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This paper describes an amplitude equation analysis of the interactions between waves with wave numberk1
~and phase speedvc/k1! and stationary convection with wave numberk2. These two modes may bifurcate
almost simultaneously from the conductive state of a two-layer Be´nard system, when the ratio of layer thick-
nesses is near a particular value~codimension-2 singularity!. Whenk2Þ2k1 ~nonresonant case! and the first
bifurcation occurs for steady convection, a secondary bifurcation to a spatially quasiperiodic and time-periodic
mixed mode is obtained when increasing the driving gradient. No stable small-amplitude solution exists when
the Hopf bifurcation is the first one. The occurrence of either of these two possibilities depends on the
thickness ratio. Whenk252k1 ~resonant case!, the system presents a much wider variety of dynamical behav-
iors, including quasiperiodic relaxation oscillations and temporal chaos. The discussion of the resonant system
concentrates on a scenario of transition to chaos consisting of an infinite sequence of ‘‘period-doubling’’
homoclinic bifurcations of stable periodic orbits, for which the left-right symmetry of the convective system
plays an essential role. For increasing constraint, a reverse cascade is observed, for which quadratic nonlin-
earities in the Ginzburg-Landau equations are shown to entirely determine the dynamics~cubic and higher-
order terms may be neglected near the codimension-2 point!. @S1063-651X~96!09207-0#

PACS number~s!: 47.20.2k, 47.35.1i, 47.54.1r, 05.45.1b

INTRODUCTION

Weakly nonlinear studies of instability phenomena pro-
ceeding on the basis of amplitude equations are justified by a
number of interesting theoretical issues@1#. First of all, the
form of such equations is entirely determined by the symme-
tries obeyed by the physical system, which immediately sug-
gests the possibility of comparing different pattern-forming
systems, through the nature and stability properties of their
solutions. Furthermore, the analysis of evolution equations
for the amplitudes of some near-critical modes~Ginzburg-
Landau equations! allows us to describe phenomena possess-
ing an infinite number of degrees of freedom~such as the
hydrodynamical system considered here below! in terms of
low-dimensional dynamical systems. While it is occasionally
possible to show that these amplitude equations can be de-
rived from a potential function~implying the monotonic de-
crease of this potential until a local minimum!, this is not the
general case, such that amplitude equations can also be ex-
pected to display more complex behaviors in some circum-
stances. This, in turn, offers the possibility of understanding
some features of turbulent behaviors observed in extended
systems in terms of deterministic chaos of dynamical sys-
tems@2#.

A fundamental step in deriving amplitude equations is the
identification of the nature and symmetry properties of the
near-critical modes obtained by the resolution of the linear
stability problem. In this presentation, we consider the inter-
action of a monotonic~neutrally stable! mode with an oscil-
latory ~overstable! mode, each possessing a finite and differ-
ent wave number. This differs from the previously treated
cases of the interaction of two neutrally stable modes with
finite wave numbers in the ratio 1:2@3#, or in the ratio 1:1
@4#, and of the interaction of a Hopf bifurcation with a zero
wave number with a neutrally stable mode with finite wave

number@5#. Another relevant case is the codimension-2 point
~CTP! occurring in Rayleigh-Be´nard convection in binary
mixtures @6,7#, although the basic wave numbers of the in-
stabilities are expected to differ more strongly in the present
analysis~in particular, the case of strong resonance 2:1 is
also investigated!. An interesting recent work of Fujimura
and Renardy@8# on a similar two-layer Rayleigh-Be´nard sys-
tem also treats this 2:1 steady-Hopf resonance case. They
obtain amplitude equations identical to those derived here
below. Consequently, some of their conclusions have a gen-
eral character and are directly applicable here~e.g., the ex-
istence and stability of a new kind of asymmetric mode!.
However, differences exist between the basic mechanisms of
instability ~their oscillatory mode is interfacial, while surface
deformability is unimportant for modes considered here!,
leading to different dynamical behaviors~through differ-
ences in the numerical coefficients of the amplitude equa-
tions!. Some of these differences are stressed later on in this
work.

The system considered here, of which no explicit use is
made before the analysis of Sec. II apart from general sym-
metry properties, is a two-dimensional~2D! Marangoni-
Bénard system obtained by sandwiching two layers of im-
miscible fluids of infinite horizontal extent between two rigid
conducting plates maintained at different temperatures. Sev-
eral solutions exist for the nonlinear equations describing
such a system, one of them being the rest conductive solu-
tion. This state can become unstable@9,10# when the im-
posed temperature difference is raised above a critical value,
which reduces to a condition on the Marangoni number, as
long as the interfacial tension variation with temperature is
the only destabilizing mechanism involved. No buoyancy ef-
fect is considered, and the interface is assumed to be unde-
formable. For this system, a set of parameter values exists
~most of them being fixed by the choice of liquids! for which
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waves of wave numberk1 and linear frequencyvc are simul-
taneously critical with steady convection of wave numberk2.
Accordingly, the deviation of the fields~temperature and ve-
locity! with respect to the diffusive solution will be written,
at the lowest perturbative order, as a superposition of critical
eigenmodes with complex amplitudes

U~x,z,t !5a1~ t !exp@ i ~k1x1vct !#U1~z!

1a2~ t !exp@ i ~k1x2vct !#U2~z!

1a3~ t !exp@ ik2x#U3~z!1c.c. , ~1!

whereU2(z)5Ū1(z) andU3(z) is real~the overbar denotes
the complex conjugate!, x andz are the coordinates, respec-
tively, parallel and perpendicular to the plane of the layers,
and t is the time. We now derive the form of amplitude
equations for the left- and right-traveling wave amplitudesa1
anda2, and for the steady mode amplitudea3. The analysis
is restricted to nonzero values ofk1, k2, andvc .

I. DERIVATION OF THE FORM
OF AMPLITUDE EQUATIONS

ON THE BASIS OF SYMMETRY PROPERTIES

The amplitude equations are first written in the general
form

dai
dt

5Fi~a1 ,a2 ,a3 ,ā1 ,ā2 ,ā3!, i51,2,3 ~2!

and expanded in Taylor series around the origin
a15a25a350 ~where the functionsFi vanish!. The follow-
ing symmetry considerations are then used to simplify the
resulting system: the physical setup is invariant with respect
to the following.

~i! Time translations t→t1Dt ~autonomous sys-
tem!: according to Eq.~1!, this is equivalent to the require-
ment that amplitude equations~2! are invariant under the
transformation $a1 ,a2 ,a3%→$a1exp[iu],a2 exp[2 iu],a3%
for everyu.

~ii ! Lateral translations x→x1Dx: this implies
that Eqs. ~2! are invariant under the trans-
formation $a1 ,a2 ,a3%→$a1 exp[ik1Dx], a2exp[ik1Dx],
a3exp[ik2Dx] % for everyDx. Whenk252k1 ~1:2 resonance
case!, this transformation becomes $a1 ,a2 ,a3%
→$a1exp[if], a2exp[if], a3exp[2if] % for everyf.

~iii ! Mirror reflectionx→2x ~left-right symmetry!: this
is equivalent to the invariance of Eqs.~2! under the transfor-
mation $a1 ,a2 ,a3%→$ā2 ,ā1 ,ā3%.

The combination of these fundamental invariance proper-
ties requires a number of terms in the Taylor expansions of
Eqs.~2! to vanish@6#. As an example, all linear coefficients
except diagonal ones must be zero due to requirements~i!
and~ii !. The invariance~iii ! then requires the coefficients of
linear terms in the equations fora1 and a2 to be complex
conjugates of each other~note that these coefficients turn out
to be real when deriving amplitude equations systemati-
cally!, and the linear coefficient in the equation fora3 to be
real. The discussion of nonlinear terms proceeds in the same
way, although special attention has to be paid to quadratic
terms, for which casesk252k1 andk2Þ2k1 are qualitatively
different @3#. When the basic wave numbers of the unstable

modes are incommensurable, no resonance occurs, and the
amplitude equations are free from phase-coupling terms.
Among the possiblem:n resonance cases, a strong resonance
occurs whenk1 and k2 are in the ratio 1:2, and some qua-
dratic phase-coupling terms now cannot be ruled out by con-
sidering the invariance~ii !.

After computing the possible cubic terms and limiting
Taylor expansions to this order, we arrive at the following
system of coupled Ginzburg-Landau equations:

ȧ15ma11da3ā21a1~aua1u21bua2u21gua3u2!,

ȧ25ma21 d̄a3ā11a2~ āua2u21b̄ua1u21ḡua3u2!,

ȧ35m8a31d8a1a21a3~a8ua3u21g8ua1u21ḡ8ua2u2!,
~3!

with d5d850 whenk2Þ2k1 . The dot denotes differentiation
with respect tot. Note that the mirror symmetry~iii ! also
requires the coefficientsa8 andd8 to be real.

An important feature of Eqs.~3! is that they generally
do not admit a potential functionc~ai ,āi! such
that ȧl52]c/]āl for all l ~such that dc/dt
522( l u]c/]al u

2<0!. Indeed, expressing equalities of
cross derivatives ofc leads to the necessary conditionsa5ā,
b5b̄, g5ḡ5g8, andd5d̄5d8. Interestingly, the analysis of
hexagonal convection~e.g., in one-layer Marangoni-Be´nard
instabilities @11–15#! leads to equations similar to~3! for
amplitudes of the three constitutive roll patterns. However,
the conditions for existence of a potential are met in this
case, such that the dynamics is purely relaxational@13#.

Due to the large number of unknown coefficients, a gen-
eral discussion of the possible solutions and stability proper-
ties of Eqs.~3! appears outside the scope of the present work.
As in Ref. @8#, we thus focus our attention on a particular
convective system for which coefficients can be calculated
from the governing equations of fluid motion.

II. COMPUTATION OF COEFFICIENTS FOR THE
TWO-LAYER MARANGONI-BE ´NARD INSTABILITY

In each phase~i51,2!, the Boussinesq equations govern-
ing the velocity fieldV i5(Ui ,Wi) and the deviations of tem-
peratureTi and pressurepi with respect to the diffusive so-
lution ~constant temperature gradientdTi /dz52b i! are@16#

“•V i50,

k iDTi1b iWi5Ṫi1~V i•“ !Ti ,

m iDV i2“pi5r i$V̇ i1~V i•“ !V i%, ~4!

whereri , mi , andki are, respectively, the density, dynamic
viscosity, and thermal diffusivity,“ andD are, respectively,
the gradient and the Laplacian operator.

On rigid conducting platesz52a1 andz5a2 ~ai51,2 are
the layer thicknesses!, the boundary conditions are

V i5Ti50, ~5!

while at the undeformable interfacez50 the following con-
ditions hold@10#:
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W15W250, U15U2 , T15T2 ,

l1

]T1
]z

5l2

]T2
]z

, m2

]U2

]z
2m1

]U1

]z
5sT

]T1
]x

, ~6!

whereli is the thermal conductivity andsT the interfacial
tension variation with temperature.

This problem is put under dimensionless form usinga1 as
the length unit,a 1

2/k1 as the time unit, andDT15b1a1 as
the temperature unit. Then, the linearized stability problem
associated with Eqs.~4!–~6! leads to the characteristic rela-
tion D~s,Ma,k,a!50 between the growth rates of the per-
turbations, the Marangoni number Ma52sTDT1a1/m1k1 ,
the wave numberk, and the ratio of layer thicknesses
a5a2/a1 . All other parameters~property ratios! are deter-
mined by the choice of liquids: in the following, we use the
values r5r2/r150.893, m5m2/m151.02, k5k2/k150.934,
and l5l2/l150.698, representative of the methanol~layer
1!–n-octane~layer 2! configuration. The numerically com-
puted stability diagram for these parameters values is repre-
sented in Fig. 1.

Figure 1 is obtained for the particular value
a5a*50.726 of the thicknesses ratio, for which an asymp-
tote exists in the neutral stability~s50! limit at k.5.4, sepa-

rating regions where the monotonic instability sets in either
at low wave numbers by heating from the methanol side
~Ma.0!, or at high wave numbers by heating from the oc-
tane side~Ma,0!. This behavior is connected with the fact
that thermal diffusion times are similar for both liquid layers
@17#. Furthermore, it is seen that an overstable~s5iv!
branch exists when Ma,0, and that its threshold coincides
with the threshold of the monotonic mode at the critical Ma-
rangoni number Mac5224 850. This situation is occasional
(a5a* ), and for increasing octane thicknessa.a* , the
monotonic mode is first critical, while the oscillating mode
becomes more dangerous whena,a* . The point~Mac ,a* !
thus defines a codimension-2 point for this problem@13#. In
order to investigate the behavior in the vicinity of this CTP,
we use the real parametersm andm8, defined by Eqs.~3! and
representing the real part of the growth constants of both
modes. Thus,m andm8 vanish at the CTP, and can be lin-
early approximated in its vicinity:

m5s1~Ma2Mac!1s2~a2a* !,

m85s18~Ma2Mac!1s28~a2a* !. ~7!

It is not the purpose of this paper to describe the particular
technique used to compute nonlinear coefficients of the am-
plitude equations~3!. We just mention that our method is a
mode projection technique~which is equivalent to standard
perturbation techniques!, similar to those presented in Refs.
@14,15# although for different problems. As expected, all
these systematic methods also lead to Eqs.~3!. The accuracy
of numerical computations of the coefficients was success-
fully tested in the two-layer problem with the different tech-
nique used in Ref.@18# and in the one-layer problem with the
value of the hysteresis of hexagons reported in Ref.@19# in
the finite-depth case. The values obtained in the present work
are presented in Table I, for both cases of nonresonant and
resonant interactions.

III. RESULTS AND DISCUSSIONS

A. Nonresonant case

Substituting al5r l exp[iw l ] in the system ~3! with
d5d850 leads to equations for the amplitudesr l that are
decoupled from those governing the phaseswl . The only
possible solutions with stationary amplitudes are

FIG. 1. Linear stability results: Marangoni number Ma as a
function of the wave numberk for a system with parameters
r5r2/r150.893, m5m2/m151.02, k5k2/k150.934, l5l2/l1
50.698 ~methanol-octane! for a valuea5a*50.726 of the thick-
nesses ratio. Full curves, neutral stability; dashed curves, oversta-
bility ~the critical frequency isvc564.7!.

TABLE I. Coefficients of the amplitude equations for nonresonant~k152.67,k257.03Þ2k1! and reso-
nant ~k153, k25652k1! cases. The system parameters arer5r2/r150.893, m5m2/m151.02,
k5k2/k150.934,l5l2/l150.698~methanol-octane!, and the CTP thickness ratioa* and critical Marangoni
number Mac are given for both cases.

Nonresonant Resonant Nonresonant Resonant

a* 0.726 0.749 d 0 214.7218.4i
Mac 224 850 226 895 d8 0 0.643
vc 64.7 62.1 a 20.19920.126i 20.26220.193i
s1 27.0731024 26.931024 b 0.27020.393i 0.23420.447i
s2 234.3 246.8 g 27.5118.2i 23.4610.373i
s18 21.4831023 21.2831023 a8 214.6 213.8
s28 111 278 g8 20.99713.74i 20.23511.34i
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r 15r 25r 350 @diffusive rest state~O!#, ~8!

r 15r 250, r 3
252m8/a8 @steady convection~SC!#, ~9!

r 35r 2~1!50, r 1~2!
2 52m/aR ,

@ traveling waves~TW!#, ~10!

r 350, r 1
25r 2

252m/~aR1bR!

@standing waves~SW!#, ~11!

r 1~2!50, r 2~1!
2 5~m8gR2ma8!/~aRa82gRgR8 !,

r 3
25~mgR82m8aR!/~aRa82gRgR8 !

@mixed solution SC1TW ~M2!#, ~12!

r 1
25r 2

25~m8gR2ma8!/@a8~aR1bR!22gRgR8 #,

r 3
25@2mgR82m8~aR1bR!#/@a8~aR1bR!22gRgR8 #

@mixed solution SC1SW ~M3!#, ~13!

where an indexR means the real part of a coefficient. Exist-
ence conditions for each kind of solution are directly ob-
tained from Eqs.~9!–~13!, by requiring the positiveness of
squared amplitudesr l

2. This leads to existence domains lim-
ited by lines going through the origin in the~m,m8! unfolding
plane~see Fig. 2!. Stability conditions may also be obtained
analytically, although for conciseness results are not repro-
duced here. Figure 2 summarizes the relevant results, i.e., the
map of possible behaviors in the~m,m8! plane. The corre-
sponding bifurcation diagrams are represented in Fig. 3. For
each solution, nonlinear corrections to the linear frequencies
are computed from the imaginary part of the amplitude equa-
tions ~an indexI means imaginary part!:

ẇ15v15a I r 1
21b I r 2

21g I r 3
2,

ẇ25v252a I r 2
22b I r 1

22g I r 3
2,

ẇ35v35g I8~r 1
22r 2

2!, ~14!

wherevi51,2,3 are constant@and can be computed from Eqs.
~8!–~13! for each solution#, such thatw i5v i t1w i0, andwi0
is arbitrary.

Now, for symmetric solutions (r 15r 2), Eqs.~14! lead to
v252v1 andv350: according to Eq.~1!, the perturbation
fields are thus periodic with a single frequency
v5vc1(a I1b I)r 1

21g I r 3
2. This is the case for both SW

andM3 solutions. The SC solution also falls into this cat-
egory, but the amplitudes of waves are zero, such that this
solution is effectively steady. It is also checked that the TW
solution is time periodic, while theM2 solution~dissymmet-
ric! is the superposition of two traveling waves with incom-
mensurate phase velocitiesv5v/k15(vc1a I r 1

21g I r 3
2)/k1

and v85v8/k25g I8r I
2/k2!v ~note that the direction of

propagation is the same becauseg I8.0, as seen in Table I!.
This M2 solution is thus quasiperiodic both in time and in
space~because the constitutive wave numbersk1 andk2 are
also incommensurate!. However, the stability results indicate
that it is always unstable for the present parameter values.

In Fig. 2, it is seen that in a large part of the diagram, no
stable steady solution exists. In particular, as also seen in
Fig. 3, the Hopf bifurcation occurring atm50 ~for a,a* ,
i.e., m8,0! results in supercritical TW and subcritical SW,
which are both unstable@6#. Since no saturation is obtained
from cubic terms in this case~this is due to the fact that
aR1bR.0!, higher-order~quintic! terms should be included
in amplitude equations. Such a procedure might result in
standing waves of finite amplitude existing in a certain sub-
critical region. Stable solutions exist whena.a* , under the
form of a SC supercritical solution~bifurcating from the rest
state on the axism850, m,0!, undergoing a secondary bi-
furcation to the mixed solutionM3 when the constraint is
increased~at m8/m5a8/gR520.531!. An interesting feature

FIG. 2. Stability map in the nonresonant case, as a function of
the linear growth constantsm ~of the waves! and m8 ~of steady
convection!. Arrows indicate paths followed when the Marangoni
number is increased, for two values of the thickness ratioa. Only
stable solutions are indicated:O5reference state, SC5steady con-
vection,M35mixed ~spatially quasiperiodic! mode. Nonsaturated
growth occurs form.0, and at the right of the Hopf bifurcation
line H.

FIG. 3. Bifurcation diagrams for the qualitatively different cases
a50.72,a* ~left! anda50.73.a* ~right!. The amplitudes of the
wavesr 1,2 and of steady convectionr 3 are represented as a function
of the growth constantm of waves, for a displacement along the
arrows labeleda50.72 anda50.73 of Fig. 2. Full curves represent
stable states, while dashed curves represent unstable states. SC
5steady mode, TW ~SW!5traveling ~standing! waves,
M25SC1TW, M35SC1SW.
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of this solution is its spatial quasiperiodicity~the constitutive
modes have incommensurate wave numbersk1 and k2!.
However, contrary to theM2 solution, it has only one tem-
poral frequencyv ~which can be shown to be decreasing
with increasing Marangoni number!. ThisM3 solution, rep-
resented in Fig. 4, finally undergoes a third~Hopf! bifurca-
tion when the constraint is increased, slightly before merging
with the unstable subcritical SW branch at the point where
the amplitude of the steady componentr 3 vanishes @at
m8/m52gR8 /(aR1bR)5228.1#. As Figs. 2 and 3 show, no
stable saturated solution exists beyond the lineH of the Hopf
bifurcation, thus again requiring calculation of higher-order
contributions.

B. Resonant case

For values of fluid properties selected in Sec. II, the con-
dition k252k1 is clearly not satisfied~see Fig. 1!. Rather
than changing fluid properties in order to achieve exact reso-
nance at threshold~this is possible, e.g., by increasing the
viscosity ratiosn2/n1 andm2/m1, and adjusting the thickness
ratio a5a2/a1!, we preferred to force resonance by arbi-
trarily selecting basic wave numbers, sayk153 and k256
~thus requiring the system to be periodic in thex direction
with the periodDx5p/3!. In order for the thresholds of os-
cillatory and stationary modes to coincide, we have to adjust
the value of a, such that the CTP now occurs for
~Mac5226 895,a*50.7488!. Note that this somewhat arti-

ficial procedure might lead to some qualitative accordance
with behaviors observed in a realistic system when the con-
straint is large enough, such that large bands of wave num-
bers, includingk1 andk2, are unstable@this could be checked
by direct numerical simulation of Eq.~4!–~6!#. Moreover,
some of the conclusions made in this section are quite gen-
eral, as they are based on a discussion of the quadratic sys-
tem, for which suitable rescalings eliminate most of the co-
efficients. Thus, in order to exploit some of the predictions
made here for other resonant systems, only the quadratic
coefficientsd and d8 need to be computed~which is much
easier than the computation of cubic coefficients!. The new
set of coefficients for full amplitude Eqs.~3! is presented in
Table I.

1. Quadratic system

We first concentrate on the role of quadratic nonlineari-
ties. In this respect, it should be stressed that, due to their
perturbative origin, the strict validity of Eqs.~3! may only be
guaranteed in some neighborhood of the origin
a15a25a350. Sinced5uduexp@iwd# andd8 are finite quan-
tities, the dynamics near this point should be governed by the
quadratic system obtained by neglecting cubic nonlinearities
in Eqs.~3!. This becomes clearer by introducing the change
of scales

t→m21t,

~a1 ,a2!→U mm8

udud8
U1/2~a1 ,a2!,

a3→
m

udu
a3 , ~15!

which allows us to rewrite the system~3! as

ȧ15a11exp@ iwd#a3ā21a1~ ãua1u21b̃ua2u21g̃ua3u2!,

ȧ25a21exp@2 iwd#a3ā11a2~aD ua2u21bD ua1u21gD ua3u2!,

ȧ35x~a31sa1a2!1a3~ ã8ua3u21g̃8ua1u21gD 8ua2u2!,
~16!

wherewd is the phase of the quadratic coefficientd, x5m8/m,
s5sgn~x/d8!, and the cubic coefficients with tilde are defined
by

ã5s
am8

d8udu
, b̃5s

bm8

d8udu
, g̃5

gm

udu2
,

ã85
a8m

udu2
, g̃85s

g8m8

d8udu
. ~17!

These coefficients are proportional tom or m8. Near the CTP
~m,m8!1!, it should thus be possible to neglect correspond-
ing terms, provided that the amplitudesa1, a2, anda3 stay
bounded~i.e, of order unity!. Most of this section is devoted
to a discussion of the regions of the~m,m8! plane where this
condition is satisfied. In fact, cubic terms are essential in
some limiting cases, as will be seen later. For the moment,
neglecting them and separating amplitudes and phases in the

FIG. 4. Representation of the stable mixedM3 solution
~a50.73, Ma5224760!: stream function in both layers. The sys-
tem is quasiperiodic along the layers~wave numbersk152.67 and
k257.03!, and oscillates in time with the pulsationv.vc564.7.
The stream function is rescaled at each snapshot~Dt5T/10.9.7
1023!. Time runs downwards.
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usual manneral5r l exp[iw l ], we arrive at the four-
dimensional dynamical system

ṙ 15r 11r 2r 3cos~wd2w!,

ṙ 25r 21r 1r 3cos~wd1w!,

ṙ 35x~r 31sr1r 2cosw!,

ẇ5
r 2r 3
r 1

sin~wd2w!2
r 1r 3
r 2

sin~wd1w!2xs
r 1r 2
r 3

sinw ,

~18!

wherew5w11w22w3 is the only quantity involving phases
coupled to the amplitudesr i . The only steady nontrivial
solutions of the system~18! are found to be the following:
The symmetric solution (SS):

r 1
25r 2

25~s coswd!21,

r 3
25~coswd!22, w5np ~n50,1!, ~19!

which exists provideds coswd.0.
The asymmetric solutions (AS):

r 1
25

~11q2!~112x21!

s coswd q
2$17@112x21~11q2!#1/2%

,

r 2
25

~11q2!~112x21!

s coswd q
2$16@112x21~11q2!#1/2%

,

r 3
252

~21x!~11q2!

2q2
,

tanw56
1

q
@112x21~11q2!#1/2, ~20!

where q5tanwd . The AS exist, provideds coswd.0 and
x,22~11q2!. Contrary to the SS, the AS do not individu-
ally obey the left-right symmetry~iii !. However, they are
mapped onto each other by applying the corresponding trans-
formation.

A general discussion of the properties of the system~18!
will not be attempted here. In the following, we restrict our
analysis to cases whered8.0 and coswd,0 ~see Table I!.
Still, this will allow comparison with some results of
Fujimura and Renardy@8# ~denoted FR in what follows!, as
these conditions are also fulfilled in their analysis. Thus,
s coswd.0 if s521, i.e.,x5m8/m,0 is a necessary condi-
tion for the SS and the AS to exist. Moreover, the AS can
only exist providedx,22~11q2!. The stability conditions
may be obtained analytically for the SS: computing eigen-
values of the Jacobian matrix leads to

l1,2
SS5

x6Ax~x18!

2
~21!

whose real parts are always negative forx5m8/m,0 ~i.e., in
the existence region of the SS!, and thus correspond to stable
directions whenm.0 and to unstable directions whenm,0
@because the eigenvalues have to be multiplied bym in virtue
of the scalings~15!#. The other two eigenvalues are

l1,2
SS 5

x146Ax2216q2

2
, ~22!

the discussion of which depends on whetheruqu.1 or uqu,1,
and is summarized in Fig. 5.

Note thatq51.25 here andq525.36 in FR such that
uqu.1 in both cases, and we are in the situation sketched in
Fig. 5~b!. We now concentrate on the casem.0 ~andm8,0!,
i.e., the only quadrant where SS may be stable. According to
Eq. ~22!, whenuqu.1, the SS solution is stable in the range
24.x.22~11q2! ~525.13 here, and259.4 in FR!. This
defines a sector of stability in Fig. 5~b!. At x524, the SS
solution undergoes a Hopf bifurcation, leading to time-
dependent behaviors that diverge in the dynamics described
by the quadratic system~18!. Including cubic terms leads to
3-torus solutions~as discussed by FR!. However, these be-
haviors are not investigated here, as they are not fully gov-
erned by the quadratic system. At the other end of the sta-
bility interval, i.e., at x522~11q2!, the SS solution
undergoes a bifurcation to an AS solution~which starts to
exist there and is stable in some range provideduqu.1!.

When uxu is increased~x is decreased!, the stable AS may
lose stability itself, or keep stable up tox→2`. This again
depends on the value ofq. A numerical computation of the
eigenvalues characterizing the stability of the AS shows that

FIG. 5. Stability diagram of the symmetric solution~SS! of the
quadratic system for casesuqu,1 ~a! and uqu.1 ~b!, and ford8.0
and coswd,0. On the axes,m andm8 denote, respectively, the linear
growth constants of waves and of steady convection. In each sector
~delimited by lines of indicated slopex5m8/m!, the signs of the real
part of the four eigenvalues are given. A pair of complex conjugate
eigenvalues is denoted by~1! if unstable and by~2! if stable.
Larger symbols correspond to eigenvalues~22!, smaller ones to
eigenvalues~21!. The dashed curve in case~b! is the parabola
m82/m5q2d8dR/aR @Eq. ~24!#.
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it stays stable for everyx,22~11q2!, provideduqu.2.297,
while it becomes unstable at a certainx* for uqu,2.297.
Thus, the FR results differ from ours at this stage, because
the AS stay stable in their analysis~except for very largeuxu
where the quadratic system is not valid, and cubic terms
destabilize the AS, leading to noise-sustained oscillations
@8#!. Here, the AS undergoes a Hopf bifurcation at
x*525.65. No stable fixed point of the quadratic system
~18! exists beyond that point, such that time-dependent mo-
tions occur that first take the form of limit cycles centered
around both unstable AS foci@see Fig. 6~a!#. Note that these
cycles are mirror images of each other with respect to the
left-right symmetry~symbolized by the dot-dashed line in
Fig. 6!.

The scenario of transition to chaos that we describe now
@obtained by numerical integration of theQUADRATIC system
~18! with a fourth-order Runge-Kutta procedure with relative
accuracy 10210# has already been encountered in Lorenz-like
models of convection@20#, and was first postulated by Arne-
odo et al. @21#. For largeruxu, both cycles of Fig. 6~a! grow
symmetrically and approach the unstable SS~saddle point!.
At a certainx ~say x 0

H!, the periodic trajectories tend to
homoclinic orbits~saddle connections! of the SS, approach-
ing it infinitely close along one of its stable directions~the
least stable!, and leaving it along the unstable direction. At
this point@see Fig. 6~b!#, the period of each cycle is infinite,
and the two cycles merge into a new ‘‘double-loop’’ cycle
~hereafter denoted C-2!, via a mechanism thought to be a
homoclinic gluing @22# bifurcation. Increasinguxu again,
leads to a deformation of the symmetric C-2 cycle@see Fig.
6~c!#, followed by a symmetry-breaking~SB! bifurcation
~say, atx5x1

SB!, leaving the symmetric C-2 cycle unstable
to two stable dissymmetric C-2 cycles@see Fig. 6~d!#. In-
creasinguxu again leads to a new homoclinization of these
stable cycles at the SS saddle point. At this moment@at
x5x 1

H, see Fig. 6~e!#, both C-2 cycles become glued into a
C-4 cycle~four loops!. The resulting cycle is symmetric in a
first stage@Fig. 6~f!#, but undergoes a symmetry-breaking
bifurcation atx2

SB. At x 2
H @Fig. 6~g!#, both C-4 cycles be-

come glued into a C-8 cycle, and the process repeats, the
valuesxn

SB ~at which the C-2n cycle becomes dissymmetric!
and x n

H ~at which the two C-2n cycles merge! converging
geometrically to a value estimated atx`52135, which cor-
responds to the onset of chaos@the convergence rate is esti-
mated at (x n11

H 2x n
H)/(x n

H2x n21
H !→2.6#. Fig. 6~h! exhibits

a magnification of a chaotic trajectory~x52150,x`! near
the SS saddle point. Note that this route to chaos actually
differs from the more classical period-doubling sequence in
many respects@20–24# ~divergence of the period of orbits at
bifurcation pointsx n

H, dependence of the geometrical con-
vergence rate on the saddle index leading to ratios different
from the Feigenbaum ratio, and the importance of symmetry
and symmetry-breaking effects!.

The behaviors just described have been obtained from the
quadratic system~18!, and are thus strictly valid near the
CTP, i.e., in the limitm, m8→0, x5O~1! @this has been
checked from a simulation of the full cubic system~16!#. The
result is that a transition to chaos occurs whenuxu is in-
creased. It would thus be tempting to conclude that at the
threshold of instability of the motionless state
~m50, m8,0!, the system undergoes a direct transition to

chaos. We now show that this surprising behavior is a con-
sequence of the truncation to the quadratic system~16!,
which may be resolved by reintroducing cubic terms. Thus,
the following developments aim to determine what is the
scenario of bifurcations leading from the motionless state to
the above-described chaotic behaviors, whenincreasingthe
driving constraint, i.e., following arrows such as those rep-
resented in Fig. 2. It would be rather unusual that chaos
occurs at the first bifurcation point, i.e., atm50,
m85O(1),0. In this limit ~x→2`!, the quadratic system
~18! is no longer valid. To show this, note that one of the
components of the AS~20! diverges @r 1(2);~2x!1/2# for
x→2`. Using ~15! to return to original variables, one ob-
tains that the corresponding physical solution is finite@in
fact, proportional tom85O~1!# for m→0. Thus, cubic terms
need to be reintroduced in this limit, and we must return to
Eqs.~16!.

2. Cubic system

The full system~16! admits ‘‘pure solutions’’ ~among
others@8#!, such as the TW solution

a35a250, ua1u25r 1
252ã R

21;~m8!21, ~23!

which is identical to Eq.~10!. Note that the phase ofa1
varies linearly with time asẇ15ã I r 1

2 52ã I /ãR 52a I /aR
~nonlinear frequency shift!. As ~23! bifurcates from the
trivial state atm50, there must be a region near them50,
m85O~1!,0 axis where cubic terms are essential~and where
the TW solution has lower amplitude than the AS!. On the
contrary, the quadratic system has been shown to determine
the dynamics whenx5O~1! andm,m8→0 ~in which case the
AS is smaller than the TW solution!. Thus, the limit of va-
lidity of the quadratic system should occur in a region where
amplitudes of TW and AS are comparable. Using Eqs.~20!
and~23!, it is found that equality between amplitudes of AS
and TW occurs forx/q2 coswd5ã R

21 ~in the limit m,m8→0!,
which gives

m82

m
5
q2d8dR

aR
, ~24!

i.e., a parabolam50.0177m82 in the ~m,m8! plane @dashed
curve in Fig. 5~b!#.

We now discuss the stability characteristics of TW. For
this solution, analytical computations of eigenvalues are pos-
sible @8# by perturbing the system~16! according to
a15(r 11b1)exp[2 ia I t/aR], a25b2 , a35b3 exp[2 ia I t/
aR], and linearizing with respect tobi ’s. We first get
ḃ152(11 ia I /aR)(b11b̄1), decoupled from equations
governingb2 andb3, and leading to eigenvalues22 ~stable!
and 0 ~motion along the limit cycle!. The equations forb2
andb3 lead to two other eigenvaluesl ~governing stability!,
which satisfy

S l211
b̄

aR
D S l2x1

g8

aR
2 i

a I

aR
D 1

xd̄d8

aRm8
50. ~25!
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Two different limiting cases of this equation are studied.
The first one ism→0, m85O~1!,0, i.e., near the bifurcation
point from the motionless state~x→2`!. It is found that
eigenvalues tend tol15x,0 ~stable! and l2512b̄/
aR1 d̄d8/aRm8. These eigenvalues reflect the fact that for

x→2` the a3 amplitude is adiabatically slaved@25# to a1
and a2. Indeed, in the third of Eqs.~16!, a3→a1a2 when
s521 andx→2`. Substituting this expression in the first
two Eqs.~16!, and neglectingua3u

2 ~fourth order!, we get a
standard TW-SW competition@6# with cubic interaction co-

FIG. 6. Time-dependent behaviors of the four-dimensional quadratic system occurring forx,x*525.65, projected in the (r 1 ,r 2) plane.
The left-right symmetry is represented as a dot-dashed line. Only stable cycles are represented. Fixed points~unstable! are the saddle point
SS~symmetric mode!, and the saddle-foci AS~asymmetric modes!. ~a! limit cycles ~mirror images with respect to the left-right symmetry!
for x*.x.x0

H. ~b! Saddle connections~homoclinic orbits! of the SS saddle point atx5x0
H526.09. ~c! Symmetric double-loop cycle

~C-2! for x0
H.x.x1

SB. ~d! Two stable dissymetric C-2 cycles~mirror images! for x1
SB.x.x1

H . ~e! Homoclines of the saddle point SS
at x5x1

H5245.0. ~f! Symmetric C-4 cycle forx1
H.x.x2

SB. ~g! Two dissymmetric C-4 cycles at the pointx5x2
H52101.5 of ho-

moclinic bifurcation. ~h! Trajectories in the vicinity of the saddle point in the chaotic regime~x52150!.
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efficient b̃1exp[iwd] and self-interaction coefficientã.
Therefore, asãR,0 here, the supercritical TW solution is
stable against SW ifãR2b̃R2coswd.0 ~equivalently
l2R,0!, and unstable in the opposite case. Thus, the TW is
stable at the bifurcation point of waves if
0.m8.dRd8/(bR2aR)5219.1. As we study the vicinity of
the CTP, we assume in the following that this condition is
satisfied.

The second limiting case isx5O~1!, andm,m8→0 @where
the quadratic system~18! is valid, and possesses attracting
solutions depicted in Fig. 6#. Equation ~25! shows that
l1,256(xd̄d8/aRm8)1/2, and one of these eigenvalues has a
positive real part. TW solutions have thus lost stability in
between the two different regions of the~m,m8! plane that we
have investigated. The threshold may be found by substitut-
ing l5iV in ~25!, which in fact exactly leads to the condi-

FIG. 6 ~Continued!.
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tion ~24! for m,m8→0. Thus, on the parabolam50.0177m82

@see Fig. 5~b!#, the TW can be supposed to undergo a bifur-
cation to an AS, which is indeed confirmed by direct numeri-
cal integration of Eqs.~16!.

CONCLUDING RESULTS AND SUMMARY

We now summarize the developments made in this sec-
tion for the quadrantm.0,m8,0, and supplement them with
numerical results obtained from the full cubic system~16!.
The first bifurcation from the motionless state occurs atm50
to a pure stable TW solution~of the cubic system!, which
undergoes a secondary bifurcation to an AS atm50.0177m82

@dashed line of Fig. 5~b!#. For values ofm.0.0177m82 ~e.g.,
increasing the Marangoni number Ma!, the bifurcated AS is
first stable, then undergoes a tertiary Hopf bifurcation, lead-
ing to a situation similar to Fig. 6~a! ~note that the unstable
TW solution is not represented in this figure, and would in
fact lie much further from the origin than the represented SS
and AS!. For increasing values ofm, a transition to chaos
occurs via an infinite sequence of bifurcations qualitatively
similar to that described in Fig. 6~which corresponds to
decreasing values ofm!. However, contrary to this latter se-
quence, the transitions observed here when increasingm can-
not be described by quadratic nonlinearities alone, and
should thus be considered with some precaution, in view of
the remarks made above. Thus, the sequence observed when
increasing Ma should accumulate on a curve in the~m,m8!
plane, which might be of some parabolic formm;m82 ~al-
though this has not been checked!. Beyond this line, the
system is in a chaotic state similar to Fig. 6~h!. Now, when
increasing Ma again, areversetransition represented in Fig.
6 occurs@Figs. 6~h!–6~a!#, the remaining two limit cycles of
Fig. 6~a! finally collapsing on the AS~at x5x*525.65!. As
shown above, the AS stay stable for a short range@up to
x522(11q2)525.13#, and both AS states in turn collapse
on the SS, which becomes the only~stable! steady solution at
this point. It was also seen that atx524, this SS state un-
dergoes a Hopf bifurcation to a quasiperiodic state~3-torus!
not investigated further in this work.

Finally, we briefly describe some results obtained via nu-
merical integration of the full set of equations~16! in other
quadrants, illustrating the wide variety of behaviors possible
for this resonant system. We insist on the qualitative validity
of these results, due to theO~1! magnitude of the quadratic
coefficients~see also@26#!. In the quadrantm,0, m8.0
~where no stable fixed point exists!, the (r 1 ,r 2 ,r 3 ,w) phase-
space trajectory eventually describes a limit cycle~with fre-
quencyv8!vc!, thus again leading to temporal quasiperiod-
icity of the physical variables~3-torus!. The small value of
the frequencyv8 is due to the fact that the system spends the
largest part of the oscillation period near ther 150, r 250
coordinate line~where the system is in a quasi-steady state!,
and undergoes quick deviations~similar to relaxation oscil-
lations! at moments that may eventually become irregularly
spaced in time. During these high-frequency~vc! relaxation
periods, the amplitude of the steady mode changes sign~the
phase undergoes a jump ofp!, such that the system may be
viewed as regularly switching between two quasi-steady
states with reversed convective velocities. When destabiliz-
ing the system with respect to the oscillating mode~quadrant
m.0, m8.0!, intricate phase-space trajectories reveal that
complicated deterministic chaos occurs whose structure has
not been investigated further.
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