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Bénard-Marangoni convection displays a two-dimensional~2D! hexagonal pattern. A topological analysis of
these structures is presented. We describe the elementary topological transformations involved in such patterns
~neighbor switching process, cell disappearance or creation, and cellular division! and the typical defects
@pentagon-heptagon pair, ‘‘flower’’~a cluster of more than three polygons incident on the same vertex!, etc.#.
Usual topological laws~Lewis’s, Aboav-Weaire’s, Peshkin’s, and Lemaıˆtre’s laws! are satisfied. For Von
Neumann’s law, a modification which takes into account a physical effect specific to the dynamics of Be´nard-
Marangoni structures~selection of average cell size in steady regime! has been introduced. We also compare
topological correlations in Be´nard-Marangoni structures with those derived from biological tissues or simu-
lated structures~2D hard disk tessellations, Ising mosaics, distributions of maximum entropy formalism, etc.!.
The agreement is fair for pentagons, hexagons, and heptagons.@S1063-651X~96!06811-0#

PACS number~s!: 47.20.Dr, 02.50.2r, 64.60.Cn, 05.40.1j

I. INTRODUCTION

As emphasized by various authors@1–3# random cellular
structures, froths~in three dimensions!, and mosaics~in two
dimensions! abound in nature and are of interest in many
scientific fields such as metallurgy@4,5#, geology@6#, biol-
ogy @7,8#, or ecology@9,10#. In spite of the variety of con-
stituent materials and forces responsible for their architec-
ture, these structures look geometrically identical. In
practice, we have to distinguish between evolutive mosaics,
where the number of cells~and sometimes the total area!
changes with time, such as biological tissues@8#, polycrys-
tallization processes@11#, and nonevolutive mosaics where
the number of cells~and total area! remains constant, as in
metallurgical cuts or tessellations built from point or disk
packings@12–14#.

Here, we investigate the cellular structure generated by
Bénard-Marangoni convection~also called surface-tension-
driven Bénard convection!. A fluid heated from below and
with a free upper surface exhibits convection motion beyond
a certain value of the vertical gradient temperature~DTc:
critical value! and one observes a two-dimensional~2D! cel-
lular pattern on the free surface~Fig. 1!. The convective
phenomenon is three dimensional but an evolutive two-
dimensional mosaic of convective cells is observed over a
constant area.

This cellular structure is deformable but, as in crystals, it
contains dislocations and grain boundaries. This similarity
with crystal systems leads, using techniques and tools of
crystallography, to a description of the dynamics and to an
estimate of the amount of disorder in Be´nard-Marangoni pat-
terns@15–19#. It seems that no topological analysis has been
devoted until today to Be´nard-Marangoni structures. So, the
aims of this work are, first, to describe the dynamics of
Bénard-Marangoni structures through elementary topological
transformations, to describe the typical defects observed, to
carry out the topological analysis of these patterns through
correlation and metric laws, and, finally, to compare its cor-
relation values with those of other natural or simulated struc-

tures with similar statistical characteristic@such as variance
m2 of the distributionP(n) defined below#.

Topological characterization of such structures always in-
cludes the distributionP(n) of the numbern of sides of cells
~here, calledn-cells!, the variancem2 of the distribution
P(n), the mean numberm(n) of sides of the first-neighbor
cells of n-cells, the average areâAn& of n-cells, and the
topological correlation functionAkn5Mk(n)/P(k), where
Mk(n) is the average number ofk-sided neighbors of
n-cells, @clearly,nm(n)5(kkMk(n)#.

The outline of this paper is the following. The experimen-
tal procedure is described in Sec. II. Our results are given in
Sec. III and they are compared, when possible, to other natu-
ral, simulated structures or distributions derived from theo-
retical models with similar statistical characteristic. Finally,
some conclusions are given in Sec. IV.

II. EXPERIMENTAL PROCEDURE

The experimental setup consists of a thin~4.3 mm! hori-
zontal layer of silicon oil Rhodorsil 47V100~Prandtl num-

FIG. 1. Cellular structure in Be´nard-Marangoni convection.
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ber Pr5880 at 25 °C! set in a container with a flat copper
bottom ~in which an electric resistance is embedded to pro-
vide a uniform temperature! and lateral walls made of Plexi-
glass. The vessel limiting the part of the layer under investi-
gation is surrounded by an outer guard ring of the same oil.
This ring, and the fact that Plexiglass has about the same
thermal conductivity as the silicon oil guarantee a quasiadia-
baticity of the sidewalls. The fluid was cooled from above
through a thin layer of air. The air was bounded on top by a
glass plate, which is itself the bottom of a container in which
water, coming from a bath with regulated temperature, cir-
culates in order to fix the temperature of the glass plate and
thereby the temperature on top of the fluid. The essential
features of the apparatus described above are shown in Fig.
2. The temperatures at the upper and lower surfaces are mea-
sured by means of thermocouples, the precision of the mea-
surements is about 0.1 °C. The liquid depth (d), is measured
by means of a micrometer with a precision of 0.01 mm. Flow
visualization was achieved by aluminum powder suspended
in the fluid or by a shadowgraph technique. Photographs of
the convective structure are taken at regular time intervals
for a long period~up to 10 days!. Then the photographs are
digitized. Appropriate filterings and scalings provide a bi-
nary image. Suitable software allows us to obtain the values
of the relevant functions. The surface temperature field is
obtained by infrared thermography@20#.

The confinement of the fluid layer is taken into account by
means of a nondimensional parameter, the aspect ratioG,
which is the ratio of a characteristic horizontal length to the
liquid depth,G5AS/d ~S is the surface area of the pattern!.
A hexagonal vessel is used, because it has been observed
@21# that this geometrical form induces a minimal disorder.
Experiments have been performed in a vessel withG565,
this value corresponds to medium confinement. Under these
conditions, wall effects exist but the hexagonal shape does
not induce any extrinsic disorder and it allows for plasticity
of the structure and for the existence of a certain amount of
intrinsic disorder.

The external parameter which controls the instability is
the temperature differenceDT across the layer. Usually, it is
more useful to take a normalized parameter, the distance to
the threshold

e5
R2Rc

Rc
5
M2Mc

Mc
. ~1!

where R and M are, respectively, the Rayleigh and Ma-
rangoni numbers, and the subscript (c) stands for the corre-
sponding threshold value. Experiments are performed at
e52.5.

III. RESULTS AND DISCUSSION

The discussion of random area-filling cellular patterns
~mosaics! is based on a few simple topological consider-
ations. The mosaics consist of cells, bounded by edges, inci-
dent on vertices with valenceZ. The only topological ran-
dom variable isn, the number of sides of a cell. If the mosaic
is random and in the absence of adjustment, there are always
Z53 edges and cells incident on a vertex. It follows that
^n&56; cells are six sided on average in a large mosaic. For
an example of random structures with adjustment, see the
work of Simon and Belmedani@22# who observed, in ther-
mosolutal structures of horizontal layers of aqueous solutions
of sucrose evaporating freely, many vertices withZ.3 and
^n&,6. For Bénard-Marangoni structures, when peripheral
cells ~cells in contact with sidewalls! are not taken into ac-
count, ^n&56. Since peripheral cells are overwhelmingly
pentagonal,̂n& is between 5 and 6 when they are taken into
account.

There are several models for random mosaics: Voronoi
tessellations@23# ~used also in the construction of structures
in ‘‘2D hard disk’’ tessellation@24#, in air table packings
@25,26#, and in colloidal aggregation@27#!, maximum en-
tropy mosaics@28–30# and Ising-model construction@31,32#
are all well reviewed in the literature. Here we will compare
our data with those of the above structures.

The Bénard-Marangoni structures exhibit a distribution of
the number of cell sides mainly with 4<n<8, such as vari-
ous natural~biological tissues@8#, cellular arrays obtained in
directional solidification of alloys@33#!, or simulated struc-
tures@24,34#. All these structures havem2<1.7.

In order to compare the Be´nard-Marangoni structures
with their natural counterparts~the so called 220 mm cucum-
ber tissue@7#!, and with the structures obtained by the Ising
model @31,32#, and simulated ‘‘2D hard disk’’ tessellations
@34#, we selected structures with the same variance
m2~50.812! of the P(n) distribution. Figure 3 shows the
topological distribution P(n) as a function of n for
m250.812 for the structures mentioned above. It can be seen
that theP(n) distribution observed in these natural or simu-
lated cellular arrays agree satisfactorily with the distribution
obtained in Be´nard-Marangoni mosaics. The asymmetry of

FIG. 2. Schematic description of the apparatus 1: Fluid layer; 2:
Air; 3: Container; 4: Vessel; 5: Cooling container.

FIG. 3. DistributionP(n) of the numbern of sides of cells for
natural and simulated structures form250.812.
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the Bénard-Marangoni distribution is due to the fact that
~mostly pentagonal! peripheral cells have been taken into
account.

A. Elementary topological transformations
and different typical defects

The two types of elementary topological transformations
~ETT! by which a perfect hexagonal pattern might be pro-
gressively modified to produce a disordered structure, or by
which a structure evolves in time, are well known@3,35#.
First, there is the neighbor switching process~T1 process!
@Fig. 4~a!#; second, cell disappearance or creation~T2 pro-
cess! @Fig. 4~b!#, and cellular division@Fig. 4~c!# which is a
composition ofT1 andT2 @35#.

Neighbor switching~T1! is a fast transformation, whose
effects are rapidly relaxed. Accordingly, it is extremely rare
in soap froths. In mosaics with a fixed number of cells, such
as Voronoi mosaics,T1 is the only topological transforma-
tion and it is solely responsible for statistical equilibrium. On
the other hand,T2 is a slow transformation, and it constitutes
the main agent of slow coarsening of the soap froth or of

polycrystals in metallurgy, where coalescence of subgrains is
observed. Cell division~mitosis! is responsible for the steady
state of biological tissues, and for their efficient, local re-
sponse to an injury@35#.

In the dynamics of Be´nard-Marangoni structures in small
vessels, aT1 process has been observed by Ondarc¸uhuet al.
@36#. We have often observed coalescence of two adjacent
cells into one, or the progressive disappearance of a cell
which is getting smaller and smaller. We have also observed
the ‘‘birth’’ of a new cell which occurs by scission of the
‘‘mother’’ cell. This is shown in Fig. 5 which exhibits the
evolution of the surface temperature field. At first~a!, the
liquid is moving upward on the central axis of a 7-cell. Then
the 7-cell becomes elongated and at the same time the liquid
moves upward along a vertical central planar region@this
plane is directed from left to right in Figs. 5~b! and ~c!#. A
‘‘daughter cell’’ appears~d!. Then the size of the daughter

FIG. 4. Elementary topological transformation:~a! neighbor
switching~T1 process!; ~b! cell disappearance~T2 process!; ~c! cell
division.

FIG. 5. Creation of a new cell in Be´nard-Marangoni structures,
observed by infrared thermography.
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cell increases~d!–~g!. This phenomenon is observed to take
about 1 h. The process is reversible: disappearance of a cell
by the inverse process is often observed. Moreover, the pro-
cess can stop at stages~d! or ~e! and return to~a!: this
reversal occurs when a faster ‘‘birth’’ takes place in the
neighborhood. This division process is very similar to mito-
sis in biological tissues, the region of upward moving liquid
playing the part of the nucleus of the cell@35#. So, in
Bénard-Marangoni structures, we have observed all the ETT,
which makes it a more complex and more interesting cellular
structure to study.

In Bénard-Marangoni structures, polygons with 4 to 8
sides are observed. The 4-cells and 8-cells are absent or very
few and they have a very short lifetime. All cells, except
those with six sides, are considered as defects. As in crystal-
lography, one characterizes these defects by surrounding
them with a contour. The contour closes if it does not sur-
round any defect. The Burgers vector of a defect measures
this lack of a closure. In Be´nard-Marangoni structures, the
most common defects are the pentagon-heptagon pair and
the ‘‘flower’’ defect. The pentagon-heptagon pair is a dislo-
cation in a hexagonal lattice, with Burgers vector 1@Fig.
6~a!#. The ‘‘flower’’ defect, which is a cluster of more than
three polygons, incident on the same vertex, has zero total
Burgers vector and the same contour as a cluster of several
~regular or irregular! 6-cell. Figures 6~b!, 6~c!, and 6~d! ex-
hibit the three possible varieties. This defect is not topologi-
cally stable; it disappears~slowly! by T1 transformation and
the regular lattice is restored.

Pairs of dislocations@i.e., two dipoles~5-cell17-cell!# are
also observed. Two typical arrangements are shown in Figs.
6~e! and 6~f!. The pairs share a common edge between a
pentagon and a heptagon@Fig. 6~e!# or are separated by a
hexagon@Fig. 6~f!#. In both cases, the total Burgers vector is
2, but the two dislocations are oriented differently. We have
also observed cases where the dislocations share a common
edge of their pentagons. The two dislocations have then op-
posite Burgers vectors and the total Burgers vector is zero.
Lewis @37# and Pyshnov@38# have noticed that this is the
topological defect created by mitosis in biological tissues.
Pairs of dislocations, also with zero total Burgers vector but
with a common edge between heptagons, can be created un-
der shear. This process has not been observed in our Be´nard-
Marangoni structures.

We have observed also two ‘‘flowers’’ in contact@Fig.
6~g!#, with the two ‘‘flowers’’ composed of five and six
cells, respectively. The resulting Burgers vector is 1. Finally,
aggregates of a ‘‘flower’’ defect and a dislocation have been
seen,@Fig. 6~h!#, with a Burgers vector of 2.

B. Topological laws

1. Lemaı̂tre’s law

A global measure of the ‘‘disorder’’ of a pattern may be
given by the variancem2 of the topological distributionP(n)
which measures the deviation of the structure with respect to
the perfect hexagonal pattern:

m25^n2&2^n&2. ~2!

Soap froths have 1<m2<3. Biological tissues havem2 of
the order of unity. In the mosaics generated numerically by

Peshkin, Strandburg, and Rivier@34# m258212. For the
discs on an air table@25# m2<1.75. The valuem251.75
seems to be the limiting value for two-dimensional points
systems@12,13#. For Bénard-Marangoni structures, we have
found 0.2<m2<0.8.

It is therefore interesting to plot~Fig. 7! the variancem2
againstP~6!, for different mosaics. All data fall on the same
curve with very good accuracy in spite of the variety of their
origins. We confirm the results of Lemaıˆtre et al. @26# who
were the first to suggest that the equation of state
m25f „P~6!… could be universal in mosaics. The fact that this
universality is a consequence of maximum entropy formal-
ism ~MEF! was demonstrated later@39#. Figure 7 shows that
peripheral cells increasem2 and the dispersion of the Be´nard-
Marangoni data points. Indeed, most peripheral cells are pen-
tagons which decreaseP~6! and increasem2. Generally,
Bénard-Marangoni structures without peripheral cells have
only hexagonal, pentagonal, and heptagonal cells. In this
case,m2512P~6!, regardless of the distribution, and this
asymptotic behavior is manifest in Fig. 7, forP~6!.0.6.

Figure 8 shows that data points from Be´nard-Marangoni
structures lie only on the theoretical curve@39# with good
accuracy. It also shows that our data superpose well on those
of various authors. Experimentally, we find that data points
lie on a plateau corresponding tom2P~6!250.1660.01 for
P~6!,0.7 as predicted by various authors@39,40#. Figures 7
and 8 support the suggestion of Lemaıˆtre et al. @26# and the
maximum entropy inference@39# that all froths follow the
same structural equation of state~Lemaı̂tre’s law!.

2. Aboav-Weaire’s law

ETT are local transformations, which, like the collisions
in gases, keep the cellular structure in statistical equilibrium.
The observable manifestation of this fact is given by the
Aboav-Weaire relation@3,11#. It states that the mean number
m(n) of sides of the first-neighbor cells ofn-cellsm(n) is
related ton by

m~n!562a1
~6a1m2!

n
, ~3!

wherem2 is the variance of theP(n) distribution. We shall
comment on the value ofa below.

We have plotted the productnm versusn at different
times in the Be´nard-Marangoni experiment. In all cases,
nm(n) is linear inn, but with a different slope~62a! from
the value suggested in@11#. The parametera should be one
in all evolutive mosaics~mosaics with cell division or disap-
pearance!. This is the case of biological cells@8#, polycrys-
tals @11#, and nearly verified for soap froths@11# and
diffusion-limited cluster aggregation~DLCA! @27#. The
Monte Carlo-generated mosaics of Peshkin, Strandburg, and
Rivier @34# are dominated by neighbor exchanges, cell dis-
appearance is only a small perturbation. Consequently,a is
large and negative. Random Voronoi polygons generated
from two-dimensional Poisson point process are nonevolu-
tive and havea50.5 @41#.

Figure 9 shows that, in Be´nard-Marangoni structures,a
increases slowly with time froma51.06 toa52.08 and then
decreases towards an asymptotic value~'1.4!. This behavior
is due to the dynamic of the Be´nard-Marangoni structures.
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First, the increase ofa corresponds to the evolution of the
structure in the transient regime, then the abrupt decrease of
a for t'125 h corresponds to the fast relaxation of the struc-
ture towards the steady regime characterized by fluctuations
around a mean value. The same trend~increase followed by
decrease ofa! was observed with 0.7<a<1.4 in the air table
experiments of Lemaıˆtre et al. @25# but as a function of the
concentration, instead of the time in our case. In reaction-
limited cluster aggregation~RLCA!, a also changes with
time @27#.

Note thatm~6! is independent ofa

m~6!561
m2

6
. ~4!

This relation is verified by our experiments, which are fitted
by

m~6!55.9510.17m2 . ~5!

Likewise, the Weaire identity@2#

^nm~n!&5m21^n&2, ~6!

FIG. 6. Typical defects in Be´nard-Marangoni structures and their arrangement.~a! Basic defect~5-cell17-cell!. The corresponding
dislocation has Burgers vector 1;~b!, ~c!, and~d! ‘‘flower’’ defects with Burgers vector zero;~e! and~f! pair of dislocation~5-cell17-cell!.
The total dislocation has Burgers vector 2;~g! Two ‘‘flower’’ defects in contact with a Burgers vector of 1;~h! arrangement of a ‘‘flower’’
defect and a dislocation.
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holds in Bénard-Marangoni structures.

3. Metric law: Lewis’s law

Lewis’s law @7# was discovered in cucumber epidermis,
human amnion~sic!, and pigmented epithelium of the retina.
It holds in many other epithelial tissues@8#. Later, Rivier and
Lissowski @42# demonstrated that Lewis’s law actually is a
mathematical law which has to be satisfied by any random
space-filling structure maximizing its entropy.

Lewis’s law states that the average area ofn-sided cell
^An& increases linearly inn

^An&5S~n2n0!. ~7!

Soap froths obey Lewis’s law@notwithstanding the few,
not statistically significant 3- and 4-sided cells, which would
have a negativêA3& or ^A4& from Eq.~7!#. It is obeyed in air
table packings@25# ~but only for low concentrations of disks;
steric effects spoil the linearity at higher concentrations@43#!

and in diffusion-limited cluster-cluster aggregation DLCA
@27#. Cellular arrays formed during directional solidification
of a binary Pb-Tl alloy@33# obey this law withn052. In
thermosolutal structures of layers of aqueous solution of su-
crose@22#, Lewis’s law is also satisfied withn052.47. We
verified that in the Be´nard-Marangoni experimentŝAn& is
linear inn at all times, the Lewis’s law is satisfied.

Furthermore, it has been shown@44# that the slopeS and
interceptn0 of the Lewis line are linked to a parameterl,
which, in a coarsening structure, measures its aging by the
relations

S5l^A&, ~8!

n0261
1

l
50. ~9!

In soap froths,l is increasing linearly with time, a con-
sequence of Von Neumann’s law@45#. Thus, the largerl, the
larger the slopeS and the interceptn0, the coarser and older
is the structure. By contrast, biological tissues do not
coarsen, but evolve in a steady state, and only the slope of
Lewis’s law may increase with time as the tissue ages
~through ^A&!, while the interceptn0 ~and l! remains con-
stant. In our case, both the interceptn0 and the slopeS
change with time. These variations, as functions of time,
have an effect onl. Figure 10 shows the variation ofl,
obtained from the intercept~Eq. 9!, in real time for Be´nard-
Marangoni structures. It can be seen that, first,l increases
and then reaches a plateau at aboutl50.23. It can be noticed
that the steady regime, corresponding to this plateau, is
reached for the same time~t'125 h! as for the parametera
of the Aboav-Weaire law. This behavior can be explained as
follows: Lewis’s law can be differentiated in time, to yield
@44# a version of Von Neumann’s law~averaged over
n-sided cells!,

d^An&
dt

5F ddt ^A&lG~n26!1
d

dt
^A&, ~10!

FIG. 7. Variancem2 againstP~6! for several natural or simu-
lated structures.

FIG. 8. Virial equation of state: m2/P~6! as function of 1/P~6!
21. Bénard-Marangoni points, and other experimental data points
superposed to the theoretical curve@39#.

FIG. 9. Parametera of the Aboav-Weaire’s law as function of
the real time in Be´nard-Marangoni experiment.
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where^A&(t) is the averaged cell area at timet. A Bénard-
Marangoni structure evolves towards a steady regime and
selects its mean wavelength or its average cell sizeAsel.
Thus

d^A&
dt

52a~^A&2Asel!, ~11!

has a solution

^A&~ t !5Asel1~A02Asel!exp~2at !, ~12!

in terms of the initial cell sizeA05^A& ~t50!.
There is no diffusion of matter driving the evolution of

the structure~the energy is not concentrated at the interface!,
so that the evolution equation~10! for a n-sided cell in a
Bénard-Marangoni structure should be independent ofn,
thusd(^A&l)/dt50. Using the known evolution of̂A& with
time @Eqs.~11!,~12!#, we obtain

1

l

dl

dt
5

a

@11m exp~at !#
, ~13!

wherem5Asel/~A02Asel!. The solution is

l~ t !5l0

m11

m1exp~2at !
. ~14!

l(t) is plotted in Fig. 10. The best fit with experiment gives
a50.25, withl05l ~t50!. If [ d(^A&l)/dt] had been differ-
ent from zero, the coefficientl would keep on increasing in
time, which is not the observed behavior.

4. Correlation functions: Peshkin’s laws

Peshkinet al. @34# have drawn attention to a nearest-
neighbor correlationMk(n) which is the average number of
k-sided neighbors of ann-cell and to a topological correla-
tion functionAkn5Mk(n)/P(k). Mk(n) satisfies two iden-
tities, a sum rule

(
k
Mk~n!5n, ~15!

which states that cells withn sides haven neighbors, and a
symmetry relation for the number of edges betweenn and
k-sided cells

Mk~n!P~n!5Mn~k!P~k!; ~16!

thus,Akn5Ank with an obvious inequality

Akn>0 for all n,k. ~17!

Maximum entropy formalism@32,34,40# yields a linear de-
pendence ofAkn with n ~or k!

Akn5~n26!s~k26!1n1k26, ~18!

wheres52~a/m2!<~1/6! is a structural parameter. A froth
without correlation hass5~1/6!. For most natural structures,
~a51!, s52~1/m2!.

Figure 11 shows the fiveAkn ~k5428! as functions ofn
for the various natural or simulated structures~the 220 mm
cucumber tissue@7#, structures obtained from Ising model
@31,32#, maximum entropy mosaics@34# and simulated ‘‘2D
hard disk’’ tessellation@24#! all at the same value of the
variancem250.812. Straight lines are given by Eq.~18!. As-
suming that simulated structures also havea'1, there should
be agreement between theAkn of the Bénard-Marangoni
structures and those derived from the other structures. The
agreement is reasonable forn5527. The maximum differ-
ence between Be´nard-Marangoni data and maximum entropy
predictions is at most 10%.

Whereas the maximum entropy prediction forAkn is lin-
ear inn, some random numerical tessellations~Ising model
@32# and hard disk tessellations@24#! give a dependence inn
which is more quadratic than linear. Given that there are very
few 4- and 8-cells, the topological correlation functions be-
tween 4- or 8-cells and with 5-, 6-, or 7-cells are not statis-
tically significant. Taking into consideration only the
Akn~k5527, n5527! we can conclude that the Be´nard-
Marangoni structures follow fairly well the theoretical ex-
pression~18!.

IV. CONCLUSIONS

This paper has analyzed Be´nard-Marangoni structures in
topological terms. We emphasize that we have been dealing
here only with Be´nard-Marangoni structures~free upper sur-
face!, which are cellular and random@18–21,35,46,47#,
whereas Rayleigh-Be´nard structures~fixed upper surface! are
chiefly ordered rolls. They have been discussed extensively
in the literature@47,48#.

We carried out a study of the slow dynamics of these
structures and we compared them to other natural structures,
or to structures built from models involving elementary to-
pological transformations. This study confirms the applica-
bility to Bénard-Marangoni structures of general topological
laws such as Aboav-Weaire’s, Lewis’s, Lemaıˆtre’s, and
Peshkin’s laws.

All the ETT which have been otherwise observed in one
structure or another are involved together in the dynamics of

FIG. 10. Lewis’s law: Parameterl as function of the real time
in the Bénard-Marangoni experiment.
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the Bénard-Marangoni structures. Thus the latter can be con-
sidered as the canonical example of mosaics. Notably, the
occurrence of systematic cell disappearance and division has
now been documented in Be´nard-Marangoni structures. This
study also confirms the fact that peripheral cells introduce an
asymmetry of the cell-shape distribution, and an apparent
additional disorder.

This study confirms the structural similarity between two-
dimensional froths. Most striking is the similarity between
the Bénard-Marangoni structures and the cucumber epithe-
lium. This result is remarkable, because the forces involved
are completely different. This shows that statistical equilib-
rium is completely independent of the microscopic interac-
tions which establish it. This observation is at the basis of
maximum entropy inference@29,30,34,35#.

The concordance between topological characteristics of
these natural and model-constructed structures is satisfac-
tory, in spite of the fact that theT2 process~cell creation or

cell annihilation! is not included in the Ising model@31,32#
and in ‘‘two-dimensional hard disk tessellations’’@24#. Both
topological transformationsT1 andT2 ~cell creation and an-
nihilation! are observed in Be´nard-Marangoni structures and
statistical equilibrium is reached more efficiently@49#. Re-
cently, a model which takes into consideration the two ETT
has been proposed by Segelet al. @50# to determine the cell-
shape and cell-area distributions; they are in good agreement
with those of soap froths. Any discrepancies between natural
and model-constructed structures regard the cells withnÞ6,
5, or 7, which are always rare and, in Be´nard-Marangoni
structures, have a short lifetime.
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FIG. 11. Topological correlation functions
Akn as function ofn for natural and simulated
structures form250.812.~a!, k54; ~b!, k55; ~c!,
k56; ~d!, k57; ~e!, k58. s , BM structure;h ,
cucumber;1, Ising model;n , 2D hard disk tes-
sellation; — max-entropy principle.
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