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We perform a two-dimensional molecular-dynamics study of a model for bidisperse granular systems under
conditions of simple shear flow. We find that if the ratio of shear rate to viscosity is small, then the particles
in the system arrange themselves in bands of big and small particles oriented along the direction of the flow.
Each band contains particles of one species only. We present a mechanism for this particle-size segregation
phenomenon based on the observation that segregation occurs if the viscous length scale introduced by a liquid
in the system is smaller than the mean free path of the particles. For large values of shear rate to viscosity the
system remains disordered.@S1063-651X~96!05211-7#

PACS number~s!: 47.55.Kf, 83.20.Hn, 02.70.Ns

I. INTRODUCTION

If a mixture of particles and liquid is sheared, either in a
continuous fashion or by periodic excitation of the system, a
host of structural rearrangements in the mixture are known to
occur. Most of the systems studied experimentally involve
monodisperse suspensions@1–3#. For concentrated suspen-
sions and oscillatory shearing, the formation of layers in the
isovelocity planes and an additional arrangement in lines of
particles perpendicular to the velocity field@3# has been ob-
served. In addition, simulations of Taylor-Couette flow in the
viscous regime confirm the organization of the suspended
particles in layers oriented along the isovelocity planes@4#.
The numerical studies have seen cluster formation within the
formed planes. However, while for bidisperse suspensions
similar organization patterns have been observed@3# in ex-
periments and size-distribution induced instabilities are
known to occur in sedimenting systems@5#, simulations of
bidisperse systems have not found so far clear indications of
size segregation under shear.

In this paper, we simulate a sheared, bidisperse particle-
liquid mixture in two dimensions. We find size segregation
of this system for sufficiently low shear rates. We propose a
segregation mechanism that depends on the presence of a
viscous length scale in the system of the same order as the
particle sizes. The mechanism is of rather general nature and
may also apply to three-dimensional systems.

II. MODEL

We concentrate on laminar shear flows described by local
shear ratesġ[(]/]y)vx . We have in mind~see Fig. 1! that
the flow is translationally invariant in thex direction and that
its speed varies linearly in they direction. For the sake of
simplicity we assume that the particle-size distribution is
bidisperse. More precisely, our system consists of a number
ns of small and a numbernb of big disk-shaped particles
with radii r s and r b , respectively. The overall area fraction

c is the sum of the area fractions of big and small particles
c5cs1cb .

If particles are immersed in viscous fluids and if the Rey-
nolds number is low, then lubrication effects will introduce a
strong velocity-dependent damping diverging as the surfaces
of two particles approach each other. Effectively, no direct
contact occurs between particles, but only a transfer of mo-
mentum that is strongest along the direction joining the par-
ticle centers. In our model we use, for simplicity, strong
repulsive forces between overlapping particles and include a
velocity proportional damping. In particular, along the direc-
tion joining two particle centers, we introduce a damped har-
monic forcef n ,

f n
m

5H 2j12kj̇ if j.0

0 otherwise,
~1!
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FIG. 1. Sketch of the model geometry for shear flow. The simu-
lation cell of sizeL3L is periodically repeated in thex direction.
The cell images in the6y directions are shifted by an amount

6ġLt/2 to reflect the particle displacement at the top and bottom of
the cell, which grows linearly in time due to the shear~Lees-
Edward boundary conditions!.
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where m is the reduced mass of the pair,
j[(r 11r 2)2ux12x2u is the virtual overlap of the two par-
ticles located atx1 and x2 ~Fig. 2!, and k parametrizes a
damping proportional to the velocity. This harmonic force
~1! is purely repulsive and forces act only if there is an over-
lap of the particle pair.

The form of Eq.~1! is such that therestitution coefficient
e, the ratio of the normal velocities after and before the im-
pact, is the same for all binary collisions, independent of
mass and velocity. The restitution is related tok by
k[1/A11@p/ ln(e)#2. In order to mimic the dissipative ef-
fects of the lubrication forces, we have chosen in this work
e50.8, which is still in the range of typical materials in air
(e'0.92 for steel or'0.6 for aluminum beads!. Equation
~1! is in dimensionless form. The chosen length scale is the
average radiusr̄[(nbr b1nsr s)/(nb1ns), the mass unit is
the mass of a particle of average radius, and the time unit is
such that the duration of a pair contact, half the period of a
damped harmonic oscillator, becomesp for vanishing damp-
ing k→0. In these units the spring constant of a pair inter-
action does not appear in Eq.~1! sinceAk/m51.

Since we have neglected tangential forces in our model
we do not consider rotational degrees of freedom. However,
as will become clear in the discussion in Sec. III, we believe
that rotation does not play an essential role for the physics of
our model.

We approximate the liquid motion by imposing an invari-
ant, fixed-velocity profile pointing in thex direction @6#,

u~y!5yġex , ~2!

wherey is counted from the center of the simulation cell~cf.
Fig. 1!. The liquid exerts an additional viscous drag on each
particlei , which is added to the interaction force~1! between
particles. The force is here assumed to be the Stokes drag
force on a sphere,

fd,i526pr ih@vi2u~yi !#, ~3!

wherevi is the velocity of particlei , yi its y coordinate, and
h the viscosity of the liquid, measured in the time, length,
and mass units given above.

The equations of motion are integrated using a fourth-
order Gear predictor-corrector algorithm@7#, with the time
step chosen to be 0.15. We have tested the algorithm using
this value of the time step for the caseh50 ande51 and
found good energy conservation.

To prepare the initial configuration, we start from a ran-
dom, overlapping configuration of disks and simulate with
periodic boundary conditions until timet520 using a very
low restitution coefficient of 0.1. During this period, particle
overlaps are removed and the large excess energy due to the
initial overlaps in the system is efficiently dissipated. After-
ward the setup is continued withe51 until t5100, corre-
sponding to elastic collisions. The average energy per par-
ticle in the system during this stage is quite low and allows
only marginal overlaps. Since no shear is applied in this
stage and the system responds elastically, the resulting con-
figurations have statistical weights close to those of an
equally dense hard-disk system.

Before finally switching over to a simulation with restitu-
tion coefficiente50.8 including the shear due to the back-
ground velocity profile, the particle velocities are reassigned
such that the particles initially rest with respect to the local
liquid-background velocity field@Eq. ~2!#. The boundary
conditions for the particles are Lees-Edwards boundary con-
ditions ~as displayed in Fig. 1, cf. also@7#!.

Since the system is sheared andx momentum is trans-
ported in they direction by particle collision, we do work on
the system and it would continuously heat up if there were
no energy sinks available. However, there are two sources of
energy dissipation in the system: on the one hand, the inelas-
tic particle collision dynamics and, on the other hand, the
viscous drag exerted by the liquid. These serve as sinks for
the work done on the system. Thus we do not require a
thermostat as in Hamiltonian nonequilibrium molecular dy-
namics. However, one may define a ‘‘local temperature’’ of
the system by studying the excess velocities of the particles
as compared to the constant velocity field of the liquid back-
ground. We will revisit this question below.

III. RESULTS AND DISCUSSION

In Figs. 3 and 4 we show two typical simulation se-
quences whose physical parameters differ only in the value

FIG. 2. Geometry of the collision between two disks in the
center-of-mass frame. The particles are assumed to initially move
parallel to the flow such that laboratory frame and center-of-mass
frame are aligned.

FIG. 3. Simulation snapshots at dimensionless timeġt50 ~a!
and 195 ~b!. The dimensionless shear rate in this system is

ġ50.01 and the viscosityh50.001.
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for the background viscosityh. The ratio of the particle radii
in our bidisperse system isr b /r s54, the ratio of the number
density of big and small particles isnb /ns50.05, and the
total area fraction of particles is rather high,c50.6. In the
long-time limit one sees very different structural reordering
of the systems emerging. In the first sequence~Fig. 3! with
low viscosity, the particle arrangement is more or less ran-
dom, whereas in the second case~Fig. 4! one observes a very
clear separation into alternating zones parallel to the flow
direction that contain alternating big and small particles.

The basis to understand this segregation phenomenon lies
in an analysis of the length scales that are present in the
system. Apart from the system size and the two different
particle radii, an additional viscous length exists in the prob-
lem. Given that a particle has a typical particular velocity
against the liquid background ofv0, which it acquires in
collisions ~see below!, the viscous lengthz is the typical
distance that a particle has to travel before it again acquires
the velocity of the background. The lengthz may be esti-
mated in the following way. From the equations of motion
fd,i5mi v̇, i.e.,

v̇y52
6pr ih

mi
vy , ~4!

we obtain a simple exponential decay of any excess residual
y component of the velocity,

vy~ t !5v0expF2
6pr ih

mi
t G , ~5!

with a time constantt5mi /6pr ih. A typical excess velocity
v0 created by a collision of two particles 1 and 2 is

v0'(m/mi)(r 11r 2)ġ. The product

z1'v0t5m~11r 2 /r 1!ġ/6ph ~6!

estimates the viscous length for particle of type 1 after a
collision with a type-2 particle. The value ofz1 is largest for
r 2 /r 15r b /r s and we call it simplyz in the subsequent text.
A detailed discussion is presented in Appendix A.

Let us now discuss the effects that let arise the segrega-
tion process.

~a! The particles move on average with the velocity of the
liquid background measured at their centers. The collisions
between particles tend to drive the system to a disordered
state@8#. The ratio of the viscous length to a typical inter-
particle distance is a measure of the efficiency of this pro-
cess: the larger the viscous length, the more effectively a
collision will disturb a possibly ordered state of the system.

~b! Conversely, however, in a highly viscous environment
with z!1, the collisions between particles only weakly in-
fluence the spatial configuration of the system and order may
be created.

These two observations show that the viscous length plays
the central physical role in the segregation process. We will
try in the following to obtain a better understanding by iden-
tifying possible stationary states of the systems and their
stability to perturbations.

A. Stationary states of monodisperse systems

To this end let us first consider possible stationary~colli-
sionless! states of a monodisperse system of particles with
radius r51. Each single particle defines, due to its finite
extension, a horizontal ‘‘lane’’ in the system, i.e., the area
that it would cover as time passes if no other particles were
present in the system.

To avoid collisions, either~i! two particles have to be
separated in they direction by more than 2r or ~ii ! there may
not be a difference in they position of the two particles’
centers since then the friction with the liquid background
will equalize their velocities. For a finite system of given
heighth and widthw one can find a maximum particle con-
centration (h/2r )(pr 2/hw)5(pr /2w), above which not all
particles can be in different and disjoint lanes@condition~i!#,
thus leading~trivially ! to a stationary state. However, for an
infinite system this concentration threshold tends to zero and
collisions will necessarily occur if the particles are posi-
tioned randomly. The only possible stationary states at non-
zero concentration are thus lanes or ‘‘strings’’ of particles
with the samey coordinate aligned along thex direction. If
the x separation between particles in one lane is 0 and like-
wise the separation between lanes vanishes, then the packing
fraction of particles is the largest, consistent with a collision-
less stationary state of the system. The maximum possible

FIG. 4. Simulation snapshots at dimensionless timeġt50 ~a!,
20 ~b!, 70 ~c!, 110~d!, and 220~e!. The dimensionless shear rate in

this system isġ50.01 and the dimensionless viscosityh50.01, ten
times larger than in Fig. 3. Different shades of gray indicate the
modulus of thex velocity of the particles.
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density associated with such a state isc0[p/4'0.78. We
perform our simulations atc50.60 and are well below this
limit.

Such a particle arrangement in disjoint lanes is highly
singular, but under certain conditions it is stable against per-
turbations. Let the vertical distance between lanes be small
with respect to the particle radius and imagine one particle in
one of the lanes being slightly displaced in the1y direction.
The particle will either undergo a collision with another par-
ticle in the lane above, which will then reduce itsy coordi-
nate again, or collide with a particle in its own lane, increas-
ing the original displacement. If the viscous lengthz is large
(@r ), this collision typically displaces both collision part-
ners to the other lane~if at the same time also the mean free
path is large enough; see Appendix B!. Thus, forz@r , lanes
are not stable and the system will not order.

In contrast, ifz is small (!r ), then the relative motion of
the two particles is more akin to a sliding on top of each
other, displacing each particle by approximately 1/2 in the
1y and2y direction, respectively. In a sufficiently dense
system subsequent collisions with particles in the neighbor-
ing lanes can then restore the original vertical positions of
the particles: the system orders. In Fig. 5 we display the final
state of the simulation of a monodisperse system with
z!r . All other simulation parameters equal those of Fig. 4.
Very clearly, we observe the formation of disjoint parallel
lanes of particles as explained above.

B. Stationary states of bidisperse systems

Let us now consider the bidisperse case. We can imagine
that lanes consisting as well of big and small particles are

stable. However, it is simple to see that this is not the case: If
z is small in comparison to the big particle radius, then small
particles in lanes containing big particles will be ejected
from the big particle lane by collisions because they posi-
tions of the particles always differ slightly. The reason for
this ‘‘snowplow’’ behavior of the big species is that the big
massive collision partner is not significantly displaced by
one collision, whereas the small partner is. If then the neigh-
boring lane contains small particles, it is not hard to absorb
the additional expelled particle or to form an additional lane.
If, however, the neighboring lane contains big particles, al-
ternating collision series of the small particle with big par-
ticles below and above will establish an additional small par-
ticle lane in between the big particle lanes.

A typical simulation sequence of the ordering process at
small z is displayed in Fig. 4. As explained above, we ob-
serve how the big particles act as plows and push the smaller
particles aside. Thus the number of small particles in the big
particle lanes decreases. Consequently, the collisions be-
tween small and big particles tend to drive the larger ones
into lanes already occupied by large particles. Finally, lanes
form according to the sizes of the constituents of the system.

C. An ‘‘order parameter’’ for size segregation

To arrive at a quantitative description of the segregation
process, we define an ‘‘order parameter’’ in the following
way. Since we have observed a strong stratification of the
flow into horizontal layers, we define for each particle spe-
cies the area fraction in a horizontal strip of width of the
average particle radius. For a completely segregated system,
we expect the area fraction of small particlescs to be large
whenever the fraction of big particlescb is small. Conse-
quently, the quantity

d[^@cb2cs2^cb2cs&#2&1/2 ~7!

is small for a random mixture of the two species and assumes
a large value when the system is stratified. The angular
brackets denote the average over all examined horizontal
slices.

In Fig. 6 we show the time dependence ofd for different
values ofz for constant overall area fractionc50.6 and con-
stant shear rateġ50.01. We clearly see an initially fast size
segregation process that becomes slower and slower and fi-
nally saturates to a valued` that depends onz. Due to the
rather low value ofz and consequently a strong nonergodic-
ity of our systems, the sample-to-sample fluctuations are
large and values of 0.2d` are typical in samples of size
1003100.

The decreasing dependence ofd` on z, which demon-
strates the mixing or destabilizing effects of largez, is
shown in Fig. 7. The figure shows data obtained for different
fluid viscosities and shear ratesġ, but constant overall area
fraction. The scatter is rather large due to the above-
mentioned sample-to-sample fluctuations. At largez, the
segregation does not increase significantly over the initial
value. In fact, ifz is larger than the mean free path between
particles, then the spatial distribution of particles does not
differ much from that of the corresponding, inelastic, sheared
hard-core gas@9–12#. However, at smallz the friction with

FIG. 5. Final state of the simulation of a monodisperse system

with dimensionless shear rateġ50.01 and dimensionless viscosity
h50.01, equal to the values in Fig. 4. Different shades of gray
denote different excess velocities with respect to the viscous back-
ground. Most particles of the system move with the background
velocity; only in a few regions do we still see increased excess
velocities indicating recent pair encounters.
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the liquid is very large and we observe the ordering phenom-
enon described above. The data points in Fig. 7 result from
runs to a time ofġt51 000 by averagingd over the last
tenth of the simulation interval. We still observe a very slow
systematic increase ofd with time for the highly viscous
systems. However, we have estimated the systematic error of
d` by two very long runs ofġt52 000 for z50.25 to be
about 7%. Thus its value lies within the range of the statis-
tical error resulting from the system’s memory of its initial
configuration.

Figure 7 displays data for only one fixed particle concen-
tration in the system. In Appendix B we discuss the depen-
dence on particle concentration and how the concentration
may be introduced into the scaling considerations above.

IV. CONCLUSION

We have studied sheared bidisperse granular systems un-
der conditions of simple shear flow. We find that the pres-
ence of the liquid can induce particle-size segregation. We
propose as segregation criterion to consider the ratio of shear
rate to viscosity. If this ratio is much less than 1 segregation
occurs, if it is much greater than 1 there is no segregation.
This statement is equivalent to saying that the viscous length
in the system should be small when compared to a typical
linear scale in the problem such as, e.g., the particle radius.
The particles arrange themselves in bands moving with the
flow that contain alternating big and small particles.

The proposed segregation mechanism relies on the pres-
ence of a liquid phase. It is thus very different from known
mechanisms in dry granular media, where gravity-induced
avalanches occur and separate particles species whose static
angles of repose differ.

It should be very interesting to study the behavior of the
system with more than two particle species or a whole con-
tinuum of species or the dependence on the particle radius
ratio. Studies of the system behavior in Poiseuille flow@13–
15# have shown interesting effects from the diversity of time
scales presented by the spatial variation of its shear rate.
Moreover, although we believe that similar effects will arise,
simulations in three dimensions and quantitative compari-
sons to experiments are highly desirable.
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APPENDIX A: VISCOUS LENGTH

We obtain an estimate~when no further collisions occur!

for z by integration of the equations of motionfd,i5mi v̇.
Taking the drag force from Eq.~3!, we have obtained they
component of the equation of motion~4!.

Relation ~4! leads to a simple exponential relaxation of
the initial excess velocityvy(0),

vy~ t !5vy~0!expF2
6pr ih

mi
t G . ~A1!

In an analogous fashion, we obtain the expression for thex
component,

v̇x52
6pr ih

mi
Fvx2ġE

0

t

dt8vy~ t8!G , ~A2!

which we can integrate by standard methods to findvx(t).
We define the viscous length as the norm of the vector val-
ued integral

FIG. 6. Time dependence of the segregation parameterd for
simulations with different dimensionless viscosityh50.001 ~bot-
tom!, 0.004, 0.01, and 0.03~top! corresponding toz'2.5, 0.63,

0.25, and 0.08@according to Eq.~A6!# vs dimensionless timeġt on
the abscissa.

FIG. 7. Final valuesd` of the segregation parameter plotted vs
viscous lengthz @according to Eq.~A6!# on the abscissa for several
values of viscosity and shear rate in the system. Crosses denote
computations with the constant viscosityh50.01 and diamonds

indicate the constant shear rateġ50.01.
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z5 I E
0

`

dt@v~ t !2u„y~ t !…#I ~A3!

and use the solutions of~4! and ~A3! to obtain

z5
mi

6pr ih I S vx~0!2
ġmivy~0!

6pr ih

vy~0!
D I . ~A4!

We then find typical values forv0 by a consideration of a
two particle collision, say, between particles with label 1 and
2, assuming that the initial velocities equalvi5u(yi) accord-
ing to their differenty positions in the flow~for a more
complete discussion of inelastic two particle collisions, see,
e.g.,@16#!. The velocities after the collision, in the reference
frame comoving with the liquid at the initial position of par-
ticle 1, are

v1~0!52
m

mi
bġS sina cosa~11e!

sin2a2e cos2a11D . ~A5!

Here b denotes the impact parameter and sina[b/(r11r2);
cf. Fig. 2. Thus, apart from order-one geometrical factors and
somee dependence, the velocity of the scattered particle is
@17# approximately equal to (m/mi)(r 11r 2)ġ. Therefore,z
becomes largest for the small particles after a collision in-
volving a big and a small particle:

z'
m~11r b /r s!ġ

6ph
. ~A6!

APPENDIX B: AN ESTIMATE FOR THE MEAN FREE
PATH IN THE MONODISPERSE SYSTEM

The ratio of the viscous length to the mean free path of
the particles in a nonviscous environment is probably an im-
portant dynamical characteristic of the system. If the mean
free path is much shorter than the viscous length, the addi-
tional background viscosity will not have a big effect. If, on
the other hand, the mean free path is much longer than the
viscous length, then the behavior of the system is viscosity
dominated. Here we would like to give an estimate of the
mean free path in a monodisperse system for particles mov-
ing in the vertical direction. To allow for a simple calculation
in the stationary situation, we resort to a simple hypothesis
for the system’s configuration at large times: due to the ini-
tial disorder the system arranges itself such that the number
of horizontal particle lanes is maximum.

We note that under these circumstances the average hori-
zontal distanced between two particles is set by the packing
fraction. If the number of lanes is maximum, their width
must be the smallest possible, namely, 2r . One particle cov-
ers an area ofpr 2 within the available area 2rd. Conse-
quently, the overall area fraction is

c5
pr 2

2rd
5
1

2
p
r

d
. ~B1!

As in Appendix A, we now assume that we perturb the
trajectory of one particle by giving it a vertical velocity of
order r ġ, which is of the same order as the velocity differ-
ence between two lanes 2r ġ. If d52r , the system will not
allow particles to penetrate into the neighboring lane. This
situation is the densest packing compatible with a stationary
state of the system,c05p/4. As long asd,4r or, equiva-
lently, c.c15p/8, a particle will only occasionally be able
to pass a lane. Considerations of the particle geometry aside,
the probability for a hit should be proportional to the time
spent in the lane by the scattered particle divided by the
average time between the pass of two successive particles in
the neighbor lane. The mean free pathl is given by the
condition that this ratio be about 1, i.e.,

1'
l /ġr

~d22r !/2ġr
~B2!

or

l /r'~d22r !/2r5
1

4
pc21215

c0
c

21. ~B3!

For even lower concentration, the particle has a good
chance to pass one or even several lanes, each with probabil-
ity 12phit'12@2r /ġr #/@(d22r )/2ġr #5122r /(d22r ).
The probability to survive a distancex/r without hits is
hence distributed exponentially,

p~x/r !;~12phit!
x/2r , ~B4!

which yields, by normalization and determination of the ex-
pectation value,

l /r521/ln~12phit!. ~B5!

For small concentrations~and thus also small hitting prob-
abilities! this equation may be expanded to yield the same
form as~B3!,

l /r;1/phit;
c0
c

21. ~B6!

It is interesting to note thatl does not depend on the
shear rate but only on geometrical properties of the system.
This observation is in favor of our suggestion that the ratio of
viscous length to particle radiusz/r , as proposed in the main
text and here in dimensional form, collapses the simulation
data for d at a fixed givenc. If ġ!1, we presume that
z/l may be a good scaling variable for varying area frac-
tions. This may be an interesting question to investigate.
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