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Benard-Marangoni convection displays a two-dimensid@al) hexagonal pattern. A topological analysis of
these structures is presented. We describe the elementary topological transformations involved in such patterns
(neighbor switching process, cell disappearance or creation, and cellular divasidnthe typical defects
[pentagon-heptagon pair, “flower{a cluster of more than three polygons incident on the same yeg&.
Usual topological lawgLewis’s, Aboav-Weaire's, Peshkin’s, and Leimais law9 are satisfied. For Von
Neumann'’s law, a modification which takes into account a physical effect specific to the dynamicsaod-Be
Marangoni structureéselection of average cell size in steady regimas been introduced. We also compare
topological correlations in Berd-Marangoni structures with those derived from biological tissues or simu-
lated structure$2D hard disk tessellations, Ising mosaics, distributions of maximum entropy formalism, etc.
The agreement is fair for pentagons, hexagons, and heptd@#¥363-651X96)06811-Q

PACS numbsd(s): 47.20.Dr, 02.50-r, 64.60.Cn, 05.40:j

[. INTRODUCTION tures with similar statistical characterisfisuch as variance
M, Of the distributionP(n) defined below:
As emphasized by various authdfis-3] random cellular Topological characterization of such structures always in-

structures, frothgin three dimensions and mosaicgin two  cludes the distributio®(n) of the numben of sides of cells
dimensions abound in nature and are of interest in many(Phere,tﬁalledn—cells),bthe Va”?”?g” off t;[]hef.d'ft”b.mr']%n
scientific fields such as metallurdy,5], geology[6], biol- célrlg,of ﬁ 252” t?wlémave(ra":ég)e Oarz d\e§ gf n?:e“: 'gi'é] thgr
) : _ - ) n . )
o013, o seopi(325 s of e vry oo 0 e UGS
P . ! ; M(n) is the average number ok-sided neighbors of
ture, these structures look geometrically identical. INp-cells [clearly, nm(n) =, kM,(n)]

[ have to distinguish between evolutive mosaics Lesany, K e e ol i ;
practice, we have to 9 : » The outline of this paper is the following. The experimen-
where the number of cellland sometimes the total alea 4| procedure is described in Sec. II. Our results are given in
changes with time, such as biological tiss{i8% polycrys-  sec. |1l and they are compared, when possible, to other natu-
tallization processefll], and nonevolutive mosaics where g, simulated structures or distributions derived from theo-

the number of cellsand total arearemains constant, as in retical models with similar statistical characteristic. Finally,
metallurgical cuts or tessellations built from point or disk some conclusions are given in Sec. IV.

packings[12-14].

Here, we investigate the cellular structure generated by Il. EXPERIMENTAL PROCEDURE
Benard-Marangoni convectiofalso called surface-tension-
driven Benard convection A fluid heated from below and
with a free upper surface exhibits convection motion beyon
a certain value of the vertical gradient temperat(d
critical value and one observes a two-dimensiof2D) cel-
lular pattern on the free surfadgig. 1). The convective
phenomenon is three dimensional but an evolutive two-
dimensional mosaic of convective cells is observed over a
constant area.

This cellular structure is deformable but, as in crystals, it
contains dislocations and grain boundaries. This similarity
with crystal systems leads, using techniques and tools of
crystallography, to a description of the dynamics and to an
estimate of the amount of disorder inmB&d-Marangoni pat-
terns[15-19. It seems that no topological analysis has been
devoted until today to Beard-Marangoni structures. So, the
aims of this work are, first, to describe the dynamics of
Benard-Marangoni structures through elementary topological
transformations, to describe the typical defects observed, to
carry out the topological analysis of these patterns through
correlation and metric laws, and, finally, to compare its cor-
relation values with those of other natural or simulated struc-  FIG. 1. Cellular structure in Beard-Marangoni convection.

The experimental setup consists of a tfdn3 mn) hori-
gontal layer of silicon oil Rhodorsil 47V10(Prandtl num-
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P(n)

05 A O BM with peripheral cells
O cucumber
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é A 2D hard disk tesselation
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FIG. 2. Schematic description of the apparatus 1: Fluid layer; 2:
Air; 3: Container; 4: Vessel; 5: Cooling container. 03

oo

ber Pr=880 at 25 °Q set in a container with a flat copper
bottom (in which an electric resistance is embedded to pro-
vide a uniform temperatuyend lateral walls made of Plexi-
glass. The vessel limiting the part of the layer under investi- ¢,
gation is surrounded by an outer guard ring of the same oil.
This ring, and the fact that Plexiglass has about the same
thermal conductivity as the silicon oil guarantee a quasiadia-
baticity of the sidewalls. The fluid was cooled from above
through a thin layer of air. The air was bounded on top by a FIG. 3. DistributionP(n) of the numbem of sides of cells for
glass plate, which is itself the bottom of a container in whichnatural and simulated structures f@5=0.812.

water, coming from a bath with regulated temperature, cir-

culates in order to fix the temperature of the glass plate and ll. RESULTS AND DISCUSSION

thereby the temperature on top of the fluid. The essential
features of the apparatus described above are shown in Fignosaicss is based on a few simple topological consider-
2. The temperatures at the upper and lower surfaces are me

o ions. The mosaics consist of cells, bounded by edges, inci-
sured by means of thermocouples, the preision of the Mexent on vertices with valencd. The only topological ran-

Eurements |fs abqut 0.1°C. Thhe liquid .d.epu),f(g (r)neasuretlj dom variable i1, the number of sides of a cell. If the mosaic
Vé{'};ﬁi;ﬁ:ﬂ 3\/25'0;%%2:/2 dwgy glgrrr?iﬂjlrgnpcc))wdei ;Tjr:bgn%\gi random and in the absence of adjustment, there are always
. . . =3 edges and cells incident on a vertex. It follows that
in the fluid or by a shadowgraph technique. Photographs g n)=6; cells are six sided on average in a large mosaic. For

]Ehe C(I)nvectlve g(tructturioa(;e ?fl_ehn attr:egurl]art time Lnterval n example of random structures with adjustment, see the
or a long periodup 1o ay en the photographs aré 1 4t Simon and Belmedarn2] who observed, in ther-

digitized. Appropriate filterings and scalings provide a bI'mosolutal structures of horizontal layers of aqueous solutions

nary image. Suitable software allows us to obtain the valuegf sucrose evaporating freely, many vertices vth3 and
of the relevant functions. The surface temperature field i%n)<6 For B'mard-l\/larangon,i structures, when peripheral

obtained by infrared thermograplfg0]. . o X ’
The confinement of the fluid layer is taken into account byce"S (cells in contact with sidewallsare not taken into ac

means of a nondimensional parameter, the aspect Fatio count, {n)=6. Since peripheral cells are overwhelmingly
S X " N entagonal{n) is between 5 and 6 when they are taken into
which is the ratio of a characteristic horizontal length to thep g (m i W W y !

v . account.
liquid depth,I'=yS/d (S is the surface area of the pattemn There are several models for random mosaics: Voronoi

A hexagon_al vessel is used, b_ecause it ha_ls_ been_Observf'é%sellation$23] (used also in the construction of structures
[21] that this geometrical form mduc_es a minimal dlsorder.in “2D hard disk” tessellation[24], in air table packings
Experiments have been performed in a vessel With65, [25,26, and in colloidal aggregatiofi27]), maximum en-

this value corresponds to medium confinement. Under thest%py mosaic$28—30 and Ising-model constructidi1,32)
condmons, wall effgctg exist but the hexagonal shape.d.oeare all well reviewed in the literature. Here we will compare
not induce any extrinsic disorder and it allows for plasticity o . qata with those of the above structures.

of t_he_st;qctu(rje and for the existence of a certain amount of g Bgard-Marangoni structures exhibit a distribution of
intrinsic disorder. the number of cell sides mainly withh<8, such as vari-

h The external sgﬁrameter which cohntrlols the inStflibil.itY iSous naturalbiological tissue$8], cellular arrays obtained in
the temperature differenceT across the layer. Usually, itis - yjrectional solidification of alloy§33]), or simulated struc-
more useful to take a normalized parameter, the distance tt‘&res[24 34). All these structures have,<1.7.

the threshold In order to compare the Bard-Marangoni structures
with their natural counterpartshe so called 220 mm cucum-
ber tissud 7]), and with the structures obtained by the Ising
_ _ model[31,32, and simulated “2D hard disk™ tessellations
€= = . (1) : :
[34], we selected structures with the same variance
u(=0.812 of the P(n) distribution. Figure 3 shows the
topological distribution P(n) as a function ofn for
where R and M are, respectively, the Rayleigh and Ma- u,=0.812 for the structures mentioned above. It can be seen
rangoni numbers, and the subscrip) Gtands for the corre- that theP(n) distribution observed in these natural or simu-
sponding threshold value. Experiments are performed dated cellular arrays agree satisfactorily with the distribution
e=2.5. obtained in Beard-Marangoni mosaics. The asymmetry of

0.2
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3

The discussion of random area-filling cellular patterns
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FIG. 4. Elementary topological transformation(a) neighbor
switching (T, procesg (b) cell disappearancél, process (c) cell
division.

the Benard-Marangoni distribution is due to the fact that ) (h)
(mostly pentagonalperipheral cells have been taken into
account.

FIG. 5. Creation of a new cell in Beard-Marangoni structures,
observed by infrared thermography.
A. Elementary topological transformations

; . lycr Is in metallurgy, wher | nce of subgrains is
and different typical defects polycrystals etallurgy ere coalescenc 9

observed. Cell divisiofmitosig is responsible for the steady
The two types of elementary topological transformationsstate of biological tissues, and for their efficient, local re-

(ETT) by which a perfect hexagonal pattern might be pro-sponse to an injur{35].

gressively modified to produce a disordered structure, or by In the dynamics of Beard-Marangoni structures in small

which a structure evolves in time, are well knoy8,35]. vessels, & ; process has been observed by Ondauet al.

First, there is the neighbor switching procdds process [36]. We have often observed coalescence of two adjacent

[Fig. 4@]; second, cell disappearance or creati@n pro- cells into one, or the progressive disappearance of a cell

cess [Fig. 4(b)], and cellular divisior{Fig. 4(c)] which is a  which is getting smaller and smaller. We have also observed

composition ofT; and T, [35]. the “birth” of a new cell which occurs by scission of the
Neighbor switching(T,) is a fast transformation, whose “mother” cell. This is shown in Fig. 5 which exhibits the

effects are rapidly relaxed. Accordingly, it is extremely rareevolution of the surface temperature field. At fifs}, the

in soap froths. In mosaics with a fixed number of cells, sucHiquid is moving upward on the central axis of a 7-cell. Then

as Voronoi mosaicsJ, is the only topological transforma- the 7-cell becomes elongated and at the same time the liquid

tion and it is solely responsible for statistical equilibrium. Onmoves upward along a vertical central planar regjithis

the other handT, is a slow transformation, and it constitutes plane is directed from left to right in Figs(l® and(c)]. A

the main agent of slow coarsening of the soap froth or of‘daughter cell” appeargd). Then the size of the daughter
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cell increasegd)—(g). This phenomenon is observed to take Peshkin, Strandburg, and Rivi¢B4] u,=8-12. For the
about 1 h. The process is reversible: disappearance of a celiscs on an air tabl¢25] u,<1.75. The valueu,=1.75
by the inverse process is often observed. Moreover, the praseems to be the limiting value for two-dimensional points
cess can stop at stagés) or (e) and return to(a): this  systemg12,13. For Benard-Marangoni structures, we have
reversal occurs when a faster “birth” takes place in thefound 0.2<u,<0.8.
neighborhood. This division process is very similar to mito- It is therefore interesting to pldfFig. 7) the varianceu,
sis in biological tissues, the region of upward moving liquid againstP(6), for different mosaics. All data fall on the same
playing the part of the nucleus of the cdlB5]. So, in  curve with very good accuracy in spite of the variety of their
Benard-Marangoni structures, we have observed all the ETTorigins. We confirm the results of Lenta et al. [26] who
which makes it a more complex and more interesting cellulawere the first to suggest that the equation of state
structure to study. uo=T(P(6)) could be universal in mosaics. The fact that this
In Benard-Marangoni structures, polygons with 4 to 8 universality is a consequence of maximum entropy formal-
sides are observed. The 4-cells and 8-cells are absent or veism (MEF) was demonstrated latg89]. Figure 7 shows that
few and they have a very short lifetime. All cells, except peripheral cells increage, and the dispersion of the Bard-
those with six sides, are considered as defects. As in crystaMarangoni data points. Indeed, most peripheral cells are pen-
lography, one characterizes these defects by surroundirtggons which decreasB(6) and increaseu,. Generally,
them with a contour. The contour closes if it does not sur-Benard-Marangoni structures without peripheral cells have
round any defect. The Burgers vector of a defect measuresnly hexagonal, pentagonal, and heptagonal cells. In this
this lack of a closure. In Beard-Marangoni structures, the case,u,=1—P(6), regardless of the distribution, and this
most common defects are the pentagon-heptagon pair arabymptotic behavior is manifest in Fig. 7, fB¥6)>0.6.
the “flower” defect. The pentagon-heptagon pair is a dislo- Figure 8 shows that data points from iged-Marangoni
cation in a hexagonal lattice, with Burgers vectofFig.  structures lie only on the theoretical curf@9] with good
6(a)]. The “flower” defect, which is a cluster of more than accuracy. It also shows that our data superpose well on those
three polygons, incident on the same vertex, has zero totalf various authors. Experimentally, we find that data points
Burgers vector and the same contour as a cluster of severtié on a plateau corresponding j0,P(6)?=0.16+0.01 for
(regular or irregular6-cell. Figures @), 6(c), and &d) ex- P(6)<0.7 as predicted by various auth¢89,4(. Figures 7
hibit the three possible varieties. This defect is not topologi-and 8 support the suggestion of Leinaet al. [26] and the
cally stable; it disappearslowly) by T, transformation and maximum entropy inferencf39] that all froths follow the

the regular lattice is restored. same structural equation of stateematre’s law).
Pairs of dislocation§i.e., two dipoleq5-cell+-7-cell)] are
also observed. Two typical arrangements are shown in Figs. 2. Aboav-Weaire’s law

6(¢) and Gf). The pairs share a common edge between a g1t 4re |ocal transformations, which, like the collisions
pentagon and a heptag¢Rig. 6(e)] or are separated by a i, gases, keep the cellular structure in statistical equilibrium.
hexagor{Fig. &(f)]. In both cases, the total Burgers vector is thg gpnservable manifestation of this fact is given by the

2, but the two dislocations are orignted Qiﬁerently. We havepqay-Weaire relatiofi3,11]. It states that the mean number
also observed cases where the dislocations share a commmn) of sides of the first-neighbor cells of-cells m(n) is

edge of their pentagons. The two dislocations have then oRg|ated ton by

posite Burgers vectors and the total Burgers vector is zero.

Lewis [37] and Pyshno\38] have noticed that this is the (6a+ o)

topological defect created by mitosis in biological tissues. m(n)=6—a+ — ©)
Pairs of dislocations, also with zero total Burgers vector but

with a common edge between heptagons, can be created
der shear. This process has not been observed in marBe
Marangoni structures.

We have observed also two “flowers” in contaldig.
6(g)], with the two “flowers” composed of five and six
cells, respectively. The resulting Burgers vector is 1. Finally
aggregates of a “flower” defect and a dislocation have bee
seen/[Fig. 6(h)], with a Burgers vector of 2.

L\R}here,uz is the variance of thé&(n) distribution. We shall
comment on the value & below.

We have plotted the produetm versusn at different
times in the Beard-Marangoni experiment. In all cases,
nm(n) is linear inn, but with a different slopg6—a) from
the value suggested [11]. The parametea should be one
M all evolutive mosaicg$mosaics with cell division or disap-
pearancg This is the case of biological cell8], polycrys-

. tals [11], and nearly verified for soap frothgll] and
B. Topological laws diffusion-limited cluster aggregatioDLCA) [27]. The
1. Lematre’s law Monte Carlo-generated mosaics of Peshkin, Strandburg, and
. . Rivier [34] are dominated by neighbor exchanges, cell dis-

_ A global measure of the “disorder” of a pattern may be gnnearance is only a small perturbation. Consequeatlg,
given by the variancg, of the topological distributior®(n) large and negative. Random Voronoi polygons generated
which measures the deviation of the structure with respect t§q 1 two-dimensional Poisson point process are nonevolu-
the perfect hexagonal pattern: tive and havea=0.5[41].

pa=(n2)—(n)2. ) Figure 9 shows that, in Bmrd-Marangoni structures,
increases slowly with time frora=1.06 toa=2.08 and then

Soap froths have < u,<3. Biological tissues havg, of  decreases towards an asymptotic vdhsé.4). This behavior
the order of unity. In the mosaics generated numerically bys due to the dynamic of the ‘Bard-Marangoni structures.
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FIG. 6. Typical defects in Beard-Marangoni structures and their arrangemémtBasic defect(5-cell+7-cell). The corresponding
dislocation has Burgers vector (h), (c), and(d) “flower” defects with Burgers vector zerdg) and(f) pair of dislocation(5-cell+7-cell).
The total dislocation has Burgers vector(g) Two “flower” defects in contact with a Burgers vector of (f)) arrangement of a “flower”
defect and a dislocation.

First, the increase o corresponds to the evolution of the o
structure in the transient regime, then the abrupt decrease of m(6) =6+ B (4)
a for t=125 h corresponds to the fast relaxation of the struc-
ture towards the steady regime characterized by fluctuationpys relation is verified by our experiments, which are fitted
around a mean value. The same trémtrease followed by by
decrease o) was observed with 0a<1.4 in the air table
experiments of Lemée et al. [25] but as a function of the m(6)=5.95+0.17u,. (5)
concentration, instead of the time in our case. In reaction-
limited cluster aggregatiofiRLCA), a also changes with Likewise, the Weaire identitj2]
time [27].
Note thatm(6) is independent o& (nm(n))=pu,+(n)?, (6)
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FIG. 7. Varianceu, againstP(6) for several natural or simu-

lated structures. FIG. 9. Parametea of the Aboav-Weaire's law as function of
the real time in Beard-Marangoni experiment.

holds in Baard-Marangoni structures.
and in diffusion-limited cluster-cluster aggregation DLCA
[27]. Cellular arrays formed during directional solidification

Lewis’'s law [7] was discovered in cucumber epidermis, of a binary Pb-TI alloy[33] obey this law withny=2. In
human amniorisic), and pigmented epithelium of the retina. thermosolutal structures of layers of aqueous solution of su-
It holds in many other epithelial tissug8). Later, Rivier and ~ crose[22], Lewis’s law is also satisfied with,=2.47. We
Lissowski[42] demonstrated that Lewis’s law actually is a verified that in the Beard-Marangoni experiment®,,) is
mathematical law which has to be satisfied by any randonfinear inn at all times, the Lewis’s law is satisfied.

3. Metric law: Lewis’s law

space-filling structure maximizing its entropy. Furthermore, it has been shoy| that the slopes and
Lewis's law states that the average areanefided cell  interceptn, of the Lewis line are linked to a parameter
(A,) increases linearly im which, in a coarsening structure, measures its aging by the
relations
(An)=S(n—ny). (7
S=MA), 8

Soap froths obey Lewis’s lawnotwithstanding the few,
not statistically significant 3- and 4-sided cells, which would
have a negativéA,) or (A,) from Eq.(7)]. It is obeyed in air
table packing$25] (but only for low concentrations of disks;
steric effects spoil the linearity at higher concentratipt)

1
No— 6+ =0. (9)

In soap froths\ is increasing linearly with time, a con-

H 5/ P(6) sequence of Von Neumann'’s Ig45]. Thus, the largek, the
7 larger the slopé& and the interceph, the coarser and older
"_gtllj::i}(ii]riments[zs,%] ( is the structure. By contrast, biological tissues do not
6 O BM with peripheral cells * coarsen, but evolve in a steady state, and only the slope of
O BM without peripheral cells Lewis's law may increase with time as the tissue ages
51 x (through(AY}), while the intercepny (and\) remains con-
{ x stant. In our case, both the intercepf and the slopeS
4 change with time. These variations, as functions of time,
have an effect om\. Figure 10 shows the variation of,
N obtained from the intercegEq. 9, in real time for Baard-

Marangoni structures. It can be seen that, fikstncreases
and then reaches a plateau at abou0.23. It can be noticed
that the steady regime, corresponding to this plateau, is
reached for the same time=~125 h as for the parametex

of the Aboav-Weaire law. This behavior can be explained as
follows: Lewis’s law can be differentiated in time, to yield
[44] a version of Von Neumann's lawaveraged over
n-sided cell$,

0.0 1.0 2.0 A/P@6)-1

FIG. 8. Virial equation of state: u,/P(6) as function of 1P(6)
—1. Benard-Marangoni points, and other experimental data points d{An) _
superposed to the theoretical cufas)]. dt

d d
UV (GRS R RV NGt
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03 > My(n)=n, (15)

k

which states that cells with sides haven neighbors, and a

o © ) symmetry relation for the number of edges betweeand
0.2 k-sided cells
<

My (n)P(n)=Mn(k)P(k); (16)

thus, A= A, With an obvious inequality
0.17

A,=0 for all n,k. a7

O BM without peripheral cells

— Theory (see text) Maximum entropy formalisni32,34,4Q yields a linear de-
pendence oA\, with n (or k)

0.0 T T T T
0 50 100 150 200 250

time (hours) Akn=(n—6)o(k—6)+n+k—6, (18)
FIG. 10. Lewis's law: Parametaras function of the real time Where o=—(a/u,)=<(1/6) is a structural parameter. A froth
in the Banard-Marangoni experiment. without correlation has=(1/6). For most natural structures,
(@=1), o=—(Uuy). _ .
where(A)(t) is the averaged cell area at tirheA Bénard- Figure 11 shows the fivé,, (k=4-8) as functions oh

Marangoni structure evolves towards a steady regime ant9r the various natural or simulated structurése 220 mm

Thus [31,32, maximum entropy mosai¢84] and simulated “2D
hard disk” tessellation[24]) all at the same value of the
d(A) varignceM2=Q.812. Straight lines are given by H3.8). As-
TR a({A)—Age), (11 suming that simulated structures also havel, there should

be agreement between th#g,, of the Benard-Marangoni
structures and those derived from the other structures. The
agreement is reasonable fo=5—7. The maximum differ-
ence between Bmrd-Marangoni data and maximum entropy
predictions is at most 10%.
_ L ) Whereas the maximum entropy prediction fy, is lin-
in terms of the initial cell sizé\,=(A) (t=0). _ ear inn, some random numerical tessellatidising model
There is no dlﬁusmn_of matter driving the evollutlon of [32] and hard disk tessellatiofi24]) give a dependence im
the structurdthe energy is not concentrated at the interface \yhich is more quadratic than linear. Given that there are very
so that the evolution equatiofi0) for a n-sided cell in &  fo 4. and 8-cells, the topological correlation functions be-
Benard-Marangoni structure should be independenof \een 4- or 8-cells and with 5-, 6-, or 7-cells are not statis-
thusd((A)\)/dt=0. Using the known evolution dfA) with  icayly  significant. Taking into consideration only the
time [Egs. (11),(12)], we obtain A(k=5—7, n=5-7) we can conclude that the "Bard-
Marangoni structures follow fairly well the theoretical ex-
(13) pression(18).

has a solution

<A>(t):Asel+ (Ap—Ase)EXp(— at), (12

1 d)\_ o
Ndt [1+uexpat)]’

o IV. CONCLUSIONS
whereu=A((Ag— Age). The solution is . i _ _
This paper has analyzed Bard-Marangoni structures in

u+1 topological terms. We emphasize that we have been dealing
rexp—al)’ (14  here only_with Beard-Marangoni structurd$ree upper sur-
face, which are cellular and randorfl8-21,35,46,4]
whereas Rayleigh-Brrd structuresfixed upper surfadeare
chiefly ordered rolls. They have been discussed extensively
in the literaturg47,48.

We carried out a study of the slow dynamics of these
structures and we compared them to other natural structures,
or to structures built from models involving elementary to-
pological transformations. This study confirms the applica-

Peshkinet al. [34] have drawn attention to a nearest- bility to Bénard-Marangoni structures of general topological
neighbor correlatioM (n) which is the average number of laws such as Aboav-Weaire’s, Lewis’s, Lemnals, and
k-sided neighbors of an-cell and to a topological correla- Peshkin’s laws.
tion functionA,,=M(n)/P(k). M(n) satisfies two iden- All the ETT which have been otherwise observed in one
tities, a sum rule structure or another are involved together in the dynamics of

\(t) is plotted in Fig. 10. The best fit with experiment gives
a=0.25, with\p=\ (t=0). If [d({A)N\)/dt] had been differ-
ent from zero, the coefficiert would keep on increasing in
time, which is not the observed behavior.

4. Correlation functions: Peshkin’s laws
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FIG. 11. Topological correlation functions
© Ay, as function ofn for natural and simulated
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the Benard-Marangoni structures. Thus the latter can be coneell annihilation is not included in the Ising modé¢B1,32]
sidered as the canonical example of mosaics. Notably, thand in “two-dimensional hard disk tessellationg2?4]. Both
occurrence of systematic cell disappearance and division haspological transformation$; and T, (cell creation and an-
now been documented in"Bard-Marangoni structures. This nihilation) are observed in Berd-Marangoni structures and
study also confirms the fact that peripheral cells introduce astatistical equilibrium is reached more efficienf§9]. Re-
asymmetry of the cell-shape distribution, and an apparentently, a model which takes into consideration the two ETT
additional disorder. has been proposed by Seggtlal. [50] to determine the cell-
This study confirms the structural similarity between two-shape and cell-area distributions; they are in good agreement
dimensional froths. Most striking is the similarity between with those of soap froths. Any discrepancies between natural
the Benard-Marangoni structures and the cucumber epitheand model-constructed structures regard the cells mitie,
lium. This result is remarkable, because the forces involved, or 7, which are always rare and, in mBed-Marangoni
are completely different. This shows that statistical equilib-structures, have a short lifetime.
rium is completely independent of the microscopic interac-
tions which establish it. This observation is at the basis of
maximum entropy inferencg29,30,34,3%
The concordance between topological characteristics of Work in Strasbourg was supported by the EU mobility
these natural and model-constructed structures is satisfaprogram, FOAMPHYS Network, Contract No. ERB-
tory, in spite of the fact that th&, procesdcell creation or CHRXCT 940542.
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