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Second-order continuum traffic flow model
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A second-order traffic flow model is derived from microscopic equations and is compared to existing
models. In order to build in different driver characteristics on the microscopic level, we exploit the idea of an
additional phase-space variable, called the desired velocity originally introduced by Paveri-Hdmtara
Res.9, 225(1975]. By taking the moments of Paveri-Fontana’s Boltzmann-like ansatz, a hierachy of evolu-
tion equations is found. This hierarchy is closed by neglecting cumulants of third and higher order in the
cumulant expansion of the distribution function, thus leading to Euler-like traffic equations. As a consequence
of the desired velocity, we find dynamical quantities, which are the mean desired velocity, the variance of the
desired velocity, and the covariance of actual and desired velocity. Through these quantities an alternative
explanation for the onset of traffic clusters can be given, i.e., a spatial variation of the variance of the desired
velocity can cause the formation of a traffic jam. Furthermore, by taking into account the finite car length,
Paveri-Fontana’s equation is generalized to the high-density regime eventually producing corrections to the
macroscopic equations. The relevance of the present dynamic quantities is demonstrated by numerical simu-
lations.[S1063-651X96)05911-9

PACS numbds): 51.10:+y, 89.40+k, 47.90+a, 34.90+q

[. INTRODUCTION quantities, the mean desired velocity, the variance of the de-
sired velocity, and the covariance of actual and desired speed
Theoretical descriptions of vehicular traffic are essentiallyare found. To close the system of equations no speed-density
based on two different viewpoints: one microscopic and theelation is needed here. The homogeneous solution is given
other macroscopic. In macroscopic theories, traffic is modand the characteristic velocities are calculated. In order to
eled as a continuum fluid. One of the earliest hydrodynamigeneralize our model to high densities we take into account
cal models was proposed by Lighthill and Whith4a]. It  the finite car Iengtr(Sec. IV). This results in corrections to
comprises a continuity equation and a speed-density relatioff)€ evolution equations and keeps the system from reaching
but does not take into account acceleration and inertia efinfinitely high densities. The relevance of the additional
fects. Inspired by this model, a variety of higher-order mod-equations is demonstrated by computer simulations in Sec.
els have been developed that try to incorporate these effect¥: We find that a spatial variation of the variance of the
A survey on continuum models is given ﬁﬁ] In order to desired Velocity can cause the formation of a traffic jam.
make these models more accurate, one has to introduce ad-
ditional terms in the evolution equation. Since most of these [l. BOLTZMANN-LIKE MICROSCOPIC MODEL

terms are based on heuristic considerations, their parameters . L
have to be determined from experiment. To overcome the problems of the original kinetic model

On the other hand, microscopic models treat each vehicl@iVen of Prigogine and Hermdi], Paveri-Fontangl] sug-

separately, and their motions are governed by laws deriveglested the following improved Boltzmann-like microscopic

from traffic observation. Here cellular automata are a wideModel. The essential idea is the introduction of an additional

spread method to investigate traffic phenoméee[4—7])).  Phase-space coordinate, the so-called desired velacibet

A different approach, similar to gas kinetics, has been chosefl(*;v,W;t) denote the one-vehicle distribution function for
by Prigogine and Hermafi8] and has been further developed vehicles with desired speedin the phase space spanned by
in [1,9-13. A very fruitful idea is the so-called desired ve- % Vs W, t, whereg(x,u,w,t)dxdvdw denotes the number
locity introduced by Paveri-Fontafi]. The desired velocity ©f Vehicles at timet, in position dx aroundx, and actual
reflects driver characteristics and allows one to distinguistfPe€ddv aroundv with desired speedw aroundw. The

the individual acceleration behavior of different drivers,0ad is assumed to be a one-dimensional unidirectional lane,

Whereas in a recent paper Helbifig] starts from a reduced Put passing is allowed. .
version of Paveri-Fontana’s equation, we treat the full 'N€one-vehicle speed distribution functioxfv,t) and

Paveri-Fontana equation and derive a closed set of approxii€one-vehicle desired speed distribution functig(ww,t)

mate moment equations. We start by recapitulating Paver™® 9iven by
Fontana’s Boltzmann-like ansatz in Sec. Il. In Sec. Il the
macroscopic model for “pointlike” vehicles is derived by

taking moments of the microscopic equation. The hierarchy

of moment equations is closed by neglecting third- and
higher-order cumulants, thus leading to Euler-like traffic i
equg.nons. meg.to the mtrpductlon of the desired velocn_y fo(x,w,t)=f dv g(x,0,w,t). 2.2
additional dynamical equations for the new macroscopic 0

f(X,v,t)=fO+de o(x,v,w,t), 2.1
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The vehicular concentratioe(x,t), the average velocity whereg, denotes the two-vehicle distribution function.

v(x,t), the average desired velocity(x,t), and the flow

g(x,t) are then defined as
+ o + oo
c(x,t)=j dwf dv g(x,v,w,t), (2.3
0 0

+ oo + o
f de’ dv vg(x,v,w,t)
0 0

v(x,t)= X0 , (2.9

+ o —+ oo
f dwf dv wg(x,v,w,t)
0 0

c(x,t) ’

(2.9

w(x,t)=

q(x,t)=c(x,t)v(x,t). (2.6)

Higher-order velocity moments are defined by

+ oo + o0
mk,|(x,t)=fO dwfO dv v*W'g(x,v,w,t), k,leN,

(2.7)
for example,
C=Mqy, (2.8
cok= Mko, (2.9
cw'=my, . (2.10

With X=(x,v,w), the total local change of the phase-

space density is given through a continuity equafibf, 15

9y |g (2 2.1
5t X'ga_ECO”. (2.11)

Some remarks are necessary. The probability of passing is
usually chosen to be density dependent, for exanip(e)
=1-c/c (C denotes the maximal densii§]), but additional
velocity and variance dependences have been proposed in
[9]. Vehicle length can be taken into account by choosing an
approach similar to Enskog’s theory for dense gd4€s17
and is considered in Sec. IV. The assumption of instanta-
neous interaction is approximately valid for processes where
the slowing down timeAr and the lengthv A+ are short
compared to the characteristic time and length scales in-
volved. Having made the assumption of vehicular chaos, the
theory is actually only valid for dilute traffic.

The term on the right-hand side of Eg.11) is a collision
integral analogous to the Boltzmann term

99
at

=f(x,v,t)f+wdv'(1— P)(v'—v)g(x,v’",w,t)

coll
—g(x,v,w,t)fvdv’(l—P)(v—v’)f(x,v’,t).
0

(2.13

The first part describes the gain of the phase space element,
i.e., vehicles with velocity'=v collide with vehicles with
velocity v, while the second term describes the loss of the
phase space element, i.e., vehicles with velooitgollide
with vehicles with even slower velocity’.

Considering the streaming term in E¢R.11), Paveri-
Fontana models the acceleration by

dv w—v

G T (214

i.e., the drivers approach their desired speed exponentially in

The term on the left-hand side describes the continuoutime, with time constanT. One can also choosE to be a
streaming in phase space, while the term on the right-hanflinction ofc,v (see[9]). Additionally, it is assumed that no
side is due to discontinuous motion in phase space, i.e., sudriver changes his desired speed, resulting in

den changes of the velocities due to collisions.

In analogy to the scattering process in kinetic gas theory dw
the following interaction process between vehicles has been TR (219

introduced by Prigogine and Hermdi8] and has been

adopted by Paveri-Fontarja]. When a fast car reaches a gettingdw/dt=0 would allow one to change the individual
slow car it either passes or slows down to the velocity of thejegired speed, for example, owing to externally imposed

car in front. Now the following assumptions are made.
(i) The “slowing” down process has a probability—P),

where P denotes the probability of passing=@=<1. If the
fast car passes the slow one, its velocity is not affected.
(ii) The velocity of the slow car is unaffected by the in-

teraction or by being passed.

(iii) Cars are regarded as pointlike objects, so the vehicle

length can be neglected.

speed limitations. Collecting all the terms, the Boltzmann-
like kinetic equation now reads

J d Jd [W—v
™ R e o

If(x,v,t)f+wdv’(1— P)(v' —v)g(x,v',w,t)

(iv) The slowing down process is instantaneous; there is

no braking time.

(v) Only two-vehicle interactions are to be considered;

multivehicle interactions are excluded.

(vi) One assumes “vehicular chaos,” i.e., vehicles are not

correlated,

go(X,v,w,x", v’ W' t)=g(x,v,w,t)g(x",v",w’,1),

(2.12

—g(x,v,w,t)fovdv’(l—P)(v—v’)f(x,v’,t).

(2.19

In the Prigogine-Herman equation the acceleration term is
modeled by a relaxation term towards an equilibrium distri-
bution. Unfortunately, this leads to inconsisten¢ese[1]).



54 SECOND-ORDER CONTINUUM TRAFFIC FLOW MODEL 5075

Alberti and Belli [10] proposed two kinetic equations: one and the momentum equation

for the distribution of free cars and one for the distribution of

gueuing cars. Nelsofl3], on the other hand, developed a g — d — C __ 0— =3
kinetic equation where speeding up interactions are treated 7; (€v)+ o (Cv9)+ = (v=w)=(1=P)c(v"~v"),

on the same line as traditionally has been done for the slow- (3.7
ing down process. For this, he employed a generalized ve-
hicular chaos hypothesis. respectively. For the mean desired velocity, E34) leads to

1. MACROSCOPIC MODEL Jd 9 o
] ] — (cw)+ — (cow)=0 (3.8
Integration of relation(2.16 overdv leads to ot 2

J g for I=1. The dynamic equations for the second-order mo-
3 fo(X,w,t)+ X [v(x,w,t)fo(x,w,t)]=0, (3.2 ments are given by

herev(x,w,t) is defined d — 0 — 2 — __ .
wherev (x,w,t) is defined as E(Cvz)-f'—(cvs)‘f'—(UZ_UW):(]._P)CZ(UZU__UB),

5 “dv vg(x,v,w,t) o T
— _Jo dv vg(X,v,W, (3.9
v(X,w,t)= foxW.0) (3.2

. . . . . . d 2 d T2
Equation(3.1) is a continuity equation for each desired speed En (cw?) + X (cow?)=0, (3.10
w separately, as a consequence of €415, i.e., no driver
changes his desired speed. and

Using the notation of Eq(2.7), the moments in are
d 0 k J Jd —— C __ —
= Mot = M 1.0+ T (Mo Mi1.9) 5t (CowW)+ — (Cv’w) + = (bW —w?)
=(1=P)(my oMy o— My 1 oMo o), 3.3

+ o0 + o
=(1—P)J dWJ dv wg
wherem_, , is defined as ° °

v ’ P12 2\f!
m_1,=0. XL dv’(2v'v—v vo)f’. (3.1)
Equations(3.1) and (3.3) have already been derived in the

original work of Paveri-Fontana. The equations for the mo- A. Closure of the macroscopic equations

ments inw are given by Equations(3.6)—(3.11) represent a hierarchy of moment

equations, each evolution equation involving moments of the
S+ o (3.4  nexthigher order. The equation for the mixed moments can-
at o gx M ' not be given in terms of a finite number of moments. To

_ _ close the system of equations, one has to make an approxi-
and as the general form for the mixed moments iandw  mation in form of a closing assumption. One defines
one finds

5 . 5 ) " Svi=v—v, OW=wW—W. (3.12
—mg+—m = (My— My
ot Mt gx Mt (M= M-y 2) Then the higher moments are given in terms of cumulants as
te e | —_ 7,7
=(1—P)f dwf dv W'g(x,v,w,t) ve=(ov)+vs,
0 0

v
Xf dv'(v'*v—v"* 1=k 14k ) F(x,071).
0

VW= v SW+ VW,

(3.5
Unfortunately, the right-hand side of E¢3.5 cannot be v3=(6v)+3(dv) v +v7,
given in a closed form in terms of higher-order moments _ - .
without approximations. Fak=0 and 1, Eq(3.3) yields the v2W=(6v)26W+ 2(5v dW)v + (v )W+ v?w,
usual continuity equation
vW?= (8W)?Su +2(dwov)w+(dw) % +w?.  (3.13
1% J
—c+—(cv)=0 (3.6

ot X The second-order cumulants are abbreviated by
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0,,:=(6v)?,
eww: :(é\N)Z,
O,w:= 6vdow. (3.19

Now, using the continuity equatio3.6) and definition
(3.19, Eq. (3.7) transforms into the momentum equation

____w-uv 0O,
v +vdw= T o dxc—3,0,,—(1-P)cO,,,
(3.195
while Eq. (3.8) now reads
—— — Oy
AW+ v I W= — e IxC— 5Oy - (3.16

If one now exploits Eqs(3.195 and (3.16), one can rewrite
Egs.(3.9 and(3.10 in terms of cumulants as

ﬁt(cevv) +E9X(C6UU) + SCGUU(?XFF ax[c( 5U)3]

2c
= evv_euw)+(l_ P)c( 50)3:0 (3.1

7 (
and

F(CO ) F VI (CO ) +2CO W+ CO s

+a,[c(ow)?5v]=0, (318

respectively.

Dealing with Eq.(3.12) is much more involved and there-

fore only sketched here. The left-hand sid¢lS) leads to
[LHS (3.1D)]=0,(cO ) +vd4(CO )+ 2¢O, dgv
+¢0,,dW+ d,[ c(5v)?ow]

S C
_(1_ P)CZWGUU'F f (evW_eWW)'

(3.19
The right-hand sidéRHS) is abbreviated
[RHS (3.1)]=(1-P)(2Z,-Z,—13). (3.20

The integralsZ,, Z,, andZ; are calculated in Appendix A

under the assumption of a local Gaussian distributiom in

C. WAGNERet al.

[RHS (3.1)]=—(1-P) czwevv+ic2\/ewevw .
T
(3.21)

Taking Egs(3.17—(3.19 and(3.21), the assumption of neg-
ligible third- and higher-order cumulants yields

_ __ 2
(gtevv+vﬁxevu+26vuf7xv+ ? (euv_euw)zoi
(3.22

30wt V5Ot 20,9, W=0, (3.23

_ _ _ 1
O pwt VO, + 0,0+ 0, dwW+ f (6,w=Ouww)

=—(1-P) 2 €O, \0,,. (3.29
o

=

Equations(3.6), (3.15), (3.16, and(3.22—(3.24) represent a
closed system of evolution equations for the variatles,
w, O,,, Oy, ando,,,.

We compare this system of equations with other con-
tinuum models. Similar to the models f#1,22,11,12, the
mean velocity equatio3.15 has a relaxation term, buv
becomes a dynamical quantftyee Eq(3.16] and similar to
[12] no equilibrium speed-density relation is needed to close
the system. In addition, coupled equations for the variance
0,, . the varianceD,,,,, and the covarianc®,,, appear. In
contrast to some of the above-mentioned models, no second-
order space derivatives appear since up to now the model is
just Euler-like.

B. Homogeneous solution

The homogeneous solution for the system of partial dif-
ferential equation$3.6), (3.15, (3.16), and(3.22—(3.29 is
found to be

w—v=T[1-P(c)]cO,,, (3.25
0,,=0w, (3.26
2
Oww=0,w| 1+T[1-P(c)] —=¢cVvO,,|. (3.29
Jar
Thus, given certain values fay, v, and©,, , the mean de-

sired velocityw, the varianced,,,,, and the covarianc®,,,
are determined.

andw, i.e., the cumulants of third and higher order are ne-
glected. The approximation of a Gaussian velocity distribu-

tion is justified by empirical datésee[18,19,9,20). For the

distribution in the desired velocityw we suppose that the

number of drivers with desired velocity is also normally

C. Characteristic velocities

The characteristic velocities yield locally the domain of
influence[2]. Set

distributed. From traffic considerations we expect a distribu-
tion with a long high-velocity tail, but as a first approxima- (3.28
tion a Gaussian seems to be sufficient. In Appendix A we

have chosen a cumulant expansion to evaluate the integrafgfjuations(3.6), (3.19), (3.16), and(3.22—(3.24) can then be
since this method can easily be extended to include thiradwritten as
order cumulants when proceeding to the derivation of
Navier-Stokes-like equations. Thus one finds for the RHS

J:(C,U,W,evv !eWW’eUW)T'

>

Ju+C-o,u=f, (3.29
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with _ 1 1
_ X(C’v)_l—cd(u_)_l—c(lJrrv_)' 4.2
- W—uv 2
f=10, T —(1-P)cO,,,0, T (Ouw=04),0, Like the scattering amplitudel—P), the factory is due to a

mean-field effect and thus depends on macroscopic quanti-

O = O 2 T ties. In the following a modified cross section is defined by
Xf_(l—P) \/—_COUW\IGUU (3.30 .
T o=x(c,v)[1-P(c)]. (4.3
and If c—cC then y—o, i.e., the cross sectiotr is sharply in-
creased.
v c 0 0 0 O
0,/c v 0 1 00 B. Corrected Boltzmann integral
o eW(\;V/C 23 8 O_ 8 é (3.31) 1. Distribution functions
0 0’”’ 26 g 0 Here we consider the effect that due to the extension of
0 o o vw 0 S the vehicles the distribution functions in the Boltzmann an-
(A vv v

satz have to be evaluated at different positions. The vehicle
causing a faster one to slow down is the distad¢e) =1

+7v ahead, where is the velocity of the faster car before
the collision. The corrected Boltzmann scattering term of Eq.
(2.16) now reads

The characteristic velocities are now given by the eigenval
ues of the matri>C [2]. One finds

Nio=v, (3.32
+ o
N3a=0=\O,,, (3.33 f dv’a(v —v)f(x+d(v"),v,Dg(x0"w,t)
Nse=0F30,,. 3.3 v
56~ v (339 —f dv’ a(v—0")g(x,v,W,t)f(x+d(v),0",1).
0
Having found six real eigenvalues, E§.29 is a hyperbolic (4.4

system.
Here, the cross sectianm is taken at the positior. Expand-
ing the distribution function in a Taylor series éharoundx
and keeping only the first two terms, one finds, for the com-
In this section we try to incorporate in analogy to plete Boltzmann equation,
[16,23,17 the fact that cars are not pointlike objects but have
a spatial extension df and require an additional safety dis- i+v i)g+ K2 (W—v g)
ot ox Jdv T
+ oo v
f dv’(v’—v)fg’—fO dv'(v—v")gf’
v

IV. CORRECTIONS FOR EXTENDED VEHICLES

tancerv, depending on the velocity of each individual driver
and a reaction timer. Two different effects are taken into
account.

(i) Since the covolume of the cars, i.e., length plus safety
distance, is now comparable with the total volume of the

=0

system, the volume where the center of any vehicle can lie is 1l fmdv "' =) (dyf )G’
reduced and therefore the collision frequency is enhanced by v
a factory.
(i) The common positiox of the two colliding vehicles _ f”dv,(v_vl)g(a f,)>
in the Boltzmann integral should be replaced by the actual 0 X

positions of the centers of the two vehicles and the “cross
section” should be taken at the actual position of the colli-

+ o
dov’(v' — "(o.f ’
sion. L v'(v'—v)v' (o )g

+ 7

A. Factor x —f dv’(v—v')vg(&xf')”, (4.5
Denote byd(v)=I+ v the mean required length at a °
certain mean speed, with 7 being the reaction time. The with f'=f(x,v’,t) andg’=g(x,v’,w,t).

maximal density at this mean speeds c(v), The derivation of the cumulant equations is rather lengthy
and is therefore only sketched in Appendix B. The results are
Sw)= 1_: 1 _ 4.1) the following.
div) I+7v° ' (i) It is easy to check that the continuity equation still

holds and that for the pure momentsamo additional terms
The effective volume is then reduced by a factercIc(v)  are produced.
and therefore the scattering probability is increased by a fac- (i) As an additional term for the RHS of the mean veloc-
tor y=[1—c/c(v)] % ity evolution equation3.15 one gets
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@10,C+ apdyv + a3dy©,, . (4.6) for the equation of the variandg,, , and
(ii ) Integration of(4.5) over fdv dw v? leads to the fol- 2
lowing correction to the RHS of the variance equation ¥4=— —=CO O, (I +7)-276,,0,, (413
(3.22: N
— for the equation of the covarianc®,,,. A velocity- or
xC+ B2dyv + B335 O 4. . : Tuw .
PrdxC+ Baoxo + BdOus S variance-dependent passing probability would certainly lead
(iv) Eventually, one finds as a correction for the RHS ofto additional coefficients in the gradient terms of these quan-
the mixed cumulant equatio(3.24 tiies. o . _
Thus the whole set of partial differential equations now
Y10,C+ Y2050 + ¥39xO - (4.9 reads

For the detailed form of the coefficients see Appendix B. J
They are functions ofr, I, 7 and the dynamical variables 51 1 ox (Cv)=0, (4.14
c,uo,w,0,,,0,,. These new terms modify the gradient

terms and change the characteristic speeds. Note that a Tay-

i - (S _
Iqr expansion in Eq(4.5 up to sgcond order would algo atv+uaxv=(a1+ nas— —2| a0+ (ap+ Lag)dw
yield additional second-order derivatives of the dynamical c
guantities. -
Fag=1)a0,,+ oY 5cO,,, (415
a3— — y .
2. Cross section 3 oo T ov
Up to now, we have taken the scattering probability at the
position x and not at the position of the actual collision. G+ DI W= — vw 9 C— 030 4, (4.16

Since our model, and the underlying Boltzmann-like equa- C
tion by Paveri-Fontana, is a quasi-one-dimensional model

there is no left or right lane. When a fast car reaches a slow 3,0, +08,0,,=(B1+ 784):C+ (Ba+ {Ba—20,,)d0
car there is a probability of passing without interaction of
driving “through” the slow cay. This probability depends
on macroscopic quantities. In order to take this into account,
one assumes that the probability of passing is just a func-
tional of the densityc, P=P[c(x,t)]. The modified scatter- 90 4090 =—20 I W. 4.18
ing probability o is then determined by the density and the W e
mean velocity at the position of the slower car, i.e., at
x+d(v), wherev is the velocity of the faster car. Expanding

2
+B3axevv+f (evw_evv)! (417)

é’tevw—’_ﬁxevw: (Y1t nva)CH (yo+{ya— 6vw)axv_

o in a Taylor series, one gets the following additional first- L 1
order term for the Boltzmann equati®4.5): =0, WF 739,045+ T (Oww=Ouw)
+ o 2
OyO J’ dv'(I+70")(v'—v)fg’ -0 —=1¢CO,,VO,,. (4.19
v Jm
_J dv’(I+7v)(v—v")gf'|. 4.9 Let us compare Eqs(4.14—(4.19 to Egs. (3.6), (3.15,
0

(3.16, and (3.22—(3.24). The continuity equation holds in
both systems. Since no relation between the finite car length
and the desired velocity has been assumed, the equations for
S _ , the mean desired velocity and for the variartag, remain
dyo=(1=P)x[d(v)dc+cTdw]—xP'dxc unchanged[(3.16=(4.16 and (3.23=(4.18]. The cross
_ — section (1—P) has changed to the modified cross section
IXCE L, (410 o=x(1—P). New gradient terms appear in the other equa-
with 7=[ad(v)—P']x, {=oxcr, and P’ denotes the de- tions (4.19, (4.17, and (4.19. Let us first investigate Eq.
rivative of P with respect to its argument. Note thag=0.  (4.19. Owing to the sign of the coefficients, the density gra-
By calculating the moments of the integral part of Eq. dient term and the variance gradient term have an enhancing
(4.9), one finds as additional coefficients effect on the formation of a cluster, while in the coefficients
of the velocity gradient both signs appdéor the detailed
) form of the coefficient see Appendix)BFor the variance
a,=—cO,,(I+m)—7— Cevv\/e_w (4.12) equation(4.17) similar considerations lead to an enhancing
NG effect of the gradient terms except for the density gradient.
Looking at the covariance equati¢f.19, we find an overall
enhancing effect, except for the velocity gradient, where
) again both signs appear. We remark that the equilibrium re-
Ba=—1CO, (4.12 lations for the corrected system are almost the same as for

For the derivative ofr with respect tax we find

for the velocity equation,
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the uncorrected systefiEgs. (3.25—(3.27)]; the cross sec-
tion (1—P) has just been replaced hy. Note that for the
equilibrium state ifw#0, c—¢, and v—0, then ©,,—0

sinceg—o, meaning that in this limit the variance vanishes.

C. Characteristic velocities

5079

If we now calculate the characteristic velocities up to first
order inl, we find

To get an idea how the characteristic velocities change

due to the new gradient terms, we consider the simpler sys-

tem
J —I—a v)=0 4.2
EC é’_X(Cv)_ , ( . Q
w7 e,
dvtvdw= T dxC—340,,—(1—P)cO,,,
(4.21
_ 2

50,y +09,0,,= —20,,00—=0,,. (422

T

_ 2
A=v——=0,,0cl, 4.2
A,=v+30 _1 ( S (4.29
=0 ) —| ——— = |oCl|, .
2 7 \3y3m 2
As=v—130 -1+ > Hoall, a0
=v—30,, ——+ = |ocl|, .
* T \3y3r 2

i.e., the characteristic velocities are shifted to lower values.
This is intuitively quite clear since the cars have now less
free space to accelerate to their desired velocities, thus the
domain of influence should be smaller. We therefore assume
that in the complete systefd.14—(4.19 the characteristic
velocities are lowered as well by taking into account the
vehicle length.

These equations can be derived from the original Boltzmann

equation if one assumes that all drivers have the same de-
sired velocityW. The characteristic velocities of this system

are

)\1:U_, )\2’3:F_'_\ 36UU. (423)

As further simplification, we set=0, i.e., we consider only

the effect of the actual lengthand we neglect the effect of

the modified point of collision(Sec. IV B 2. Then the cor-
rected version of Eqg4.20—(4.22) read

J +(? 0)=0 4.2
o CF o (€0)=0, (424
T ! eUU 52T !
v tuvdw= e A IxC+ apdyv + (a3—1)9,0,,
W-v
—+ T _Uevv' (425)

0tel)l) +U_aXeUU:ﬁiaXC+ (ﬁé_ ZeUU)ﬁXﬁ Bégxevv

2
—$ew, (4.2
with
2 |
a;=—alo,,, aé=a’|\/—_C\/6w, aé=—0§C,
T

2
BS_:O, Bé=_U|C6UU, Bé:o-l T Vevv' (427)
N

V. NUMERICAL RESULTS

In the following we present first numerical simulations of
our model, gained by stepwise numerical integration of Eqgs.
(4.19—-(4.19. To simplify the computation we have as-
sumed periodic boundary conditions. The parameters are
T=30 s, 7=0.5 s, and the vehicle length is=5 m. The
homogeneous solution is chosen to &e0.8(v), v=26
m/s, andO,,=5.4 nf/s>. The mean desired velocity and the
variances are then determined from E@25—(3.27 to be
w=34 m/s,0,,,=26.3 nf/s’, andO,,,=5.4 nf/s’. As initial
perturbation we have added a small Gaussian peak to the
otherwise constant variand®,,,,, at timet=0 and position
x=5 km. This corresponds to a region where some drivers
desire to drive faster and some drivers desire to drive slower
than in the remaining region, i.e., there is an inhomogenity in
the driver behavior.

Figures 1 and 2 show the evolution of the dynamical
quantities. We find that after some time a cluster builds up
with a region of lower density behind the clusiéig. 1(a)].

The mean velocityFig. 1(b)] shows the corresponding be-
havior, i.e., the mean velocity in the cluster is lower, while
after the cluster a region of higher mean velocity is found.
The variation of the mean desired velodiBig. 1(c)] is rela-
tively small compared to the mean velocity, but we can
clearly see the separation of faster and slower vehicles due to
the initial perturbation of the variand®,,,,. The variance of

the actual velocityFig. 2(@)] has a peak at the cluster region
as we expect from measurements and other traffic models
[11,21,24. Looking at the evolution of the variance of the
desired velocityFig. 2(b)] we find that the initial perturba-
tion just propagates with the velocity and flattens a bit.
Figure Zc) shows an interesting behavior of the covariance
of the actual velocity and the desired velocity. In the region
of the density cluster we find a sharp negative peak, i.e.,
more drivers do not drive with the velocity they actually
want to, but are slowed down by the cluster. Right after the
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FIG. 1. Time evolution of the traffic flow starting from a homogeneous state with a small perturbation of the desired velocity variance
using Eqs.(4.14—(4.19: (a) densityp, (b) mean velocityv, and(c) mean desired velocitw.

cluster there is a region with increased covariafg,, trast to other models, no speed-density relation is needed.
meaning that the drivers are free to accelerate to their desirébhe onset of traffic clusters can be explained from different
velocity. The broad ridge on the right side of this graphdriver characteristic. We have generalized Paveri-Fontana’s
corresponds to the initial perturbation @),, and shows that kinetic equation to the high-density regime by taking into
the drivers causing the onset of the cluster are not affected bgccount the finite vehicle length. This results in gradient cor-
it; on the contrary, there is a higher correlation between theection terms in the macroscopic equations, which have an
actual velocity and desired velocity. Kerner and Kofudex  overall enhancing effect on the formation of traffic clusters.
found a similar behavior of the density and the mean velocA modified cross section keeps the system from reaching
ity, but the formation of a traffic jam has been caused by dnfinitely high densities. The relevance of the additional
small density perturbation. Furthermore, they observe auantities has been demonstrated by numerical simulations
backward motion of the whole cluster after some time. Thiswhere we find that a spatial variation of the variance of the
feature cannot yet be found in our simulation since the dendesired velocity can cause the formation of a traffic jam. To
sity has not yet reached its maximal value and the mearvaluate this model, a stability analysis has to be made and a
velocity has not been reduced to zero. thorough numerical investigation has to follow. By neglect-
ing third- and higher-order cumulants we have just derived a
Euler-like traffic model. As already mentioned, one should
VI. CONCLUSION now proceed to derive Navier-Stokes-like equations by in-
ccluding third-order cumulants. This would lead to viscosity

In this paper, we rigorously derive a second-order traffi rerm
s.

flow model from the microscopic level. Using a Boltzmann-
like ansatz, macroscopic equations are found, similar to the

hydrqdynamic equations. As dynamical consequences of an APPENDIX A: INTEGRALS 7,.7,.Z5

additional phase-space variable on the microscopic level, the

desired velocity, we find evolution equations for the mean In order to calculate the integralg,Z,,75, one has to
desired velocity, for the variance of the desired velocity, andook at a couple of other integrals first. In the followirig,
for the covariance of the actual and desired velocity. In condenotes theath cumulant inv,
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. oo . . _ i2
f““dv feiv7— ¢ exp( D (iz)" Kn) jo dv v fe'”zzc(KlJrlez)ex;{lKlerE K222>,
0 n=1 nl (Az)
. i2 2 + oo i
=cexp Kzt 5 K27, (AL) f dv v2fev?=c(K K+ Kot 2iK K,z
0
i2
- Kszzz)ex;{ iKiz+ > Kzzz),
(A3)

where the assumptiolk,,=0 for n=3 has been used. Simi-
larly, and

P2

+o . |
f dv v3fe'?Z=c{3K K, + (K,)3+ 3i[(K1)2K2+(K2)2]2—3K1(K2)222—i(K2)3z3}exp< iKyz+ > Kzzz). (A4)
0

Using these relations, one easily finds

+o dz (= gZvmv’) +o dz exdi(v—Kj)z—1iK,7?]
[ e[ 2 L )
—w 2 Jo Z—le€ o 27T Z—le€

f dv'ffzf dv'O(v—v')f' =
0 0
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v +o dz (Ki—iK,z)exdi(v—K,)z—3K,z%]
fdv'u'ffch e B SR (AB)
0 —w 2 Z—le
v ) +o dz (Kp)?+Ky,—2iK 1 Kyz— (K,)?Z2 _ ‘o
f dv’v’ f’=cf — . exfdi(v—Kj)z—3K5z7], (A7)
0 —o 27 Z—ie

and

v b 3_ai 2 21, 2,2 (K133
f dv’v’3f’=cf dz {3K; Ko+ (Ky)® = Bi[(Ky) Kot (Kp)*Jz— 3K (Kp) 2"~ i(Kp)°Z} exli(v—Ky)z— 1K,22].

0 o 27T Z—ie
(A8)
For the integralZ,, this yields
+o0 +o0 v +o dz (Ki—iKyz)exp( —iK,z—3K,Z%) [+= +0 .
Il=f dwf dv vwgf dv’v’f’=cf o 2 1tz f dwf dv vwge’?
0 0 0 — 27T| Z—le 0 0
0 —j —i —l 2 o0 e}

o[ gz (KKl Wz i) 3 | [, [, g 9

—o 27 z—ie idz idy y=070 0

One can now again expand the integral ogerdw in an exponential function in the cumulants up to second order

i2

i i2
2

|
va22+ ) way2+ i 2Kuwyz

+ o0 + o . i
f dwf dv gev¥tWy=c¢ exp{iKuz+iKWy+ 5
0 0

with an obvious notation for the cumulantsinandw. Thus

o[ 7 dz 2 : 2 2.2 2 3 exp(—K,,2%)
L= | 5 KKyt (K Kt 1 (Ky) 2K 2K K2t KKy ) 2224 1(K ) 2K 2] =2, (AL0)

For Z,,Z; one gets

+ o0 + o v + oo dz
IZZJ de dv ng dvrerfr:CZJ Py [(KU)ZKW+ Kvav_ziKvKWvaZ_Kw(Kvu)222+i(Kv)ZKvWZ
0 0 0

— o 27T|
, , exp(—K,,z%)
+IKUUKUWKUKUUZZ_I(KUU)ZKUWZS] Z_—i:vy (All)

and

+oo +oo v +o dz
I?,:f dwf dv w vzgf dv’f’=czf 5t LK) 2Kt Ky 2K, Kyt 31K K 2 21K, KK, 2
0 0 0 — oo

EXF( - vazz)

+i(KU)2KUWZ_ KW(KUU)ZZZ_ZKUKUUKUWZZ_i(KUU)ZKUWZS:l 7—ie (Alz)

Hence, taking together the three integrals, the result now reads

+e dz

exp(—K,,z%)
[_ZKUUKW_ 6iKUUKUWZ+4(KUU)2KWZZ+4i(KUU)ZKUWZS] F(Z_—IZU

T T —n2

27,—I,—I3=cC L@ 7o
2 _ 2

=c?| =K, Ky— —= VK, Kow|=—¢% WO ,,+ — 0,,VO,, |. (A13)
J7 NE
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APPENDIX B: CORRECTION INTEGRALS +o0 v

. . 1—J dv vfr?xf dv'v’f’
Taking the integralfdv dw v of the Boltzmann term 0

(4.5), the first term leads to the original term given in Eq.

0

(3.5), while the parts proportional toand 7 can be written as _f“’ E<9x[C(K1—iKzZ)eXp(—iK12—%Kzzz)]
C ). 2 z—ie
+ oo + + Xf+oodv v f ein
o'If f dv dw v(f dv'(v'—v)(o4f )g’ 0
0 0 v
+o dz aX[C(Kl_iKzz)qu_iKlz_%Kzzz)]
fdv (v—v' ((91‘)) a'lf dvj dv’(2vv’ :Cf_m o P
_UZ_UIZ)(aXf/)f ><(K1+iKZZ)eX[Z(iKlz—%K222) (B?)
(B1)

and similar expressions fdr, and H;.
Summing up the three integrals one finds

and += dz
2H1—H2—H3=J oy I[ cKyd,c—cdy(cKy)
too (4o +oo +6ic?K,0,K 12— 4i (CK,)29,K 1 2%]
a'TfO fo dv dWU(L dv'(v'—v)v'(d4F )g’ X expl — K, 2)
v + v s 2
—fodv'(v—v’)vg(&xf’) =07f0 dvfodv’(Zv v’ :—Ceuuﬁxﬁ‘\/—;Cz 0,,00—1c20,0,,.
—v3—vv'?)(9,f)f, (B8)
(B2)

Analogously, for the integral proportional to[Eq. (B2)] the
calculation yields

2

\/_

respectively. EquatiofB1l) is abbreviated to or

UU V vV Uevv)

ol (2H,—Ho—Hz), (B3)

— oot CE—W )axv_

J—

with 1 ( 1

—V0,,+v|c%3,0,,]. (B9
= ﬁ xOu].  (BY)

2

[t v, , Taking together these two terms and dividing diythe ad-
M= fo dv Uffo dv’v’ (dxt"), (B4 ditional terms for the RHS of Eq3.15 are
CYlﬁXC"‘ az&xﬂ a3&xevv y (BlO)
+oo v with
Hff dv vsz do'(a4f"), (B5)
0 0 2
a=—o|l+71—=VO,,tv]||0,,, (B11)
' Jm ﬁ
+ oo v 2 2
Hs= fo dv fJO dv'v % (0xf"). (B6) a2=a'<\/—_ VO, (1+ 700+ Tew)c, (B12)
o
|+ ! 0, + (B13
=—03 — c
To calculate}; one proceeds in a similar way as in Appen- s 72 T \/; it

dix A, i.e., in the cumulant expansion of the distribution
function the terms of third and higher order are neglectedintegration of(4.5 over [dv dw v? leads, besides the un-
Therefore corrected term, first to
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+ +
Tj f dv dw v?
0 0

+ oo + oo + v
o IJ f dv deZ(J dv' (v’ —v)(9f )g’—f dv'(v—v")g(o,f") |+
o Jo v 0

X f+xdv’(v’—v)v'(&xf )g’—Jovdv’(v—v’)vg(ﬁxf')”

+ o0 v
X |J duf dv’(vv'2—v"3—v3+0v2")(9,f' )f+rf dvf dv'(v2v'?—vu —u4+v3v')(axf')f} (B14)
0 0

and then to
ol |1(=2v)+7 —© —27—iv_6 cO,, d,c+ vy0,,— 0 7 vO +i7\/6
vv \/; vv vvYX \/_ vv vV vv \/; vv
X c?d,0 + I(i\/e —v|+7 19 —F-I-iv_@ ) c%0,0,, | . (B15)
X \/; vv 2 vv \/; Vv X vv

When proceeding to derive the equation for the varigge, we have to insert at a certain point the corrected mean velocity
equation. Therefore, we eventually find as corrections to the RHS of the variance eq@a@n

B1IxC+ Badxv + B3O, (B16)
with
B1=—0702, (B17)
Bo=—0CO,,(I+70), (B19)
33=o(% \/G_W(I—H-U—)Jrréew)c. (B19)

Analogously, the integration ovdidv dw vw for the mixed moment yields

+ oo + oo
+7’f f dv dwovw
0 0

+ o0 + oo + o v
o |f f dv dw vw(f dv’ (v —v)(dyf )g’—f dv'(v—v")g(df")
0 0 v 0

X

f+wdv’(v’—v)v'(z9xf )g’—fovdu'(u—u’)ug(axf')”

+ o + o0 v + o + o0 v
=0 |f dvj dw ng dv’'(2vv’ —v?—v'2) (") + Tf dvf dw ng dv’'(2v2%v" —vv'?=v3)(a,f") |,
0 0 0 0 0 0

(B20)

and after a rather lengthy calculation one finds as the correction for the mixed moment e¢@.24pn

+7 —vwO,,—0,,0, CdyC

2 __ 2 __
v _Wevv evv_ — eu va
= Ja )

[

+|1| © +—2 VO, | +7v0,,+WO,,+ —= O,,/O +—2 (S} ) 290 +| | ——1 ——1 UW)
v W vv v wo,, v Vo W ol |C W
w \/_ 7| U w \/_ w \/_ U xU 2 2\/_ m
+7| — —1 (O] ! w0 c29,0 B21
T 2 oW 2 2 W v 2 (9 vv ( )

Using again the corrected mean velocity equation, we obtain as the correction for the RHS of covariance €j24tion

Y19xC+ 7’23xU_+ ¥39xO 4y s (B22)



54 SECOND-ORDER CONTINUUM TRAFFIC FLOW MODEL 5085

with
2 _
Yi=— 0O _evwvevv(|+7v)+7-evweuv ’ (823)
N
_ 3
Vo=0 (|+TU)6UW+T\/—_9UW\/GUU c, (B24)
T
L O (I+7m)+ Lo (B25)
Y3= — 0| —— TU 5T C.
2\m \JO,, 2
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