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Temporal modulation of traveling waves in the flow between rotating cylinders
with broken azimuthal symmetry
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The effect of temporal modulation on traveling waves in the flows in two distinct systems of rotating
cylinders, both with broken azimuthal symmetry, has been investigated. It is shown that by modulating the
control parameter at twice the critical frequency one can excite phase-locked standing waves and standing-
wave-like states that are not allowed when the system is rotationally symmetric. We also show how previous
theoretical results can be extended to handle patterns such as these, which are periodic in two spatial directions.
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[. INTRODUCTION tems with broken rotational symmetry. First, we will discuss
the theoretical background for this study. Next, we will de-
The behavior of pattern forming systems under externascribe our experimental studies of the modulafeaylor-
time-periodic forcing has been the subject of intense invesbeanand Taylor-Couettesystems. Finally, we will compare
tigation over the past several yedis2]. Since such periodi- the experimental observations with the theoretical predic-
cally forced flows are common in nature and technologicakions.
applications[3], a knowledge of their stability properties
may have important practical applications.
There have been several experimental and theoretical

studies investigating the effect of time-periodic forcing on  Using symmetry arguments and suitable amplitude equa-
the stability of the axisymmetristeadyspatial patterns pro- tions it has been shown previoughil,12,15 that a resonant
duced in the flow between two rotating cylindgfBaylor-  temporal forcing can excite standing waves in an effectively
Couette flow [4-10. These studies found that temporal one-dimensional extended system undergoing a Hopf bifur-
modulation of control parameters can stabilize or destabiliz&ation to traveling waves. Here we will extend those argu-
the primary flows; the spatial properties of the base flow andnents to systems that are periodic in two directions. This is
the axisymmetric Taylor vortex flow remain, however, necessary for spiral vortex flow since the azimuthal symme-
largely unaffected by the modulation. Only a very small shifttry of the concentric Taylor system imposes additional con-
of the instabilities in the parameter space has been observatraints on the amplitude equations.
in these systems. The excitation of standing waves by resonant forcing can
For wave structures, however, recent studies by Rieckehe understood intuitively by an extension of the standard
Crawford, and Knobloch11] and Walgraef12] have shown example of a parametrically forced pendulum. In that case, a
that for the appropriate frequency of an external forcing gperiodic parametric forcing such as, e.g., the periodic varia-
strong resonance may occur between the forcing and the sptien of the length of the pendulum, leads to a periodic pump-
tiotemporal patterns. This can transform initially stable trav-ing of energy into and out of the pendulum. In order to effect
eling waves into standing waves or quasiperiodic structuresa net increase in the pendulum’s energy the pumping and the
This kind of behavior has been experimentally observed irpendulum have to have a certain phase relationship; in par-
electroconvection of nematic liquid crystals and in binaryticular, the frequencies have to be resonant. Maximal effi-
fluid convection by Rehbergt al. [13]. It is also related to ciency is achieved if the forcing frequency is twice the natu-
the parametric excitation of surface wavgaraday waves ral frequency of the penduluie.g., decreasing the length of
[14]. the pendulum whenever it travels downward
In this paper we investigate the effect of temporal modu- Considering extended systems as an array of coupled pen-
lation on the traveling-wave patterns that appear near thdulums makes it clear that only standing waves, but not trav-
primary bifurcation boundary of two rotating cylinder sys- eling waves, can be excited parametrically: in a standing
wave all oscillators have the same phdstbeit different
amplitude$ and therefore all of them can satisfy the phase
*Present address: Department of Physics, Duke University, Boxelationship necessary for excitation simultaneously; in a
90305, Durham, NC 27708. traveling wave the phases are distributed evenly over the
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circle and the out-of-phase oscillators will lose the energySimply put, under these conditions the term

gained by the in-phase oscillators. Bbkw!e'dz-1ent—imégikedaiing corresponds to the same Fou-
To consider spiral vortex flow, which arises in a fluid rier coefficient inz, t, and ¢ as Ae9?Fient™imé gnd can

between counterrotating concentric cylindgt6], one has to  therefore arise in the evolution equation #y thus provid-

extend this consideration to two dimensions since the spiraltg the cruciallinear coupling. To cubic order one then ob-

are periodic along the axandalong the azimuthal direction. tains the equations

Therefore, the superposition of oppositely traveling spirals

(“ribbons™) leads to waves that are standing in the axial JrA=aA+db*w?™ "B+ c|A|?A+g|B|?A, 5
direction but traveling in the azimuthal direction. Thus the . ‘e omin o2 cin2
periodic forcing may pump energy into the ribbon at some drB=a*B+db'w*™"A+c*[B|°B+g*|A[°B, (6)
azimuthal angle, but will extract energy at the same time at a

different angle. For a net increase these energies have to be dtb=0, drw=0. @)

different, which is achieved by an azimuthally dependentl_ - .
' ; : . he real part, of the coefficienta gives the growth rate of
perturbation of the forcing. Alternatively, the azimuthal sym- the spiralpwavres and is proportion%l o the gistance from the

metry of the system itself can be broken. Maximal e1‘ficiency|_|0pf bifurcation. Thusa, = a(R.— R..), with R. the Rey
: r— i~ Nic/s i -

is achieved, in analogy to the temporal forcing, if the azi- . . : i
muthal wave number of the perturbation is twice the azi-N0Ids number for the inner cylinder aft, its critical value.
muthal wave number of the ribbon To allow for a small detuning in the forcing, the frequency

The above arguments can be made precise by considerir%“tIn (1) is replaced byw,/2. The detuningis then related

spiral vortex flow near its onset where its amplitude is small. he imaginary para; as

'I_'hen the periodic forcing as well as the azimuthal perturba- wn— 02 a—ya,

tion can also be taken small and the system can be described &= = , (8)
by coupled amplitude equations. The crucial ingredients are “h @h

the critical eigenvectors of the system, ie., thpse modes th%here the termya, accounts for the change of the linear
have smallor zerg growth rate, since they define the Cemerfrequency with the control paramet®r. The coefficientsd
manifold of the system in this parameter regime. In the ’

¢ the critical mod the t N dc, and g are in general complex, whereas the product
present case the critical modes are the two spiral wave Modegk,2mn can he chosen real. All coefficients are functions
of the flow fieldv as well as the periodic forcing and the

imuthal hafioR of the invariantgb|? and|w|? This is most relevant for the
azimuthal perturbatior?, small coefficienta. Thus the forcing and the azimuthal per-
o - Co ; turbation lead to a shift in the threshold and of the Hopf
— +iwpt+ime —ilopt—ime.
v=A(T)e et InA (1) + B(T) el 1en =iy (r) + c.c. frequency even in the nonresonant case.

+ (higher-order terms (1) Equations(5) and (6) show that the forcing and the azi-
muthal perturbation have a maximal effect k=1 and
I=2m/n=1, i.e., if the external frequency is twice the Hopf

F=be'“d+c.c. 2 :
be c.c. @ frequency and the wave number of the azimuthal perturba-
ding tion is twice that of the spiral waves. Unfortunately, the latter
P=we"“+c.c. (3 condition cannot be implemented easily in the Taylor-

) ) o Couette experiments since eccentrically mounted cylinders
HereT is a slow time and, y(r) are the radlal_ e|gen\_/ectors yield a perturbation of the form cdsi.e.,n=1. The eccen-
of the spiral vortex flow. The axis of the cylinders is takenyicity |eads therefore to a term in the amplitude equations
along thez direction and¢ is the azimuthal angle. The fre- 45t s only of ordem?™<w (for m=1). It is worth noting
quenciesw, andw, are the Hopf frequency of the spirals and that even if the azimuthal perturbation was not a purefcos
the frequency of the forcing, _respectlvel_y. Below_we Will put contained also its harmonid®=3 *_ __.w,exp(r ¢), the
choosew, close to 2. The difference will determine the |4y est-order terniin A andB) breaking the time-translation
detuning. Although the forcing and the azimuthal perturba'symmetry would still be as given if6) and (6), with w2mn

tion are imposed externally we consider them as dynamicglpjaced by a more general function reflecting the contribu-
variables and include them in the center manifold. This simijons from the various harmonics. This function could be

plifies the derivation of the relevant amplitude equations for itten as a sum of productsv, (W, 2w, @)- -+ with

A(T) andB(T). Their form is obtained by considering the (1)} (24 B®)...—2m. | present, the harmonic with
most general polynomial that is consistent with the sSymmey,aye number = 2m would be dominant in the limit of small
tries of the systentin the absence of forcing=0 and the  57imythal perturbation since it enters with the lowest power.
azimuthal perturbatio® =0): translation symmetry in space pqr the experiments presented in this paper the main obser-
alongz, rotational symmetry i, translational symmetry in yation is thatin the absence of any azimuthal perturbations
timet, and reflection symmetry in. These symmetries allow (w=0) no linear coupling of oppositely traveling waves oc-

a linear coupling of the left and right spiral amplitudes via cyrs and the standing waves in question cannot arise directly
the forcing and azimuthal perturbation only if the frequen-s.om the basic state A0=B through a linear instability

ciesw, andwy, as well as the azimuthal wave numberand The amplitude equation&) and (6) have been analyzed
n are related as previously in detai[11,17 for the casey, <c,<O0, i.e., for a
Hopf bifurcation to stable traveling waves rather tham-
2oy —k 2_m:| k1=123 4) locked standing waves. The main result is the excitation of

e n standing wavegA| =|B|=const, by the periodic forcing be-
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FIG. 1. Sketch of a typical phase diagram for modulated rotation
at resonanced.=2wy,), where the loci of various transitions are
given as a function of the forcing strengtmeasured byb) and )
mean Reynolds numbémeasured by, ). The transition from the
basic state to standing waves occurs along the line marked PSW
and from the basic state to traveling waves occurs along the line
marked H.

low the Hopf bifurcation(a, <0). As it is clear from the fact
that the amplitudes andB are constant in time, these waves
are phase locked to the forcigf. (1) with wp— w/2]. A
sketch of a typical phase diagram is shown in Fig. 1, where
the loci of various transitions are given as functions of the
forcing strength(measured byb) and the mean Reynolds
number(measured bw,). The transition from the basic state
of purely azimuthal flow to the phase-locked standing waves FIG. 2. (a) Schematic diagram of the Taylor-Dean appara(ols.
(ribbong occurs along the line marked PSW, which is given Schematic cross section of the apparatus. The front side is the side

by where the observer sees the inner cylinder rotating upward as
shown.
,  atal  alt(éoptya)’ o o
TAW2 T T (dwi Tz 9 v=A(T)e'9*ontf (1, ¢)+ B(T)e'9? 'ntf, (1, ¢)+c.c.
+ (higher-order terms (10

Along the line marked H the basic state undergoes a Hopf
bifurcation to traveling waves as well &snstable standing . _

waves. This bifurcation exists already in the absence of an?nd leads td5) and (6) with w=1.

periodic forcing(b=0). Along the line marked PB the phase-

locked standing waves become unstable to the traveling!!l- EXPERIMENTAL APPARATUS AND PROCEDURES

waves in a secondary parity-breaking bifurcation. Not rel- w0 variations of the concentric rotating cylinder
evant for this exper_iment are the transition of the “”Stabl?Taonr-Couettaa system were employed to test the concepts
phase-locked standing waves to unstable standing waves gf 5ec. 1. The systems break the rotational symmetry in very
SW and the saddle-node bifurcation of the phase-lockegiferent ways. In the next few sections, we will describe
standing waves along SN. each one in detail. First, we present the experimental system

To obtain quantitative results pertaining to spiral vortexyith strongly broken rotational symmetry, the Taylor-Dean
flow the linear as well as the nonlinear coefficients have 1y stem.

be determined numerically. This is a formidable task and
will not be attempted here. It should be noted, however, that
to leading order the nonlinear coefficientsand g are not
affected by the forcing and the azimuthal perturbation. Thus The Taylor-Dean system consists of two independently
the values for the concentric case can be used, which havetating horizontal coaxial cylinders with a partially filled
been determined previous[{7]. gap(see Fig. 2[18,19. The partial filling of the gap in the

In addition to the results on modulated spirals in theTaylor-Dean system breaks the rotational symmetry of the
slightly eccentric Taylor system, we will also present resultsflow. The rotation of the cylinders and the two free surfaces
on traveling inclined rolls, which occur in the Taylor-Dean impose a pressure gradient along the azimuthal direction. As
system[18]. In this system the azimuthal symmetry is bro- a result, the flow sufficiently far away from the free surfaces
ken strongly. Therefore, instead of the discussion presented a combination of Couette flow due to rotation of the cyl-
above the original derivation of the amplitude equations ininders and Poiseuille flow due to the azimuthal pressure gra-
the presence of a single translation symmetry applieslient. The main control parameters of this system are the
[11,12,19. It is based on an expansion of the flow field in theinner and outer cylinder Reynolds numbé&s=2=f;r;d/v
form andR,=2wfr,d/v, wheref, andf; are the outer and inner

A. Taylor-Dean system



5056 TENNAKOON, ANDERECK, HEGSETH, AND RIECKE 54

().4{..‘w‘..‘|ff,.|“%‘.|.uy,..u
= =" = 0.3 :{ % _
= L i
7] K]
Z o< F b
X S ] f
& N 0.2 - { Standing waves % Traveling waves —|
] L i
5 i ! %% |
0.1 — Base flow } % |
L hf; g |
L 3 _
L 3 4
Axial Position (em) o0 Lo v b vy b e v v b b L
240 250 260 270 280 290 300
FIG. 3. Space-time diagram of the traveling roll pattern in the R

Taylor-Dean system wheR; =265, R,=0, andR,,=0. The wave- :

length of the pattern i5=0.841 cm and the frequency is 0.543 Hz.
FIG. 5. Phase diagram of standing-wave and traveling-wave

cylinders’ rotational frequencies, is the gap width, and is states of the Taylor-Dean system when the detuning parameter is
£=0. The pluses and crosses indicate the location of the bifurcation

the kinematic viscosity of the fluid. As the control param-f the b tate 1o stand d standi ot
eters are varied the base flow instabilities change from thos om the base state fo standing waves and standing waves o frav-
ing waves, respectively.

associated with Taylor-Couette to those associated witft
Dean flow. An initial experimental work with the Taylor-
Dean system was done by Brewster and Niss20], who
studied the threshold of the instability when the inner cylin-
der rotates and the outer cylinder is stationary. More re
cently, Mutabazi, l\_lormand, ngerhossalm, and V\(es(@]@l . Wesfreid[18]. The transition to traveling inclined rolls is,
have solvgd the I|n.ear stab|I|t)_/ pro_blem for axISymmetic, inin the experimental error, a supercritical Hopf bifurca-
and nonaxisymmetric pertur bations n the f!qu. They fou.ndtion. At onset these rolls also have no preferred direction and
both stathnary- and travelmg-wqye instabilities dependin ay move either left or right along the cylinder axis. There-
on the ratio of the_ angular Yelocm% (=fo/f;) [.19]' We fore, this system can be used to verify the theoretical predic-
kept the outer cylinder stationariR,=0) for this study, tion that a breaking of the time translational symmetry by a
small periodic modulation of the control parameter will re-
sult in a stable standing-wave pattefi,12].

Our experimental system consists of an inner cylinder
made of black Delrin plastic with radius=4.47 cm and a
stationary outer cylinder made of Duran glass with radius
r,=5.08 cm, giving a gagl=r,—r;=0.59 cm and radius
ratio »=r;/r,=0.883. Two plastic rings are attached to the
inner cylinder a distance=52.4 cm apart, giving an aspect
ratio '=L/d=88, large enough to conceive of this as an
extended system where one can neglect end effects. In this

while rotating the inner cylinder. In this case the first transi-
tion from the unperturbed base flow is to traveling inclined
rolls as the inner cylinder speed increases, as shown in the
experimental study of Mutabazi, Hegseth, Andereck, and
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FIG. 4. Pictures of théa) traveling roll(for R;=269 andr,,,=0)
and (b) standing wave states in the Taylor-Dean systéor FIG. 6. Space-time diagram of the standing wave state at
R,=265 andR,/R;.=0.28. R/R;=0.30,R;=241, and{=0+0.01 (Taylor-Dean systein
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FIG. 7. Space-time diagrams @) the right-traveling-wave component aftg the left-traveling-wave component of the standing-wave
state shown in Fig. 6, obtained using a two-dimensional FFT decompositjcand(d) are the frequency power spectra of the decomposed
right- and left-traveling modes. The dimensionless frequencies are scaled to the inverse of the diffusive time%scale

system the filling level fractiom= 6;/27r has been fixed at (space-time data plotyields the wavelengths and the dy-
0.75, where#; is the filling angle. namics of the patterns in time and space.

The working fluid was pure double distilled water or a In the Taylor-Dean system, we have used a combination
solution of double distilled water and 44% glycerol by of two stepper motor§Compumotor A83-98to drive the
weight with 1% of Kalliroscope AQ1000 added for visual- inner cylinder, one motor to produce a net rotation and the
ization. These nearly two-dimension&=30 umXx6 um other to produce a sinusoidal modulation of the inner cylin-
X 0.07 um) polymeric flakes align along the streamline sur-der angular velocity. The first motor was directly connected
faces, reflecting light according to their orientation. to the inner cylinder and rotated with constant angular veloc-
Generally the dark areas indicate flow along the observer'dy. The housing of this motor was oscillated by a push-rod
line of sight, while the light areas indicate flow perpendiculararrangement mechanically coupled to the second niste
to the line of sight. The apparatus was kept in a temperaturkig. 2). The rotation of the second motor gave a net output at
controlled room so that the temperature of the working fluidthe inner cylinder of a constant angular velocity plus a peri-
was held constant to within 0.1 °C. odic sinusoidal variation in angular velocity.

Spatial and temporal properties of the flow patterns were The motor speeds were controlled through Compumotor
obtained using a 522480 pixel charge coupled device 2100 Series indexers and could be changed either manually
(CCD) camera connected to an image processor. The imagar through computer control. The motor speeds have a fre-
processor board, installed in a personal computer, capturedcuency accuracy of 0.02%. Typically, a computer controlled
picture of the flow pattern and then a software routine waghe rotation speed, direction, and ramping rates. Because
used to obtain the intensity along a single line parallel to théboth the frequency and amplitude of the modulation could be
axis of the cylinders. This system is able to process up to onearied, this introduced two new control parameters into the
line every 0.11 sec. The data were then transferred to a VAXystem, as required by the theory.

4000-90 computer system and an analysis of the resulting The Reynolds number of the inner cylinder is now
intensity versus axial position as a function of time plotsR=R;+ R, sin(2#ft), whereR,,=2#fr,d/v andf is the
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amplitude of the sinusoidal rotational frequency. The two 20
dimensionless parameters dRe/R;. and the detuning pa-
rameteré=(2 f,,—f,)/2 f,,, whereR;. is the critical Rey-
nolds number for onset of the traveling roll pattern dpds

the frequency of the traveling rolidopf frequency in the
absence of modulation.

To obtain the location of the onset of patterns for each
modulation frequency,, and modulation amplitud®,,, we
employed the following method. We first set tRe value
below the onset of instabilities and then increased it quasi-
statically (keeping both amplitud®,, and frequencyf,, of
modulation at a fixed valgeuntil a flow pattern appeared in o —
the system. Then several sets of space-time data were taken 2.0 4.0 6.0
while increasingR;. We repeated this procedure with in- Axial Position (em)
creasing amplitudes and various frequencies around twice FIG. 8. Space-time diagram of the traveling-wave state at

the Hopf frequencjthe frequency of the traveling rolls near R,/R,,=0.212,¢=0.0, andR, =269 just above the onséTaylor-
onset when there is no modulation Dean system

10

Time (sec)

B. Results and discussion . .
is half the modulation frequency.

When there is no modulatio(R,,=0), the base flow bi- A quantitative analysis of the patterns was carried out
furcates supercritically to a traveling roll pattern as we in-using two-dimensional Fourier transforms of the patterns in
crease the inner cylinder speed. A typical space-time diatime and space. This proved to be a very useful method for
gram for the traveling roll pattern near ons@® =265, decomposing the standing-wave patterns into their left- and
R,=0, andR,,=0) is shown in Fig. 3. The wavelength of the right-traveling wave components from the original space-
rolls along the cylinders is A=0.841 cm. At time CCD data. From the decomposition we obtained the
€ [=(R,—R;;)/R;.] slightly greater than 0.0 the pattern fills spatial wavelengths, temporal frequencies, and the ampli-
most of the working space and both left- and right-travelingtudes of each component. Figure&®7and b) show the
rolls may exist with a vertical defect line between thiesee  right- and left-traveling waves obtained from the space-time
Fig. 4a@]. The frequency of the traveling roliiHopf fre-  data shown in Fig. 6. The power spectra obtained using the
quency near the onsefR;.=263) is 0.543 Hz. Upon further two-dimensional fast Fourier transfor(RFT) for both right-
increase ofR;, the flow undergoes a second instability to aand left-traveling waves are shown in Figgc)7and 7d).
short-wavelength modulation of the traveling rolls at The left and right components have similar space and time
R;=303 and then to an incoherent pattern at abgut338  characteristics. The small differences in amplitudes of the
[22]. spectral peaks may be attributed to slightly nonuniform light-

The transition sequence changes dramatically with moduing conditions.
lation of the inner cylinder speed. When we modulated the At a still higher inner cylinder speed the standing waves
inner cylinder sinusoidally near detuning parametef, we  lose their stability to a traveling-wave state. This transition is
found standing waves rather than the traveling f@kse Fig.  supercritical within our experimental resolution. No mixed
4(b)], as predicted by theory. Figure 5 shows a phase diastates of standing and traveling rolls have been seen. The
gram of the primary transitions from the base flow to standspace-time diagram for the traveling-wave state just above
ing waves and the secondary transition from standing wavethe onset aR; =269, R,/R;.=0.212 is shown in Fig. 8. The
to traveling waves foé~0 as we varied the modulation am- decomposition of this space-time data and associated power
plitude R,, and inner cylinder Reynolds numb&;. One spectra are shown in Figs(@-9(d). These figures show that
interesting feature to note in Fig. 5 is that, when the modu-one traveling mode dominates over the other, much weaker,
lation amplitude is increased above a critical valuecomponents present in the system.

(R/R;>0.05, the standing waves can be excitedratval- We also tested the sensitivity of the onset of the patterns,
ues much lower than the critic®, . Another interesting fea- and which pattern appears first, to variation of the detuning
ture is that as the amplitude of modulation increases, w@arameteg in this system. The result fd®/R;=0.3, shown
observe standing waves over a widening rang&kaf The  in Fig. 10, indicates that the onset of the patterns is very
traveling-wave state reappears whBn increases, as has sensitive to the value of the detuning parametdor this
been observed in other systefds] and in agreement with system. Wherg~0 the standing-wave pattern appeardfRat
the theory [11]. At small modulation amplitudes well below R;;=263. As we changed away from £&=0
(R/R;<0.05 only the traveling roll state appears whBn  (lower or higher modulation frequencies thaf,2 the onset

is increased, also in agreement with the theoretical prediosf the patterns was delayed considerably. In fact, at higher
tions (cf. Fig. 1. modulation frequencie& <—0.2) patterns appeared only at

The space-time diagram of the standing waves fosupercritical R (>R;.) values forR,/R;;=0.3. Figure 10
R/Ri:=0.30,R;=241, andé=0=0.01 is shown in Fig. 6. also shows that, for fixe®,,, as we move away fron§=0
During one modulation period the light intensity at a giventhe characteristics of the patterns also change, so that
axial position varies periodically, indicating the presence oftraveling-wave patterns appear at onggt<-—0.08 or
standing-wave patterns. The frequency of the standing waves>0.04 for R,/R;.=0.3) rather than standing waves. It is
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FIG. 9. Space-time diagrams @ the right-traveling-wave component afty) the left-traveling-wave component of the traveling-wave
state shown in Fig. 8(c) and(d) are the frequency power spectra of the decomposed right- and left-traveling modes. The dimensionless
frequencies are scaled to the inverse of the diffusive time sddfe The right-traveling-wave component dominates the left-traveling
component in the system.

possible that even for these large valuegp$tanding waves
would reappear as the critical mode for higher fbRF R, 280
than 0.3.

Figure 11 shows the ratio of the fractional power under
the left (the one induced by the modulation in this dase 270
traveling-wave spectra to the total power, as a functio#. of < T =
This characteristic resonance curve illustrates the disappear- = -
ance of the left-traveling wave as the detuning paraméter + =
shifts away from 0. The maximum fractional power was a g 26°1 < -
little less than the expected 0.5, which can be attributed to ]
the nonideal lighting conditions. We also analyzed the fre- ] ]
guencies of the two components as a functiog.dfigure 12 250 4
shows the frequency ratio as a functionéofT his plot shows
the standing-wave region clearly, where the two components
lock to the same frequency over a rangeéofThe primary
transition to standing waves and the secondary transition to % 7= TeTT T R TT PR AR L
traveling waves inRR,/Ri; Vs R; parameter space are very ¢
sensitive to¢ for ¢ near zero. Figures 18 and 13b) give
the phase diagrams whehis equal to—0.03 and+0.03,
which show these phase changes clearly. A comparison of FIG. 10. Onset of the primary flow transitid) vs the detuning
Figs. 13 and 5 shows that the minimal modulation amplitudgarameter [=(2 f,,— f,)/2 f;,] at R,/R;.=0.3 (Taylor-Dean sys-
for the excitation of standing waves is actually lower for tem).
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resulted in the appearance of short-wavelength modulations i Iy ]
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R/Ric.=0.25 andé=0. These patterns and their decomposed L % ]
left- and right-traveling components are shown in Figs. 14 i 1
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C. Eccentric Taylor-Couette system R

In the Taylor-Dean system, the rotational symmetry is
strongly broken by the air-liquid interfaces. We now con-

FIG. 13. Phase diagrams whéa) ¢£=-—0.03 and(b) £&=0.03.

sider a system with slightly broken rotational symmetry,Pluses and crosses indicate the transitions from the base flow to
which can be modeled as a perturbation on a system witbtanding waves and to traveling waves, respectively.
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two translational symmetrigstrictly speaking, a pure trans-
lation in space along and a rotational symmetry along).

The classical concentric Taylor-Couette system has trans-
lational symmetry in the axial direction and rotational sym-
metry around the axis. As we discussed in Sec. Il, for this
system it is necessary to apply periodic forcing as well as an
azimuthal perturbation to linearly couple the left- and right-
traveling spirals to produce the standing waves. We pro-
duced an azimuthal perturbation in this system by offsetting
the axis of the inner cylinder relative to that of the outer
cylinder while maintaining the two axes parallel, thereby
making the system eccentric.

The experiment was performed in the region Bf (R;)
parameter space where traveling waves in the form of spiral
vortices occur as the primary instability. This happens when
the cylinders are counterrotating and conceritig,23—23.

The spiral patterns travel in both the axial and azimuthal
directions and break both the axial and azimuthal symmetries

FIG. 12. Frequency ratio of the two traveling-wave componentsOf the base flow. For a given radius ratio there is a unique

vs the detuning parametérat R, /R;;=0.3. Both left- and right-

value of outer cylinder speed above which the primary bifur-

traveling components have the same frequency within experiment&lation from the base flow is a supercritical Hopf bifurcation

error over a fairly wide region near resonarge0.

to the time periodic spiral floy23,24). The azimuthal wave
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FIG. 14. (a) Traveling-wave state with short-wavelength modu-  FIG. 15. Incoherent pattern &®;=340 and R,/R;;=0.254
lations atR;=300 andR,/R;;=0.254 (Taylor-Dean systein (b) (Taylor-Dean systei (b) and (c) are the decomposed space-time
and (c) are the decomposed space-time data for right- and leftdata for right- and left-traveling modes, respectively, of the inco-

traveling modes, respectively, of the same traveling-wave stat@erent pattern shown ia).
shown in(a).

connected to the stationary support by means of bearings at
number (n) of the spirals increases as the outer cylinderboth ends. The upper end of the inner cylinder is attached to
speed increases. The locations of the crossover points ba-long shaft that hangs from a horizontally movable plate on
tween spirals with different azimuthal wave numbers arethe stationary framewortsee Fig. 16 The lower end of the
uniquely determined by the radius ratio of the two cylindersinner cylinder is left unattached and is suspended approxi-
[24]. mately 1 mm above the bottom of the system. Eccentricity is

Our eccentric Taylor-Couette cylinder system, shownadjusted by offsetting the axis of the inner cylinder relative

schematically in Fig. 16, consists of an inner cylinder maddo the fixed axis of the outer cylinder. The position of the
of black Delrin plastic with radiug;=4.76 cm, an outer axis of the inner cylinder is read to an accuracy of 0.005 cm
cylinder made of Plexiglas with radiug=5.95 cm, which  using a micrometer attached to the stationary support. The
gives a gagl=r,—r;=1.19 cm, and a radius ratig=0.800.  eccentricity ise=¢/(r,—r;), wWheree is the offset of the two
The main control parameters are the inner and outer cylindezylinder axes. To maintain consistent end conditions, the up-
Reynolds numbersR;=2xf;r;d/v and R,=2xf,r,d/v, per and lower boundaries of the flow are formed by Teflon
whered is the average gap width. A stationary support holdsrings attached to the outer cylinder and located near the ends
the apparatus at the top and the bottom. The outer cylinder isf the cylinder. There is a narrow gap of 0.4 cm between
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FIG. 17. Space-time diagram of the spiral pattém=2) in the
Taylor-Couette system &;=151,R,=155,e=0, andR,,=0.

computer. This produces an approximate sinusoidal varia-
tion, with more than 40 step changes in velocity per cycle.

To obtain the location of the onset of patterns for each
modulation frequency,, and modulation amplitud®,,, we
employed a method similar to that used in the experiment on
the Taylor-Dean system. We kept the outer cylinder speed
fixed at a value within the range where the bifurcation to
spiral vortices occurs. Then, at a fixed modulation amplitude
R, and constant frequencl,, we increased the average
inner cylinder speed until the pattern appeared. Then several
sets of space-time data were taken while increaBingwe
repeated this procedure with increasing amplituBgsand
various detuning parameteggi.e., frequencies around twice
the Hopf frequency, where the Hopf frequency in this case is
the frequency of the spiral pattern near onset in the absence
of modulatior).

(b)

FIG. 16. (a) Vertical and(b) horizontal cross sections of the D. Results and discussion

eccentric cylinders system. When there is no modulation the base flow bifurcates su-
percritically to spirals as we increase the inner cylinder speed
each of these rings and the inner cylinder that is neverthelesghile keeping the outer cylinder speed constant. A typical
wide enough to allow for offsetting the inner cylinder. The space-time diagram for the spiral pattern near onset
length of the fluid columrL is 40.40 cm, giving an aspect (R=151,R,=155, andR,,=0) is shown in Fig. 17. Here the
ratioI'=L/(r,—r;)=34.0, large enough to minimize end ef- intensity of a line parallel with the axis of the cylinders was
fects. Again, the working fluid was pure double distilled wa-
ter or a solution of double distilled water and 44% glycerol 160
by weight with 1% of Kalliroscope AQ1000 added for visu-
alization. The experimentally obtained critical Reynolds
number for concentric cylinders whd,=0 has been com-
pared with reference values to check the accuracy ob-
tained from tabulated daf26]. The difference was less than
1%. Both inner and outer cylinders are driven by two inde-
pendently rotating Compumotor stepper motors, which are
controlled through Compumotor Series 2100 indexers. Since
the modulation amplitude required in the eccentric Taylor-
Couette system was much greater than for the Taylor-Dean
system, we could not use the two motor push rod arrange-
ment to produce both linear and sinusoidal modulation of 30 & —
inner cylinder. Therefore, we have used a single motor to ' Axial Position (om)
produce both a constant rotation speed component and the
sinusoidal modulation of the inner cylinder rotation rate by FIG. 18. Space-time diagram of the standing-wave-like pattern
sending control commanda sequential change of shaft mo- in the Taylor-Couette system &®,=151, R,=155, e=0.126,
tion parameters with time delayso the indexer using the R,/Ri.=0.4, andé=0.

Time (sec)
©
o

9.0
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FIG. 19. (a) and(b) are the decomposed components of the space-time data in Fig) 88d(d) are the frequency power spectra of the
right- and left-traveling modes. The frequencies are scaled to the inverse of the diffusive time/dgalde right-traveling-wave compo-
nent dominates the left-traveling component in the system.

recorded every 0.6 sec for 100 sec. The wavelength of th&%a) and 19b) show the resulting right- and left-traveling
spirals along the axis of the cylinder }=2.07 cm=2d.  waves obtained from the space-time data shown in Fig. 18.
Light sheet visualization through the gap cross section showEhe power spectra obtained using the two-dimensional FFT
that the spirals exist near the inner cylinder. At for right- and left-traveling wave components, shown in
[=(R—R.)/R;.] slightly greater than zero the pattern fills Figs. 19¢c) and 19d), have the same frequency characteris-
most of the working space along the axis. An upward-tics, but different peak amplitudes. A true standing wave
moving spiral exists near the bottom of the system and y/ould have equal amplitudes in the traveling components.
downward-moving spiral exists near the top. A horizontalEVen at very high modulation amplitudés,, one spiral
defect line forms where the two spirals meet. These defedtomponent aIways dominates the other. Figure 20 showg the
lines are not necessarily halfway between the top and thEAl0 Of the amplitudes of the primary peaks of the two spiral
bottom along the axis of the cylinders. Such defects are ingorlr;ponenzti V‘;‘TSUS modurl]anondf.requerﬁgy/R R f
herent to traveling-wave patterf27]. The frequency of the o O'%%rge an dzw%wsirhise Shc?vsvg trg%r%ng?asg fYoSw il:)ec():;me
spirals(Hopf frequency with azimuthal wave numben=2, : ,

R a N unstable at loweR; as the amplitude of modulatioR,, in-
25_8;]?5\,\/8 1'23'::32 17, near the ong&.=151,R, =155 for  (eased, in agreement with the theoretical predictions. Also,

When we sinusoidally modulated the inner cylinder rota the standing-wave-like patterns appeared only at large modu-
tion speed, we observed wave patterns that resemble star{@%?ﬁgargfgﬁﬁg:g;g_ %tli?ﬁﬁﬁl?ﬁigja?i%hznmtgnetuddees
ing waves (time-dependent patterns that are stationary iNR /R;<0.17) only the traveling roll(spira) state appears
spaceg rather than traveling wavespiralg as the first bifur-  when R, is increased. Whether standing-wave-like patterns
cation from the base flow. Figure 18 shows a space-tim@re produced also depends on the eccentricity of the system.
diagram of the standing-wave-like pattern near the transitiofFor small eccentricity, they appeared only at higher modu-
to the spiral state with azimuthal wave number=2 at lation amplitudes, in agreement with the theoretical predic-
R;=151,R,=155,R,/R;=0.4,e=0.126, andé~0. Figures tions.
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FIG. 22. Frequency ratio of the two traveling-wave components

spiral wave state to the spectral peak amplitude of the primany®rsus the detuning parametérin the eccentric Taylor-Couette

spiral wave state vs the detuning parametet R,=151, R,=155,
R/ Ric=0.53, ande=0.126.

system aR;=151,R,=155,R/R;.=0.53, ande=0.126. The left-
and right-traveling components have the same frequency, only in a
very small region near resonanée0.

Compared with other systente.g., the Taylor-Dean sys- of standing waves was observed; instead, the patterns relax
tem discussed in Sec. Il B or electroconvection of nematiao the base flow during part of the cycle. Since the frequency

liquid crystals and binary fluid convectiqd 3]), in this sys-

of the waves is very small, they appear to follow the periodic

tem, the standing-wave-like patterns with two componentgorcing adiabatically, indicating that their growth rate is of
having the same frequency appear only in a small region ofhe same order as the forcing frequency. Therefore(5pr

parameter space near the resonance frequessey Fig. 22

and (6) to apply, the growth rate would have to be reduced

Both the small region of parameter space and the unequalubstantially. This would require much higher resolution in
power spectra amplitudes indicate that the coupling of thehe average Reynolds numbers than is accessible in the
modulation to the fluid flow is very weak. Two factors may present apparatus. The investigationnof1 spirals is fur-

contribute to this. Equation) and (6) show that the azi-
muthal symmetry breaking employed in the experiment

ther complicated by the presence of other modes such as
axisymmetric vortices and interpenetrating spirals at nearby

=1) enters the coupling between left- and right-traveling spi-parameter values.

rals only with its fourth power for spirals witm=2. Thus

A second reason for the apparent weakness of the cou-

quite large eccentricities are needed to give a strong effecpling is presumably the penetration depth of the oscillation
Motivated by this observation, we have also studied thento the bulk of the fluid, as characterized by the viscous
modulation ofm=1 spirals. However, no resonant excitation stokes layer of width= v/, near the inner cylinder. The

0.8

0.6 -

f—o—

—o—

—o—i

—o— Standing-Wave-Like Patterns
F—o—]
F—o—]

thickness of the Stokes layérat £&=0 for bothm=1 and 2
spiral states are 0.24 and 0.17 cm, much smaller than the size
of the gapd=1.19 cm. Thus the bulk of the fluid feels the
modulation only very weakly(lt is possible that similar ef-
fects may have been present in the binary fluid convection
experiment reported ifil3]. This may have contributed to
the less well-defined standing waves reported there, in con-
trast with the electroconvection experimeptBurthermore,

in the eccentric Taylor-Couette system, modulation creates
only a weak azimuthal pressure gradient due to the small

o eccentricity and the oscillatory Stokes layer influence may

. o not be enough to excite a strong secondary traveling compo-

' t—o— nent. In the Taylor-Dean system, on the other hand, the inner
Base Flow o cylinder modulation creates not only the oscillatory bound-

0.0

o Traveling Wave Patterns
(Spirals)

146

148

T T T
150 152 1

1
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ary layer influence but also an induced oscillatory azimuthal
pressure gradient across the whole gap, due to the free sur-
face, which more readily affects the pattern.

The standing-wave-like patterns appearing in the eccen-
tric Taylor-Couette system fog=0 near the transition

boundary to them=2 spiral state lose their stability to an
incoherent pattern when the inner cylinder speed is increased
further above the onset. This may be due to the loss of sta-

FIG. 21. Phase diagram ®&,/R;;. versusR; for the eccentric
Taylor-Couette system with eccentricié=0.168 and detuning pa-
rameteré=0.
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bility of the basic spirals to interpenetrating spirals and wavy{ 13], where only temporal modulation is necessary to excite
spirals. Even for the concentric cylinder case=0) we have standing-wave patterns. Temporal modulation of the eccen-
seen some evidence of a weak secondary spiral at very highic Taylor-Couette system induces a second traveling spiral
modulation amplitudes. This could be due to small imperfecpattern as predicted by theory. However, owing partly to
tions in the experimental apparatigsg., nonparallel cylinder weak coupling of the oscillations to the bulk of the flow, it
axes, which may break the rotational symmetry sufficiently never grows to a large enough amplitude, nor does it couple
to induce a second spiral. with the other traveling spiral sufficiently strongly, to pro-
duce simple standing-wave patterns at onset. The temporally
modulated Taylor-Dean system, in contrast, with its strongly

) ) o broken azimuthal symmetry, yields clear agreement with the
In conclusion, we have found that time-periodic modula-qygjitative features of the theoretical model.

tion at close to twice the frequency of a Hopf bifurcation can
induce standing waves in systems with traveling-wave pat-
terns in two directions. The Taylor-Couette system with

counterrotating cylinders produces spirals at onset over a C.D.A., S.G.K.T., and J.J.H. thank ONR for support

large parameter range, but unless the rotational symmetry dfirough Grants Nos. N00014-86-K-0071 and N00014-89-J-
the apparatus is broken, standing waves cannot be excited B52. H.R. gratefully acknowledges discussions with J. D.
modulation. This is in contrast with the case of one-Crawford and E. Knobloch. His work was supported by DOE
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