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Friction drag on a particle moving in a nematic liquid crystal
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The flow of a liquid crystal around a particle not only depends on its shape and the viscosity coefficients but
also on the direction of the molecules. We studied the resulting drag force on a sphere moving in a nematic
liquid crystal MBBA (4-methoxybenzlidene“‘4n-butylaniline in a low Reynold’s number approach for a
fixed director field(low Ericksen number regimeusing the computational artificial compressibility method.
Taking the necessary disclination loop around the sphere into account, the value of the drag force anisotropy
(F. /Fj=1.50) for an exactly computed field is in good agreement with experimentsy) done by conduc-
tivity diffusion measurements. We also present data for weak anchoring of the molecules on the particle
surface and of trial fields, which show to be sufficiently good for most applications. Furthermore, the behavior
of the friction close to the nematic to isotropic transition point and for a rodlike and a disklike liquid crystal
will be given.[S1063-651X96)04411-X

PACS numbe(s): 61.30.Jf, 61.30.Cz, 83.85.Pt

I. INTRODUCTION the drag force is no longer parallel to the line of motion.
There is a further component perpendicular to it, the so-
Most of the applications of liquid crystals are connectedcalled lift force, which moves the particle sidewagee Fig.
to their flow properties, either while processed or in the ap-l). It is worth mentioning that this force does not contribute
plication itself. The reorientation of the director field, for to the dissipative losses in the system, an effect well known
example, which is used in electro-optical devices, is linked tdrom other areas of physics such as electrodynantécs
internal flow. The fastest response times needed for furthegharged particle in a magnetic field is forced to change its
development are limited by the friction effects. But althoughdirection without losing or gaining any kinetic enejgy
the basics of the hydrodynamics of liquid crystals were es- A further problem is the influence of the director field
tablished about 30 years ago, most of the problems cori(r) on the flow since it not only changes but also gives a
nected with flow are still unsolved. This is mainly due to thecontribution to the dissipative losses in the systems. In par-
anisotropy of the system and the nontrivial connection of thdicular, regions of high gradients of the director field result in
direction of the molecules and the velocity. higher resistance to the flow. Such regions are mainly found
A deeper insight into the hydrodynamics of liquid crystals around disclinations, which are often unavoidable due to the
and the connection between macroscopic and microscop@eometry of the system. If we consider, for example, perpen-
properties would allow one to predict the behavior of par-dicular boundary conditions on the surface of the sphere and
ticular materials and therefore to design special liquid crysa uniform director field far away from it, there is a disclina-
tals to obtain certain characteristics required. Precision extion loop around the sphergee Fig. 1, which is unavoid-
periments are often difficult to perform since many of the
standard techniques do not work for these materials. It would

be useful to have more independent methods of measuring //’/ BN A E SO ///
the viscosity than only a traditional shear flow. A further e /P/ /l/, o /////////;/
technique, the falling ball experiment, was solved for an iso- S NG
tropic liquid by Stokes. It consists of a ball falling down in a S S\ )
cylinder driven by the gravitational force and measuring its [10TNS SOOI
equilibrium velocity. The viscosity; can then be determined [0/ 2223 A
by the well-known Stokes formul& = —67r v, which 7l o2zd - =R
gives the relation between the friction dr&g , the radius ///,C/////c/”;://// E \,:_/,7/,7/5/?;;
r of the ball, and its velocity. _ _ v //C/c/oj//% \\\\\\ﬂ//// S

For liquid crystals this problem gets another dimension Lol j////j//j///// \I\‘\f\\)‘r'//////// /
since the drag force also depends on the geometry of the = ////// '/‘,‘,'U,’//’//,/////
system. It is obvious that the drag force on the sphere is 7 ///// ///// E. //////// ‘)
different for the two particular cases of the flow and director S /?\//ﬂ ARy

parallel and the flow and director perpendicular to each

other. Using a liquid crystal of rodlike molecules, it becomes g 1. if a sphere falls down in a gravitational field and the
clear that it is easier to move the particle parallel to thegirector field is not parallel to the force, there is, besides the friction
general director field, i.e., along the long axis of the mol-f antiparallel to the gravitational force, also a comporfeniper-
ecules, than to move it perpendicular to the director, i.e.pendicular to it, the so-called lift force. Note also the disclination

perpendicular to the long axis. In the general c@sbitrary  loop around the particle due to the boundary conditions, indicated
angle between flow and direcjahis results in the fact that by the dots.
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able for topological reasons. The su_rface of the sphere €Ol = ary NN Ay + NN + arani N + argAyj + s A
responds to &=1 point defect and since the overall defect
charge of the system must be zdtbe director field is uni- + agninAj - 1)
form far from the particlg this defect must be balanced by ) ) ) )
the disclination loop. The energy of the ring is roughly pro- (Here and below in this article we use the tensor index no-
portional to its length, therefore it is favorable to have it astation, i.e., an index appearing twice in a product means a
small as possible. On the other hand, the rigid boundargummation over this index, and the_ shor_thand_notatlon for
conditions at the surface of the particle push the ring awa@radientsB ;=V;B). Hereq; are the viscosityLesli) coef-
from the sphere, so that the final position is given by thdicients,A represents the symmetric part of the fluid ve_Iocny
balance of the two effects. gradients [Aij=%(vi,j+vj,i)], and the vector N;=n;

The drag force is sensitive to the radius of this loop. In+ 3[AXcurlv]; is the change of the director with respect to
both limiting casesflow and director parallel or perpendicu- the background fluid. Finally, there is a statelastio con-
lar to each othgrthe resistance is increased, but the magniribution due to the curvature of the director field
tude of the influence is quite different. For the director per-
pendicular to the velocity the flow is parallel to the ring and o =—Kngjn, 2
it acts like a plate moving in the liquid crystal. For the ve- ) o .
locity and(general director parallel to each other the flow is diven in the one-constant approximatidfrank elastic con-
perpendicular to the ring, which not only increases the cros§tantsk,=K,=K;=K). _
section of high director gradients around the ring and the The director field is determined by the balance between
liquid crystal flow but also has a further effect: a certainthe static molecular field®=KV?A and the viscous molecu-
amount of the liquid crystal has to flow through the gaplar field h{=(a,—a3)N;+(ag—as)n;A;;. The total mo-
between the ring and sphere, where the director lies in théecular field has to be parallel to the director, bdtcan be
plane of the ring and is therefore locally perpendicular to theneglected in the low Ericksen number regimib]
direction of the flow. As a consequence, the anisotropy of thé Er=avR/K<1, wherev is a characteristic velocity an
system, i.e., the ratio of the drag forces, decreases with atite radius of the sphexeThis condition is met in a typical
increasing radius of the disclination loop. This means thathermotropic  liquid  crystal with K~10"' N;
stronger boundary conditions lower the anisotropy. a~(5—10)x10"2 Pas in the case afR<10 8 m? s7 1,

The theoretical problem of a liquid crystal flowing around which allows speeds of mm/s for small colloid particles
a body has been addressed before. Diptjoassumed the (R~10 um).
velocity field around the sphere to be the same as for an Considering low Reynolds number flow and using the
isotropic fluid and calculated the drag force for differentequation of continuity we end up with seven equations
angles between the director and the velocity. Roman and

Terentjev[2] obtained an analytic solution for the flow ve- dij =0, (3
locity for a fixed uniform director field, by an expansion in

the anisotropy of the viscosity. Recently, Heuer, Kneppe, vi,i=0, (4)
and Schneider gave solutions for the velocity of the liquid

crystal, assuming a uniform director field, independent of the Kn; jj=An 5)
flow [3].

All these solutions have their deficiencies. None of themfOr Seven unknown variableghree for the velocity field,
for instance, considered the distribution of the director fieldthree _forAt?e directon and the Lagrange multipliex con-
due to the boundary conditions on the particle. This will beStrainingn“=1, and one for the pressurefhe equation(s)

done in this article, where the results are also compared witfP" the director is decoupled from the velocity due to the low
various approximations for the directd(r). Ericksen number approach and can be solved separately for

The article is organized as follows. After a brief introduc- the static problem, which then leaves only the hydrodynamic
tion to the basic equations of the hydrodynamics of liquigPart of Egs(3) and(4). Once the velocity fiela/(r) and the
crystals that are needed in Sec. I, we give, in Sec. IIl, a shoressurey(r) are obtained, the convenient way to determine
description of the numerical method we used to solve thdhe drag force is by calculating the total dissipation in the
equations of motion. Section IV gives the director fields weSYStem
used and explains the limits when they are valid. The results
for the drag properties and a comparison with experimental Fvoo=f (o' :A+h’-N)dV, (6)
data are given in Sec. V and, finally, we conclude with a

discussion of possible experiments in Sec. VI. . . . e
P P wherev., is the constant velocity of the fluid at infinity.

Il. BASIC CONCEPTS

. . . . . Ill. NUMERICAL METHOD
In this section we give a brief summary of the nematic

hydrodynamics that are used in this work. For derivations of We followed the example of Heuer, Kneppe, and
these equations we refer the reader to the basic textlfypk Schneidef3] and used the artificial compressibility method
see alsg5]. The stress tensor of a nematic liquid crystal (see, for exampldg]) to solve the equations of motion. The
consists of three contributions. The first two are the hydroidea of this method is that the system starts with an arbitrary
dynamic pressure and the viscous stress given by the ten-startup velocity and pressure field and relaxes in an artificial
sor time towards its equilibrium, which is the solution we are
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TABLE I. Treatment of the boundaries around the first octant. The notation bc refers to the fact that this
value is fixed by the boundary conditions of the problem, symm denotes given by symmetry, the values given
by cal can be calculated with the untreated equations of motion, se-inter is the value determined by an
analytically simplified equation for the uniform field and by an interpolation for the nonuniform field, and
finally extr means the value was calculated by an extrapolation.

&=0 &=1 ¢=0 T 0=0 T
) )

Vy bc—0 bc—0 cal symm-0 symm-0 symm—0
vy bc—0 bc—0 symm-0 cal bc—0 bc—0
v, bc—1 bc—0 cal cal se-inter cal
p bc—0 extr cal cal se-inter beO

looking for (9;p=0, d,v;=0). The equations to solve are v, is zero everywhere in the system and the problem be-
comes two dimensional. Furthermore, it is favorable to use a
Oij,j=di, Vji= —c?ap, (7) spherical coordinate system with an inverse radius
) ) ) ) (§=1/r:l/\/x2+y2+ 22, 0=arctan/x2+y2/z, and ¢
wherec is an arbitrary damping parameter, which should be_ grctary/x). This has two advantages: the outer boundary
chosen as large as possible to speed up the calculd@ow  conditions] v(), p(=)] are included in the grid used for the
ever, if ¢ is too large the numerical scheme becomes uncalculations and the mesh size of the grid is smaller near the
stable. surface of the sphere, where most of the changes happen, and
Due to the linearity of Eqs(7) it is necessary to solve large far from the particle, where the values stay almost con-
them only for the two particular cases where the flow andstant. It is sufficient to pursue the calculations in one quad-
director are parallel and perpendicular to each otherant only since the other three are given by symmetry. It is
[A(=)[v(*) andn(>)L v(=)]. The advantage of these solu- also evident that the radial velocity must be zero at both
tions is the simple geometry. For an arbitrary angle betweeboundaries. The values for, at 6= 7/2 can be computed as
the velocity and director they are just added together, i.e., ththe inner grid points, whereas the valueséat0 request
friction drag can be calculated by the resistance tensospecial treatment since they contain the termécasd are
Mij=M, &;+(M;—M )nn;, which determines the re- therefore of the form 0/0. Since it was not possible to obtain

sponse of the drag force on the sphere to the flow around ithem by an interpolation, we simplified the equation by tak-
ing the limit for #=0 [v,(£,0)=lim,_ v (&, 6)] analytically

Fi=Mij(Nve; =M v+ (M—M_)(Ve-R); . (application of I'Hgital’s rule).
_ S o In the second case, the director perpendicular to the ve-
For an isotropic liquid the tensor is simpM;;=Mé&;;,  locity, there is no rotational symmetry and the calculations

where the constanM is given by the Stokes friction have to be done on a three-dimensional grid. It is again fa-
M= —6mR7. The ratioM , /M| is a measure for the anisot- vorable to use spherical coordinates with an inverse radius
ropy in the system since this gives the lift effect in the drag(see Fig. 1 for the reasons explained above, but this time
force. In the first case, assuming that the flow is along thehe velocity components are kept Cartesidgf.e.,

z axis and the director is parallel to it, the system is symmety, (£, ¢, 60),v,(&, ¢, 0),v,(£,4,6)]. Due to the symmetry it is

ric with respect to azimuthal rotations around theaxis.  sufficient to solve the equations in one octant. The conditions
When the velocity components are transformed to cylindricabn the boundaries of this octant and the needed values are
components vy ,v,—~v,,v4,0;,) the azimuthal velocity calculated as is shown in Table I.

[/ /
[ [/ /

/ / A(i.i‘kﬂ) / /\

/P(i,j-l,k)/A(iJ’k) /v(i,j+1,ky

FIG. 2. One layer of the matrix§E 1/r =const) and its transformation to real space. The lines of the constant anmgénsform to
longitudes and the consta#tto latitudes. Note the decreasing distance between two longitudes while approaching the pole. This yields a
nonunique point ag=0.
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The constant number of grid points in the plane of the
azimuthal angle¢ direction (independent of9) leads to a
decrease in the mesh size in real space while approaching the
pole and finally yields a nonuniqueness for the pdle=Q)
itself. A constant distance in real space would require fewer
points (a factor ~0.7), but it involves more calculations
since the derivatives become more difficult. Therefore we
chose the grid shown in Fig. 2. The values at thaxis,
which are nonunique, were then calculated for egchnd
set to their average ovep [v,(£,¢,0)=(v,(¢,¢,0)), for
every £].

IV. DIRECTOR FIELD

As described above, the director field can be taken as
fixed during the calculations in the low Ericksen number
regime. In order to study the influence of simplifying as-
sumptions concerning the form of the field we performed the
calculations with different director fields(r). In the one-
constant approximation the director field is described by the

minimum of the Frank free enerdyy ) d)
_ a2 ~\2 FIG. 3. Director fields fofa) no anchoring at the surface of the
Fa f (V-m)=+(VXn)=dV. (8) sphere(b) weak anchoring(c) arctan field, andd) numerical so-

R R lution fulfilling the boundary conditions. The black dots show the
If we take into account that is a unit vector and set(«) position of the disclination loop and the gray dots show where they
parallel to thez axis, we can write the director components would be(having this director field without the sphgre
as

gives 8= (RW4K)R3sin26/r3, whereW is the anchoring en-

Ny=sing siny, (9 ergy andR the radius of the particlg7].
(iii ) If we assume strong anchoring on the surface of the
ny=sing cosy, (100 sphere WR'K>1) the director field is forced to have a dis-
clination loop(radiusa) around the equator of the field. The
n,=cosB, (17 direction of the molecules in the plane of the ring must be

radial between the ring and disclination and parallel to the
where 8 and y are angles dependent on the spatial coordiz axis in this plane outside the disclination. Furthermore, the
nates. The director field in our problem is rotationally sym-perturbation of the field must decay ag®far from the
metric with respect to the axis. We can therefore set sphere. The simplest function that shows this behavior is
y=arctary/x. Inserting this into Eq(8) and minimizing it,

we are left with one equation for the polar anglér): 1 sin26
B= 60— sarctan————. (19
2 a)
r

sin2pB cos20+
A~ arsieg O 12
There is an extensive discussion of the features and details of

whereg is a function of the radius and the azimuthal angle the director field in the strong anchoring regirfid. The
0. Therg are seyeral pos_sibilities to proceed with finding thezonclusion reachef¥] is that Eq.(14) provides a very good
static director fieldsee Fig. N approximation, describing well the far-field behavior, the

(i) If we neglect the boundary conditions on the surfacegjisclination ring vicinity, and even the weak anchoring case
(anchoring energy is zeyowe get the (trivial) solution  \yhen the ring radius is takena— WR}4K .
B(r,0)=0, i.e., the director is uniform in space, parallel to (i) There is no analytical solution for the whole problem
thez axis. This was the approach chosen by Heuer, Kneppgsatisfying Eq.(12) andthe boundary conditiodsWe there-
and Schneider authof8] in their analysis. fore solved the equilibrium equatiq2) numerically with a

(it) Provided the anchoring on the surface is weak andnethod similar to the artificial compressibility method men-
therefore the anglegs [the deviation fromn(e)] remains tioned before. In this way we obtain the exact director field

2

small, EQ(].Z) can be linearized and y|9|dS ﬁ(r) on every point of our grid.
B
2p_ - V. RESULTS
V2B 2os=0. (13)

First we examine the influence of the different director
This equation, with the corresponding boundary conditiondields [uniform, trial function 8, and the exact numerical
and the symmetry of the problem, can be easily solved and(r)] on the drag force acting on the sphere, using the par-
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1.7 T T T T T T T force differs from that for the exaci(r) distribution by up to
16 e 1ria FRact field — 20%. The significantly higher ratio is a particular problem
;p T upiform field ---- _| since it shows that the effect of boundary conditions on the
= - ) surface cannot be simply modeled by a larger effective hy-
2 ol RN ] drodynamic radius. The dependence on the mutual orienta-
g 13 T 7 tion of n., andv., is too strong.

E 12} . - These results can be compared with experimental figures.
% N - The diffusion of particles in a nematic liquid crysta) is

1;0 s - described by the diffusion tens@r, which is indirectly pro-

=]

P i portional to the resistance tens@=kgT(M) !, wherekg
B S ST | . | | is the Boltzmann factor and the temperature. Conse-
0'80 02 04 06 08 1 _ 12 14 16 quently, the tensor is of the same form as the mobility tensor
effective temperature T/Tr; Dij=D, &;+(Dj—D,)nn;, with D, =kgT/M, and D,
=kgT/M. Recent experiment§9] showed for the self-
FIG. 4. Drag force on the sphere for three different directordiffusion constants of MBBA a ratio db /D, ~1.5. Easier
fields (uniform, trial, and real fielldepending on the effective tem- to determine experimentally is the anisotropy in the electric

peratureT/T,;. The upper lines are for the case of the director andconductivity[lZ] n of a sample, which is related to the dif-
velocity parallel and the lower ones for the director and velocity,sion by

perpendicular to each other.

kgT
ticular set of viscous coefficients of 4-methoxybenzlidene- D= %M (16)
4'-n-butylaniline (MBBA) [4]. As expected, the uniform

field shows a [nuch lower drag force for both principal con-¢, charge carriers of chargeper cn?. The conductance
figurations ofn(«) and v () than the trial field and the anisotropy was often measurf] and for MBBA it is usu-
exact field; see Fig. &or the velocity parallel to the director ally equal tog) /2, ~ 1.5. Both experiments are in excellent

it is even smaller than for the isotropic drag forc®n the agreement with our result fovl | /M;=1.50.

other hand, the anisotropy of the drag force ratio of the The dependence of the drag foHrce on the temperature is

two forcesF, /) becomes smaller for the realistic nonuni- 4154 of great interest in many experiments. The viscous co-
form field. This is due the following: the flow velocity efficientsay, a,, as, as, andag, in the first approximation,

around the sp_here Is high.est in the_ region Of_ the equato(ﬁepend linearly on the order paramegein the region close
plane perpendicular to the line of motion. If the liquid crystal to the nematic to isotropic transition temperatdie. The

is oriented along the sanzaxis we get a very high gradient e narametes itself can be approximated by Haller's
of the director in exactly the same region due to the effect o

LT : L . i ation[10

the disclination ring. In the other principal configuration, quation[10]

where the directon(«) is perpendicular to the axis and T\?

therefore perpendicular to the velocity, the disclination with S=AS+|1- T a7
ni

its high gradients is the same, but this time the loop is around
a longitude of the sphere. It still increases the drag, but in
much smaller region since the flow velocity at the stagnan
poles is almost zero already. The anisotropy in the drag forc
for the three director fields yields

herey is determined experimentally for MBBAL1] to be
=0.188. The viscous coefficients scale, therefore,

a,— als, Ay— afzs, a3—>a3S,

F.

=150, —
trial B [

F. F.

— =1.69,

S =1.50. ay—ay, as—asS, ag—agS. (18)
I uniform [

t
o (15 The drag force shows, for the perpendicular case, more or

less the same behavior for all director fields: after a jump at

The results obtained with the trial field are surprisingly the transition point, it increases while lowering the tempera-
close to those of the exact director field. They obviouslyture, in the beginning rapidly, then slower and slower. On the
reflect the important features of the field that are mainly theother hand, there is a qualitative change for the parallel drag
disclination loop and the 7 decay of the deviation in the force: while it jumps to a lower value and then decreases
angle far from the particle, whereas the particular details nedurther for the uniform field, it shows a small change to a
the particle and the disclination seem to be of minor impor-higher value at the transition point at which it stays almost
tance. Therefore, the drag force is determined by the longeonstant independent of the temperature, for both the trial
range effects. The difference between the drag force of théield of 8 and the exact fieldsee Fig. 4
trial functions and the drag force obtained from the exact The boundary conditions are not absolutely rigid in many
numerical solution is less than 1% and the difference in thexperiments due to a finite anchoring energy, in which case
force ratios is smaller than the accuracy of the calculationshe approximative director fiell3) can be used. A typical
In most practical cases it should be sufficiently accurate taolloidal particle of radiusR=10"° m in a liquid crystal
use these triafi(r) fields instead of a numerical solution of with an elastic constant dK~10 ' N has an anchoring
the governing equations. The uniform field, on the otherenergy ofW~10"°-10"7 J/nf. This corresponds to a rel-
hand, is not a very useful assumption since its resulting dragvant dimensionless factor ¥/ R/K=0.1-10. Our calcula-
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tions showed a slow linear increase of the drag foFeesnd F =23F, F=17&F,
F in the range of weak anchoringy R’K=0-4 due to the
deviation of the director field from the uniform state. This

1 .
results in gradients in the field that increase the dissipation £~ 1.31 (rodlike molecule,
and therefore the resistance of the particle to the flow. The |
effect on the force in the parallel cabg is obviously stron- F, =094, F=15F,

ger than in the perpendicular case, which is reflected in a

linear decrease of the anisotropy rafip/F| while enlarging F,

the anchoring energw. F—=O.62 disklike molecule. (22
The authors of 7] have also examined the case of charged I

particles, when the radial electric field near the surface forcegigte the inverted ratio of the drag forces for the disklike

the disclination loop to be pushed further away from theygjecules.

particle. An approximate expression for the loop radius

then given by VI. CONCLUSION

2
2 eaq

_ Considering the low Ericksen number regime
32¢?(5K+ Ky3— 2K,y

(Er= avR/K<1) the director field can be taken as indepen-
dent of the flow in the first approximation. We therefore took
where €, is the dielectric constantg the charge of the several static director field@pproximations for the field in
sphere, and 3 andK,, elastic constantgéassuming no im- the limit of strong and weak anchoring and the solution of
mediate screening One expects an increase in the dragthe governing equationsThe equations of motion were then
forces and a decrease in their ratio since the hydrodynamicgblved numerically for the different fieldgr) using the vis-
effective cross section of large director gradients is increasedous coefficients of MBBA. Due to the linearity of the Egs.
far more for the parallel case than for the perpendicular ong(7) it is only necessary to solve two limiting case, for the
For instance, taking the loop radias- 2R, the results for the  director and velocity parallel and perpendicular to each other
MBBA set of Leslie coefficients are at infinity [n()|lv() and n(«)Lv(«)]. This yields the
F drag forces~| andF, , which can be combined for the gen-
_ _ M eral case by the mobility tensor.
Fi=17Fk0 FI=12%F i, Fl 143, (29 The comparison of the drag forces for the different direc-
tor fields showed that the disclination loop around the
where the drag forces are given in units of MBBA in the sphere, which is topologically necessary for a large anchor-
isotropic phaséis,= —67Rnv using 7=0.5¢, as the vis- ing energy of the molecules on the surface, not only in-
cosity coefficient. As mentioned above, the anisotropy of thecreases the forces itself but also decreases their ratio to
drag forces decreases with increasing the strength of the /F =1.50 compared to a uniform cas€ (/Fj=1.69).
boundary conditions frorf, /F=1.69 for the uniform field  Trial director fields, constructed from the basic features of
(anchoring energWv=0), followed by a slow linear increase the director field(the disclination ring and 1? decay of the
for weak anchoring WR'K<1), andF, /Fj=1.5 for rigid  far field), showed to be a very good approximation. The
anchoring toF, /F=1.43 for the case of the charged par- difference between the values Bf andF, compared to the
ticle, which can be considered as “overly strong” anchoring.ones obtained for the exact field is less than 1%.

The molecular characteristics of the liquid crystal are in-  The temperature dependence of the drag force showed an
herent in the viscous coefficients. These coefficients depenghcrease in the forc&, for decreasing temperature and an
among other things, on the shape of the molecules that formimost constant value for the parallel fordg). An approxi-
the liquid crystal. This influence can be modeled by an affinemation for the director field for weak anchoring energy
transformation moddl13] giving the viscous coefficients de- shows a linear decrease for lowering the anchoring energy in

a

19

pending on the molecular aspect raltjdl , : both particular drag forces as well as in their ratio.
) ) The value for MBBA F, /F=1.50), using the exact so-
= — Ea ('_I _ Ii w :}a (1_ ['_} ) lution of the director field, is in good agreement with experi-
o2ty ) e 2 ] ) mental results, measured by the static conductivity and the

self-diffusion of MBBA (both ~1.5).
2 The disclination loop can be pushed away from the
_1)’ Ag= 0y, Qs="az, Q= az. sphere, for instance, in the case of nonscreened charges on
(21) the particle. This increases the particular forces compared
with the uncharged case, where the loop is close to the sur-
Baalss and Hes$13] determined the aspect ratio of face, and yields, for a loop radius of twice the particle radius,
MBBA to be I /I, =5/2. We used this value to obtain the an even lower ratio oF , /F|=1.43.
constantay by comparing the largest coefficieat with the The viscous coefficients of other materials can be ap-
experimental value and the isotropic coefficiaptwas taken proximated by an affine transformation model, which uses
from MBBA directly. We calculated the example cases ofthe aspect ratiol(/l ) of the molecules as parameter. For a
two particular configurations: a rodlike molecule with ratio rodlike molecule [/, =7/2) we obtained an anisotropy in
l)/1,=7/2 and a disklike systerh /I, =3/5. The results of the drag force of, /F|=1.31 and for a disklike molecule
these calculations are (Iy/1,=3/5) the ratio obtained wab, /Fj=0.62. The ratio

ly

1
agziao
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smaller than one indicates that the lift force turns the particledriving force could be observed in a long cylinder. If the
away from the director, whereas a ratio larger than onéoundaries force the liquid crystal to be perpendicular to the
forces the particle in the direction of the director. walls of the cylinder, the director field will “escape to the

It is especially interesting to examine the lift componentthird dimension,” i.e., it will turn around to be parallel to the
of the drag force, i.e., the nondissipative force acting perpeniong axis of the cylinder while approaching its center since
dicular to the line of particle motion. It resembles magneticthis is energetically much more favorable than a disclination
forces and leads to physical phenomena, similar to the Haline. If the distances with the same well-defined curvature
effect. In a long cell, the ratio between the cross voltagealong thez axis are large enough, little spheres, which are
U* and the applied voltagel is determined by the anisot- dropped in the sample, should show a certain measurable

ropy ratioV=pu/u, [12] displacement during their way down in a gravitational field.
. ] Further possibilities are the usage of electric and magnetic
u* b sin26 29 fields. Moving particles can be guided by changing the di-

U a(V+1)/[(V-1)—cos2’ rector orientation in the sample to direct them to a certain
destination in the sample. This enables the guiding of un-

wherea is the width of the samplén direction of the ap-  charged and unpolarizable particles with electric or magnetic
plied voltage andb the thickness of the samp(& direction  fields.

of the cross voltage The conductivity is determined by the

movement of the charge carriers and therefore inversely pro-

portional to the resistance, which yields, for the anisotropy ACKNOWLEDGMENTS
ratios,V=M, /M =F /F.
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