimensionlesstime before annihilationand d :5
d/2R the distance between the defects measured in diam-
eters. It follows from~24! and~13! that the function express-
ing d in terms oft can be given the parametric form
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d5Aapr ~28!

t5E
2 lnr

1` 1

x
~le22x1e2x!dx.

The graph ofd versust is plotted in Fig. 6, asr ranges
between 0 and 1. It has an asymptote ford5Aap, which it
approaches ast diverges to infinity, whereas it steeply drops
into the origin ast approaches zero.

Further information can be drawn from the dimensionless
approaching velocityv :52 ḋT. By ~28! ~top line! and~24!,

v52Aap
lnr

11lr
, ~29!

which together with~28! ~top line! represent the parametric
form of the function plotted in Fig. 7. It diverges logarithmi-
cally as the distance approaches zero. The plots in both Figs.
6 and 7 areuniversal, as they do not depend on either the
annihilation time or the initial value ofd.

After the defects have annihilated each other, the director
field in the capillary is still not uniform along the axis, like
Cladis and Kle´man’s. Such a uniform field, which is the
absolute energy minimizer, is indeed reached through a fur-
ther rearrangement that here we describe in words, leaving
aside any mathematical detail. The inner joints in Fig. 5 hav-
ing now disappeared, a possible way to make the escaped

field prevail everywhere is by rigidly sliding the outer joints
one towards the other, erasing meanwhile the regions where
they are thus brought to overlap, as suggested by the sketch
in Fig. 8. An easy computation shows that the elastic energy
stored in the cylinder steadily decreases in this process.

VII. CONCLUSIONS

We have proposed a mathematical model to describe the
approaching and annihilation in a capillary tube of two point
defects with topological charges11 and21. The most dis-
tinctive feature of this model is the interaction force between
the defects, which is predicted to depend logarithmically on
the distance between them and to vanish when they are far-
ther apart than a critical distance, shortly above a capillary
diameter. Such a screening in the interaction might well be
an artifact of the special fields employed to describe the di-
rector around the defect, though in the absence of any more
refined model this issue cannot be unambiguosly resolved.
We are aware of the other simplifying assumptions upon
which our model is built: above all, our treatment of the
dynamics, where the motion of the defects is regarded as a
sequence of equilibrium states affected by dissipation. We
are, however, convinced that the simplicity and predictive-
ness envisaged here are merits of this model.

In @5# Ericksen reproduces the data of an experiment by
Walters and Cladis@13#, where the phenomenon we have
modeled here was observed for MBBA at 23 °C within a
capillary tube 150 microns wide. In their experiment the de-
fects move very slowly as long as the distance between them
is greater than approximately 1 diameter; then, their relative
velocity increases more and more until they annihilate one

FIG. 6. Graph of the distanced between the defects measured in
diameters versus the dimensionless timet before annihilation:d
approachesAap ast diverges to infinity.

FIG. 7. Graph of the dimensionless approaching velocityv vs
the distanced between the defects measured in diameters:v di-
verges to infinity asd approaches 0.

FIG. 8. The rearrangement of the joints after the defects have
disappeared. The joints are brought to overlap until az independent
escaped field prevails in the whole region.
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another. The data are recorded in a plot which gives distance
versus time; they seem to fit nicely the graph in Fig. 6. None-
theless, we could not go any farther than a qualitative agree-
ment, mainly because of the uncertainty introduced in infer-
ring the data from the experimental plot.

A similar experiment is now being performed in Halle by
Hillig and Saupe@14# with a lyotropic liquid crystal. We

hope that their data will soon tell us to what degree the
model proposed here can be trusted.
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