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Spatially quasiperiodic convection and temporal chaos in two-layer thermocapillary instabilities
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This paper describes an amplitude equation analysis of the interactions between waves with wavé&pumber
(and phase speed./k;) and stationary convection with wave number These two modes may bifurcate
almost simultaneously from the conductive state of a two-layeraB# system, when the ratio of layer thick-
nesses is near a particular vali@adimension-2 singularily Whenk,# 2k, (nonresonant cagend the first
bifurcation occurs for steady convection, a secondary bifurcation to a spatially quasiperiodic and time-periodic
mixed mode is obtained when increasing the driving gradient. No stable small-amplitude solution exists when
the Hopf bifurcation is the first one. The occurrence of either of these two possibilities depends on the
thickness ratio. Wheh,= 2k, (resonant cagethe system presents a much wider variety of dynamical behav-
iors, including quasiperiodic relaxation oscillations and temporal chaos. The discussion of the resonant system
concentrates on a scenario of transition to chaos consisting of an infinite sequence of “period-doubling”
homoclinic bifurcations of stable periodic orbits, for which the left-right symmetry of the convective system
plays an essential role. For increasing constraint, a reverse cascade is observed, for which quadratic nonlin-
earities in the Ginzburg-Landau equations are shown to entirely determine the dyrenficsand higher-
order terms may be neglected near the codimension-2)pf81063-651X%96)09207-0

PACS numbe(s): 47.20—-k, 47.35:+i, 47.54+r, 05.45+b

INTRODUCTION number[5]. Another relevant case is the codimension-2 point
(CTP) occurring in Rayleigh-Beard convection in binary

Weakly nonlinear studies of instability phenomena pro-mixtures[6,7], although the basic wave numbers of the in-
ceeding on the basis of amplitude equations are justified by stabilities are expected to differ more strongly in the present
number of interesting theoretical issudg. First of all, the  analysis(in particular, the case of strong resonance 2:1 is
form of such equations is entirely determined by the symmealso investigated An interesting recent work of Fujimura
tries obeyed by the physical system, which immediately sugand Renardy8] on a similar two-layer Rayleigh-Berd sys-
gests the possibility of comparing different pattern-formingtem also treats this 2:1 steady-Hopf resonance case. They
systems, through the nature and stability properties of theiobtain amplitude equations identical to those derived here
solutions. Furthermore, the analysis of evolution equationbelow. Consequently, some of their conclusions have a gen-
for the amplitudes of some near-critical mod&inzburg-  eral character and are directly applicable herg., the ex-
Landau equationsllows us to describe phenomena possessistence and stability of a new kind of asymmetric mpde
ing an infinite number of degrees of freedasuch as the However, differences exist between the basic mechanisms of
hydrodynamical system considered here bglowterms of instability (their oscillatory mode is interfacial, while surface
low-dimensional dynamical systems. While it is occasionallydeformability is unimportant for modes considered here
possible to show that these amplitude equations can be dé&eading to different dynamical behaviofshrough differ-
rived from a potential functioimplying the monotonic de- ences in the numerical coefficients of the amplitude equa-
crease of this potential until a local minimuynthis is not the  tions). Some of these differences are stressed later on in this
general case, such that amplitude equations can also be exerk.
pected to display more complex behaviors in some circum- The system considered here, of which no explicit use is
stances. This, in turn, offers the possibility of understandingnade before the analysis of Sec. Il apart from general sym-
some features of turbulent behaviors observed in extendealetry properties, is a two-dimension&D) Marangoni-
systems in terms of deterministic chaos of dynamical sysBénard system obtained by sandwiching two layers of im-
tems[2]. miscible fluids of infinite horizontal extent between two rigid

A fundamental step in deriving amplitude equations is theconducting plates maintained at different temperatures. Sev-
identification of the nature and symmetry properties of theeral solutions exist for the nonlinear equations describing
near-critical modes obtained by the resolution of the lineaisuch a system, one of them being the rest conductive solu-
stability problem. In this presentation, we consider the intertion. This state can become unstap®&10] when the im-
action of a monotoni€neutrally stablemode with an oscil- posed temperature difference is raised above a critical value,
latory (overstableé mode, each possessing a finite and differ-which reduces to a condition on the Marangoni number, as
ent wave number. This differs from the previously treatedlong as the interfacial tension variation with temperature is
cases of the interaction of two neutrally stable modes witlthe only destabilizing mechanism involved. No buoyancy ef-
finite wave numbers in the ratio 1{3], or in the ratio 1:1 fect is considered, and the interface is assumed to be unde-
[4], and of the interaction of a Hopf bifurcation with a zero formable. For this system, a set of parameter values exists
wave number with a neutrally stable mode with finite wave(most of them being fixed by the choice of liquider which
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waves of wave numbee; and linear frequency, are simul- modes are incommensurable, no resonance occurs, and the
taneously critical with steady convection of wave numiber amplitude equations are free from phase-coupling terms.
Accordingly, the deviation of the fieldsemperature and ve- Among the possiblen:n resonance cases, a strong resonance
locity) with respect to the diffusive solution will be written, occurs wherk; andk, are in the ratio 1:2, and some qua-

at the lowest perturbative order, as a superposition of criticadlratic phase-coupling terms now cannot be ruled out by con-

eigenmodes with complex amplitudes sidering the invariancéi).
) After computing the possible cubic terms and limiting
U(x,z,t)=ay(t)exdi(kix+ ) ]U4(2) Taylor expansions to this order, we arrive at the following
+ay(t)exi (kyx— wgt) JUa(2) system of coupled Ginzburg-Landau equations:
C
+as(hexgik,x]Us(2)+c.c., (1) a; = pay + daza,+ay(alay*+ Blay|*+ ylas|?),
whereU,(z) =U,(z) andUs(z) is real(the overbar denotes A,= pa,+ daza, + ay(alay|2+ Blas |2+ ylas)?),

the complex conjugajex andz are the coordinates, respec-

tively, parallel and perpendicular to the plane of the layers, a;=pu'az+ 8 aja,+ag(a’|ag|?+ y'|al|?+7y'|ayl?),
andt is the time. We now derive the form of amplitude

equations for the left- and right-traveling wave amplitudes

anda,, and for the steady mode amplitudg. The analysis ~ With 8=¢8"=0 whenk,# 2k, . The dot denotes differentiation

is restricted to nonzero values kf, k,, and o, . with respect tot. Note that the mirror symmetriiii) also
requires the coefficienta’ and &' to be real.
|. DERIVATION OF THE FORM An important feature of Eqs(3) is that they generally
OF AMPLITUDE EQUATIONS do not admit a potential functionyfa;,a;) such
ON THE BASIS OF SYMMETRY PROPERTIES that a=-dylday for all | (such that dy/dt

=—23||dyla|?*<0). Indeed, expressing equalities of
The amplitude equations are first written in the generakross derivatives of leads to the necessary conditians «,
form B=pB, y=y=7', and 6=56=4¢". Interestingly, the analysis of
hexagonal convectiofe.g., in one-layer Marangoni-Bard
%=Fi(al,az,33,a_1,a_z,a_3), =123 ) instapilities [11-15) leads to _quations similar t8) for
dt amplitudes of the three constitutive roll patterns. However,
] . _the conditions for existence of a potential are met in this
and expanded in Taylor series around the origincase, such that the dynamics is purely relaxatifhal.
a;=a,=a3=0 (where the function§; vanish. The follow- Due to the large number of unknown coefficients, a gen-
ing symmetry considerations are then used to simplify thesrg| discussion of the possible solutions and stability proper-
resulting system: the physical setup is invariant with respecfies of Eqs/(3) appears outside the scope of the present work.
to the following. _ As in Ref.[8], we thus focus our attention on a particular
(i) Time translations t—t+At (autonomous sys- convective system for which coefficients can be calculated

tem): according to Eq(1), this is equivalent to the require- from the governing equations of fluid motion.
ment that amplitude equation®) are invariant under the

transformation  {a;,a,,as}—{a;expli 0], a; exp[—i6].ag} Il. COMPUTATION OF COEFFICIENTS FOR THE

for every 6. .

(i) Lateral translations x—x+Ax: this implies TWO-LAYER MARANGONI-BE NARD INSTABILITY
that Egs. (2) are invariant under the trans- In each phaséi =1,2), the Boussinesq equations govern-
formation {a;,a,,as}—{a; exp[ik;Ax], azexp[ik;Ax], ing the velocity fieldV;=(U;,W,) and the deviations of tem-

agzexplik,Ax]} for every Ax. Whenk,=2k; (1:2 resonance peratureT; and pressur@; with respect to the diffusive so-
casg, this transformation  becomes {a;,a,,a;} lution (constant temperature gradiehif;/dz=— B;) are[16]
—{a,expli @], a.expli ¢], azexp[2i¢]} for every ¢.

(iii) Mirror reflectionx— —x (left-right symmetry: this V-V;=0,
is equivalent to the invariance of E¢®) under the transfor- _
mation{a,,a,,a;}—{a,,a,,as}. K AT+ BW,=T;+(V;-V)T;,

The combination of these fundamental invariance proper-
ties requires a number of terms in the Taylor expansions of WAV, =V p;=pidVi+ (V- V)V;}, (4)

Egs.(2) to vanish[6]. As an example, all linear coefficients

except diagonal ones must be zero due to requirem@nts wherep, , u;, and«; are, respectively, the density, dynamic
and (ii). The invarianciii ) then requires the coefficients of viscosity, and thermal diffusivity¥ andA are, respectively,
linear terms in the equations far, and a, to be complex the gradient and the Laplacian operator.

conjugates of each othémote that these coefficients turn out  On rigid conducting plates= —a; andz=a, (a;_, are
to be real when deriving amplitude equations systematithe layer thicknessgsthe boundary conditions are

cally), and the linear coefficient in the equation foyto be

real. The discussion of nonlinear terms proceeds in the same V;=T;=0, (5)
way, although special attention has to be paid to quadratic

terms, for which casds,= 2k, andk,# 2k, are gqualitatively ~ while at the undeformable interfage=0 the following con-
different[3]. When the basic wave numbers of the unstableditions hold[10]:
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rating regions where the monotonic instability sets in either
at low wave numbers by heating from the methanol side
(Ma>0), or at high wave numbers by heating from the oc-
tane side(Ma<0). This behavior is connected with the fact
that thermal diffusion times are similar for both liquid layers
- [17]. Furthermore, it is seen that an overstaljle=i )
branch exists when Ma0, and that its threshold coincides
with the threshold of the monotonic mode at the critical Ma-
rangoni number Mag= —24 850. This situation is occasional
(a=a*), and for increasing octane thickneas>a*, the
monotonic mode is first critical, while the oscillating mode
becomes more dangerous whed a*. The point(Ma, ,a*)
thus defines a codimension-2 point for this problgid]. In
order to investigate the behavior in the vicinity of this CTP,
, o , we use the real parameteisand u’, defined by Eqs(3) and
FIG. 1. Linear stability results: Marangoni number Ma as arenresenting the real part of the growth constants of both
function of the wave numbek for a system with parameters modes. Thusy and ' vanish at the CTP, and can be lin-
P=polp1=0893, u=plpy=1.02, x=kal11=0.934, A=NIN\y o0y annroximated in its vicinity:
=0.698 (methanol-octanefor a valuea=a*=0.726 of the thick- '
nesses ratio. Full curves, neutral stability; dashed curves, oversta-
bility (the critical frequency igo.=64.7).
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u=si(Ma—Mag) +s,(a—a*),

W;=W,=0, U;=U,, p' =si(Ma—Ma.) +sy(a—a*). (7)

T].:TZ!
It is not the purpose of this paper to describe the particular
technique used to compute nonlinear coefficients of the am-
plitude equationg3). We just mention that our method is a
mode projection techniquevhich is equivalent to standard
perturbation techniqugssimilar to those presented in Refs.
[14,19 although for different problems. As expected, all
these systematic methods also lead to E8j)s.The accuracy

f numerical computations of the coefficients was success-
ully tested in the two-layer problem with the different tech-
nique used in Ref.18] and in the one-layer problem with the
value of the hysteresis of hexagons reported in REJ] in
the finite-depth case. The values obtained in the present work
are presented in Table I, for both cases of nonresonant and
resonant interactions.

aT, N aT, U, U, aT, 6
Mgy TGy M2y g T e O

where \; is the thermal conductivity and the interfacial
tension variation with temperature.

This problem is put under dimensionless form us@s
the length unita?/«, as the time unit, andT,=B,a, as
the temperature unit. Then, the linearized stability proble
associated with Eqg4)—(6) leads to the characteristic rela-
tion A(o,Mak,a)=0 between the growth rate of the per-
turbations, the Marangoni number Ma o;AT a8,/ @1k,
the wave numberk, and the ratio of layer thicknesses
a=a,/a;. All other parametergproperty ratioy are deter-
mined by the choice of liquids: in the following, we use the
Va|ueS p:p2/p120893, /.L:,LL2//.L]_:102, K:K2/K1:0.934,
and A=\,/\;=0.698, representative of the metharilalyer
1)—-n-octane(layer 2 configuration. The numerically com-
puted stability diagram for these parameters values is repre-
sented in Fig. 1. Substituting a;=r, expli¢;] in the system (3) with

Figure 1 is obtained for the particular value §=6 =0 leads to equations for the amplitudgsthat are
a=a*=0.726 of the thicknesses ratio, for which an asymp-decoupled from those governing the phasgs The only
tote exists in the neutral stability=0) limit at k=5.4, sepa- possible solutions with stationary amplitudes are

[lI. RESULTS AND DISCUSSIONS

A. Nonresonant case

TABLE |. Coefficients of the amplitude equations for nonresoriapt2.67,k,=7.03# 2k,) and reso-
nant (k;=3, k,=6=2k;) cases. The system parameters ape=p,/p;=0.893, u=pu,/u,=1.02,
k=Kol k;=0.934, A =\,/\;=0.698(methanol-octane and the CTP thickness rata¥ and critical Marangoni
number Ma are given for both cases.

Nonresonant Resonant Nonresonant Resonant
a* 0.726 0.749 5 0 —14.7-18.4
Ma —24 850 —26 895 & 0 0.643
we 64.7 62.1 a —0.199-0.126 —0.262-0.193
s, —7.07x1074 —6.9x107% B 0.270-0.393 0.234-0.447
Sy -34.3 —46.8 y 27.5+18.4 —3.46+0.373
s —-1.48<10°3 —-1.28x10°3 o -14.6 -13.8
sh 111 278 % —0.997+3.74 —0.235+1.34
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ri1=r,=ry=0 [diffusive rest state(0)], (8) 3= 3=y (r2—r3), (14)

ri=r,=0, ri=—pu'la’ [steady convectiofSO], (9)

wherew, _ 1 , zare constanfand can be computed from Egs.
(8)—(13) for each solutiofy such thatp; = w;t+ ¢;o, and ¢;g
is arbitrary.

Now, for symmetric solutionsrg=r,), Egs.(14) lead to
w,=—w; and w3=0: according to Eq(1), the perturbation
fields are thus periodic with a single frequency
w=wc+ (a,+ B)r 3+ yr3. This is the case for both SW
and M3 solutions. The SC solution also falls into this cat-
egory, but the amplitudes of waves are zero, such that this
solution is effectively steady. It is also checked that the TW
solution is time periodic, while th®, solution (dissymmet-
ric) is the superposition of two traveling waves with incom-
mensurate phase velocitiess w/k;=(w+ o, 3+ yr 3)/k,
and v'=w'/k,=7y[r?lky<v (note that the direction of
propagation is the same becauge>0, as seen in Table.|
This M, solution is thus quasiperiodic both in time and in
space(because the constitutive wave numblkeysandk, are
also incommensurateHowever, the stability results indicate
that it is always unstable for the present parameter values.

In Fig. 2, it is seen that in a large part of the diagram, no
stable steady solution exists. In particular, as also seen in
Fig. 3, the Hopf bifurcation occurring at=0 (for a<a*,
i.e., u'<0) results in supercritical TW and subcritical SW,
which are both unstables]. Since no saturation is obtained

2
I’3=r2(1)=0, I’l(z):—,u/aR,

[traveling waves(TW)], (10)

r3=0, ri=ri=—pul(ar+pBr)

[standing waveqdSW)], (11)

2
ri2=0, ryp=(u"yr—pa')l(aga’—yryR),
ri=(uyk—n' ap)l(ara’ = yrYR)

[mixed solution SG-TW (M,)], (12

rizrgz(ﬂl Yr—ua')[a' (agt Br)—2YrYRI]
ri=[2uyp— ' (ar+ Bl @ (ar+ Br) — 2YrYR]

[mixed solution SG-SW (M3)], (13

where an indexR means the real part of a coefficient. Exist-
ence conditions for each kind of solution are directly ob-
tained from Eqgs(9)—(13), by requiring the positiveness of

squared amplitudes?. This leads to existence domains lim-
ited by lines going through the origin in thig,x") unfolding from cubic terms in this caséhis is due to the fact that

plane(see Fig. 2 Stability conditions may also be obtained -+ Br>0), higher-ordex(quintic) terms should be included

analytically, although for conciseness results are not repro- amplitude equations. Such a procedure might result in

duced here. I_:|gure 2 summarizes the’ relevant results, i.e., tr‘l,‘?::mding waves of finite amplitude existing in a certain sub-
map of possible behaviors in tHe,u') plane. The corre-

nding bifurcation diagrams are represented in Fig. 3. F critical region. Stable solutions exist whaa*, under the
spo g biturcation diagrams are represente 9- 3 "%m of a SC supercritical solutiofbifurcating from the rest

each solution, nonlinear corrections to the linear frequenciegtate on the axig.'=0, u<0), undergoing a secondary bi-
are computed from the imaginary part of the amplitude €AY rcation to the mixeél soluti’orl‘r/I3 when the constraint is

tions (an index! means imaginary part increasedat u'/u=a'lyy=-0.53). An interesting feature

2 2 2
P1=w1=ar i+ Biry+yrs,

s _ 2_ 2_ 2 r,,r r,.r
Pr=wa=—al— Biry— 3 S 2
SN USW 2 N
250 N oSN ™ 4
2 s TW .- 1.5 \\\ L7
a=0.73 L5 \\ et 1 N :»/
1 \ - Ml//\' .
0.5 Ve 03 Ay
7 3
a=0.72 0 1 0 L
0.6-04-02 0 0204 0.6 p 04 -02 0 02 04 p
T I3 ”
NON } ,
SATURATED 0.15 / 0.2
0.125 sc / - }
0.1 / 0.15 ;
0.075 / 0.1 &
i ; . .
0.05 ; sc M
-0.8 02 04 06 0.8 0.025 : 0.05 M T
0 ' L -
02} 20.6-0.4-02 0 0204 0.6 1t 04 02 0 02 04 p
0
04 a=0.72 a=0.73

FIG. 2. Stability map in the nonresonant case, as a function of FIG. 3. Bifurcation diagrams for the qualitatively different cases
the linear growth constantg (of the wavey and u’ (of steady a=0.72<a* (left) anda=0.73>a* (right). The amplitudes of the
convection. Arrows indicate paths followed when the Marangoni wavesr, , and of steady convectiary are represented as a function
number is increased, for two values of the thickness rati®nly of the growth constani. of waves, for a displacement along the
stable solutions are indicate@=reference state, S€steady con- arrows labele&=0.72 anda=0.73 of Fig. 2. Full curves represent
vection, M;=mixed (spatially quasiperiodicmode. Nonsaturated stable states, while dashed curves represent unstable states. SC
growth occurs foru>0, and at the right of the Hopf bifurcation =steady mode, TW (SW)=traveling (standing waves,
line H. M,=SC+TW, M;=SC+SW.
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ficial procedure might lead to some qualitative accordance
with behaviors observed in a realistic system when the con-
straint is large enough, such that large bands of wave num-
bers, including; andk,, are unstablgthis could be checked

by direct numerical simulation of Eq4)—(6)]. Moreover,
some of the conclusions made in this section are quite gen-
eral, as they are based on a discussion of the quadratic sys-
tem, for which suitable rescalings eliminate most of the co-
efficients. Thus, in order to exploit some of the predictions
made here for other resonant systems, only the quadratic
coefficientss and ' need to be compute@hich is much
easier than the computation of cubic coefficignthe new

set of coefficients for full amplitude Eq$3) is presented in
Table I.

1. Quadratic system

We first concentrate on the role of quadratic nonlineari-
ties. In this respect, it should be stressed that, due to their
perturbative origin, the strict validity of Eq&3) may only be
guaranteed in some neighborhood of the origin
a,;=a,=a3=0. Sinces=|dexdi ¢4 and s are finite quan-
tities, the dynamics near this point should be governed by the
quadratic system obtained by neglecting cubic nonlinearities
in Egs.(3). This becomes clearer by introducing the change
of scales

t—>/.L_lt,
FIG. 4. Representation of the stable mixed; solution

(a=0.73, Ma=—24760: stream function in both layers. The sys- wu' Y2

tem is quasiperiodic along the layefave numberk,=2.67 and (aliaz)ﬂlw—g (a1,a),

k,=7.03, and oscillates in time with the pulsatiab~w.=64.7.

The stream function is rescaled at each snapghbtT/10=9.7

1073). Time runs downwards. az— % as, (15)

of this solution is its spatial quasiperiodicifthe constitutive
modes have incommensurate wave numblersand kj).
However, contrary to thél, solution, it has only one tem-
poral frequencyw (which can be shown to be decreasing
with increasing Marangoni numberThis M ; solution, rep- ) _ _ I U
resented in Fig. 4, finally undergoes a thitdopf) bifurca- 2= 821 exf —ig;laza; +ax(alay|*+ Blay“+ ylas|*),
tion when the constraint is increased, slightly before merging . ST T,
with the unstable subcritical SW branch at the point where ~2s=Xx(8sTSaia,) +as(a’|ag|*+7'[ay]*+ y'|az|),
the amplitude of the steady componeny vanishes[at (16)

'l u=2ypl(art Br)=—28.1]. As Figs. 2 and 3 Show, N0 \nere i the phase of the quadratic coefficighty=p'/x,
stable saturated solution exists beyond the finef the Hopf  s_gqr1/5'), and the cubic coefficients with tilde are defined
bifurcation, thus again requiring calculation of h|gher-orderby

contributions.

which allows us to rewrite the syste(8) as

a,=a; +exdipslazay +ag(alay|*+ Blay|*+7las)?),

—_ap’  ~  Bu _ yu
B. Resonant case a:sm, B:Sm’ [P

For values of fluid properties selected in Sec. I, the con-
dition k,=2k, is clearly not satisfiedsee Fig. 1 Rather S
than changing fluid properties in order to achieve exact reso- IE =S 88 (17)
nance at thresholéthis is possible, e.g., by increasing the
viscosity ratiosy,/v; and u,/u,, and adjusting the thickness These coefficients are proportionalgoor w'. Near the CTP
ratio a=a,/a,), we preferred to force resonance by arbi- (u,u'<<1), it should thus be possible to neglect correspond-
trarily selecting basic wave numbers, siky=3 andk,=6  ing terms, provided that the amplitudes, a,, anda; stay
(thus requiring the system to be periodic in thalirection  bounded(i.e, of order unity. Most of this section is devoted
with the periodAx=/3). In order for the thresholds of os- to a discussion of the regions of the,u’') plane where this
cillatory and stationary modes to coincide, we have to adjustondition is satisfied. In fact, cubic terms are essential in
the value of a, such that the CTP now occurs for some limiting cases, as will be seen later. For the moment,
(Ma,=—26 895,a* =0.7488. Note that this somewhat arti- neglecting them and separating amplitudes and phases in the

<

Rl
Il
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usual mannera;=r, expli¢|], we arrive at the four-
dimensional dynamical system

F1=r1+r,r3co8 @5~ @),
Fo=rp+Tr1r3Cog @st @),
r3=x(r3+Srr,cosp),
. Tars | Mirs . riro
¢=—— Si(gs—¢)— —— si(gs+¢)—xs —— sing,
1 2 3
(18

where o= ¢+ ¢,— @5 is the only quantity involving phases
coupled to the amplitudes;. The only steady nontrivial
solutions of the systertil8) are found to be the following:
The symmetric solution (SS):

2_ .2 -1
ri=r;=(scosps) -,

r3=(cosps) 2, e¢=nw (n=0,1), (19)
which exists provided cosps>0.
The asymmetric solutions (AS):
2 -1
ri= (21—’—1:I )(1+2i(1 ) 212
s cosps GH{1F[1+2y H(1+09)]"5
2 -1
r3= (21+q)(l+2i(1 ) 2T 0
s cosp, g {1=[1+2y H(1+9)]"3
o (2H0+e)
37 2q2 '
1
tango=ia[1+2)(_1(1+q2)]l/2, (20)

where q=tanps. The AS exist, provideds cosps>0 and
x<—2(1+q?. Contrary to the SS, the AS do not individu-
ally obey the left-right symmetryiii). However, they are
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FIG. 5. Stability diagram of the symmetric soluti¢89 of the
quadratic system for caség| <1 (a) and|g|>1 (b), and for &' >0
and co®s<0. On the axesy andu’ denote, respectively, the linear
growth constants of waves and of steady convection. In each sector
(delimited by lines of indicated slope=pu'/w), the signs of the real
part of the four eigenvalues are given. A pair of complex conjugate
eigenvalues is denoted kiyt) if unstable and by(—) if stable.
Larger symbols correspond to eigenvalu@®), smaller ones to
eigenvalues(21). The dashed curve in cagb) is the parabola
w'u=q268' 8xl ag [Eq. (24)].

e

+,— 2 1

(22)

mapped onto each other by applying the corresponding tranghe discussion of which depends on whetligr-1 or|q|<1,

formation.
A general discussion of the properties of the sys{éB)

and is summarized in Fig. 5.
Note thatq=1.25 here andj=-5.36 in FR such that

will not be attempted here. In the following, we restrict our |g|>1 in both cases, and we are in the situation sketched in

analysis to cases whei®>0 and cosps;<0 (see Table )l
Still, this will allow comparison with some results of
Fujimura and Renard}8] (denoted FR in what follows as

these conditions are also fulfilled in their analysis. Thus,—4>x>—2(1+q

s cosps>0 if s=—1, i.e.,, x=u'/u<0 is a necessary condi-

Fig. 5(b). We now concentrate on the cgse-0 (andu'<0),
i.e., the only quadrant where SS may be stable. According to
Eg. (22), when|q4>1, the SS solution is stable in the range

) (=—5.13 here, and-59.4 in FR. This
defines a sector of stability in Fig(y. At y=—4, the SS

tion for the SS and the AS to exist. Moreover, the AS cansolution undergoes a Hopf bifurcation, leading to time-

only exist providedy<—2(1+q?. The stability conditions

dependent behaviors that diverge in the dynamics described

may be obtained analytically for the SS: computing eigen-by the quadratic systeit18). Including cubic terms leads to

values of the Jacobian matrix leads to

ss. XTVx(x+8)
T (21)
whose real parts are always negative feru'/u<O0 (i.e., in
the existence region of the §%nd thus correspond to stable
directions whenu>0 and to unstable directions when<0
[because the eigenvalues have to be multiplieg. fry virtue
of the scalingg15)]. The other two eigenvalues are

3-torus solutiongas discussed by BRHowever, these be-
haviors are not investigated here, as they are not fully gov-
erned by the quadratic system. At the other end of the sta-
bility interval, i.e., at y=—2(1+qg?, the SS solution
undergoes a bifurcation to an AS solutiGrhich starts to
exist there and is stable in some range provipgd-1).
When|y| is increasedy is decreasedthe stable AS may
lose stability itself, or keep stable up j6——cc. This again
depends on the value of A numerical computation of the
eigenvalues characterizing the stability of the AS shows that
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it stays stable for every<—2(1+q?), provided|q|>2.297, chaos. We now show that this surprising behavior is a con-
while it becomes unstable at a certgifi for |q|<2.297. sequence of the truncation to the quadratic systa®),
Thus, the FR results differ from ours at this stage, becausehich may be resolved by reintroducing cubic terms. Thus,
the AS stay stable in their analygisxcept for very |arg¢X| the following developments aim to determine what is the
where the quadratic system is not valid, and cubic term&cenario of bifurcations leading from the motionless state to
destabilize the AS, leading to noise-sustained oscillation&1e above-described chaotic behaviors, wirameasingthe
[8]). Here, the AS undergoes a Hopf bifurcation atdriving constraint, i.e., following arrows such as those rep-
Y*=—5.65. No stable fixed point of the quadratic systemfesented in Fig. 2. It would be rather unusual that chaos
(18) exists beyond that point, such that time-dependent mooccurs at the first bifurcation point, i.e., au=0,
tions occur that first take the form of limit cycles centered#' =O(1)<0. In this limit (y——<), the quadratic system
around both unstable AS fofee Fig. 6a)]. Note that these (18) is no longer valid. To show this, note that one of the
cycles are mirror images of each other with respect to théomponents of the AS20) diverges|[ry~(—x)™] for
left-right symmetry(symbolized by the dot-dashed line in X——. Using (15) to return to original variables, one ob-
Fig. 6). tains that the corresponding physical solution is firite
The scenario of transition to chaos that we describe novi@ct, proportional tou’=0(1)] for u—0. Thus, cubic terms
[obtained by numerical integration of t&/ADRATIC System need to be reintroduced in this limit, and we must return to
(18) with a fourth-order Runge-Kutta procedure with relative Egs.(16).
accuracy 10%°] has already been encountered in Lorenz-like
models of convectioh20], and was first postulated by Arne- 2. Cubic system
odo et al.[21]. For larger|y|, both cycles of Fig. @ grow
symmetrically and approach the unstable (S8&ddle point
At a certain y (say x4), the periodic trajectories tend to
homaoclinic orbits(saddle connectionof the SS, approach-
ing it infinitely close along one of its stable directiofthe az=a,=0, |aj|?=ri=—ag’~(u")? (23
least stablg and leaving it along the unstable direction. At
this point[see Fig. @)], the period of each cycle is infinite, L _
and the two cycles merge into a new “double-loop” cycle Which is identical to Eq.(10). [Note that the phase al,
(hereafter denoted C)2via a mechanism thought to be a Varies linearly with time ag = ri =—a/ag =—a/ag
homoclinic gluing [22] bifurcation. Increasing|y| again, (nonlinear frequency shift As (23) bifurcates from the
leads to a deformation of the symmetric C-2 cyldee Fig.  tivial state atu=0, there must be a region near the-0,
6(c)], followed by a symmetry-breakingSB) bifurcation ~# =O(1)<0 axis where cubic terms are essentald where
(say, atX:XfB), leaving the symmetric C-2 cycle unstable the TW solution has .Iower amplitude than the )A®n the _
to two stable dissymmetric C-2 cyclésee Fig. 6d)]. In- contrary, the guadratic system ha.f, bee_n shoyvn to determine
creasing|y| again leads to a new homoclinization of these e dynamics whew=0(1) andu,u’—0 (in which case the
stable cycles at the SS saddle point. At this monfextt AS is smaller than 'the TW solutignThus, the I|m|t'of va-
x=x", see Fig. 69)], both C-2 cycles become glued into a lidity _of the quadratic system should occur in a region where
C-4 cycle(four loopsg. The resulting cycle is symmetric in a amplltudgs_ of TW and AS are comparable. Us_mg Has)
first stage[Fig. 6(f)], but undergoes a symmetry-breaking and(23), it is found thzat equahy 7blet\./veen e_lm_plltud,es of AS
bifurcation aty5%. At x4 [Fig. 6(g)], both C-4 cycles be- and TW occurs foi/q” coses=ag ™ (in the limit u,u'—0),
come glued into a C-8 cycle, and the process repeats, th‘@hICh gives
valuesy:® (at which the C-2 cycle becomes dissymmetric
and y" (at which the two C_:-? cycles mergg converging w'?  g%8 6n
geometrically to a value estimated yat=—135, which cor- —= : (24)
responds to the onset of chajdke convergence rate is esti-
mated at g, . — x M)/ (xH—xH_)—2.6]. Fig. 6(h) exhibits
a magnification of a chaotic trajectofy=—150<y.) near i.e., a parabolgu=0.0177'2 in the (u,u’) plane [dashed
the SS saddle point. Note that this route to chaos actuallgurve in Fig. §b)].
differs from the more classical period-doubling sequence in We now discuss the stability characteristics of TW. For
many respecti20—24 (divergence of the period of orbits at this solution, analytical computations of eigenvalues are pos-
bifurcation pointsy ", dependence of the geometrical con-sible [8] by perturbing the system(16) according to
vergence rate on the saddle index leading to ratios differerd;=(r,+b;)exp[—igt/ag], a,=b,, az=bsexp[—iqt/
from the Feigenbaum ratio, and the importance of symmetryrg], and linearizing with respect td;’s. We first get
and symmetry-breaking effe¢ts b,=—-(1+iq/ag)(b;+b;), decoupled from equations
The behaviors just described have been obtained from thgoverningb, andb,, and leading to eigenvalues2 (stable
quadratic systen{18), and are thus strictly valid near the and 0(motion along the limit cycle The equations fob,
CTP, i.e, in the limitu, u'—0, x=0(1) [this has been andb;lead to two other eigenvaluas(governing stability,
checked from a simulation of the full cubic systéb®)]. The  which satisfy
result is that a transition to chaos occurs whghis in-
creased. It would thus be tempting to conclude that at the — —
threshold of instability of the motionless state ()\_1+
(u=0, u'<0), the system undergoes a direct transition to

The full system(16) admits “pure solutions” (among
others[8]), such as the TW solution
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FIG. 6. Time-dependent behaviors of the four-dimensional quadratic system occurrjpg §6r= —5.65, projected in therg,r,) plane.
The left-right symmetry is represented as a dot-dashed line. Only stable cycles are represented. Fixathptaibig are the saddle point
SS(symmetric modg and the saddle-foci ABasymmetric modgs (@) limit cycles (mirror images with respect to the left-right symmetry
for y*>x>xb. (b) Saddle connectiongiomoclinic orbit$ of the SS saddle point at=x5=-6.09. (c) Symmetric double-loop cycle
(C-2) for xi'>x>x32. (d) Two stable dissymetric C-2 cyclémirror images$ for x3®>x>x'. (e) Homoclines of the saddle point SS
at y=x1'=—45.0. (f) Symmetric C-4 cycle fory}'>x>x5°. (g) Two dissymmetric C-4 cycles at the poigt=x5=-101.5 of ho-
moclinic bifurcation. (h) Trajectories in the vicinity of the saddle point in the chaotic regiye —150).

Two different limiting cases of this equation are studied.y— —« the a; amplitude is adiabatically slavd@5] to a;
The first one isu—0, u'=0(1)<0, i.e., near the bifurcation anda,. Indeed, in the third of Eqs16), a;—a;a, when
point from the motionless statey——x). It is found that s=-—1 and y— —c. Substituting this expression in the first
eigenvalues tend ton;=x<O0 (stablé and \,=1—pB/ two Eqgs.(16), and neglectindas| (fourth ordey, we get a
ag+ 88" lagu’. These eigenvalues reflect the fact that forstandard TW-SW competitiof6] with cubic interaction co-
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efficient B+expligs] and self-interaction coefficientx. The second limiting case jg=0(1), andu,u’—0 [where
Therefore, aseg<0 here, the_supercritical TW solution is the quadratic syster(i8) is valid, and possesses attracting
stable against SW ifag—Br—Cc0seps>0 (equivalently solutions _depicted in Fig. 16 Equation (25 shows that
\r<0), and unstable in the opposite case. Thus, the TW is\l'2=i(X55’/aRM’)l’2, and one of these eigenvalues has a
stable at the bifurcation point of waves if positive real part. TW solutions have thus lost stability in
0>u'>8:8"1(Br— @r) =—19.1. As we study the vicinity of between the two different regions of the,u') plane that we
the CTP, we assume in the following that this condition ishave investigated. The threshold may be found by substitut-
satisfied. ing A=iQ in (25), which in fact exactly leads to the condi-
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tion (24) for u,u’—0. Thus, on the parabola=0.0177."2 Finally, we briefly describe some results obtained via nu-
[see Fig. )], the TW can be supposed to undergo a bifur-merical integration of the full set of equatioli6) in other

cation to an AS, which is indeed confirmed by direct numeri-quadrants, illustrating the wide variety of behaviors possible

cal integration of Eqs(16). for this resonant system. We insist on the qualitative validity
of these results, due to th@(1) magnitude of the quadratic
CONCLUDING RESULTS AND SUMMARY coefficients(see alsq[26]). In the quadrantu<0, u'>0

We now summarize the developments made in this sec(-Where no stable fixed point exisishe (f1,r2,rs,¢) phase-

tion for the quadrant.>0, ' <0, and supplement them with space tra}jectory eventua_lly des_cribes a limit cyeléth _fre-_
numerical results obtained from the full cubic systéts). ~ duencye’ <), thus again leading to temporal quasiperiod-
The first bifurcation from the motionless state occurgan ~ ICity of the phy,s_|cal variable¢3-torug. The small value of

to a pure stable TW solutiofof the cubic system which the frequencyw’ is due 'Fo the fact 'Fhat the system spends the
undergoes a secondary bifurcation to an A&a0.0177.'2  largest part of the oscillation period near the=0, r,=0
[dashed line of Fig. ®)]. For values ofu>0.01774'2 (e.g.,  coordinate lingwhere the system is in a quasi-steady state
increasing the Marangoni number Mahe bifurcated AS is and undergoes quick deviatiofsimilar to relaxation oscil-
first stable, then undergoes a tertiary Hopf bifurcation, lead!ations at moments that may eventually become irregularly
ing to a situation similar to Fig. (&) (note that the unstable spaced in time. During these high-frequeriay) relaxation
TW solution is not represented in this figure, and would inperiods, the amplitude of the steady mode changes(tign
fact lie much further from the origin than the represented S$hase undergoes a jump j, such that the system may be
and AS. For increasing values gf, a transition to chaos viewed as regularly switching between two quasi-steady
occurs via an infinite sequence of bifurcations qualitativelystates with reversed convective velocities. When destabiliz-
similar to that described in Fig. Gwhich corresponds to ing the system with respect to the oscillating mégeadrant
decreasing values qf). However, contrary to this latter se- ;,>0, u'>0), intricate phase-space trajectories reveal that

quence, the transitions observed here when increasit@n-  complicated deterministic chaos occurs whose structure has
not be described by quadratic nonlinearities alone, angot peen investigated further.

should thus be considered with some precaution, in view of
the remarks made above. Thus, the sequence observed when
increasing Ma should accumulate on a curve in theu')

plane, which might be of some parabolic fopm-u'? (al- We thank A. Rednikov, M. G. Velarde, A. A. Nepomn-
though this has not been checke®@eyond this line, the yashchy, G. Dewel, P. Borckmans, A. Dewit, and J. Halloy
system is in a chaotic state similar to Fighp Now, when for stimulating discussions. We are especially grateful to M.
increasing Ma again, eeversetransition represented in Fig. A. Zaks, from the UniversitaPostdam, for judicious advice

6 occurg Figs. &h)—6(a)], the remaining two limit cycles of concerning transitions to chaos. P.C. acknowledges financial
Fig. 6(a) finally collapsing on the ASat y=x*=—-5.65. As  support from the EC network ERBCHRXCT930106 for his
shown above, the AS stay stable for a short rahge to  stay at Universidad Complutense de Madrid. This text pre-
x=—2(1+9%)=-5.13), and both AS states in turn collapse sents research results of the Belgian Programme on InterUni-
on the SS, which becomes the offiffable steady solution at versity Poles of AttractioriPAI 21) initiated by the Belgian
this point. It was also seen that g&—4, this SS state un- State, Prime Minister's Office, Federal Office of Scientific,
dergoes a Hopf bifurcation to a quasiperiodic si@&¢orug  Technical and Cultural Affairs. The scientific responsibility
not investigated further in this work. is assumed by its authors.
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