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A second-order traffic flow model is derived from microscopic equations and is compared to existing
models. In order to build in different driver characteristics on the microscopic level, we exploit the idea of an
additional phase-space variable, called the desired velocity originally introduced by Paveri-Fontana@Trans.
Res.9, 225 ~1975!#. By taking the moments of Paveri-Fontana’s Boltzmann-like ansatz, a hierachy of evolu-
tion equations is found. This hierarchy is closed by neglecting cumulants of third and higher order in the
cumulant expansion of the distribution function, thus leading to Euler-like traffic equations. As a consequence
of the desired velocity, we find dynamical quantities, which are the mean desired velocity, the variance of the
desired velocity, and the covariance of actual and desired velocity. Through these quantities an alternative
explanation for the onset of traffic clusters can be given, i.e., a spatial variation of the variance of the desired
velocity can cause the formation of a traffic jam. Furthermore, by taking into account the finite car length,
Paveri-Fontana’s equation is generalized to the high-density regime eventually producing corrections to the
macroscopic equations. The relevance of the present dynamic quantities is demonstrated by numerical simu-
lations.@S1063-651X~96!05911-9#

PACS number~s!: 51.10.1y, 89.40.1k, 47.90.1a, 34.90.1q

I. INTRODUCTION

Theoretical descriptions of vehicular traffic are essentially
based on two different viewpoints: one microscopic and the
other macroscopic. In macroscopic theories, traffic is mod-
eled as a continuum fluid. One of the earliest hydrodynami-
cal models was proposed by Lighthill and Whitham@2#. It
comprises a continuity equation and a speed-density relation,
but does not take into account acceleration and inertia ef-
fects. Inspired by this model, a variety of higher-order mod-
els have been developed that try to incorporate these effects.
A survey on continuum models is given in@3#. In order to
make these models more accurate, one has to introduce ad-
ditional terms in the evolution equation. Since most of these
terms are based on heuristic considerations, their parameters
have to be determined from experiment.

On the other hand, microscopic models treat each vehicle
separately, and their motions are governed by laws derived
from traffic observation. Here cellular automata are a wide-
spread method to investigate traffic phenomena~see@4–7#!.
A different approach, similar to gas kinetics, has been chosen
by Prigogine and Herman@8# and has been further developed
in @1,9–13#. A very fruitful idea is the so-called desired ve-
locity introduced by Paveri-Fontana@1#. The desired velocity
reflects driver characteristics and allows one to distinguish
the individual acceleration behavior of different drivers.
Whereas in a recent paper Helbing@12# starts from a reduced
version of Paveri-Fontana’s equation, we treat the full
Paveri-Fontana equation and derive a closed set of approxi-
mate moment equations. We start by recapitulating Paveri-
Fontana’s Boltzmann-like ansatz in Sec. II. In Sec. III the
macroscopic model for ‘‘pointlike’’ vehicles is derived by
taking moments of the microscopic equation. The hierarchy
of moment equations is closed by neglecting third- and
higher-order cumulants, thus leading to Euler-like traffic
equations. Owing to the introduction of the desired velocity
additional dynamical equations for the new macroscopic

quantities, the mean desired velocity, the variance of the de-
sired velocity, and the covariance of actual and desired speed
are found. To close the system of equations no speed-density
relation is needed here. The homogeneous solution is given
and the characteristic velocities are calculated. In order to
generalize our model to high densities we take into account
the finite car length~Sec. IV!. This results in corrections to
the evolution equations and keeps the system from reaching
infinitely high densities. The relevance of the additional
equations is demonstrated by computer simulations in Sec.
V. We find that a spatial variation of the variance of the
desired velocity can cause the formation of a traffic jam.

II. BOLTZMANN-LIKE MICROSCOPIC MODEL

To overcome the problems of the original kinetic model
given of Prigogine and Herman@8#, Paveri-Fontana@1# sug-
gested the following improved Boltzmann-like microscopic
model. The essential idea is the introduction of an additional
phase-space coordinate, the so-called desired velocityw. Let
g(x,v,w,t) denote the one-vehicle distribution function for
vehicles with desired speedw in the phase space spanned by
x, v, w, t, whereg(x,v,w,t)dxdvdw denotes the number
of vehicles at timet, in position dx aroundx, and actual
speeddv aroundv with desired speeddw aroundw. The
road is assumed to be a one-dimensional unidirectional lane,
but passing is allowed.

The one-vehicle speed distribution function f(x,v,t) and
theone-vehicle desired speed distribution function f0(x,w,t)
are given by

f ~x,v,t !5E
0

1`

dw g~x,v,w,t !, ~2.1!

f 0~x,w,t !5E
0

1`

dv g~x,v,w,t !. ~2.2!
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The vehicular concentrationc(x,t), the average velocity
v̄(x,t), the average desired velocityw̄(x,t), and the flow
q(x,t) are then defined as

c~x,t !5E
0

1`

dwE
0

1`

dv g~x,v,w,t !, ~2.3!

v̄~x,t !5

E
0

1`

dwE
0

1`

dv vg~x,v,w,t !

c~x,t !
, ~2.4!

w̄~x,t !5

E
0

1`

dwE
0

1`

dv wg~x,v,w,t !

c~x,t !
, ~2.5!

q~x,t !5c~x,t !v̄~x,t !. ~2.6!

Higher-order velocity moments are defined by

mk,l~x,t !5E
0

1`

dwE
0

1`

dv vkwlg~x,v,w,t !, k,lPN,

~2.7!

for example,

c5m0,0, ~2.8!

cvk5mk,0 , ~2.9!

cwl5m0,l . ~2.10!

With xW5(x,v,w), the total local change of the phase-
space density is given through a continuity equation@14,15#

]g

]t
1¹xW•S g dxW

dt D5S ]g

]t D
coll

. ~2.11!

The term on the left-hand side describes the continuous
streaming in phase space, while the term on the right-hand
side is due to discontinuous motion in phase space, i.e., sud-
den changes of the velocities due to collisions.

In analogy to the scattering process in kinetic gas theory
the following interaction process between vehicles has been
introduced by Prigogine and Herman@8# and has been
adopted by Paveri-Fontana@1#. When a fast car reaches a
slow car it either passes or slows down to the velocity of the
car in front. Now the following assumptions are made.

~i! The ‘‘slowing’’ down process has a probability~12P!,
whereP denotes the probability of passing 0<P<1. If the
fast car passes the slow one, its velocity is not affected.

~ii ! The velocity of the slow car is unaffected by the in-
teraction or by being passed.

~iii ! Cars are regarded as pointlike objects, so the vehicle
length can be neglected.

~iv! The slowing down process is instantaneous; there is
no braking time.

~v! Only two-vehicle interactions are to be considered;
multivehicle interactions are excluded.

~vi! One assumes ‘‘vehicular chaos,’’ i.e., vehicles are not
correlated,

g2~x,v,w,x8,v8,w8,t !.g~x,v,w,t !g~x8,v8,w8,t !,
~2.12!

whereg2 denotes the two-vehicle distribution function.
Some remarks are necessary. The probability of passing is

usually chosen to be density dependent, for example,P(c)
512c/ ĉ ~ĉ denotes the maximal density@8#!, but additional
velocity and variance dependences have been proposed in
@9#. Vehicle length can be taken into account by choosing an
approach similar to Enskog’s theory for dense gases@16,17#
and is considered in Sec. IV. The assumption of instanta-
neous interaction is approximately valid for processes where
the slowing down timeDt and the lengthvDt are short
compared to the characteristic time and length scales in-
volved. Having made the assumption of vehicular chaos, the
theory is actually only valid for dilute traffic.

The term on the right-hand side of Eq.~2.11! is a collision
integral analogous to the Boltzmann term

S ]g

]t D
coll

5 f ~x,v,t !E
v

1`

dv8~12P!~v82v !g~x,v8,w,t !

2g~x,v,w,t !E
0

v
dv8~12P!~v2v8! f ~x,v8,t !.

~2.13!

The first part describes the gain of the phase space element,
i.e., vehicles with velocityv8>v collide with vehicles with
velocity v, while the second term describes the loss of the
phase space element, i.e., vehicles with velocityv collide
with vehicles with even slower velocityv8.

Considering the streaming term in Eq.~2.11!, Paveri-
Fontana models the acceleration by

dv
dt

5
w2v
T

, ~2.14!

i.e., the drivers approach their desired speed exponentially in
time, with time constantT. One can also chooseT to be a
function ofc,v ~see@9#!. Additionally, it is assumed that no
driver changes his desired speed, resulting in

dw

dt
50. ~2.15!

Settingdw/dtÞ0 would allow one to change the individual
desired speed, for example, owing to externally imposed
speed limitations. Collecting all the terms, the Boltzmann-
like kinetic equation now reads

S ]

]t
1v

]

]xDg1
]

]v Sw2v
T

gD
5 f ~x,v,t !E

v

1`

dv8~12P!~v82v !g~x,v8,w,t !

2g~x,v,w,t !E
0

v
dv8~12P!~v2v8! f ~x,v8,t !.

~2.16!

In the Prigogine-Herman equation the acceleration term is
modeled by a relaxation term towards an equilibrium distri-
bution. Unfortunately, this leads to inconsistences~see@1#!.
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Alberti and Belli @10# proposed two kinetic equations: one
for the distribution of free cars and one for the distribution of
queuing cars. Nelson@13#, on the other hand, developed a
kinetic equation where speeding up interactions are treated
on the same line as traditionally has been done for the slow-
ing down process. For this, he employed a generalized ve-
hicular chaos hypothesis.

III. MACROSCOPIC MODEL

Integration of relation~2.16! overdv leads to

]

]t
f 0~x,w,t !1

]

]x
@ v̄~x,w,t ! f 0~x,w,t !#50, ~3.1!

wherev̄(x,w,t) is defined as

v̄~x,w,t !5
*0

1`dv vg~x,v,w,t !

f 0~x,w,t !
. ~3.2!

Equation~3.1! is a continuity equation for each desired speed
w separately, as a consequence of Eq.~2.15!, i.e., no driver
changes his desired speed.

Using the notation of Eq.~2.7!, the moments inv are

]

]t
mk,01

]

]x
mk11,01

k

T
~mk,02mk21,1!

5~12P!~mk,0m1,02mk11,0m0,0!, ~3.3!

wherem21,1 is defined as

m21,150.

Equations~3.1! and ~3.3! have already been derived in the
original work of Paveri-Fontana. The equations for the mo-
ments inw are given by

]

]t
m0,l1

]

]x
m1,l50, ~3.4!

and as the general form for the mixed moments inv andw
one finds

]

]t
mk,l1

]

]x
mk11,l1

k

T
~mk,l2mk21,l11!

5~12P!E
0

1`

dwE
0

1`

dv wlg~x,v,w,t !

3E
0

v
dv8~v8kv2v8k112vk111vkv8! f ~x,v8,t !.

~3.5!

Unfortunately, the right-hand side of Eq.~3.5! cannot be
given in a closed form in terms of higher-order moments
without approximations. Fork50 and 1, Eq.~3.3! yields the
usual continuity equation

]

]t
c1

]

]x
~cv̄ !50 ~3.6!

and the momentum equation

]

]t
~cv̄ !1

]

]x
~cv2!1

c

T
~ v̄2w̄!5~12P!c2~ v̄22v2!,

~3.7!

respectively. For the mean desired velocity, Eq.~3.4! leads to

]

]t
~cw̄!1

]

]x
~cvw!50 ~3.8!

for l51. The dynamic equations for the second-order mo-
ments are given by

]

]t
~cv2!1

]

]x
~cv3!1

2c

T
~v22vw!5~12P!c2~v2v̄2v3!,

~3.9!

]

]t
~cw2!1

]

]x
~cvw2!50, ~3.10!

and

]

]t
~cvw!1

]

]x
~cv2w!1

c

T
~vw2w2!

5~12P!E
0

1`

dwE
0

1`

dv wg

3E
0

v
dv8~2v8v2v822v2! f 8. ~3.11!

A. Closure of the macroscopic equations

Equations~3.6!–~3.11! represent a hierarchy of moment
equations, each evolution equation involving moments of the
next higher order. The equation for the mixed moments can-
not be given in terms of a finite number of moments. To
close the system of equations, one has to make an approxi-
mation in form of a closing assumption. One defines

dv:5v2 v̄, dw:5w2w̄. ~3.12!

Then the higher moments are given in terms of cumulants as

v25~dv !21 v̄2,

w25~dw!21w̄2,

vw5dvdw1 v̄w̄,

v35~dv !313~dv !2v̄1 v̄3,

v2w5~dv !2dw12~dvdw!v̄1~dv !2w̄1 v̄2w̄,

vw25~dw!2dv12~dwdv !w̄1~dw!2v̄1w̄2v̄. ~3.13!

The second-order cumulants are abbreviated by
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Uvv :5~dv !2,

Uww :5~dw!2,

Uvw :5dvdw. ~3.14!

Now, using the continuity equation~3.6! and definition
~3.14!, Eq. ~3.7! transforms into the momentum equation

] tv̄1 v̄]xv̄5
w̄2 v̄
T

2
Uvv

c
]xc2]xUvv2~12P!cUvv ,

~3.15!

while Eq. ~3.8! now reads

] tw̄1 v̄]xw̄52
Uvw

c
]xc2]xUvw . ~3.16!

If one now exploits Eqs.~3.15! and ~3.16!, one can rewrite
Eqs.~3.9! and ~3.10! in terms of cumulants as

] t~cUvv!1 v̄]x~cUvv!13cUvv]xv̄1]x@c~dv !3#

1
2c

T
~Uvv2Uvw!1~12P!c~dv !350 ~3.17!

and

] t~cUww!1 v̄]x~cUww!12cUvw]xw̄1cUww]xv̄

1]x@c~dw!2dv#50, ~3.18!

respectively.
Dealing with Eq.~3.11! is much more involved and there-

fore only sketched here. The left-hand side~LHS! leads to

@LHS ~3.11!#5] t~cUvw!1 v̄]x~cUvw!12cUvw]xv̄

1cUvv]xw̄1]x@c~dv !2dw#

2~12P!c2w̄Uvv1
c

T
~Uvw2Uww!.

~3.19!

The right-hand side~RHS! is abbreviated

@RHS ~3.11!#5~12P!~2I12I22I3!. ~3.20!

The integralsI1, I2, andI3 are calculated in Appendix A
under the assumption of a local Gaussian distribution inv
andw, i.e., the cumulants of third and higher order are ne-
glected. The approximation of a Gaussian velocity distribu-
tion is justified by empirical data~see@18,19,9,20#!. For the
distribution in the desired velocityw we suppose that the
number of drivers with desired velocityw is also normally
distributed. From traffic considerations we expect a distribu-
tion with a long high-velocity tail, but as a first approxima-
tion a Gaussian seems to be sufficient. In Appendix A we
have chosen a cumulant expansion to evaluate the integrals
since this method can easily be extended to include third-
order cumulants when proceeding to the derivation of
Navier-Stokes-like equations. Thus one finds for the RHS

@RHS ~3.11!#52~12P!S c2w̄Uvv1
2

Ap
c2AUvvUvwD .

~3.21!

Taking Eqs.~3.17!–~3.19! and~3.21!, the assumption of neg-
ligible third- and higher-order cumulants yields

] tUvv1 v̄]xUvv12Uvv]xv̄1
2

T
~Uvv2Uvw!50,

~3.22!

] tUww1 v̄]xUww12Uvw]xw̄50, ~3.23!

] tUvw1 v̄]xUvw1Uvw]xv̄1Uvv]xw̄1
1

T
~Uvw2Uww!

52~12P!
2

Ap
cUvwAUvv. ~3.24!

Equations~3.6!, ~3.15!, ~3.16!, and~3.22!–~3.24! represent a
closed system of evolution equations for the variablesc, v,
w, Uvv , Uww , andUvw .

We compare this system of equations with other con-
tinuum models. Similar to the models of@21,22,11,12#, the
mean velocity equation~3.15! has a relaxation term, butw̄
becomes a dynamical quantity@see Eq.~3.16!# and similar to
@12# no equilibrium speed-density relation is needed to close
the system. In addition, coupled equations for the variance
Uvv , the varianceUww , and the covarianceUvw appear. In
contrast to some of the above-mentioned models, no second-
order space derivatives appear since up to now the model is
just Euler-like.

B. Homogeneous solution

The homogeneous solution for the system of partial dif-
ferential equations~3.6!, ~3.15!, ~3.16!, and~3.22!–~3.24! is
found to be

w̄2 v̄5T@12P~c!#cUvv , ~3.25!

Uvv5Uvw , ~3.26!

Uww5UvwS 11T@12P~c!#
2

Ap
cAUvvD . ~3.27!

Thus, given certain values forc, v̄, andUvv , the mean de-
sired velocityw̄, the varianceUww , and the covarianceUvw
are determined.

C. Characteristic velocities

The characteristic velocities yield locally the domain of
influence@2#. Set

uW 5~c,v̄,w̄,Uvv ,Uww ,Uvw!T. ~3.28!

Equations~3.6!, ~3.15!, ~3.16!, and~3.22!–~3.24! can then be
written as

] tuW 1CI •]xuW 5 fW , ~3.29!
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with

fW5S 0, w̄2 v̄
T

2~12P!cUvv,0,
2

T
~Uvw2Uvv!,0,

3
Uww2Uvw

T
2~12P!

2

Ap
cUvwAUvvD T ~3.30!

and

CI 5S v̄
Uvv /c
Uww /c

0
0
0

c
v̄
0

2Uvv

0
Uvw

0
0
v̄
0

2Uvw

Uvv

0
1
0
v̄
0
0

0
0
0
0
v̄
0

0
0
1
0
0
v̄

D . ~3.31!

The characteristic velocities are now given by the eigenval-
ues of the matrixC @2#. One finds

l1,25 v̄, ~3.32!

l3,45 v̄6AUvv, ~3.33!

l5,65 v̄6A3Uvv. ~3.34!

Having found six real eigenvalues, Eq.~3.29! is a hyperbolic
system.

IV. CORRECTIONS FOR EXTENDED VEHICLES

In this section we try to incorporate in analogy to
@16,23,17# the fact that cars are not pointlike objects but have
a spatial extension ofl and require an additional safety dis-
tancetv, depending on the velocity of each individual driver
and a reaction timet. Two different effects are taken into
account.

~i! Since the covolume of the cars, i.e., length plus safety
distance, is now comparable with the total volume of the
system, the volume where the center of any vehicle can lie is
reduced and therefore the collision frequency is enhanced by
a factorx.

~ii ! The common positionx of the two colliding vehicles
in the Boltzmann integral should be replaced by the actual
positions of the centers of the two vehicles and the ‘‘cross
section’’ should be taken at the actual position of the colli-
sion.

A. Factor x

Denote byd( v̄)5 l1t v̄ the mean required length at a
certain mean speedv̄, with t being the reaction time. The
maximal density at this mean speedv̄ is ĉ( v̄),

ĉ~ v̄ !5
1

d~ v̄ !
5

1

l1t v̄
. ~4.1!

The effective volume is then reduced by a factor 12c/ ĉ( v̄)
and therefore the scattering probability is increased by a fac-
tor x5@12c/ ĉ( v̄)#21,

x~c,v̄ !5
1

12cd~ v̄ !
5

1

12c~ l1t v̄ !
. ~4.2!

Like the scattering amplitude~12P!, the factorx is due to a
mean-field effect and thus depends on macroscopic quanti-
ties. In the following a modified cross section is defined by

s5x~c,v̄ !@12P~c!#. ~4.3!

If c→ ĉ then x→`, i.e., the cross sections is sharply in-
creased.

B. Corrected Boltzmann integral

1. Distribution functions

Here we consider the effect that due to the extension of
the vehicles the distribution functions in the Boltzmann an-
satz have to be evaluated at different positions. The vehicle
causing a faster one to slow down is the distanced(v)5 l
1tv ahead, wherev is the velocity of the faster car before
the collision. The corrected Boltzmann scattering term of Eq.
~2.16! now reads

E
v

1`

dv8s~v82v ! f „x1d~v8!,v,t…g~x,v8,w,t !

2E
0

v
dv8s~v2v8!g~x,v,w,t ! f „x1d~v !,v8,t….

~4.4!

Here, the cross sections is taken at the positionx. Expand-
ing the distribution function in a Taylor series ind aroundx
and keeping only the first two terms, one finds, for the com-
plete Boltzmann equation,

S ]

]t
1v

]

]xD g1
]

]v Sw2v
T

gD
5sF E

v

1`

dv8~v82v ! f g82E
0

v
dv8~v2v8!g f8

1 l S E
v

1`

dv8~v82v !~]xf !g8

2E
0

v
dv8~v2v8!g~]xf 8! D

1tS E
v

1`

dv8~v82v !v8~]xf !g8

2E
0

v
dv8~v2v8!vg~]xf 8! D G , ~4.5!

with f 8[ f (x,v8,t) andg8[g(x,v8,w,t).
The derivation of the cumulant equations is rather lengthy

and is therefore only sketched in Appendix B. The results are
the following.

~i! It is easy to check that the continuity equation still
holds and that for the pure moments inw no additional terms
are produced.

~ii ! As an additional term for the RHS of the mean veloc-
ity evolution equation~3.15! one gets
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a1]xc1a2]xv̄1a3]xUvv . ~4.6!

~iii ! Integration of~4.5! over *dv dw v2 leads to the fol-
lowing correction to the RHS of the variance equation
~3.22!:

b1]xc1b2]xv̄1b3]xUvv . ~4.7!

~iv! Eventually, one finds as a correction for the RHS of
the mixed cumulant equation~3.24!

g1]xc1g2]xv̄1g3]xUvv . ~4.8!

For the detailed form of the coefficients see Appendix B.
They are functions ofs, l , t and the dynamical variables
c,v̄,w̄,Uvv ,Uvw . These new terms modify the gradient
terms and change the characteristic speeds. Note that a Tay-
lor expansion in Eq.~4.5! up to second order would also
yield additional second-order derivatives of the dynamical
quantities.

2. Cross section

Up to now, we have taken the scattering probability at the
position x and not at the position of the actual collision.
Since our model, and the underlying Boltzmann-like equa-
tion by Paveri-Fontana, is a quasi-one-dimensional model
there is no left or right lane. When a fast car reaches a slow
car there is a probability of passing without interaction~or of
driving ‘‘through’’ the slow car!. This probability depends
on macroscopic quantities. In order to take this into account,
one assumes that the probability of passing is just a func-
tional of the densityc, P5P[c(x,t)]. The modified scatter-
ing probabilitys is then determined by the density and the
mean velocity at the position of the slower car, i.e., at
x1d(v), wherev is the velocity of the faster car. Expanding
s in a Taylor series, one gets the following additional first-
order term for the Boltzmann equation~4.5!:

]xsF E
v

1`

dv8~ l1tv8!~v82v ! f g8

2E
0

v
dv8~ l1tv !~v2v8!g f8G . ~4.9!

For the derivative ofs with respect tox we find

]xs5~12P!x2@d~ v̄ !]xc1ct]xv̄#2xP8]xc

5h]xc1z]xv̄, ~4.10!

with h5@sd( v̄)2P8#x, z5sxct, and P8 denotes the de-
rivative of P with respect to its argument. Note thath,z>0.

By calculating the moments of the integral part of Eq.
~4.9!, one finds as additional coefficients

a452cUvv~ l1t v̄ !2t
2

Ap
cUvvAUvv ~4.11!

for the velocity equation,

b452tcUvv
2 ~4.12!

for the equation of the varianceUvv , and

g452
2

Ap
cUvwAUvv~ l1t v̄ !22tcUvvUvw ~4.13!

for the equation of the covarianceUvw . A velocity- or
variance-dependent passing probability would certainly lead
to additional coefficients in the gradient terms of these quan-
tities.

Thus the whole set of partial differential equations now
reads

]

]t
c1

]

]x
~cv̄ !50, ~4.14!

] tv̄1 v̄]xv̄5S a11ha42
Uvv

c D ]xc1~a21za4!]xv̄

1~a321!]xUvv1
w̄2 v̄
T

2scUvv , ~4.15!

] tw̄1 v̄]xw̄52
Uvw

c
]xc2]xUvw , ~4.16!

] tUvv1 v̄]xUvv5~b11hb4!]xc1~b21zb422Uvv!]xv̄

1b3]xUvv1
2

T
~Uvw2Uvv!, ~4.17!

] tUww1 v̄]xUww522Uvw]xw̄, ~4.18!

] tUvw1 v̄]xUvw5~g11hg4!]xc1~g21zg42Uvw!]xv̄

2Uvv]xw̄1g3]xUvv1
1

T
~Uww2Uvw!

2s
2

Ap
cUvwAUvv. ~4.19!

Let us compare Eqs.~4.14!–~4.19! to Eqs. ~3.6!, ~3.15!,
~3.16!, and ~3.22!–~3.24!. The continuity equation holds in
both systems. Since no relation between the finite car length
and the desired velocity has been assumed, the equations for
the mean desired velocity and for the varianceUww remain
unchanged@~3.16!5~4.16! and ~3.23!5~4.18!#. The cross
section ~12P! has changed to the modified cross section
s5x~12P!. New gradient terms appear in the other equa-
tions ~4.15!, ~4.17!, and ~4.19!. Let us first investigate Eq.
~4.15!. Owing to the sign of the coefficients, the density gra-
dient term and the variance gradient term have an enhancing
effect on the formation of a cluster, while in the coefficients
of the velocity gradient both signs appear~for the detailed
form of the coefficient see Appendix B!. For the variance
equation~4.17! similar considerations lead to an enhancing
effect of the gradient terms except for the density gradient.
Looking at the covariance equation~4.19!, we find an overall
enhancing effect, except for the velocity gradient, where
again both signs appear. We remark that the equilibrium re-
lations for the corrected system are almost the same as for
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the uncorrected system@Eqs. ~3.25!–~3.27!#; the cross sec-
tion ~12P! has just been replaced bys. Note that for the
equilibrium state if w̄Þ0, c→ ĉ, and v̄→0, thenUvv→0
sinces→`, meaning that in this limit the variance vanishes.

C. Characteristic velocities

To get an idea how the characteristic velocities change
due to the new gradient terms, we consider the simpler sys-
tem

]

]t
c1

]

]x
~cv̄ !50, ~4.20!

] tv̄1 v̄]xv̄5
W2 v̄
T

2
Uvv

c
]xc2]xUvv2~12P!cUvv ,

~4.21!

] tUvv1 v̄]xUvv522Uvv]xv̄2
2

T
Uvv . ~4.22!

These equations can be derived from the original Boltzmann
equation if one assumes that all drivers have the same de-
sired velocityW. The characteristic velocities of this system
are

l15 v̄, l2,35 v̄6A3Uvv. ~4.23!

As further simplification, we sett50, i.e., we consider only
the effect of the actual lengthl and we neglect the effect of
the modified point of collision~Sec. IV B 2!. Then the cor-
rected version of Eqs.~4.20!–~4.22! read

]

]t
c1

]

]x
~cv̄ !50, ~4.24!

] tv̄1 v̄]xv̄5S a182
Uvv

c D ]xc1a28]xv̄1~a3821!]xUvv

1
W2 v̄
T

2sUvv , ~4.25!

] tUvv1 v̄]xUvv5b18]xc1~b2822Uvv!]xv̄1b38]xUvv

2
2

T
Uvv , ~4.26!

with

a1852s lUvv , a285s l
2

Ap
cAUvv, a3852s

l

2
c,

b1850, b2852s lcUvv , b385s l
2

Ap
AUvv. ~4.27!

If we now calculate the characteristic velocities up to first
order in l , we find

L15 v̄2
2

3Ap
AUvvscl, ~4.28!

L25 v̄1A3UvvF12S 5

3A3p
2
1

2D sclG , ~4.29!

L35 v̄2A3UvvF11S 5

3A3p
1
1

2D sclG , ~4.30!

i.e., the characteristic velocities are shifted to lower values.
This is intuitively quite clear since the cars have now less
free space to accelerate to their desired velocities, thus the
domain of influence should be smaller. We therefore assume
that in the complete system~4.14!–~4.19! the characteristic
velocities are lowered as well by taking into account the
vehicle length.

V. NUMERICAL RESULTS

In the following we present first numerical simulations of
our model, gained by stepwise numerical integration of Eqs.
~4.14!–~4.19!. To simplify the computation we have as-
sumed periodic boundary conditions. The parameters are
T530 s, t50.5 s, and the vehicle length isl55 m. The
homogeneous solution is chosen to bec50.8ĉ( v̄), v̄526
m/s, andUvv55.4 m2/s2. The mean desired velocity and the
variances are then determined from Eqs.~3.25!–~3.27! to be
w̄534 m/s,Uww526.3 m2/s2, andUvw55.4 m2/s2. As initial
perturbation we have added a small Gaussian peak to the
otherwise constant varianceUww , at time t50 and position
x55 km. This corresponds to a region where some drivers
desire to drive faster and some drivers desire to drive slower
than in the remaining region, i.e., there is an inhomogenity in
the driver behavior.

Figures 1 and 2 show the evolution of the dynamical
quantities. We find that after some time a cluster builds up
with a region of lower density behind the cluster@Fig. 1~a!#.
The mean velocity@Fig. 1~b!# shows the corresponding be-
havior, i.e., the mean velocity in the cluster is lower, while
after the cluster a region of higher mean velocity is found.
The variation of the mean desired velocity@Fig. 1~c!# is rela-
tively small compared to the mean velocity, but we can
clearly see the separation of faster and slower vehicles due to
the initial perturbation of the varianceUww . The variance of
the actual velocity@Fig. 2~a!# has a peak at the cluster region
as we expect from measurements and other traffic models
@11,21,24#. Looking at the evolution of the variance of the
desired velocity@Fig. 2~b!# we find that the initial perturba-
tion just propagates with the velocityv̄ and flattens a bit.
Figure 2~c! shows an interesting behavior of the covariance
of the actual velocity and the desired velocity. In the region
of the density cluster we find a sharp negative peak, i.e.,
more drivers do not drive with the velocity they actually
want to, but are slowed down by the cluster. Right after the
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cluster there is a region with increased covarianceUvw ,
meaning that the drivers are free to accelerate to their desired
velocity. The broad ridge on the right side of this graph
corresponds to the initial perturbation inUvv and shows that
the drivers causing the onset of the cluster are not affected by
it; on the contrary, there is a higher correlation between the
actual velocity and desired velocity. Kerner and Kohnha¨user
found a similar behavior of the density and the mean veloc-
ity, but the formation of a traffic jam has been caused by a
small density perturbation. Furthermore, they observe a
backward motion of the whole cluster after some time. This
feature cannot yet be found in our simulation since the den-
sity has not yet reached its maximal value and the mean
velocity has not been reduced to zero.

VI. CONCLUSION

In this paper, we rigorously derive a second-order traffic
flow model from the microscopic level. Using a Boltzmann-
like ansatz, macroscopic equations are found, similar to the
hydrodynamic equations. As dynamical consequences of an
additional phase-space variable on the microscopic level, the
desired velocity, we find evolution equations for the mean
desired velocity, for the variance of the desired velocity, and
for the covariance of the actual and desired velocity. In con-

trast to other models, no speed-density relation is needed.
The onset of traffic clusters can be explained from different
driver characteristic. We have generalized Paveri-Fontana’s
kinetic equation to the high-density regime by taking into
account the finite vehicle length. This results in gradient cor-
rection terms in the macroscopic equations, which have an
overall enhancing effect on the formation of traffic clusters.
A modified cross section keeps the system from reaching
infinitely high densities. The relevance of the additional
quantities has been demonstrated by numerical simulations
where we find that a spatial variation of the variance of the
desired velocity can cause the formation of a traffic jam. To
evaluate this model, a stability analysis has to be made and a
thorough numerical investigation has to follow. By neglect-
ing third- and higher-order cumulants we have just derived a
Euler-like traffic model. As already mentioned, one should
now proceed to derive Navier-Stokes-like equations by in-
cluding third-order cumulants. This would lead to viscosity
terms.

APPENDIX A: INTEGRALS I1,I2,I3

In order to calculate the integralsI1,I2,I3, one has to
look at a couple of other integrals first. In the following,Kn
denotes thenth cumulant inv,

FIG. 1. Time evolution of the traffic flow starting from a homogeneous state with a small perturbation of the desired velocity variance
using Eqs.~4.14!–~4.19!: ~a! densityr, ~b! mean velocityv̄, and~c! mean desired velocityw̄.
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E
0

1`

dv f eivz5c expS (
n51

`
~ iz!n

n!
KnD

.c expS iK 1z1
i 2

2
K2z

2D , ~A1!

where the assumptionKn50 for n>3 has been used. Simi-
larly,

E
0

1`

dv v f eivz.c~K11 iK 2z!expS iK 1z1
i 2

2
K2z

2D ,
~A2!

E
0

1`

dv v2f eivz.c~K1K11K212iK 1K2z

2K2K2z
2!expS iK 1z1

i 2

2
K2z

2D ,
~A3!

and

E
0

1`

dv v3f eivz.c$3K1K21~K1!
313i @~K1!

2K21~K2!
2#z23K1~K2!

2z22 i ~K2!
3z3%expS iK 1z1

i 2

2
K2z

2D . ~A4!

Using these relations, one easily finds

E
0

v
dv8 f 85E

0

`

dv8U~v2v8! f 85E
2`

1` dz

2p i E0
`

dv8
eiz~v2v8!

z2 i e
f 85cE

2`

1` dz

2p i

exp@ i ~v2K1!z2 1
2K2z

2#

z2 i e
, ~A5!

FIG. 2. Time evolution of the variancesUvv ,Uww and of the covarianceUvw : ~a! variance(dv)2, ~b! variance(dw)2, and~c! covariance
dvdw.
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E
0

v
dv8v8 f 85cE

2`

1` dz

2p i

~K12 iK 2z!exp@ i ~v2K1!z2 1
2K2z

2#

z2 i e
, ~A6!

E
0

v
dv8v82f 85cE

2`

1` dz

2p i

~K1!
21K222iK 1K2z2~K2!

2z2

z2 i e
exp@ i ~v2K1!z2 1

2K2z
2#, ~A7!

and

E
0

v
dv8v83f 85cE

2`

1` dz

2p i

$3K1K21~K1!
323i @~K1!

2K21~K2!
2#z23K1~K2!

2z22 i ~K2!
3z3%

z2 i e
exp@ i ~v2K1!z2 1

2K2z
2#.

~A8!

For the integralI1, this yields

I15E
0

1`

dwE
0

1`

dv vwgE
0

v
dv8v8 f 85cE

2`

1` dz

2p i

~K12 iK 2z!exp~2 iK 1z2 1
2K2z

2!

z2 i e E
0

1`

dwE
0

1`

dv vwgeivz

5cE
2`

1` dz

2p i

~K12 iK 2z!exp~2 iK 1z2 1
2K2z

2!

z2 i e

]

i ]z

]

i ]y U
y50

E
0

1`

dwE
0

1`

dv geivz1 iwy. ~A9!

One can now again expand the integral overdv dw in an exponential function in the cumulants up to second order

E
0

1`

dwE
0

1`

dv geivz1 iwy.c expS iK vz1 iKwy1
i 2

2
Kvvz

21
i 2

2
Kwwy

21 i 2KvwyzD
with an obvious notation for the cumulants inv andw. Thus

I15c2E
2`

1` dz

2p i
@KvKvw1~Kv!

2Kw1 i ~Kv!
2KvwziKvvKvwz1Kw~Kvv!

2z21 i ~Kvv!
2Kvwz

3#
exp~2Kvvz

2!

z2 i e
. ~A10!

For I2,I3 one gets

I25E
0

1`

dwE
0

1`

dv wgE
0

v
dv8v82f 85c2E

2`

1` dz

2p i
@~Kv!

2Kw1KwKvv22iK vKwKvvz2Kw~Kvv!
2z21 i ~Kv!

2Kvwz

1 iK vvKvwKvKvvz
22 i ~Kvv!

2Kvwz
3#
exp~2Kvvz

2!

z2 i e
, ~A11!

and

I35E
0

1`

dwE
0

1`

dv w v2gE
0

v
dv8 f 85c2E

2`

1` dz

2p i
@~Kv!

2Kw1KwKvv12KvKvw13iK vvKvwz12iK vKwKvvz

1 i ~Kv!
2Kvwz2Kw~Kvv!

2z222KvKvvKvwz
22 i ~Kvv!

2Kvwz
3#
exp~2Kvvz

2!

z2 i e
. ~A12!

Hence, taking together the three integrals, the result now reads

2I12I22I35c2E
2`

1` dz

2p i
@22KvvKw26iK vvKvwz14~Kvv!

2Kwz
214i ~Kvv!

2Kvwz
3#
exp~2Kvvz

2!

z2 i e

5c2S 2KvvKw2
2

Ap
AKvvKvwD 52c2S w̄Uvv1

2

Ap
UvwAUvvD . ~A13!
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APPENDIX B: CORRECTION INTEGRALS

Taking the integral*dv dw v of the Boltzmann term
~4.5!, the first term leads to the original term given in Eq.
~3.5!, while the parts proportional tol andt can be written as

s l E
0

1`E
0

1`

dv dw vS E
v

1`

dv8~v82v !~]xf !g8

2E
0

v
dv8~v2v8!g~]xf 8! D 5s l E

0

1`

dvE
0

v
dv8~2vv8

2v22v82)~]xf 8! f
~B1!

and

stE
0

1`E
0

1`

dv dw vS E
v

1`

dv8~v82v !v8~]xf !g8

2E
0

v
dv8~v2v8!vg~]xf 8! D 5stE

0

1`

dvE
0

v
dv8~2v2v8

2v32vv82)~]xf 8! f ,
~B2!

respectively. Equation~B1! is abbreviated to

s l ~2H12H22H3!, ~B3!

with

H15E
0

1`

dv v f E
0

v
dv8v8~]xf 8!, ~B4!

H25E
0

1`

dv v2f E
0

v
dv8~]xf 8!, ~B5!

H35E
0

1`

dv f E
0

v
dv8v82~]xf 8!. ~B6!

To calculateH1 one proceeds in a similar way as in Appen-
dix A, i.e., in the cumulant expansion of the distribution
function the terms of third and higher order are neglected.
Therefore

H15E
0

1`

dv v f ]xE
0

v
dv8v8 f 8

5E
2`

1` dz

2p i

]x@c~K12 iK 2z!exp~2 iK 1z2 1
2K2z

2!#

z2 i e

3E
0

1`

dv v f eivz

5cE
2`

1` dz

2p i

]x@c~K12 iK 2z!exp~2 iK 1z2 1
2K2z

2!#

z2 i e

3~K11 iK 2z!exp~ iK 1z2 1
2K2z

2! ~B7!

and similar expressions forH2 andH3.
Summing up the three integrals one finds

2H12H22H35E
2`

1` dz

2p i
@2cK2]xc2c]x~cK2!

16ic2K2]xK1z24i ~cK2!
2]xK1z

3#

3exp~2 1
2K2z

2!

52cUvv]xc1
2

Ap
c2AUvv]xv̄2 1

2c
2]xUvv .

~B8!

Analogously, for the integral proportional tot @Eq. ~B2!# the
calculation yields

stF S 2
2

Ap
UvvAUvv2 v̄UvvD c]xc

1S 2

Ap
c2v̄AUvv1c22wD ]xv̄

2
1

2 S 1

Ap
AUvv1 v̄ D c2]xUvv]. ~B9!

Taking together these two terms and dividing byc, the ad-
ditional terms for the RHS of Eq.~3.15! are

a1]xc1a2]xv̄1a3]xUvv , ~B10!

with

a152sF l1tS 2

Ap
AUvv1 v̄ D GUvv , ~B11!

a25sS 2

Ap
AUvv~ l1t v̄ !1tUvvD c, ~B12!

a352s
1

2 F l1tS 1

Ap
AUvv1 v̄ D Gc. ~B13!

Integration of~4.5! over *dv dw v2 leads, besides the un-
corrected term, first to
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and then to

sH F l ~22v̄ !1tS 2Uvv22v̄22
4
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When proceeding to derive the equation for the varianceUvv , we have to insert at a certain point the corrected mean velocity
equation. Therefore, we eventually find as corrections to the RHS of the variance equation~3.22!

b1]xc1b2]xv̄1b3]xUvv , ~B16!

with

b152stUvv
2 , ~B17!

b252scUvv~ l1t v̄ !, ~B18!
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1
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UvvD c. ~B19!

Analogously, the integration over*dv dw vw for the mixed moment yields

sF l E
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and after a rather lengthy calculation one finds as the correction for the mixed moment equation~3.24!

H F l S 2w̄Uvv2
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Using again the corrected mean velocity equation, we obtain as the correction for the RHS of covariance equation~3.24!

g1]xc1g2]xv̄1g3]xUvv , ~B22!
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with
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