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We investigate the dynamical behavior of binary fluid systems in two dimensions using dissipative particle
dynamics. We find that following a symmetric quench the domain sizeR(t) grows with timet according to
two distinct algebraic lawsR(t);tn: at early timesn5

1
2, while for later timesn5

2
3. Following an asymmetric

quench we observe onlyn5
1
2, and if momentum conservation is violated we seen5

1
3 at early times. Bubble

simulations confirm the existence of a finite surface tension and the validity of Laplace’s law. Our results are
compared with similar simulations which have been performed previously using molecular dynamics, lattice-
gas and lattice-Boltzmann automata, and Langevin dynamics. We conclude that dissipative particle dynamics
is a promising method for simulating fluid properties in such systems.@S1063-651X~96!13211-6#

PACS number~s!: 51.10.1y, 02.70.2c, 64.75.1g

I. INTRODUCTION

The growth kinetics of binary immiscible fluids has re-
ceived much attention recently. Phase separation in these
systems has been simulated using a variety of techniques,
including cell dynamical systems without hydrodynamics@1#
and with Oseen tensor hydrodynamics@2#; time-dependent
Ginzburg-Landau models without hydrodynamics@3# and
with hydrodynamics@4–7#; as well as lattice-gas automata
@8–11# and the related lattice-Boltzmann techniques@12,13#.
A central quantity in the study of growth kinetics is the time-
dependent average domain sizeR(t). For binary systems in
the regime of sharp domain walls, this follows algebraic
growth laws of the formR(t);tn. In general, for models
without hydrodynamic interactions~that is, when there is no
conservation of momentum, as is often supposed to be the
case for binary alloys! the growth exponent is found to be
n5 1

3, independent of the spatial dimension. If flow effects
are relevant~as is certainly the case for binary fluids!, and
the domain sizeR is greater than the hydrodynamic length
Rh5n2/rs, wheren is the kinematic viscosity,r is the den-
sity, ands is the surface tension coefficient, then one obtains
n5 2

3 in two spatial dimensions@14#. In the less commonly
observedR,Rh regime, two-dimensional lattice-gas au-
tomata@11#, molecular dynamics@15#, and Langevin dynam-
ics simulations@6,7# find n5 1

2; lattice-Boltzmann studies, by
contrast, suggest thatn5 1

3 @13#. However, the lattice-
Boltzmann method does not include any thermal fluctua-
tions, which a renormalization group approach shows play a
crucial role in causing this exponent to assume the value of
1
2 @14#. In three dimensions, forR,Rh , the growth exponent
is n5 1

3 crossing over ton51 at late times, withn5 2
3 again

if R.Rh @14#.

It should be noted that there are still some experimental
and theoretical challenges in unraveling the behavior of sys-
tems in which both the order parameter and the momentum
are locally conserved@14#. Experimentally, for example, it is
difficult if not impossible to study two-dimensional fluid sys-
tems. As far as numerical studies are concerned, it is impor-
tant to recognize that three-dimensional simulations are par-
ticularly demanding on all the aforementioned techniques,
and so definitive results are harder to come by than in two
dimensions.

The purpose of the present paper is to take a look at
domain growth and phase separation in two-dimensional, bi-
nary, immiscible fluids using a simulation technique called
dissipative particle dynamics~DPD!. The basic features of
the method are discussed in Sec. II; here we simply note that
it is a temporally discrete and spatially continuous, micro-
scopic, particulate technique which yields a correct hydrody-
namical behavior in the macroscopic limit, while being easy
to extend from two to three dimensions. Comparatively little
work has been published on DPD and, to our knowledge,
nothing at all on its application to phase ordering kinetics.
We shall find that the method is able to handle domain
growth both qualitatively and quantitatively, yielding correct
scaling exponents and displaying a surface tension which
satisfies Laplace’s law. Although the present study is con-
fined to the case of two-dimensional systems, we hope to
return in the near future with a second paper dealing with the
three-dimensional case.

II. WHY DISSIPATIVE PARTICLE DYNAMICS?

The motivation for the introduction of dissipative particle
dynamics by Hoogerbrugge and Koelman@16# was to simu-
late the behavior of complex fluids. Complex fluids include
fluids in which there are many coexisting length and time
scales, and fluids for which a hydrodynamic description is
unknown or does not exist at all. Examples are multiphase
flows, flow in porous media, colloidal suspensions, micro-
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emulsions and polymeric fluids. Whereas the traditional
continuum-based approach to understanding and modeling
the hydrodynamic behavior of such fluids, based on the for-
mulation and solution of partial differential equations, has
met with rather limited success, in more recent times adi-
tional approaches have been undertaken, relying on a micro-
scopic description of the fluid in question. In principle, the
most accurate microscopic approach is based on the use of
molecular dynamics~MD! but the computational expense of
attempting this is so severe that until now only a small num-
ber of flow phenomena in simple fluids have been achieved,
and even then these have been largely restricted to two di-
mensions~but see Laradjiet al. @32#!.

Lattice-gas automata~LGA! have been used as a numeri-
cal technique for modeling hydrodynamics since their intro-
duction in 1986 by Frisch, Hasslacher, and Pomeau@17# and
by Wolfram @18#, who showed that one could simulate the
incompressible Navier-Stokes equations for a single compo-
nent two-dimensional fluid using discrete Boolean elements
on a triangular lattice. In essence, LGA dynamics is com-
prised of two elements: at each discrete time step, particles
first collide at vertices on the lattice, the collisional outcomes
being controlled by local conservation of mass and momen-
tum; then the particles advect freely to neighboring sites.
Such lattice-gas automaton models are computationally
much faster than molecular dynamics, particularly since the
natural time step—the mean free time between collisions—is
several orders of magnitude greater than that required for
MD. The single-phase LGA method was subsequently gen-
eralized by Rothman and Keller@19# to permit the simulation
of immiscible fluids, and indeed our present work shares
certain features in common with their model, which has
since been investigated with some degree of rigor@9,10#.
Even more recently, the technique has been extended to
model amphiphilic fluids comprised of mixtures of oil, wa-
ter, and surfactant@20#.

However, the LGA method suffers from some disadvan-
tages: the underlying lattice leads to the loss of Galilean
invariance which, although negligible for creep flows, does
present problems for flow at finite Reynolds numbers, while
the treatment of three-dimensional fluids is computationally
challenging owing to the complexity of the collisional
look-up tables and the necessity of deploying a four-
dimensional face-centered-hypercubic lattice@9#. The lack of
Galilean invariance manifests itself by a spurious factor mul-
tiplying the inertial term in the momentum-conserving
Navier-Stokes equation. For a single-phase lattice gas, this
factor can easily be scaled away; for compressible flow, or
for multiphase flow with interfaces, however, the presence of
this factor is more difficult to deal with, although various
rather involved methods have been proposed to remove it
@21,22#.

Dissipative particle dynamics was introduced with the in-
tention of capturing the best aspects of MD and LGA; it does
away with the problems arising in the latter owing to the
presence of a lattice, while maintaining the discrete time-
stepping element which greatly accelerates the algorithm
compared with MD. Moreover—and this is important from a
practical perspective—in DPD the extension from two to
three dimensions is very straightforward. The DPD method
involves the motion of massive particles, which are allowed

to move in space with their positions and momenta described
by real numbers. The mass and momentum of these particles
are conserved, but their energy is not. As in LGA, the evo-
lution of the model over one time step takes place in two
substeps which are continually repeated:~i! an infinitesi-
mally short impulse step, and~ii ! a propagation step of du-
ration Dt. Within the impulse substep, the momentum of
each particle (pi) is modified to reflect its interaction with
the other particles. During the propagation step each particle
coasts with constant velocity, completely ignoring every
other particle. In mathematical terms, the impulse step is
described by

Dpi5(
jÞ i

V i j êi j , ~1!

while the propagation step is

Dqi5
Dt

m
~pi1Dpi !. ~2!

In these equationsm is the mass of each particle,qi denotes
the position of particlei , and êi j is the unit vector pointing
from particle j to particlei . Henceforth, we shall assume for
simplicity that all particles carry unit mass (m51). V i j is a
scalar giving the momentum transferred fromj to i , and in
the original model presented by Hoogerbrugge and Koelman
@16# has the form

V i j5H 3

pr c
2nS 12

r i j
r c

D @P i j2v~pi2pj !•êi j # if r i j,r c

0 if r i j>r c ,
~3!

where r i j5uqi2qj u is the distance between particlesi and
j , and n5N/V is the density of the system comprisingN
particles in a volumeV. P i j (5P j i ) is sampled from a uni-
form random distribution with mean and varianceP0. This
random component of the momentum transfer represents the
stochastic effect of the collisions, and gives rise to a fluid
pressure, while the second, dissipative, term inside the
square brackets of Eq.~3! is responsible for the fluid viscos-
ity. The temperature is controlled byP i j , whose variance is
a measure of the thermal fluctuations in the system. Note that
r c , which occurs in the factor multiplying the one in square
brackets in Eq.~3!, is a cutoff radius beyond which no inter-
action~momentum transfer! is possible. The presence of this
cutoff makes the interactions local and the DPD algorithm
correspondingly fast.

The property of detailed balance is satisfied by
continuous-time DPD@23#, and so a Gibbsian equilibrium
state is guaranteed to exist. However, the statistical mechani-
cal analysis of Espan˜ol and Warren@24# confirmed that the
original DPD model presented by Hoogerbrugge and Koel-
man@16# does not lead to the physically correct equilibrium
distribution, a feature which is particularly marked when the
relative time stepDt>1.

This choice of time step (Dt51) has, nevertheless, been
used in almost all of the DPD work so far reported on
@16,25–27#. Two simple modifications to the basic model
were suggested by Espan˜ol and Warren@24# which ensure
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that the DPD equilibrium state is the canonical ensemble.
The first modification is reducing the time step length~a
factor of 10 is sufficient!, and the second is the inclusion of
an extra factor of 2(12r i j /r c) into the dissipative term in
the change of momentum Eq.~3!, so that the momentum
transfer scalarV i j becomes

V i j5

3S 12
r i j
r c

D
pr c

2n FP i jADt22vS 12
r i j
r c

D ~pi2pj !•êi jDt G .
~4!

This alteration guarantees that the model obeys a fluctuation-
dissipation theorem which is very similar to that obtained in
conventional Brownian motion@24#. The theorem enables
one to relate the amplitude of the noise~that is, the fluctua-
tions inP i j ) to the temperature of the system.

In the original paper by Hoogerbrugge and Koelman, it
was stated~but not demonstrated! that the DPD model of a
simple one-component fluid satisfies the Navier-Stokes equa-
tions in the mean-field limit@16#. Español recently explicitly
derived the hydrodynamic equations for the mass and mo-
mentum density fields in DPD@23#. However, these equa-
tions are not the central results of Espan˜ol’s paper, since the
DPD properties of mass and momentum conservation,
coupled with the Galilean invariance and the isotropy of the
microscopic equations of motion, effectively guarantee that
at a macroscopic level the Navier-Stokes equations will
emerge. What is more significant is the correction of the

original simple expressions for the speed of sound and the
kinematic viscosity to more complicated results@23#.

III. DPD MODEL FOR BINARY IMMISCIBLE FLUIDS

Immiscible fluid mixtures exist because individual mol-
ecules attract similar and repel dissimilar molecules. The
most common example of such behavior arises in mixtures
of oil and water; the nonpolar, hydrophobic molecules of oil
attract one another through short-range van der Waals forces,
while the polar water molecules enjoy more complex, long-
range hydrophilic attractions which are dominated by elec-
trostatic interactions including hydrogen bonds. At the atom-
istic level employed in molecular dynamics, such
interactions demand a detailed treatment. However, to obtain
accurate mesoscopic and macroscopic level descriptions us-
ing DPD, the microscopic model can be drastically simpli-
fied. To model the interactions of dissimilar particles in a
binary immiscible fluid within DPD, the simplest modifica-
tion to the single-phase DPD algorithm is to introduce an-
other variable, called the ‘‘color’’~by analogy with the
Rothman-Keller model!, which has two possible values—for
example, ‘‘red’’ for oil and ‘‘blue’’ for water. Identical in-
teractions are used between particles of the same color, while
we increase the mean and variance of the random variable
P i j when particles of different color interact, which has the
effect of creating a repulsion between particles from the two
different phases@25#. That is,

P i jPHU@0,2P0# if particles are of the same phase

U@0,2~P01P rep!# if particles are of different phases,
~5!

whereU@a,b# denotes a uniform distribution betweena and
b.

It should be emphasized that Eq.~5! is a minimal modi-
fication to the single-phase DPD model, and is symmetric
under the interchange of particle colors. It would be quite
straightforward to generalize this to the asymmetric case by,
for example, making the meanP0 of the stochastic terms
different for the two colors and/or likewise adjusting the dis-
sipative terms through the selection of different values of
v in Eq. ~4!. In the present paper, however, we shall not
consider such situations, preferring to concentrate on the
properties of the simpler model implied by Eq.~5!. It has
been shown that detailed balance is also satisfied by the two-
phase DPD model@28#. As for the single-phase DPD fluid,
one can show that, macroscopically, the Navier-Stokes equa-
tions are obeyed within homogeneous regions of each of the
two immiscible fluids.

The implementation of the DPD algorithm is very similar
to that of conventional MD algorithms@29#. For example, the
periodic spatial domain~the simulation cell! is divided into a
regular array of equally sized link cells, such that each side
of the rectangular domain has an integer number of cells and
each cell is at leastr c across. Each link cell consists of a
dynamically allocated array of particles and pointers to the

neighboring cells. Individual particles consist of the position-
momentum vector pair and a color index.

For each time step we calculate first the impulse and then
the propagation step, as described in Eqs.~1! and~2!. In the
impulse step we iterate through the particles in each link cell,
calculating the change in momentum of each particle as it
interacts with the particles in the same and neighboring link
cells. Since the momentum is modified by particle pairs we
need to ignore half of the neighboring cells to avoid dupli-
cation. When considering a different particle pair we first
compare the square of the separation distance withr c

2 and
skip to the next particles if the pair is out of range. In the
propagation step we iterate through the particles in each link
cell again, allowing them to coast for timeDt. The complete
state of the system may be written to file, and other calcula-
tions to determine, for example, the temperature and pressure
of the system can also be performed. Given constantr c and
number densityn5N/V, the system scales linearly~in both
computation time and memory size! with increasing number
of particles,N. To give an example, the calculation of the
motion of a system of 40 000 DPD particles with number
densityn54 for 10 000 time steps takes 10 h CPU time and
13-MB memory on an 133 Mflop/s~theoretical! DEC Alpha.
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This is roughly an order of magnitude slower than similar
calculations with two-dimensional LGA. We expect DPD
and LGA to be of similar speed in three spatial dimensions.
~Note: Dt50.1.!

IV. RESULTS

A. Scaling laws for binary fluid separation

Several simulations were run to model the binary separa-
tion of a mixture of two immiscible phases. By definition, for
studies of symmetric quenches, exactly half of the particles
were in the ‘‘red’’ phase and half in the ‘‘blue’’ phase.
Asymmetric quenches were studied with the ratio of the
numbers of colored particles at both 60:40 and 70:30. The
initial state of the system was completely random; the posi-
tions of red and blue particles were chosen from a uniform
distribution, and their velocities were chosen from a uniform
distribution in direction and a Gaussian distribution in mag-
nitude. Physically, this initial state corresponds to starting
with the system quenched in temperature from a state above
the spinodal point at which the fluids are miscible.

A reasonably large number of particles~40 000! was used
in order to enhance the statistical accuracy of the data ob-
tained during these simulations. Care was taken to ensure
that the box dimensions were suitable for accurately simulat-
ing the phase segregation process for large times without the
size of the domains becoming close to that of the periodic
box, thereby introducing artifacts into the observed behavior.

Simulations started from a symmetric quench were al-
lowed to evolve for 10 000 time steps and the asymmetric
quenches were evolved for 100 000 time steps. The state of
the system was recorded at regular intervals throughout. Fig-
ure 1 shows the state of a single system at six different snap-
shot times following a symmetric quench. At each time for
which the state of the system was recorded, the structure
function

S~k,t !5U 1VE ~rb~x,t !2r r~x,t !2^rb&1^r r&!

3exp~22p ik•x!dxU2 ~6!

was calculated. In this equation the subscriptsb and r indi-
cate blue and red particles, so thatrb(x,t) is the ~spatial!
mass density of the blue particles at timet, and^rb& is the
average mass density of blue particles. The use of the struc-
ture function to characterize binary fluid phase separation is
widespread@8,11,30#. Note that, because of the imposition of
two-dimensional periodic boundary conditions on the simu-
lation cell, the structure function is only meaningful when
evaluated at points in the Fourier space satisfying

k5~kx ,ky!5S mLx , nLyD , m,nPZ. ~7!

whereLx andLy are the lengths of the box in thex and y
directions of real space, respectively.

To extract the quantity best characterizing the time-
dependent domain size of the state of the system, the mean
of k weighted by the structure function is often calculated.

However, unlike the case of lattice-based simulation tech-
niques, the positions of the particles in DPD are described by
continuous variables rather than discrete points on a grid,
and so the structure function is meaningful even asuku ap-
proaches infinity. The nature of the system is such that the
structure function has a finite value throughoutk space, ap-
proaching a constant value at large distances from the origin,
so that the mean is not defined. Since we are not interested in
the asymptotic value of the structure function, a function
F(k,t), which vanishes far from the origin, was fit to the grid
of points containing the meaningful values ofS(k,t). The
function that we chose as the best fit forS(k,t) in these
simulations is

F~k,t !5F~ uku,t !5c0~ t !ukuexp~2c1~ t !uku2!. ~8!

Note thatF(k,t) is taken to have radial symmetry as we are
not interested in the orientation of the domains in real space.
A sample structure function with its fitF(k,t) are shown in
Fig. 2. The reciprocal of the mean ofuku weighted by
F(k,t) is denotedR(t), and is interpreted as the domain size
characterizing the state of the system at timet.

By plotting our computed values ofR(t) on a log-log plot
versus t, it is easy to see any change in the exponent of the
scaling law

R~ t !}tn. ~9!

To obtain accurate results it is important to ensemble-
average several simulations differing in their random initial
conditions. For each simulation, the log-log plot was exam-
ined for possible exponents. From each of the symmetric
quenches it was possible to mark the existence of two sepa-
rate scaling regimes, with the crossover at roughly
t51000Dt. Only a single scaling regime was observed from
the asymmetric quenches, even though the simulations were
allowed to evolve an order of magnitude longer than the
symmetric quenches and the final domains were significantly
larger. For each regime in all simulations a straight line was
fit to the data to determine the exponent. The complete re-
sults for symmetric quenches are listed in Table I, while a
sample log-log plot is shown in Fig. 3. All of the figures in
this section are derived from one and the same simulation,
and so may be directly compared. The results in Table I
strongly suggest a crossover fromn5 1

2 to n5 2
3, which is in

agreement with results from lattice-gas automata@11#, mo-
lecular dynamics@15# and Langevin dynamics simulations
@7# as well as a renormalization-group analysis@14#. A
growth exponent ofn50.4760.02 wasobserved from the
asymmetric quenches, independent of the ratio of particle
numbers. This exponent was observed at all times in these
off-critical quenches, just as in previously reported Langevin
simulations@6,7#.

Some short simulations~3000 time steps long! were also
run to determine the early-time exponent for a symmetric
quench where momentum is not conserved. The momentum
transferred between a pair of interacting particles was vio-
lated by adding a vector 15–20 % of the magnitude of the
interaction and random in direction~chosen from a uniform

54 5137COMPUTER SIMULATIONS OF DOMAIN GROWTH AND . . .



distribution! to each particle’s momentum. The growth expo-
nent observed in these simulations wasn50.32960.015, in
agreement with theory@14#.

The complete set of model parameters used in these simu-

lations is listed in Table II. In this table,Lx andLy are the
box dimensions, whilen is the number densityN/V, where
V is the two-dimensional volume of the box. The value of
P0515.8 was chosen since the immiscible phases then regu-

FIG. 1. Binary separation particle positions at~a! t50Dt, ~b! t5700Dt, ~c! t51300Dt, ~d! t52500Dt, ~e! t55000Dt, and ~f!
t510 000Dt.
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larly reach complete phase separation asymptotically, and
yet the system does not behave too randomly.

B. Bubble surface tension

The detailed way in which phase separation occurs in bi-
nary fluids depends, among other things, on the interfacial
tension which exists between the two immiscible phases. In
particular, as noted earlier, when hydrodynamic effects are
important, the crossover between diffusive~Lifshitz-
Slyozov! and hydrodynamic regimes should occur when the
domain sizeR(t) is larger than the hydrodynamic length
Rh5n2/rs, wheren is the kinematic viscosity,r is the fluid
density, ands is the surface tension coefficient. A further
important test of our DPD model for binary fluid separation
is thus to check on the existence of a surface tension between
the two phases by confirming the validity of Laplace’s law
using a series of bubble simulations inspired by earlier
lattice-gas analogs@11,31#.

As with the domain growth simulations of Sec. IV A,
40 000 particles were placed in a two-dimensional periodic
box of the same dimensions as those listed in Table II, but
the simulations were now run for 20 000 time steps.~For a
few of the smaller bubbles, simulations were run with only
6400 particles. For these smaller bubbles accurate results
could be obtained without the additional computation re-
quired by the larger system.! The results here have the same
model parameters as in Sec. IV A~see Table II!, with the
sole exception ofP0, which was set to 0.791 in order to

FIG. 2. Structure function and sample fit.

FIG. 3. SampleR vs t log-log plot.

TABLE I. Binary separation exponents for symmetric quenches.

Simulation Slope 1 Slope 2 log10t log10R
number crossover crossover

8 0.4701 0.648 3.000 0.865
9 0.4648 0.640 3.000 0.869
11 0.4805 0.639 3.000 0.886
12 0.4788 0.642 3.114 0.932
13 0.4804 0.649 3.079 0.916
14 0.4859 0.627 3.000 0.884
15 0.4759 0.676 3.114 0.929
16 0.4717 0.673 3.079 0.912
17 0.4855 0.696 3.114 0.943

Mean 0.477 0.65 3.06 0.90
95% conf. 0.005 0.02 0.04 0.02

TABLE II. Binary separation model parameters.

Model
parameter Value

Dt 0.1
m 1.0
n 4.0
N 40 000
v 20.0
P0 15.8
P rep 0.949
r c 1.3
Lx 100.0
Ly 100.0
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increase the signal-to-noise ratio. The initial state of the sys-
tem has all the particles placed with random positions and
velocities, but the particles are red within a radiusR0 of the
center of the box, and blue outside this distance. This bubble
changes rapidly within the first few time steps, but settles
down to a state approximating equilibrium after about 8000
steps for the larger simulations~2000 time steps for the
smaller simulations!. Figure 4 shows one such bubble at
equilibrium.

These bubble experiments thus enable us to compute the
equilibrium value of the interfacial tension between red and
blue phases. Equilibrium statistical mechanics tells us that
we can write the instantaneous pressure function (P ) of a
system in terms of the internal virial (W ) and the instanta-
neous temperature function (T ) @29# as

P5
NkBT1W

V
, ~10!

where

NkBT5 1
3(

i

upi u2

mi
~11!

and

W5 1
3(

i
(
j. i

r i j •êi jV i j , ~12!

where kB is the Boltzmann constant. The thermodynamic
pressure (P) and temperature (T) of the system are the time
averages ofP andT, respectively. It is possible to compute a
temperature because the important property of detailed bal-
ance is satisfied by DPD@23#; the fluctuation-dissipation

theorem relates this to the noise.~We note in passing that
Hoogerbrugge and Koelman@16# gave an equation of state
for a homogeneous DPD fluid which relates the fluid pres-
sure to the fluid density. However, since the theoretical basis
for this equation is not adequately explained, we have pre-
ferred to calculate the pressure using statistical mechanical
first principles.!

By considering only the blue particles far from the inter-
face (r.1.3R0) we can calculate the thermodynamic pres-
sure in homogeneous regions outside the bubble (Pout).
Similarly, we can calculate the pressure inside the bubble
(Pin) by using particles withr,0.7R0. For a circular bubble
in two dimensions, Laplace’s law@31# says

Pin2Pout5
s

R0
. ~13!

To verify this we calculate the mean pressure difference at
several values ofR0, and plot the pressure difference
Pin2Pout versus the reciprocal ofR0. For each of the simu-
lations the equilibrium pressure difference was averaged to a
single mean value. The mean pressure difference and corre-
sponding error for each bubble size reported in Fig. 5 are the
mean and standard error of the mean for the set of simula-
tions at each bubble size. We can see from our results in Fig.
5 that we have the expected linear behavior. The slope of this
line is the surface tension coefficients.

V. CONCLUSIONS

We have studied binary immiscible fluid behavior in two
spatial dimensions using a simulation technique called dissi-
pative particle dynamics. We have found algebraic scaling
laws in agreement with expectations@14#, the two-
dimensional growth exponents being12 and

2
3 at early and late

times, respectively, for symmetric quenches, and1
2 through-

out for asymmetric quenches. Symmetric quenches for which
momentum transfer was violated displayed an early-time
growth exponent of13. This scaling behavior has previously
been observed in molecular dynamics@15#, Langevin dy-
namics@7#, and lattice-gas automata@11# simulations, and is
also in accord with the results of a renormalization-group
approach which takes into account the mechanism of droplet
coalescence due to noise-induced Brownian motion@14#. We
have also verified that Laplace’s law holds in a series of

FIG. 4. Sample tension bubble at equilibrium (R050.125Lx).

FIG. 5. Pressure difference vs 1/R.
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simple bubble experiments, confirming the existence of a
surface tension between the two phases. We conclude that
dissipative particle dynamics is a promising method for
simulating the properties of fluid systems.
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