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We investigate the dynamical behavior of binary fluid systems in two dimensions using dissipative particle
dynamics. We find that following a symmetric quench the domain Riz¢ grows with timet according to
two distinct algebraic lawR(t) ~t": at early timesn= % while for later timesn= % Following an asymmetric
guench we observe only= % and if momentum conservation is violated we see% at early times. Bubble
simulations confirm the existence of a finite surface tension and the validity of Laplace’s law. Our results are
compared with similar simulations which have been performed previously using molecular dynamics, lattice-
gas and lattice-Boltzmann automata, and Langevin dynamics. We conclude that dissipative particle dynamics
is a promising method for simulating fluid properties in such syst¢é8H063-651X96)13211-4

PACS numbews): 51.10+y, 02.70—c, 64.75+9g

[. INTRODUCTION It should be noted that there are still some experimental
N . L . and theoretical challenges in unraveling the behavior of sys-
The growth kinetics of binary immiscible fluids has re- tems in which both the order parameter and the momentum

ceived much attenthn recently..Phase sgparatlon in ,thesfre locally conserveftL4]. Experimentally, for example, it is
systems has been simulated using a variety of techniquegiicyt if not impossible to study two-dimensional fluid sys-

including cell dynamical systems without hydrodynanfity  tems. As far as numerical studies are concerned, it is impor-
and with Oseen tensor hydrodynami@; time-dependent tant 1o recognize that three-dimensional simulations are par-
Ginzburg-Landau models without hydrodynami® and tjcularly demanding on all the aforementioned techniques,
with hydrodynamicq4-7]; as well as lattice-gas automata and so definitive results are harder to come by than in two
[8—11] and the related lattice-Boltzmann techniqi&8,13.  dimensions.

A central quantity in the study of growth kinetics is the time-  The purpose of the present paper is to take a look at
dependent average domain sR&). For binary systems in domain growth and phase separation in two-dimensional, bi-
the regime of sharp domain walls, this follows algebraicnary, immiscible fluids using a simulation technique called
growth laws of the formR(t)~t". In general, for models dissipative particle dynamic(DPD). The basic features of
without hydrodynamic interactionghat is, when there is no the method are discussed in Sec. IlI; here we simply note that
conservation of momentum, as is often supposed to be thiéis a temporally discrete and spatially continuous, micro-
case for binary alloysthe growth exponent is found to be SCOopic, particulate technique which yields a correct hydrody-
n=1, independent of the spatial dimension. If flow effects namical behavior in the macr_oscop_ic limit, while bging easy
are relevanias is certainly the case for binary flujdsnd to extend from two to_ three dimensions. Comparatively little
the domain sizeR is greater than the hydrodynamic length WOrk has been published on DPD and, to our knowledge,

R, = v? po, wherew is the kinematic viscositys is the den- nothing at all on its application to phase ordering kinetics.

sity, ando is the surface tension coefficient, then one obtainsWe shall find that the method is able to handle domain

o o : growth both qualitatively and quantitatively, yielding correct
n=3in o spatial chmensmnélA]. In-the less pommonly scaling exponents and displaying a surface tension which
observed R<R,, regime, two-dimensional lattice-gas au-

. ) satisfies Laplace’s law. Although the present study is con-
tomata[11], molecular dynamickl5], and Langevin dynam-  fineq to the case of two-dimensional systems, we hope to

i 1 1 1 — 1' 1 i . . . .
ics simulationg6,7] find n=2 lattice-Boltzmann studies, by ety in the near future with a second paper dealing with the
contrast, suggest than=3 [13]. However, the lattice- three-dimensional case.

Boltzmann method does not include any thermal fluctua-
tions, which a renormalization group approach shows play a
crucial role in causing this exponent to assume the value of
3 [14]. In three dimensions, fd®R<R,;,, the growth exponent The motivation for the introduction of dissipative particle
is n= 3 crossing over tm=1 at late times, witm=35 again  dynamics by Hoogerbrugge and Koelndi6] was to simu-
if R>R,, [14]. late the behavior of complex fluids. Complex fluids include
fluids in which there are many coexisting length and time
scales, and fluids for which a hydrodynamic description is
:Electronic address: coveney@cambridge.scr.slb.com unknown or does not exist at all. Examples are multiphase
Electronic address: ken21@cam.ac.uk flows, flow in porous media, colloidal suspensions, micro-

Il. WHY DISSIPATIVE PARTICLE DYNAMICS?
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emulsions and polymeric fluids. Whereas the traditionato move in space with their positions and momenta described
continuum-based approach to understanding and modelingy real numbers. The mass and momentum of these particles
the hydrodynamic behavior of such fluids, based on the forare conserved, but their energy is not. As in LGA, the evo-
mulation and solution of partial differential equations, haslution of the model over one time step takes place in two
met with rather limited success, in more recent times adisubsteps which are continually repeat¢d: an infinitesi-
tional approaches have been undertaken, relying on a micréally short impulse step, an@) a propagation step of du-
scopic description of the fluid in question. In principle, the ration At. Within the impulse substep, the momentum of
most accurate microscopic approach is based on the use gfich particle |§) is modified to reflect its interaction with

molecular dynamicéMD) but the computational expense of the other particles. During the propagation step each particle

attempting this is so severe that until now only a small num0@sts with constant velocity, completely ignoring every

ber of flow phenomena in simple fluids have been achieveoc,)ther.part'de' In mathematical terms, the impulse step is
and even then these have been largely restricted to two dg_escnbed by
mensiongbut see Laradjet al.[32]).

Lattice-gas automatd GA) have been used as a numeri- Api=2, 8§, (1)
cal technique for modeling hydrodynamics since their intro- J#i
duction in 1986 by Frisch, Hasslacher, and Pon{daliand
by Wolfram [18], who showed that one could simulate the
incompressible Navier-Stokes equations for a single compo- t
nent two-dimensional fluid using discrete Boolean elements Agi=—(pi+Ap). 2
on a triangular lattice. In essence, LGA dynamics is com- m
pnsed O.f two e'ef_“e”ts- at each_ discrete time step, part|cle|sn these equationsy is the mass of each particlg, denotes
first collide at vertices on the lattice, the collisional outcomes, i o P ; -
being controlled by local conservation of mass and moment-he position .Of partlc_le, _andaj is the unit vector pointing

g y

) . ; . ..~ _from particlej to particlei. Henceforth, we shall assume for
tum; then the particles advect freely to neighboring sites, implicity that all particl (v unit m 1) Q. i
Such lattice-gas automaton models are computationallS Ip city tha s particies carry u f adST('_ )'. 1] ds_a
much faster than molecular dynamics, particularly since th r?:c?:i %g;?%}gdeelm?gz?gg gaanogrr;bnzqmg :a’nZnKolglman
natural time step—the mean free time between collisions—i ol he({:]s the form P y 9 99
several orders of magnitude greater than that required f
MD. The single-phase LGA method was subsequently gen-
eralized by Rothman and Kellgt9] to permit the simulation

while the propagation step is

Fij N .
(1—71)[Hij—w(pi—pj)’€‘|j] it rij<re
[

2
of immiscible fluids, and indeed our present work shares Qjj=1 7'cN

certain features in common with their model, which has 0 if ry=rg,

since been investigated with some degree of righa0]. (3)

Even more recently, the technique has been extended to
model amphiphilic fluids comprised of mixtures of oil, wa- Wherer;;=|qg;—q;/| is the distance between particlesand
ter, and surfactari20]. i, andn=N/V is the density of the system comprisify
However, the LGA method suffers from some disadvan-particles in a volume/. IT;; (=11;;) is sampled from a uni-
tages: the underlying lattice leads to the loss of Galilearform random distribution with mean and variandg. This
invariance which, although negligible for creep flows, doesrandom component of the momentum transfer represents the
present problems for flow at finite Reynolds numbers, whilestochastic effect of the collisions, and gives rise to a fluid
the treatment of three-dimensional fluids is computationallypressure, while the second, dissipative, term inside the
challenging owing to the complexity of the collisional square brackets of E¢3) is responsible for the fluid viscos-
look-up tables and the necessity of deploying a four-ity. The temperature is controlled d¥;; , whose variance is
dimensional face-centered-hypercubic latfi@g The lack of & measure of the thermal fluctuations in the system. Note that
Galilean invariance manifests itself by a spurious factor mul+ ., which occurs in the factor multiplying the one in square
tiplying the inertial term in the momentum-conserving brackets in Eq(3), is a cutoff radius beyond which no inter-
Navier-Stokes equation. For a single-phase lattice gas, th&ction(momentum transfeiis possible. The presence of this
factor can easily be scaled away; for compressible flow, ocutoff makes the interactions local and the DPD algorithm
for multiphase flow with interfaces, however, the presence oforrespondingly fast.
this factor is more difficult to deal with, although various The property of detailed balance is satisfied by
rather involved methods have been proposed to remove @tontinuous-time DPO23], and so a Gibbsian equilibrium
[21,22. state is guaranteed to exist. However, the statistical mechani-
Dissipative particle dynamics was introduced with the in-cal analysis of Espaih and Warren24] confirmed that the
tention of capturing the best aspects of MD and LGA,; it doesoriginal DPD model presented by Hoogerbrugge and Koel-
away with the problems arising in the latter owing to theman[16] does not lead to the physically correct equilibrium
presence of a lattice, while maintaining the discrete timedistribution, a feature which is particularly marked when the
stepping element which greatly accelerates the algorithmelative time step\t=1.
compared with MD. Moreover—and this is important from a  This choice of time stepAt=1) has, nevertheless, been
practical perspective—in DPD the extension from two toused in almost all of the DPD work so far reported on
three dimensions is very straightforward. The DPD method16,25-27. Two simple modifications to the basic model
involves the motion of massive particles, which are allowedwere suggested by Espalnand Warren[24] which ensure
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that the DPD equilibrium state is the canonical ensembleoriginal simple expressions for the speed of sound and the
The first modification is reducing the time step lendgth  kinematic viscosity to more complicated resu®s].

factor of 10 is sufficient and the second is the inclusion of
an extra factor of 2(%r;;/r.) into the dissipative term in

the change of momentum E¢B), so that the momentum IIl. DPD MODEL FOR BINARY IMMISCIBLE FLUIDS

transfer scalaf);; becomes Immiscible fluid mixtures exist because individual mol-
i ecules attract similar and repel dissimilar molecules. The
3( 1- r—’) L most common example of such behavior arises in mixtures
(oN =— = I1;, \/A—t—Zw( 1— i)(pi_pj) . éjAt}. of oil and water; the nonpolar, hydrophobic molecules of oil
wren le attract one another through short-range van der Waals forces,

(4)  while the polar water molecules enjoy more complex, long-

This alteration guarantees that the model obeys a fluctuatio@"9€ hydrophilic attractions which are dominated by elec-
dissipation theorem which is very similar to that obtained introstatic interactions including hydrogen bonds. At the atom-

conventional Brownian motiofi24]. The theorem enables istic level employed in molecular dynamics, such
one to relate the amplitude of the noidkat is, the fluctua- interactions demand a detailed treatment. However, to obtain

tions inIl;;) to the temperature of the system. accurate mesoscopic and macroscopic level descriptions us-

In the original paper by Hoogerbrugge and Koelman, iting DPD, the microscopic model can be drastically simpli-
was statedbut not demonstratédhat the DPD model of a fied. To model the interactions of dissimilar particles in a
simple one-component fluid satisfies the Navier-Stokes equainary immiscible fluid within DPD, the simplest modifica-
tions in the mean-field limif16]. Espawl recently explicitly  tion to the single-phase DPD algorithm is to introduce an-
derived the hydrodynamic equations for the mass and mosther variable, called the “color’(by analogy with the
mentum density fields in DPID23]. However, these equa- Rothman-Keller modg) which has two possible values—for
tions are not the central results of ESpks paper, since the example, “red” for oil and “blue” for water. Identical in-
DPD properties of mass and momentum conservationteractions are used between particles of the same color, while
coupled with the Galilean invariance and the isotropy of thewe increase the mean and variance of the random variable
microscopic equations of motion, effectively guarantee thafl;; when particles of different color interact, which has the
at a macroscopic level the Navier-Stokes equations wileffect of creating a repulsion between particles from the two
emerge. What is more significant is the correction of thedifferent phase§25]. That is,

U[0,2A1,] if particles are of the same phase

1S U[0,ATI+11,e)] if particles are of different phases, ®

whereU[a,b] denotes a uniform distribution betwearand  neighboring cells. Individual particles consist of the position-
b. momentum vector pair and a color index.

It should be emphasized that E&) is a minimal modi- For each time step we calculate first the impulse and then
fication to the single-phase DPD model, and is symmetriche propagation step, as described in Egsand(2). In the
under the interchange of particle colors. It would be quiteimpulse step we iterate through the particles in each link cell,
straightforward to generalize this to the asymmetric case bysalculating the change in momentum of each particle as it
for example, making the meall, of the stochastic terms nteracts with the particles in the same and neighboring link
different for the two colors and/or likewise adjusting the dis-¢ce|is. Since the momentum is modified by particle pairs we
sipative terms through the selection of different values of,qeq to ignore half of the neighboring cells to avoid dupli-

 in Eq. (4). In the present paper, however, we shall NOtc4tion \When considering a different particle pair we first

properties of the simpler model implied by E@). It has

been shown that detailed balance is also satisfied by the twc?—kIp to the next particles if the pair is out of range. In the

phase DPD modd28]. As for the single-phase DPD fluid, propagation step we iterate through the particles in each link

one can show that, macroscopically, the Navier-Stokes equ&-eII again, allowing them to COQSt for t".mi' The complete
tions are obeyed within homogeneous regions of each of thg_tate of the sys_tem may be written to file, and other calcula-
two immiscible fluids. tions to determine, for example, the temperature and pressure
The implementation of the DPD algorithm is very similar Of the system can also be performed. Given constaand
to that of conventional MD algorithn{g9]. For example, the humber densityn=N/V, the system scales linear(in both
periodic spatial domaifthe simulation cejlis divided into a  computation time and memory sjz@ith increasing number
regular array of equally sized link cells, such that each sid®f particles,N. To give an example, the calculation of the
of the rectangular domain has an integer number of cells anohotion of a system of 40 000 DPD particles with number
each cell is at least, across. Each link cell consists of a densityn=4 for 10 000 time steps takes 10 h CPU time and
dynamically allocated array of particles and pointers to thel3-MB memory on an 133 Mflop/&@heoretical DEC Alpha.
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This is roughly an order of magnitude slower than similarHowever, unlike the case of lattice-based simulation tech-
calculations with two-dimensional LGA. We expect DPD niques, the positions of the particles in DPD are described by
and LGA to be of similar speed in three spatial dimensionscontinuous variables rather than discrete points on a grid,

(Note: At=0.1) and so the structure function is meaningful evenkdsap-
proaches infinity. The nature of the system is such that the
IV. RESULTS structure function has a finite value through&uspace, ap-
proaching a constant value at large distances from the origin,
A. Scaling laws for binary fluid separation so that the mean is not defined. Since we are not interested in

Several simulations were run to model the binary separathe asymptotic value of the structure function, a function
tion of a mixture of two immiscible phases. By definition, for F(k.t), which vanishes far from the origin, was fit to the grid
studies of symmetric quenches, exactly half of the particle®f points containing the meaningful values $¢k,t). The
were in the “red” phase and half in the “blue” phase. function that we chose as the best fit #§¢k,t) in these
Asymmetric quenches were studied with the ratio of theSimulations is
numbers of colored particles at both 60:40 and 70:30. The
initial state of the system was completely random; the posi- _ _ _ 2
tions of red and blue particles were chosen from a uniform FlkD=F(Ikl.n=co()[klexp—cy(O]K]D. (®)
distribution, and their velocities were chosen from a uniform
distribution in direction and a Gaussian distribution in mag-Note thatF (k,t) is taken to have radial symmetry as we are
nitude. Physically, this initial state corresponds to startingnot interested in the orientation of the domains in real space.
with the system quenched in temperature from a state abov sample structure function with its fig(k,t) are shown in
the spinodal point at which the fluids are miscible. Fig. 2. The reciprocal of the mean ¢k| weighted by

A reasonably large number of particlet) 000 was used F(k,t) is denotedR(t), and is interpreted as the domain size
in order to enhance the statistical accuracy of the data olzharacterizing the state of the system at time
tained during these simulations. Care was taken to ensure By plotting our computed values &{(t) on a log-log plot
that the box dimensions were suitable for accurately simulatversus { it is easy to see any change in the exponent of the
ing the phase segregation process for large times without thecaling law
size of the domains becoming close to that of the periodic
box, thereby introducing artifacts into the observed behavior.

Simulations started from a symmetric quench were al-
lowed to evolve for 10 000 time steps and the asymmetric
quenches were evolved for 100 000 time steps. The state dfo obtain accurate results it is important to ensemble-
the system was recorded at regular intervals throughout. Figaverage several simulations differing in their random initial
ure 1 shows the state of a single system at six different snagonditions. For each simulation, the log-log plot was exam-
shot times following a symmetric quench. At each time forined for possible exponents. From each of the symmetric
which the state of the system was recorded, the structurguenches it was possible to mark the existence of two sepa-

R(t)oct". 9

function rate scaling regimes, with the crossover at roughly
1 t=100Q\t. Only a single scaling regime was observed from

S(k,t)= _J' X,t) = po(X,t) — + the asymmetric quenches, even though the simulations were
(k. ‘V (PoX 1) = pr 1) =(pw) +(pr)) allowed to evolve an order of magnitude longer than the

2 symmetric quenches and the final domains were significantly

(6) larger. For each regime in all simulations a straight line was
fit to the data to determine the exponent. The complete re-
) . o sults for symmetric quenches are listed in Table I, while a
was calculated. In this equation the subscriptandr indi- sample log-log plot is shown in Fig. 3. All of the figures in
cate blue and red particles, so thaf(x,t) is the (spatia)  thjs section are derived from one and the same simulation,
mass density of the blue particles at timeand(py,) is the  and so may be directly compared. The results in Table |
average mass density of blue particles. The use of the strugtrongly suggest a crossover fram 2 to n= 2, which is in
ture function to characterize binary fluid phase Separation iagreement with results from |a’[tice-gas auton’{atﬂ, mo-
widespread8,11,3@. Note that, because of the imposition of |ecular dynamicg15] and Langevin dynamics simulations
two-dimensional periodic boundary conditions on the simuW] as well as a renormalization-group analy$ist]. A
lation cell, the structure function is only meaningful when growth exponent oh=0.47+0.02 wasobserved from the
evaluated at points in the Fourier space satisfying asymmetric quenches, independent of the ratio of particle
numbers. This exponent was observed at all times in these
m 1) 7) off-critical quenches, just as in previously reported Langevin
Ly'Ly)’ simulations[6,7].

Some short simulation88000 time steps longwere also
whereL, andL, are the lengths of the box in theandy  run to determine the early-time exponent for a symmetric
directions of real space, respectively. guench where momentum is not conserved. The momentum

To extract the quantity best characterizing the time-transferred between a pair of interacting particles was vio-
dependent domain size of the state of the system, the medated by adding a vector 15-20 % of the magnitude of the
of k weighted by the structure function is often calculated.interaction and random in directidghosen from a uniform

Xexp—2mik-x)dx

k=(ky k)= m,ne’.
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FIG. 1. Binary separation particle positions (@ t=0At, (b) t=700At, (c) t=1300At, (d) t=2500At, (¢) t=5000At, and (f)
t=10 00QAt.

distribution to each particle’s momentum. The growth expo-lations is listed in Table Il. In this tabld,, andL, are the
nent observed in these simulations was0.329+0.015, in  box dimensions, whila is the number densitil/V, where

agreement with theorj14]. V is the two-dimensional volume of the box. The value of
The complete set of model parameters used in these simiif,= 15.8 was chosen since the immiscible phases then regu-



54 COMPUTER SIMULATIONS OF DOMAIN GROWTH AND ... 5139

1.6
14 ¢
12

109, (R)

0.8 1
0.6 ¢
0.4
0.2

2 25 3 3.5 4
logqq (1)

FIG. 3. SampleR vst log-log plot.

larly reach complete phase separation asymptotically, and
yet the system does not behave too randomly.

B. Bubble surface tension

The detailed way in which phase separation occurs in bi-
nary fluids depends, among other things, on the interfacial
tension which exists between the two immiscible phases. In
particular, as noted earlier, when hydrodynamic effects are
important, the crossover between diffusiveLifshitz-
Slyozoy and hydrodynamic regimes should occur when the
domain sizeR(t) is larger than the hydrodynamic length
Ry=v?/po, wherev is the kinematic viscosityp is the fluid
density, ando is the surface tension coefficient. A further
important test of our DPD model for binary fluid separation
is thus to check on the existence of a surface tension between
the two phases by confirming the validity of Laplace’s law
using a series of bubble simulations inspired by earlier
lattice-gas analogkl1,31].

As with the domain growth simulations of Sec. IV A,
40 000 particles were placed in a two-dimensional periodic
box of the same dimensions as those listed in Table Il, but
the simulations were now run for 20 000 time ste@#or a
few of the smaller bubbles, simulations were run with only
6400 particles. For these smaller bubbles accurate results
FIG. 2. Structure function and sample fit. could be obtained without the additional computation re-
quired by the larger systejrThe results here have the same
model parameters as in Sec. IV(&ee Table I, with the
sole exception ofll;, which was set to 0.791 in order to

TABLE |. Binary separation exponents for symmetric quenches.

Simulation Slope 1 Slope 2 log logyR TABLE Il. Binary separation model parameters.
number crossover crossover
Model
8 0.4701 0.648 3.000 0.865 parameter Value
9 0.4648 0.640 3.000 0.869 At 01
11 0.4805 0.639 3.000 0.886 m 1:0
12 0.4788 0.642 3.114 0.932 n 40
13 0.4804 0.649 3.079 0.916 N 40 000
14 0.4859 0.627 3.000 0.884 © 200
15 0.4759 0.676 3.114 0.929 I 15.8
16 0.4717 0.673 3.079 0.912 n 0 0'949
17 0.4855 0.696 3.114 0.943 rrce” 1'3
Mean 0.477 0.65 3.06 0.90 Ly 100.0
95% conf. 0.005 0.02 0.04 0.02 L 100.0

<
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FIG. 5. Pressure difference vsRL/

theorem relates this to the nois@Ve note in passing that
Hoogerbrugge and Koelmdri.6] gave an equation of state
for a homogeneous DPD fluid which relates the fluid pres-
sure to the fluid density. However, since the theoretical basis
for this equation is not adequately explained, we have pre-
ferred to calculate the pressure using statistical mechanical
FIG. 4. Sample tension bubble at equilibriuiRy&0.123.,). first principles)
By considering only the blue particles far from the inter-

face >1.3Ry) we can calculate the thermodynamic pres-
increase the signal-to-noise ratio. The initial state of the syssure in homogeneous regions outside the bublig,\.
tem has all the particles placed with random positions an&imilarly, we can calculate the pressure inside the bubble
velocities, but the particles are red within a radiysof the  (P;,) by using particles withr<0.7R,. For a circular bubble
center of the box, and blue outside this distance. This bubbli two dimensions, Laplace’s laj81] says
changes rapidly within the first few time steps, but settles
down to a state approximating equilibrium after about 8000

steps for the larger simulation@000 time steps for the Pin_Pout:R_o- (13
smaller simulations Figure 4 shows one such bubble at
equilibrium. To verify this we calculate the mean pressure difference at

These bubble experiments thus enable us to compute th@yeral values ofR,, and plot the pressure difference
equilibrium value of the interfacial tension between red andp. _p_ versus the reciprocal d®,. For each of the simu-
blue phases. Equilibrium statistical mechanics tells us thations the equilibrium pressure difference was averaged to a
we can write the instantaneous pressure functiBr) 0f & single mean value. The mean pressure difference and corre-
system in terms of the internal virial¥’ ) and the instanta-  sponding error for each bubble size reported in Fig. 5 are the
neous temperature functio{) [29] as mean and standard error of the mean for the set of simula-
tions at each bubble size. We can see from our results in Fig.
NKaT- W 5 tha}t we have the expe_:cted Iine.a_r behavior. The slope of this
p=—2"__"" (10)  line is the surface tension coefficient
\
where V. CONCLUSIONS

We have studied binary immiscible fluid behavior in two
’ spatial dimensions using a simulation technique called dissi-
_| (11) pative particle dynamics. We have found algebraic scaling
m; laws in agreement with expectationgl4], the two-
dimensional growth exponents beib@nd3 at early and late
and times, respectively, for symmetric quenches, grttirough-
out for asymmetric quenches. Symmetric quenches for which
_1 a0 momentum transfer was violated displayed an early-time
W 32 ,2>| iy &y (12 growth exponent of. This scaling behavior has previously
been observed in molecular dynamick5], Langevin dy-
where kg is the Boltzmann constant. The thermodynamicnamics[7], and lattice-gas automafa1] simulations, and is
pressure P) and temperatureT() of the system are the time also in accord with the results of a renormalization-group
averages of and7, respectively. It is possible to compute a approach which takes into account the mechanism of droplet
temperature because the important property of detailed batoalescence due to noise-induced Brownian mdtiegh. We
ance is satisfied by DP23]; the fluctuation-dissipation have also verified that Laplace’s law holds in a series of
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