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Condensate turbulence in two dimensions

A. Dyachenkd and G. Falkovich
Landau Institute for Theoretical Physics, Moscow, Kosygina 2, 117940 Russia
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76 100, Israel
(Received 5 December 1995

The nonlinear Schidinger equation with repulsiofalso called the Gross-Pitaevsky equatiis solved
numerically with damping at small scales and pumping at intermediate scales and without any large-scale
damping. Inverse cascade creating a wave condensate is studied. At moderate pumping, it is shown that the
evolution comprises three stagés: short period(few nonlinear timesof setting the distribution of fluctua-
tions with the flux of waves towards large scal@B), long intermediate period of self-saturated condensation
with the rate of condensate growth being inversely proportional to the condensate amplitude, the number of
waves growing as/t, the total energy linearly increasing with time and the level of over-condensate fluctua-
tions going down as 4k, and(iii ) final stage with a constant level of over-condensate fluctuations and with the
condensate linearly growing with time. Most of the waves are in the condensate. The flatness initially increases
and then goes down as the over-condensate fluctuations are suppressed. At the final stage, the second structure
function (|, — ¥, %)< Inry, while the fourth and sixth functions are close to their Gaussian values. Spontane-
ous symmetry breaking is observed: turbulence is much more anisotropic at large scales than at pumping
scales. Another scenario may take place for a very strong pumping: the condensate contains 25—30 % of the
total number of waves, the harmonics with small wave numbers grow as[®&&063-651X96)06911-5

PACS numbeps): 47.10+g, 47.27.Gs

If an unforced undamped system conserves more than orgnaller scales than that of the pumping absorb both inte-
integral of motion then the pumping acting at some scaleggrals and provide for a steady st@td. At strong nonlinear-
generally produces two cascadeskispace. While a down- ity, the relations between integrals and their fluxes are not so
scale(direct cascade and related fragmentation is what oneimple, as we shall see below.
naturally expects from turbulence, an upscateerse cas- We consider the case af,=k? andxklk2k3k4=const cor-
cade is a kind of Self-Organization. Another important diS'responding to the famous nonlinear Sd]n:ger equation'
tinction between cascades stems from their destinations.
Most of the systems provide for a small-scale dissipation
(like viscosity as a natural sink for a direct cascade. Con-
trary, in many systems, large-scale modes do not have sig- ) o o ) )
nificant damping so that inverse cascade may lead to ¥hich describes light in media with Kerr nonlinearity as well
growth of the largest mode. as any turbulence of envelopEs]. Weak turbulence in the

Besides the inverse cascade in two-dimensional incomtramework of(1) is described if4,6—8. In two dimensions,
pressib|e fluid [1_3]’ any System with the Hamiltonian the main prediCtion for the pair correlation function
H=H,+H,, () =N Ay is as follows:n, = f(k) T/k?, where the di-

mensionless functiofi(k) (which distorts equilibrium distri-
bution T/k? to provide for nonzero fluxéss a slow logarith-
HzZZk Ok P H4=k kEk ’ Mkgkoksky Wi, Wi, Vi Py mic function at the region of the direct casca@ and it
17anena approaches a constant at the region of the inverse cas-
cade [7]. The dimensionless parameter of nonlinearity
Ekllak|2k2/wk=)\|ak|2 increases with the wavelength so that
the turbulence is getting strong at smiallContrary to weak
turbulence, which is insensitive to the sign of the interaction
constant\, strong turbulence has qualitatively different
= Niokokak, = Mgk kpk,r At @ small level of nonlinearity properties for focusing N>0) and defocusing media
Hint<<H,, the weak turbulence of such a system is well un-(A<0).
derstood 4]. The presence of two integrals of motion, both  Turbulence at the focusing case has been qualitatively de-
guadratic in wave amplitudgseglecting the contribution of scribed in[7]: an inverse cascade produces large-scale cav-
H;.: into the Hamiltoniah leads to the existence of two erns that are modulationally unstable and collapse in a finite
cascades, direct energy cascade and inverse cascade tiofie. Collapse(or self-focussing provides for a strongly
waves, leading to a large-scale build-up that will be callednonlinear direct cascade of waves towards the small-scale
the condensate. The simple theorem can be readily provedink. Eventually, a steady state is established without an ex-
one needs at least two sinksne at larger and another at ternal large-scale sink: all mean valuesergy, total number

it Ayt N [y]2y=0, @

allows for an inverse cascade since it conserves the tot
number of wavedN=3,|,|?. The system is a collection of
waves with the frequency spectruw) and the four wave
interaction with the evident propertiesxklk2k3k4
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of waves, etg. do not grow with time. Strong large-scale (and zero otherwigeand the small-scale damping
turbulence coexists with small-scale weak turbulence. a2

We consider the defocusing case. Equatidn with va(k)=0.%*h(k/ky),
A<O0 is called the Gross-Pitaevsky equati@. Immense 1
literature is devoted to the properties of particular solutions h(x)= —sexgd5(1—x?)], x=<1,
and to equilibrium statisticgincluding phase transitionsn 6x
that model; see, e.g[10-12. We are interested in turbu- 5
lence excited by an external pumping. Strong turbulence in h(x)=1— —exgd 1/21-x?)], x>1.
the framework of(1) may contain a complicated mixture of 6
condensate, phonons, shocks, grey solitons, and quantizgthe choice ofyy was to model Landau damping in plasma;
vortices. Such complexity does not imply the absence ofhe particular form oth(x) should be irrelevant as long as
simple universal scaling laws for the correlation functions,h(x) tends to a constant at large
yet it makes it difficult to establish them. The complete ana- Figures 1 and 2 present the data for the run on a
lytical description of such turbulence is still ahead of us. The128x128 grid with a=0.05k; =28k, =32 (moderate
three-dimensional kinetics has been considered by Kraichngoumping. One can see from Fig.(d) that the condensate
within the ring-model approximatioflL3]. We consider two- appears after=10 and eventually the most of the waves are
dimensional turbulence under the action of the instabilityin the condensate. Herld, has been calculated from the
providing pumping at intermediate scales and the small-scalaverage value oy over space, i.e., it represents a coherent
damping. This paper is an account of the first step, we adresndensate. The square-root regihg= \t starts when the
the simplest questions: Is it possible to have a steady state aumber of waves at the condensate is of order of the total
finite k without a large-scale sink? When and how does théwumber of waves. The regime en@g t~70) when the cor-
condensate appear? We shall show that those two questiorglation scale 0=N, ?is approaching the dissipation scale.
are closely connected: fluctuations ka0 can be steady To characterize the overcondensate fluctuations, the structure
only if a growing condensate appearskat0. functionsSi(r) = (| #(x+r)—¢(x)|') were obtained by aver-

For the numerical integration of E¢L) with A\=—1, we aging overx and over timgduring an interval of few dimen-
applied the method described [iii]. All runs were done in
the domain 2rx2x. For the initial conditions, the 60
“quasiequlibrium” spectrumn,=T/(k?*+ 1) was chosen
with T=0.01 andu=1/12. The initial phases were taken < ©
randomly. To consider turbulence, we added to the
right-hand of the equation fordy, /ot the terms -60
Yp(K) = va(K) ¢« which describe the pumping due to in-
stability,

FIG. 2. (a) Level sets of the spectrum(k, ,k,) averaged over
> time t=(119-127).(b) Spectra at different directions ik space:
Yp(K) = a(K= k) (KF k) at kj<k<k —.— k=0, ——— k,=0, - -- k,=—k,, unbroken linek, =k, .
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sionless time unijs One can see from Fig.(d that the weak turbulence the large-scale equilibrium spectrum is
second structure function is getting logarithmic at large timestructurally stable with respect to the angular modulations
when it stabilizeqafter the timet=100 the variations 0§ [4]. That means that the symmetry breaking may be due to
are invisible on the scale of Fig).IThat corresponds to the strongly nonlinear phenomengike kink creation — see
spectrumn,ck 2. To see if the statistics of the over- also Fig. 3. Figures 2 and 3 show that there are two perpen-
condensate fluctuations deviates from Gaussian statistics Wfcular directions, ondat =30° with the largest level of
calculated the second flatneSs/S5 (2 for Gaussian statis- fluctuations and another with the smallest level. At the first
tics) and the third onéSs /S5 (8 for Gaussian statistitsThe  direction, the spectrum is flat at sm&lland then drops as
flatness grows up until the time~55 (when the relative approximatelyk 2 which may be the spectrum of shocks.
growth of the condensate saturgtetien the flatness de- The small fluctuations at the perpendicular direction have
creases. The flatness is approximately scale-independent gfectrumk 2. One may hypothetize that the strong turbu-
r>rq where the correlation scalg=N, Y2 decreases with lence of overcondensate fluctuations may be considered as
time. quasi-one-dimensional structures imposed onto a more or
Steady spectrum is substantially anisotropic despite thkess isotropic set of waves.
pumping being almost isotropic; the anisotropy growskas To study the asymptotic regimgvith linearly growing
decreases — see Fig(a2 Note that within the theory of condensate and a steady level of fluctuatioms a larger
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time scale, we made a run on 832 grid with of the pumping maximum which is nok,=15. The initial
a=0.05k =6k, =10 (see Fig. 4 Note that the parameter data and the damping are the same as in Fig. 1. As well as in
of nonlinearityH,/H, is much larger than unity when the the case of a strong pumping, we do not observe a steady
fluctuations are steady, yet the raNG/2SH (S=472 being ~ State at nonzer& (we run untilt=70). The total number of
the domain areais close to unity so that the condensateWwaves increases exponentially urtti+2, then the interme-
gives the main contribution into both energy and number ofliate stage follows with an approximately quadratic growth
waves. Figure &) presents the hystogram of the fluctuationsN~t*. After t=50, the evolution oN(t) comes eventually
of the number of waves above the condensate. The statisti¢ato linear growthN~t. The occupation numbers, grow at
of the over-condensate fluctuations approaches Gaussi@iallk and saturate at the pumping scale, the spectrum is
similarly to what is shown at Figs.() and Xc), despite the ~getting steeper d<k, with the scaling exponent approxi-
high nonlinearity of the system. mately 4.5 att=44. During the intermediate stage, the con-
Making another rurinot shown with the only difference ~densate contains a negligible portion of the total number of
being that the amplitude of the pumping is ten times largerwaves[Fig. 5a]. Only att>50, the condensate starts to
we did not find any sign of a growing condensate and of agrow, the ratiaNy/N fluctuates around 1/@ot shown. That
steady state at finitk at the same time scale=400. One means thaty is small yet the value ofy(r)|? is almost
may suggest that if the pumping initially produces weak tur-constant in spacgsee Figs. f) and §. There are only few
bulence ak~k, then the condensate has time to appear, andeep minima in|y]?(r) [like that seen at Fig. (6) at
then the growing condensate serves as a sink providing for @~ 2.1] which probably correspond to grey solitons or vorti-
steady state &= 0. Very strong pumping produces unsteadyces. Most of the realizations look like Fig.(6ompare with
turbulence with a small condensd# least as an intermedi- Fig. 3 for a moderate pumpingOne may see kinklike struc-
ate regime for a long time tures in the profiles of RE and Imy while || is almost
Another setting where the evolution is qualitatively differ- constant. The fact that the fluctuationg ¢{r)|? in space are
ent from what is shown at Figs. 1-4 is when the pumping issmall is reflected also in the dependencéNéf2SH on time
sufficiently strong and separated from the damping region(not shown which approaches unity similarly to Fig(t3.
Figures 5 and 6 show the data for the run with To conclude, there seem to be two qualitatively different
a=0.068k =13k, =17. The main difference is the position regimes of the kinetics of the nonequilibrium condensation.
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For a moderate pumping that creates weaklike turbulence at We are indebted to A. Finkelshtein, A. Newell, and V.
pumping scales, the inverse cascade produces strong conderakharov for useful discussions of the related subjects. This
sate that suppresses the over-condensate fluctuation. Lineaifrk was partly supported by the Rashi Foundation, by the

growing condensate provides a sink for a turbulence which iTVIinerva Center for Nonlinear Physics at the Weizmann In-

steady at ank# 0. The regimes that appear at strong pump-_.. . .
ing, where finite Fourier harmonics grow as well as the con—St'tUte’ and by the Russian Basic Research Fund Grant

densate, need further studies. N0.94-01-00898.
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