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The effect of temporal modulation on traveling waves in the flows in two distinct systems of rotating
cylinders, both with broken azimuthal symmetry, has been investigated. It is shown that by modulating the
control parameter at twice the critical frequency one can excite phase-locked standing waves and standing-
wave-like states that are not allowed when the system is rotationally symmetric. We also show how previous
theoretical results can be extended to handle patterns such as these, which are periodic in two spatial directions.
@S1063-651X~96!04711-3#

PACS number~s!: 47.20.2k, 47.27.Ak

I. INTRODUCTION

The behavior of pattern forming systems under external
time-periodic forcing has been the subject of intense inves-
tigation over the past several years@1,2#. Since such periodi-
cally forced flows are common in nature and technological
applications@3#, a knowledge of their stability properties
may have important practical applications.

There have been several experimental and theoretical
studies investigating the effect of time-periodic forcing on
the stability of the axisymmetricsteadyspatial patterns pro-
duced in the flow between two rotating cylinders~Taylor-
Couette flow! @4–10#. These studies found that temporal
modulation of control parameters can stabilize or destabilize
the primary flows; the spatial properties of the base flow and
the axisymmetric Taylor vortex flow remain, however,
largely unaffected by the modulation. Only a very small shift
of the instabilities in the parameter space has been observed
in these systems.

For wave structures, however, recent studies by Riecke,
Crawford, and Knobloch@11# and Walgraef@12# have shown
that for the appropriate frequency of an external forcing a
strong resonance may occur between the forcing and the spa-
tiotemporal patterns. This can transform initially stable trav-
eling waves into standing waves or quasiperiodic structures.
This kind of behavior has been experimentally observed in
electroconvection of nematic liquid crystals and in binary
fluid convection by Rehberget al. @13#. It is also related to
the parametric excitation of surface waves~Faraday waves!
@14#.

In this paper we investigate the effect of temporal modu-
lation on the traveling-wave patterns that appear near the
primary bifurcation boundary of two rotating cylinder sys-

tems with broken rotational symmetry. First, we will discuss
the theoretical background for this study. Next, we will de-
scribe our experimental studies of the modulatedTaylor-
DeanandTaylor-Couettesystems. Finally, we will compare
the experimental observations with the theoretical predic-
tions.

II. THEORY

Using symmetry arguments and suitable amplitude equa-
tions it has been shown previously@11,12,15# that a resonant
temporal forcing can excite standing waves in an effectively
one-dimensional extended system undergoing a Hopf bifur-
cation to traveling waves. Here we will extend those argu-
ments to systems that are periodic in two directions. This is
necessary for spiral vortex flow since the azimuthal symme-
try of the concentric Taylor system imposes additional con-
straints on the amplitude equations.

The excitation of standing waves by resonant forcing can
be understood intuitively by an extension of the standard
example of a parametrically forced pendulum. In that case, a
periodic parametric forcing such as, e.g., the periodic varia-
tion of the length of the pendulum, leads to a periodic pump-
ing of energy into and out of the pendulum. In order to effect
a net increase in the pendulum’s energy the pumping and the
pendulum have to have a certain phase relationship; in par-
ticular, the frequencies have to be resonant. Maximal effi-
ciency is achieved if the forcing frequency is twice the natu-
ral frequency of the pendulum~e.g., decreasing the length of
the pendulum whenever it travels downward!.

Considering extended systems as an array of coupled pen-
dulums makes it clear that only standing waves, but not trav-
eling waves, can be excited parametrically: in a standing
wave all oscillators have the same phase~albeit different
amplitudes! and therefore all of them can satisfy the phase
relationship necessary for excitation simultaneously; in a
traveling wave the phases are distributed evenly over the
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circle and the out-of-phase oscillators will lose the energy
gained by the in-phase oscillators.

To consider spiral vortex flow, which arises in a fluid
between counterrotating concentric cylinders@16#, one has to
extend this consideration to two dimensions since the spirals
are periodic along the axisandalong the azimuthal direction.
Therefore, the superposition of oppositely traveling spirals
~‘‘ribbons’’ ! leads to waves that are standing in the axial
direction but traveling in the azimuthal direction. Thus the
periodic forcing may pump energy into the ribbon at some
azimuthal angle, but will extract energy at the same time at a
different angle. For a net increase these energies have to be
different, which is achieved by an azimuthally dependent
perturbation of the forcing. Alternatively, the azimuthal sym-
metry of the system itself can be broken. Maximal efficiency
is achieved, in analogy to the temporal forcing, if the azi-
muthal wave number of the perturbation is twice the azi-
muthal wave number of the ribbon.

The above arguments can be made precise by considering
spiral vortex flow near its onset where its amplitude is small.
Then the periodic forcing as well as the azimuthal perturba-
tion can also be taken small and the system can be described
by coupled amplitude equations. The crucial ingredients are
the critical eigenvectors of the system, i.e., those modes that
have small~or zero! growth rate, since they define the center
manifold of the system in this parameter regime. In the
present case the critical modes are the two spiral wave modes
of the flow fieldv as well as the periodic forcingF and the
azimuthal perturbationP,

v5A~T!eiqz1 ivht1 imffa~r !1B~T!eiqz2 ivht2 imffb~r !1c.c.

1~higher-order terms!, ~1!

F5beivet1c.c., ~2!

P5weinf1c.c. ~3!

HereT is a slow time andfa,b(r ) are the radial eigenvectors
of the spiral vortex flow. The axis of the cylinders is taken
along thez direction andf is the azimuthal angle. The fre-
quenciesvh andve are the Hopf frequency of the spirals and
the frequency of the forcing, respectively. Below we will
chooseve close to 2vh . The difference will determine the
detuning. Although the forcing and the azimuthal perturba-
tion are imposed externally we consider them as dynamical
variables and include them in the center manifold. This sim-
plifies the derivation of the relevant amplitude equations for
A(T) andB(T). Their form is obtained by considering the
most general polynomial that is consistent with the symme-
tries of the system~in the absence of forcingF50 and the
azimuthal perturbationP50!: translation symmetry in space
alongz, rotational symmetry inf, translational symmetry in
time t, and reflection symmetry inz. These symmetries allow
a linear coupling of the left and right spiral amplitudes via
the forcing and azimuthal perturbation only if the frequen-
ciesve andvh as well as the azimuthal wave numbersm and
n are related as

2vh

ve
5k,

2m

n
5 l , k,l51,2,3,... . ~4!

Simply put, under these conditions the term
Bbkwleiqz2 ivht2 imfeikveteilnf corresponds to the same Fou-
rier coefficient in z, t, and f as Aeiqz1 ivht1 imf and can
therefore arise in the evolution equation forA, thus provid-
ing the cruciallinear coupling. To cubic order one then ob-
tains the equations

]TA5aA1dbkw2m/nB1cuAu2A1guBu2A, ~5!

]TB5a*B1dbkw2m/nA1c* uBu2B1g* uAu2B, ~6!

]Tb50, ]Tw50. ~7!

The real partar of the coefficienta gives the growth rate of
the spiral waves and is proportional to the distance from the
Hopf bifurcation. Thusar5a(Ri2Ric), with Ri the Rey-
nolds number for the inner cylinder andRic its critical value.
To allow for a small detuning in the forcing, the frequency
vh in ~1! is replaced byve/2. The detuningj is then related
to the imaginary partai as

j[
vh2ve/2

vh
5
ai2gar

vh
, ~8!

where the termgar accounts for the change of the linear
frequency with the control parameterRi . The coefficientsd,
c, and g are in general complex, whereas the product
dbkw2m/n can be chosen real. All coefficients are functions
of the invariantsubu2 and uwu2. This is most relevant for the
small coefficienta. Thus the forcing and the azimuthal per-
turbation lead to a shift in the threshold and of the Hopf
frequency even in the nonresonant case.

Equations~5! and ~6! show that the forcing and the azi-
muthal perturbation have a maximal effect ifk51 and
l[2m/n51, i.e., if the external frequency is twice the Hopf
frequency and the wave number of the azimuthal perturba-
tion is twice that of the spiral waves. Unfortunately, the latter
condition cannot be implemented easily in the Taylor-
Couette experiments since eccentrically mounted cylinders
yield a perturbation of the form cosf, i.e.,n51. The eccen-
tricity leads therefore to a term in the amplitude equations
that is only of orderw2m!w ~for m>1!. It is worth noting
that even if the azimuthal perturbation was not a pure cosf,
but contained also its harmonics,P5( r52`

` wrexp(irf), the
lowest-order term~in A andB! breaking the time-translation
symmetry would still be as given in~5! and ~6!, with w2m/n

replaced by a more general function reflecting the contribu-
tions from the various harmonics. This function could be
written as a sum of productswr (1)wr (2)wr (3)••• with
r (1)1r (2)1r (3)1•••52m. If present, the harmonic with
wave numberr52m would be dominant in the limit of small
azimuthal perturbation since it enters with the lowest power.
For the experiments presented in this paper the main obser-
vation is thatin the absence of any azimuthal perturbations
~w50! no linear coupling of oppositely traveling waves oc-
curs and the standing waves in question cannot arise directly
from the basic state A505B through a linear instability.

The amplitude equations~5! and ~6! have been analyzed
previously in detail@11,12# for the casegr,cr,0, i.e., for a
Hopf bifurcation to stable traveling waves rather than~un-
locked! standing waves. The main result is the excitation of
standing waves,uAu5uBu5const, by the periodic forcing be-
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low the Hopf bifurcation~ar,0!. As it is clear from the fact
that the amplitudesA andB are constant in time, these waves
are phase locked to the forcing@cf. ~1! with vh→ve/2#. A
sketch of a typical phase diagram is shown in Fig. 1, where
the loci of various transitions are given as functions of the
forcing strength~measured byb! and the mean Reynolds
number~measured byar!. The transition from the basic state
of purely azimuthal flow to the phase-locked standing waves
~ribbons! occurs along the line marked PSW, which is given
by

b25
ar
21ai

2

~dw2m/n!2
5
ar
21~jvh1gar !

2

~dw2m/n!2
. ~9!

Along the line marked H the basic state undergoes a Hopf
bifurcation to traveling waves as well as~unstable! standing
waves. This bifurcation exists already in the absence of any
periodic forcing~b50!. Along the line marked PB the phase-
locked standing waves become unstable to the traveling
waves in a secondary parity-breaking bifurcation. Not rel-
evant for this experiment are the transition of the unstable
phase-locked standing waves to unstable standing waves at
SW and the saddle-node bifurcation of the phase-locked
standing waves along SN.

To obtain quantitative results pertaining to spiral vortex
flow the linear as well as the nonlinear coefficients have to
be determined numerically. This is a formidable task and
will not be attempted here. It should be noted, however, that
to leading order the nonlinear coefficientsc and g are not
affected by the forcing and the azimuthal perturbation. Thus
the values for the concentric case can be used, which have
been determined previously@17#.

In addition to the results on modulated spirals in the
slightly eccentric Taylor system, we will also present results
on traveling inclined rolls, which occur in the Taylor-Dean
system@18#. In this system the azimuthal symmetry is bro-
ken strongly. Therefore, instead of the discussion presented
above the original derivation of the amplitude equations in
the presence of a single translation symmetry applies
@11,12,15#. It is based on an expansion of the flow field in the
form

v5A~T!eiqz1 ivhtfa~r ,f!1B~T!eiqz2 ivhtfb~r ,f!1c.c.

1~higher-order terms! ~10!

and leads to~5! and ~6! with w51.

III. EXPERIMENTAL APPARATUS AND PROCEDURES

Two variations of the concentric rotating cylinder
~Taylor-Couette! system were employed to test the concepts
of Sec. II. The systems break the rotational symmetry in very
different ways. In the next few sections, we will describe
each one in detail. First, we present the experimental system
with strongly broken rotational symmetry, the Taylor-Dean
system.

A. Taylor-Dean system

The Taylor-Dean system consists of two independently
rotating horizontal coaxial cylinders with a partially filled
gap ~see Fig. 2! @18,19#. The partial filling of the gap in the
Taylor-Dean system breaks the rotational symmetry of the
flow. The rotation of the cylinders and the two free surfaces
impose a pressure gradient along the azimuthal direction. As
a result, the flow sufficiently far away from the free surfaces
is a combination of Couette flow due to rotation of the cyl-
inders and Poiseuille flow due to the azimuthal pressure gra-
dient. The main control parameters of this system are the
inner and outer cylinder Reynolds numbersRi52p f i r id/n
andRo52p f or od/n, wheref o and f i are the outer and inner

FIG. 1. Sketch of a typical phase diagram for modulated rotation
at resonance (ve52vh), where the loci of various transitions are
given as a function of the forcing strength~measured byb! and
mean Reynolds number~measured byar!. The transition from the
basic state to standing waves occurs along the line marked PSW
and from the basic state to traveling waves occurs along the line
marked H.

FIG. 2. ~a! Schematic diagram of the Taylor-Dean apparatus.~b!
Schematic cross section of the apparatus. The front side is the side
where the observer sees the inner cylinder rotating upward as
shown.
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cylinders’ rotational frequencies,d is the gap width, andn is
the kinematic viscosity of the fluid. As the control param-
eters are varied the base flow instabilities change from those
associated with Taylor-Couette to those associated with
Dean flow. An initial experimental work with the Taylor-
Dean system was done by Brewster and Nissan@20#, who
studied the threshold of the instability when the inner cylin-
der rotates and the outer cylinder is stationary. More re-
cently, Mutabazi, Normand, Peerhossaini, and Wesfreid@21#
have solved the linear stability problem for axisymmetric
and nonaxisymmetric perturbations in the flow. They found
both stationary- and traveling-wave instabilities depending
on the ratio of the angular velocitiesm ~5f o/ f i! @19#. We
kept the outer cylinder stationary~Ro50! for this study,

while rotating the inner cylinder. In this case the first transi-
tion from the unperturbed base flow is to traveling inclined
rolls as the inner cylinder speed increases, as shown in the
experimental study of Mutabazi, Hegseth, Andereck, and
Wesfreid @18#. The transition to traveling inclined rolls is,
within the experimental error, a supercritical Hopf bifurca-
tion. At onset these rolls also have no preferred direction and
may move either left or right along the cylinder axis. There-
fore, this system can be used to verify the theoretical predic-
tion that a breaking of the time translational symmetry by a
small periodic modulation of the control parameter will re-
sult in a stable standing-wave pattern@11,12#.

Our experimental system consists of an inner cylinder
made of black Delrin plastic with radiusr i54.47 cm and a
stationary outer cylinder made of Duran glass with radius
r o55.08 cm, giving a gapd5r o2r i50.59 cm and radius
ratio h5r i /r o50.883. Two plastic rings are attached to the
inner cylinder a distanceL552.4 cm apart, giving an aspect
ratio G5L/d588, large enough to conceive of this as an
extended system where one can neglect end effects. In this

FIG. 3. Space-time diagram of the traveling roll pattern in the
Taylor-Dean system whenRi5265,Ro50, andRm50. The wave-
length of the pattern isl50.841 cm and the frequency is 0.543 Hz.

FIG. 4. Pictures of the~a! traveling roll~for Ri5269 andRm50!
and ~b! standing wave states in the Taylor-Dean system~for
Ri5265 andRm/Ric50.28!.

FIG. 5. Phase diagram of standing-wave and traveling-wave
states of the Taylor-Dean system when the detuning parameter is
j50. The pluses and crosses indicate the location of the bifurcation
from the base state to standing waves and standing waves to trav-
eling waves, respectively.

FIG. 6. Space-time diagram of the standing wave state at
Rm/Ri50.30,Ri5241, andj5060.01 ~Taylor-Dean system!.
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system the filling level fractionn5u f /2p has been fixed at
0.75, whereuf is the filling angle.

The working fluid was pure double distilled water or a
solution of double distilled water and 44% glycerol by
weight with 1% of Kalliroscope AQ1000 added for visual-
ization. These nearly two-dimensional~'30 mm36 mm
30.07mm! polymeric flakes align along the streamline sur-
faces, reflecting light according to their orientation.
Generally the dark areas indicate flow along the observer’s
line of sight, while the light areas indicate flow perpendicular
to the line of sight. The apparatus was kept in a temperature
controlled room so that the temperature of the working fluid
was held constant to within 0.1 °C.

Spatial and temporal properties of the flow patterns were
obtained using a 5123480 pixel charge coupled device
~CCD! camera connected to an image processor. The image
processor board, installed in a personal computer, captured a
picture of the flow pattern and then a software routine was
used to obtain the intensity along a single line parallel to the
axis of the cylinders. This system is able to process up to one
line every 0.11 sec. The data were then transferred to a VAX
4000-90 computer system and an analysis of the resulting
intensity versus axial position as a function of time plots

~space-time data plots! yields the wavelengths and the dy-
namics of the patterns in time and space.

In the Taylor-Dean system, we have used a combination
of two stepper motors~Compumotor A83-93! to drive the
inner cylinder, one motor to produce a net rotation and the
other to produce a sinusoidal modulation of the inner cylin-
der angular velocity. The first motor was directly connected
to the inner cylinder and rotated with constant angular veloc-
ity. The housing of this motor was oscillated by a push-rod
arrangement mechanically coupled to the second motor~see
Fig. 2!. The rotation of the second motor gave a net output at
the inner cylinder of a constant angular velocity plus a peri-
odic sinusoidal variation in angular velocity.

The motor speeds were controlled through Compumotor
2100 Series indexers and could be changed either manually
or through computer control. The motor speeds have a fre-
quency accuracy of 0.02%. Typically, a computer controlled
the rotation speed, direction, and ramping rates. Because
both the frequency and amplitude of the modulation could be
varied, this introduced two new control parameters into the
system, as required by the theory.

The Reynolds number of the inner cylinder is now
R5Ri1Rmsin(2p f mt), whereRm52p f ar id/n and f a is the

FIG. 7. Space-time diagrams of~a! the right-traveling-wave component and~b! the left-traveling-wave component of the standing-wave
state shown in Fig. 6, obtained using a two-dimensional FFT decomposition.~c! and~d! are the frequency power spectra of the decomposed
right- and left-traveling modes. The dimensionless frequencies are scaled to the inverse of the diffusive time scalen/d2.
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amplitude of the sinusoidal rotational frequency. The two
dimensionless parameters areRm/Ric and the detuning pa-
rameterj5(2 f h2 f m)/2 f h , whereRic is the critical Rey-
nolds number for onset of the traveling roll pattern andf h is
the frequency of the traveling rolls~Hopf frequency! in the
absence of modulation.

To obtain the location of the onset of patterns for each
modulation frequencyf m and modulation amplitudeRm , we
employed the following method. We first set theRi value
below the onset of instabilities and then increased it quasi-
statically ~keeping both amplitudeRm and frequencyf m of
modulation at a fixed value! until a flow pattern appeared in
the system. Then several sets of space-time data were taken
while increasingRi . We repeated this procedure with in-
creasing amplitudes and various frequencies around twice
the Hopf frequency~the frequency of the traveling rolls near
onset when there is no modulation!.

B. Results and discussion

When there is no modulation~Rm50!, the base flow bi-
furcates supercritically to a traveling roll pattern as we in-
crease the inner cylinder speed. A typical space-time dia-
gram for the traveling roll pattern near onset~Ri5265,
Ro50, andRm50! is shown in Fig. 3. The wavelength of the
rolls along the cylinders is l50.841 cm. At
e @5(Ri2Ric)/Ric# slightly greater than 0.0 the pattern fills
most of the working space and both left- and right-traveling
rolls may exist with a vertical defect line between them@see
Fig. 4~a!#. The frequency of the traveling rolls~Hopf fre-
quency! near the onset~Ric5263! is 0.543 Hz. Upon further
increase ofRi , the flow undergoes a second instability to a
short-wavelength modulation of the traveling rolls at
Ri5303 and then to an incoherent pattern at aboutRi5338
@22#.

The transition sequence changes dramatically with modu-
lation of the inner cylinder speed. When we modulated the
inner cylinder sinusoidally near detuning parameterj'0, we
found standing waves rather than the traveling rolls@see Fig.
4~b!#, as predicted by theory. Figure 5 shows a phase dia-
gram of the primary transitions from the base flow to stand-
ing waves and the secondary transition from standing waves
to traveling waves forj'0 as we varied the modulation am-
plitude Rm and inner cylinder Reynolds numberRi . One
interesting feature to note in Fig. 5 is that, when the modu-
lation amplitude is increased above a critical value
~Rm/Ri.0.05!, the standing waves can be excited atRi val-
ues much lower than the criticalRi . Another interesting fea-
ture is that as the amplitude of modulation increases, we
observe standing waves over a widening range ofRi . The
traveling-wave state reappears whenRi increases, as has
been observed in other systems@13# and in agreement with
the theory @11#. At small modulation amplitudes
~Rm/Ri,0.05! only the traveling roll state appears whenRi
is increased, also in agreement with the theoretical predic-
tions ~cf. Fig. 1!.

The space-time diagram of the standing waves for
Rm/Ric50.30,Ri5241, andj5060.01 is shown in Fig. 6.
During one modulation period the light intensity at a given
axial position varies periodically, indicating the presence of
standing-wave patterns. The frequency of the standing waves

is half the modulation frequency.
A quantitative analysis of the patterns was carried out

using two-dimensional Fourier transforms of the patterns in
time and space. This proved to be a very useful method for
decomposing the standing-wave patterns into their left- and
right-traveling wave components from the original space-
time CCD data. From the decomposition we obtained the
spatial wavelengths, temporal frequencies, and the ampli-
tudes of each component. Figures 7~a! and 7~b! show the
right- and left-traveling waves obtained from the space-time
data shown in Fig. 6. The power spectra obtained using the
two-dimensional fast Fourier transform~FFT! for both right-
and left-traveling waves are shown in Figs. 7~c! and 7~d!.
The left and right components have similar space and time
characteristics. The small differences in amplitudes of the
spectral peaks may be attributed to slightly nonuniform light-
ing conditions.

At a still higher inner cylinder speed the standing waves
lose their stability to a traveling-wave state. This transition is
supercritical within our experimental resolution. No mixed
states of standing and traveling rolls have been seen. The
space-time diagram for the traveling-wave state just above
the onset atRi5269,Rm/Ric50.212 is shown in Fig. 8. The
decomposition of this space-time data and associated power
spectra are shown in Figs. 9~a!–9~d!. These figures show that
one traveling mode dominates over the other, much weaker,
components present in the system.

We also tested the sensitivity of the onset of the patterns,
and which pattern appears first, to variation of the detuning
parameterj in this system. The result forRm/Ri50.3, shown
in Fig. 10, indicates that the onset of the patterns is very
sensitive to the value of the detuning parameterj for this
system. Whenj'0 the standing-wave pattern appears atRi
well below Ric5263. As we changedj away from j50
~lower or higher modulation frequencies than 2f h! the onset
of the patterns was delayed considerably. In fact, at higher
modulation frequencies~j ,20.2! patterns appeared only at
supercritical Ri ~.Ric! values forRm/Ric50.3. Figure 10
also shows that, for fixedRm , as we move away fromj50
the characteristics of the patterns also change, so that
traveling-wave patterns appear at onset~j ,20.08 or
j .0.04 for Rm/Ric50.3! rather than standing waves. It is

FIG. 8. Space-time diagram of the traveling-wave state at
Rm/Ric50.212,j50.0, andRi5269 just above the onset~Taylor-
Dean system!.
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possible that even for these large values ofuju standing waves
would reappear as the critical mode for higher fixedRm/Ric
than 0.3.

Figure 11 shows the ratio of the fractional power under
the left ~the one induced by the modulation in this case!
traveling-wave spectra to the total power, as a function ofj.
This characteristic resonance curve illustrates the disappear-
ance of the left-traveling wave as the detuning parameterj
shifts away from 0. The maximum fractional power was a
little less than the expected 0.5, which can be attributed to
the nonideal lighting conditions. We also analyzed the fre-
quencies of the two components as a function ofj. Figure 12
shows the frequency ratio as a function ofj. This plot shows
the standing-wave region clearly, where the two components
lock to the same frequency over a range ofj. The primary
transition to standing waves and the secondary transition to
traveling waves inRm/Ric vs Ri parameter space are very
sensitive toj for j near zero. Figures 13~a! and 13~b! give
the phase diagrams whenj is equal to20.03 and10.03,
which show these phase changes clearly. A comparison of
Figs. 13 and 5 shows that the minimal modulation amplitude
for the excitation of standing waves is actually lower for

FIG. 9. Space-time diagrams of~a! the right-traveling-wave component and~b! the left-traveling-wave component of the traveling-wave
state shown in Fig. 8.~c! and ~d! are the frequency power spectra of the decomposed right- and left-traveling modes. The dimensionless
frequencies are scaled to the inverse of the diffusive time scalen/d2. The right-traveling-wave component dominates the left-traveling
component in the system.

FIG. 10. Onset of the primary flow transitionRi vs the detuning
parameterj @5(2 f h2 f m)/2 f h# at Rm/Ric50.3 ~Taylor-Dean sys-
tem!.

54 5059TEMPORAL MODULATION OF TRAVELING WAVES IN . . .



j50.03 than forj50. This can be ascribed to the dependence
of the linear frequency of the waves onRi as well asubu2 and
uwu2 as expressed in~8!; optimal resonance is obtained for
ai50 rather thanj50 @cf. ~9!#.

Further increases inRi beyond the traveling-wave state
resulted in the appearance of short-wavelength modulations
near Ri.300 and incoherent patterns atRi.340 for
Rm/Ric50.25 andj50. These patterns and their decomposed
left- and right-traveling components are shown in Figs. 14
and 15.

C. Eccentric Taylor-Couette system

In the Taylor-Dean system, the rotational symmetry is
strongly broken by the air-liquid interfaces. We now con-
sider a system with slightly broken rotational symmetry,
which can be modeled as a perturbation on a system with

two translational symmetries~strictly speaking, a pure trans-
lation in space alongz and a rotational symmetry alongf!.

The classical concentric Taylor-Couette system has trans-
lational symmetry in the axial direction and rotational sym-
metry around the axis. As we discussed in Sec. II, for this
system it is necessary to apply periodic forcing as well as an
azimuthal perturbation to linearly couple the left- and right-
traveling spirals to produce the standing waves. We pro-
duced an azimuthal perturbation in this system by offsetting
the axis of the inner cylinder relative to that of the outer
cylinder while maintaining the two axes parallel, thereby
making the system eccentric.

The experiment was performed in the region of (Ro ,Ri)
parameter space where traveling waves in the form of spiral
vortices occur as the primary instability. This happens when
the cylinders are counterrotating and concentric@16,23–25#.
The spiral patterns travel in both the axial and azimuthal
directions and break both the axial and azimuthal symmetries
of the base flow. For a given radius ratio there is a unique
value of outer cylinder speed above which the primary bifur-
cation from the base flow is a supercritical Hopf bifurcation
to the time periodic spiral flow@23,24#. The azimuthal wave

FIG. 11. Fractional power of the secondary traveling-wave state
vs the detuning parameterj at Rm/Ric50.3.

FIG. 12. Frequency ratio of the two traveling-wave components
vs the detuning parameterj at Rm/Ric50.3. Both left- and right-
traveling components have the same frequency within experimental
error over a fairly wide region near resonancej50.

FIG. 13. Phase diagrams when~a! j520.03 and~b! j50.03.
Pluses and crosses indicate the transitions from the base flow to
standing waves and to traveling waves, respectively.
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number (m) of the spirals increases as the outer cylinder
speed increases. The locations of the crossover points be-
tween spirals with different azimuthal wave numbers are
uniquely determined by the radius ratio of the two cylinders
@24#.

Our eccentric Taylor-Couette cylinder system, shown
schematically in Fig. 16, consists of an inner cylinder made
of black Delrin plastic with radiusr i54.76 cm, an outer
cylinder made of Plexiglas with radiusr o55.95 cm, which
gives a gapd5r o2r i51.19 cm, and a radius ratioh50.800.
The main control parameters are the inner and outer cylinder
Reynolds numbersRi52p f i r i d̄/n and Ro52p f or od̄/n,
whered̄ is the average gap width. A stationary support holds
the apparatus at the top and the bottom. The outer cylinder is

connected to the stationary support by means of bearings at
both ends. The upper end of the inner cylinder is attached to
a long shaft that hangs from a horizontally movable plate on
the stationary framework~see Fig. 16!. The lower end of the
inner cylinder is left unattached and is suspended approxi-
mately 1 mm above the bottom of the system. Eccentricity is
adjusted by offsetting the axis of the inner cylinder relative
to the fixed axis of the outer cylinder. The position of the
axis of the inner cylinder is read to an accuracy of 0.005 cm
using a micrometer attached to the stationary support. The
eccentricity ise5«/(r o2r i), where« is the offset of the two
cylinder axes. To maintain consistent end conditions, the up-
per and lower boundaries of the flow are formed by Teflon
rings attached to the outer cylinder and located near the ends
of the cylinder. There is a narrow gap of 0.4 cm between

FIG. 14. ~a! Traveling-wave state with short-wavelength modu-
lations atRi5300 andRm/Ric50.254 ~Taylor-Dean system!. ~b!
and ~c! are the decomposed space-time data for right- and left-
traveling modes, respectively, of the same traveling-wave state
shown in~a!.

FIG. 15. Incoherent pattern atRi5340 andRm/Ric50.254
~Taylor-Dean system!. ~b! and ~c! are the decomposed space-time
data for right- and left-traveling modes, respectively, of the inco-
herent pattern shown in~a!.
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each of these rings and the inner cylinder that is nevertheless
wide enough to allow for offsetting the inner cylinder. The
length of the fluid columnL is 40.40 cm, giving an aspect
ratio G5L/(r o2r i)534.0, large enough to minimize end ef-
fects. Again, the working fluid was pure double distilled wa-
ter or a solution of double distilled water and 44% glycerol
by weight with 1% of Kalliroscope AQ1000 added for visu-
alization. The experimentally obtained critical Reynolds
number for concentric cylinders whenRo50 has been com-
pared with reference values to check the accuracy ofn ob-
tained from tabulated data@26#. The difference was less than
1%. Both inner and outer cylinders are driven by two inde-
pendently rotating Compumotor stepper motors, which are
controlled through Compumotor Series 2100 indexers. Since
the modulation amplitude required in the eccentric Taylor-
Couette system was much greater than for the Taylor-Dean
system, we could not use the two motor push rod arrange-
ment to produce both linear and sinusoidal modulation of
inner cylinder. Therefore, we have used a single motor to
produce both a constant rotation speed component and the
sinusoidal modulation of the inner cylinder rotation rate by
sending control commands~a sequential change of shaft mo-
tion parameters with time delays! to the indexer using the

computer. This produces an approximate sinusoidal varia-
tion, with more than 40 step changes in velocity per cycle.

To obtain the location of the onset of patterns for each
modulation frequencyf m and modulation amplitudeRm , we
employed a method similar to that used in the experiment on
the Taylor-Dean system. We kept the outer cylinder speed
fixed at a value within the range where the bifurcation to
spiral vortices occurs. Then, at a fixed modulation amplitude
Rm and constant frequencyf m , we increased the average
inner cylinder speed until the pattern appeared. Then several
sets of space-time data were taken while increasingRi . We
repeated this procedure with increasing amplitudesRm and
various detuning parametersj ~i.e., frequencies around twice
the Hopf frequency, where the Hopf frequency in this case is
the frequency of the spiral pattern near onset in the absence
of modulation!.

D. Results and discussion

When there is no modulation the base flow bifurcates su-
percritically to spirals as we increase the inner cylinder speed
while keeping the outer cylinder speed constant. A typical
space-time diagram for the spiral pattern near onset
~Ri5151,Ro5155, andRm50! is shown in Fig. 17. Here the
intensity of a line parallel with the axis of the cylinders was

FIG. 16. ~a! Vertical and ~b! horizontal cross sections of the
eccentric cylinders system.

FIG. 17. Space-time diagram of the spiral pattern~m52! in the
Taylor-Couette system atRi5151,Ro5155,e50, andRm50.

FIG. 18. Space-time diagram of the standing-wave-like pattern
in the Taylor-Couette system atRi5151, Ro5155, e50.126,
Rm/Ric50.4, andj50.
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recorded every 0.6 sec for 100 sec. The wavelength of the
spirals along the axis of the cylinder isl52.07 cm'2d.
Light sheet visualization through the gap cross section shows
that the spirals exist near the inner cylinder. Ate
@5(Ri2Ric)/Ric# slightly greater than zero the pattern fills
most of the working space along the axis. An upward-
moving spiral exists near the bottom of the system and a
downward-moving spiral exists near the top. A horizontal
defect line forms where the two spirals meet. These defect
lines are not necessarily halfway between the top and the
bottom along the axis of the cylinders. Such defects are in-
herent to traveling-wave patterns@27#. The frequency of the
spirals~Hopf frequency! with azimuthal wave numberm52,
as shown in Fig. 17, near the onset~Ric5151,Ro5155 for
e50! is 0.113 Hz.

When we sinusoidally modulated the inner cylinder rota-
tion speed, we observed wave patterns that resemble stand-
ing waves ~time-dependent patterns that are stationary in
space! rather than traveling waves~spirals! as the first bifur-
cation from the base flow. Figure 18 shows a space-time
diagram of the standing-wave-like pattern near the transition
to the spiral state with azimuthal wave numberm52 at
Ri5151,Ro5155,Rm/Ri50.4, e50.126, andj'0. Figures

19~a! and 19~b! show the resulting right- and left-traveling
waves obtained from the space-time data shown in Fig. 18.
The power spectra obtained using the two-dimensional FFT
for right- and left-traveling wave components, shown in
Figs. 19~c! and 19~d!, have the same frequency characteris-
tics, but different peak amplitudes. A true standing wave
would have equal amplitudes in the traveling components.
Even at very high modulation amplitudesRm , one spiral
component always dominates the other. Figure 20 shows the
ratio of the amplitudes of the primary peaks of the two spiral
components versus modulation frequencyf m .

Figure 21 shows the phase diagram ofRm/Ric vs Ri for
e50.168 andj'0. This shows that the base flow became
unstable at lowerRi as the amplitude of modulationRm in-
creased, in agreement with the theoretical predictions. Also,
the standing-wave-like patterns appeared only at large modu-
lation amplitudes~for e50.168,Rm/Ri.0.17! when the de-
tuning parameterj'0. At small modulation amplitudes
~Rm/Ri,0.17! only the traveling roll~spiral! state appears
whenRi is increased. Whether standing-wave-like patterns
are produced also depends on the eccentricity of the system.
For small eccentricitye, they appeared only at higher modu-
lation amplitudes, in agreement with the theoretical predic-
tions.

FIG. 19. ~a! and~b! are the decomposed components of the space-time data in Fig. 18.~c! and~d! are the frequency power spectra of the
right- and left-traveling modes. The frequencies are scaled to the inverse of the diffusive time scalen/d2. The right-traveling-wave compo-
nent dominates the left-traveling component in the system.
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Compared with other systems~e.g., the Taylor-Dean sys-
tem discussed in Sec. III B or electroconvection of nematic
liquid crystals and binary fluid convection@13#!, in this sys-
tem, the standing-wave-like patterns with two components
having the same frequency appear only in a small region of
parameter space near the resonance frequency~see Fig. 22!.
Both the small region of parameter space and the unequal
power spectra amplitudes indicate that the coupling of the
modulation to the fluid flow is very weak. Two factors may
contribute to this. Equations~5! and ~6! show that the azi-
muthal symmetry breaking employed in the experiment~n
51! enters the coupling between left- and right-traveling spi-
rals only with its fourth power for spirals withm52. Thus
quite large eccentricities are needed to give a strong effect.
Motivated by this observation, we have also studied the
modulation ofm51 spirals. However, no resonant excitation

of standing waves was observed; instead, the patterns relax
to the base flow during part of the cycle. Since the frequency
of the waves is very small, they appear to follow the periodic
forcing adiabatically, indicating that their growth rate is of
the same order as the forcing frequency. Therefore, for~5!
and ~6! to apply, the growth rate would have to be reduced
substantially. This would require much higher resolution in
the average Reynolds numbers than is accessible in the
present apparatus. The investigation ofm51 spirals is fur-
ther complicated by the presence of other modes such as
axisymmetric vortices and interpenetrating spirals at nearby
parameter values.

A second reason for the apparent weakness of the cou-
pling is presumably the penetration depth of the oscillation
into the bulk of the fluid, as characterized by the viscous
Stokes layer of widthd5An/v, near the inner cylinder. The
thickness of the Stokes layerd at j50 for bothm51 and 2
spiral states are 0.24 and 0.17 cm, much smaller than the size
of the gapd51.19 cm. Thus the bulk of the fluid feels the
modulation only very weakly.~It is possible that similar ef-
fects may have been present in the binary fluid convection
experiment reported in@13#. This may have contributed to
the less well-defined standing waves reported there, in con-
trast with the electroconvection experiments.! Furthermore,
in the eccentric Taylor-Couette system, modulation creates
only a weak azimuthal pressure gradient due to the small
eccentricity and the oscillatory Stokes layer influence may
not be enough to excite a strong secondary traveling compo-
nent. In the Taylor-Dean system, on the other hand, the inner
cylinder modulation creates not only the oscillatory bound-
ary layer influence but also an induced oscillatory azimuthal
pressure gradient across the whole gap, due to the free sur-
face, which more readily affects the pattern.

The standing-wave-like patterns appearing in the eccen-
tric Taylor-Couette system forj50 near the transition
boundary to them52 spiral state lose their stability to an
incoherent pattern when the inner cylinder speed is increased
further above the onset. This may be due to the loss of sta-

FIG. 20. Ratio of the spectral peak amplitude of the secondary
spiral wave state to the spectral peak amplitude of the primary
spiral wave state vs the detuning parameterj atRi5151,Ro5155,
Rm/Ric50.53, ande50.126.

FIG. 21. Phase diagram ofRm/Ric versusRi for the eccentric
Taylor-Couette system with eccentricitye50.168 and detuning pa-
rameterj50.

FIG. 22. Frequency ratio of the two traveling-wave components
versus the detuning parameterj in the eccentric Taylor-Couette
system atRi5151,Ro5155,Rm/Ric50.53, ande50.126. The left-
and right-traveling components have the same frequency, only in a
very small region near resonancej50.
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bility of the basic spirals to interpenetrating spirals and wavy
spirals. Even for the concentric cylinder case~e50! we have
seen some evidence of a weak secondary spiral at very high
modulation amplitudes. This could be due to small imperfec-
tions in the experimental apparatus~e.g., nonparallel cylinder
axes!, which may break the rotational symmetry sufficiently
to induce a second spiral.

IV. CONCLUSION

In conclusion, we have found that time-periodic modula-
tion at close to twice the frequency of a Hopf bifurcation can
induce standing waves in systems with traveling-wave pat-
terns in two directions. The Taylor-Couette system with
counterrotating cylinders produces spirals at onset over a
large parameter range, but unless the rotational symmetry of
the apparatus is broken, standing waves cannot be excited by
modulation. This is in contrast with the case of one-
dimensional traveling-wave patterns studied in convection

@13#, where only temporal modulation is necessary to excite
standing-wave patterns. Temporal modulation of the eccen-
tric Taylor-Couette system induces a second traveling spiral
pattern as predicted by theory. However, owing partly to
weak coupling of the oscillations to the bulk of the flow, it
never grows to a large enough amplitude, nor does it couple
with the other traveling spiral sufficiently strongly, to pro-
duce simple standing-wave patterns at onset. The temporally
modulated Taylor-Dean system, in contrast, with its strongly
broken azimuthal symmetry, yields clear agreement with the
qualitative features of the theoretical model.
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