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Lattice Boltzmann simulations of liquid-gas and binary fluid systems

Michael R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans
Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom
(Received 25 January 1996

We present the details of a lattice Boltzmann approach to phase separation in nonideal one- and two-
component fluids. The collision rules are chosen such that the equilibrium state corresponds to an input free
energy and the bulk flow is governed by the continuity, Navier-Stokes, and, for the binary fluid, a convection-
diffusion equation. Numerical results are compared to simple analytic predictions to confirm that the equilib-
rium state is indeed thermodynamically consistent and that the kinetics of the approach to equilibrium lie
within the expected universality classes. The approach is compared to other lattice Boltzmann simulations of
nonideal system$S1063-651X96)03211-4

PACS numbes): 47.11+j, 83.10.Lk, 05.70.Fh

I. INTRODUCTION either a phenomenological rewriting of the collision rules
[10] or the introduction of an effective microscopic interac-
Our aim in this paper is to present the details of a latticetion [11-13. The drawback of these schemes is that the
Boltzmann approach to modeling phase separation and flosystem relaxes to an equilibrium state that cannnot be de-
in one- and two-component fluids. Possible applications okcribed thermodynamically.
the method are numerous, ranging from questions of purely Therefore it is our aim here to describe a lattice Boltz-
theoretical interest to those of industrial applicability. Ex- mann approach that in equilibrium reaches a state that can be
amples include the effect of confinement and flow on phasassociated with a free energy, corresponding pressure tensor,
separation, multiphase flow in porous media, the dynamicand, for the binary fluid, chemical potentidl4]. The tech-
of complex fluids, and theoretical investigations of nique has the added advantage that, given a simple choice of
Boltzmann-like approaches to phase separation and out-ofaput free energy, the properties of the steady state, such as
equilibrium thermodynamics. the coexistence curve and interface profiles, can be calcu-
The lattice Boltzmann technique may arguably be classitated analytically and compared to the results of the simula-
fied as a mesoscopic approach to the simulation of fluid dytions. Our approach is similar in spirit to the Cahn-Hilliard
namics[1,2]. It is useful to consider it as lying between theory of phase transitions in binary alloys5]: the correct
molecular dynamics, which accesses microscopic lengtishoice of the collision rules ensures that the system evolves
scales, but as a result suffers from severe time constraints towards the minimum of an input, nonlocal free-energy func-
the investigation of hydrodynamics, and finite-difference so+tional. Macroscopic fluid flow is governed by the Navier-
lutions of the Navier-Stokes equations, which contain no obStokes equations.
vious physical input. We consider phase separation in both one-component or
The genesis of the approach lies in the application of celliquid-gas systems and two-component or binary fluids. Evi-
lular automata to model fluid flow. In a seminal paper Frischdence is presented that the simulations reproduce the ex-
Hasslacher, and Pome#8l] showed that a cellular automa- pected result that at short-time scales the kinetics of phase
ton model with collision rules that locally conserve mass andseparation lies in different universality classes corresponding
momentum could be used to model the Navier-Stokes equde nonconserved and conserved order parameters, respec-
tions in the continuum limit. In practical applications of this tively [17].
approach, however, fluctuations led to noisy data. Therefore We hope that this approach will provide a useful step
Higuera, Succi, and Benz#] introduced the lattice Boltz- towards the goal of defining a fully thermodynamically con-
mann method, which can be considered as a coarse-grainsitent lattice Boltzmann method. The inclusion of the en-
cellular automaton in which continuous distribution func- ergy flow and the identification of anl theorem are still
tions at each lattice site replace the Boolean variables. needed to attain this goal. This point is discussed more fully
The lattice Boltzmann approach has been shown to givat the end of the paper.
convincing results for one-component flgd]. It is particu- The paper is organized as follows. In Sec. Il we describe
larly useful for simulating flows in complex geometries be-a general framework by which lattice Boltzmann schemes
cause of the relative ease of implementing tortuous boundargan be defined for a given set of microscopic conservation
conditions (although care must be taken as to the detailedaws. This is applied to a one-component fluid and a binary
effect of the boundaries on the flol&]). It has also been fluid in Secs. Ill and V, respectively. Details of the deriva-
applied to multiphase fluids with promising results for ques-tions of the fluid equations of motion from the lattice Boltz-
tions as diverse as the exponents associated with spinodalann collision rules are postponed to the Appendices. Re-
decompositio6—8] and the relative permeabilities for two- sults for each system as typified by a van der Waals fluid and
phase flow in a porous medium as a function of the relativawo ideal gases with a mutual interaction are presented in
densities of the two fluid$9]. However, the methods for Secs. IV and VI, respectively. Section VII aims to compare
introducing phase separation have thus far been based uptime approach to modeling phase separation described here to
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other methods in the literature. Our conclusion, together wittphysical variables are the densityand the fluid momentum

a discussion of the successes and omissions of our approa@y;, which are related to the distribution function by
conclude the paper.

ll. GENERAL FRAMEWORK ”ZZ fi, ”Ua:Z figiq- (4)

The starting point for lattice Boltzmann simulations is the gach of these quantities is locally conserved in any collision
evolution equation, discrete in space and time, for a set ofocess that forces the zeroth and first moments of the equi-

distribution functiong f;} defined on a lattice of points[1]. [ibrium distribution function to take the form

Each f; is associated with a lattice vectey. Taking for

simplicity a single-time relaxation approximatigf8], the S 0=n, S % =nu (5)
- I ' - I Yla -
I 1

evolution equation for a givefy takes the form

The higher moments of? must be chosen such that the
resulting continuum equations correctly describe the hydro-
dynamics of a nonideal, one-component fluid. Defining the
where At is the time step and the relaxation parameter. second moment as
f0 is an equilibrium distribution function, the choice of
which d_etermines_ t_he physics_ inherent in the simulation. > f?eiaeiﬁz P s+ NUUg, (6)

Physical quantities are defined as moments; ofFor ex- i
ample,n=2;f; is a density angh,= =;f,e,, is @ momentum.

fi(§+éiAt,t+At)—fi(>z,t)=—%(fi—fio), (1)

Subscriptsa, 8, . . . will be used to represent Cartesian co-Where P, is the pressure tensor, leads to the continuity
ordinates and, as usual, a summation over repeated indicesgguation for the fluid density
assumed.

dn+d,(nu,)=0 @)

The conservation laws that determine the physics are in-
troduced by choosingiO such that the conserved moments of
f; are equal to the corresponding momentsf?)f For ex-
ample, if pa=2ifi°em taking the first moment of Eq(l) d(NUg) +3d,(NUUE) = = dgPg+ do(VdNUp)
indicates thap,, is a locally conserved quantity in the simu-
lation. | —_ S + 5NN INU,) —

To obtain the continuum differential equations mimicked
by Eq. (1) we Taylor expand the left-hand side to give

and a Navier-Stokes level equation for the fluid momentum

;
3

dpoA
XE td,(Ugd n+u,dgn),

1 o1
— (=19 = Atk ‘ kf.
S(fi= )= 2 GAtKateadn), 2) ®
for which Eq.(2) is the exact discretizatiod, andd, denote ~ where the shear viscosity and the bulk viscosityx are
differentiation with respect té andx,, respectively. This given by
equation can be solved recursively by the method of succes-

2
sive approximation. Retaining terms ©((At)?), Eq. (2) p= T_l(At)CZ )\(n)=(r— E)At(c—— dpo) ©)
' 2 dn/’

becomes 8 2

fi— fiO o ) The differential equationé&7) and(8) follow from taking the
- WZ((WF €od.) i — (71— LI2)At(df + 2€ 049, zeroth and first moments, respectively, of Eg), using the
conditions(5) and(6) and making additional approximations
+eiaeiﬁ(9a(93)fi0+ O((At)?). 3 about the relative sizes of certain terms. The final unusual

term must be included as density gradients may not be small
Taking moments of Eq(3) with respect toe; gives equa-  but in homogeneous regions the equation reduces to the clas-
tions relating the time evolution of the momentsfoto the sical, incompressible, Navier-Stokes equation. Details of the
derivatives of the higher moments of the equilibrium distri- calculation are given in Appendix A.
bution function. By choosing a suitable definition for certain ~ The thermodynamic aspects of the model enter through
higher moments of° a given set of differential equations the pressure tensd?,,. Following the Cahn-Hilliard de-

describing the dynamics of the conserved quantities can bgefiption of nonequilibrium dynamids.6], we calculate this
simulated. function from theequilibrium free energy of the fluid mix-

ture. To test our approach it seems appropriate to choose a

simple and well-understood nonideal system, the van der

Waals fluid, for which the free-energy functional within a
We first apply this approach to the flow of a one- gradient-squared approximation[i4]

component, nonideal fluifil9]. The dynamics of the fluid

can be described by a single distribution function obeying _ > K 2

the lattice Boltzmann equatiol) [1,4]. The important \P_J dr(¢(T,n)+2(Vn) ’ (10

Ill. THE ONE-COMPONENT NONIDEAL FLUID
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where (T,n) is the bulk free-energy density at a tempera-
tureT -

—an® (11) -
0.56
and the second term gives the free-energy contribution from L
density gradients in an inhomogeneous system. The pressure
tensor is related to the free energy in the usual Wi} e

N N Jn dn 0.54
= +trk———
Pop(r)=p(r)d,s+« 7%, 9%y’ (12 I

n
1-nb

¢(T,n)=nTIn<

with r

p(r)=po— KnVZn—g|ﬁn|2, (13 0.52-

= 4 — i i oy 0 by v by s s b b AL
}/I\/Jwigrepo ny'(n)—(n) is the equation of state of the I 5 3 x = 3

n

Finally, to perform the simulation we need an explicit

expression forf? . For simplicitly we shall work on a trian- FIG. 1. Coexistence curve, temperatdreversus densityr for
gular lattice taking six distribution functionfy correspond-  the van der Waals fluid. In the free energyl) a=9/49 and
ing to the nearest-neighbor lattice  vectorsp=2/21 corresponding to a critical density="7/2 and a critical
e =c(=1,0),c(*1/2,+ \3/2), which have the properties  temperaturé&T,=4/7. The solid line is the analytic result.

Z e,=0, 2 eiaei5=3025a5, Examples of the choices of finite-difference approximations
! ! used to calculate the derivativeshich will affect correction
terms in the simulationsare

Z €i.8igei,=0,
1 - o
3ct d N~ EE n(r+eAt)e;,, (19
2. €108161,015= 4 (0updyot 8ypdust Oapdya)- '
(14
2 - o -
It will also be necessary to include a distribution function Vines —— E n(r+eAt)—6n(r)|. (29

2| <
fo for rest particles witheg=0 in the simulation. 3(A07T

To satisfy the conditions on the first three moments of the
equilibrium distribution functior(Egs. (5) and (6)], an ex- All the parameters are now in place to allow a numerical
pansion of the‘iO to second order im is sufficient. We write  simulation of the lattice Boltzmann equati¢h). This proce-
dure in normally described in terms of two steps. The first of

0__ 2
fi=A+BU& o+ CUu™+DU,UgEi o€ s+ Couplinlip these is the collision step where edgelaxes tof° at a rate

(15 governed byr. The second is a moving step where each
and for the rest particles f(x) is moved tof(x+e)).
A L oou? (16 The explicit spatial discretizatiohx in Eqgs.(18) and(19)
070 " =0 can be absorbed into the definition of There are thus three
where the coefficient$\,Ay,B, ... in the expansions de- free parameters,«, and 7 that control the temporal and
pend onn and its derivatives. Using the relatioris4), a ~ SPatial scaling and the viscosity. By monitoring the growth
suitable choice of coefficients is of density variations, we have verified numerically that the
scaling implied by Eqs(8), (9), (12), and(13) holds for a
Ap=n—6A, A=(py—«nV?n)/3c? wide range of control parameters.

B=n/3c?, C=-—n/6c?

IV. RESULTS FOR THE ONE-COMPONENT FLUID
Co=—nl/c?, D=2n/3c*
, , We now present results for the one-component fluid. We
GG = (9N (N confirm that the fluid behaves as expected in equilibrium,
X W3¢t | | ax ay) |’ explore the universality class of the kinetics, but demonstrate
that there are problems with Galilean invariance. Figure 1

2 dndn shows the coexistence curve far= 9/49 andb=2/21, cor-

Gyy=n5aKk=C 7o (17 : " o " )

3¢ ox gy responding to a critical density.=7/2 and a critical tem
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FIG. 2. (a) Equilibrium density profiles normal to a flat interface . - .
for a van der Waals fluich is the density and the position on the FIG. 3. Densityn of equilibrated droplets plotted a_s thg distance
lattice measured normal to the interface. The parameter values afiPm the center of mass of the dropfetr.,, . The points lie on a
a=9/49,b=2/21, k=0.01, andT=0.55,0.56, and 0.57. The solid single curve for each droplet, showing that any anisotropy in the
lines are numerical solutions of the continuum thermodynamicdroPlet shape is very small. These simulations were run for
equations.(b) Difference between the results of the lattice Boltz- 2= 9/49,b=2/21, andx=0.01.

mann simulations () and those(essentially exagtfor the con- ) . ) .
tinuum model fic). Fig. 3, show no obvious anisotropy, which would be marked

by some data points falling on different curves.

peratureT,=4/7. The points were obtained by equilibrating One of the problems experienced by both lattice Boltz-
a flat interface between the liquid and gas phases for differmann and finite-difference simulations of interfaces is the
ent temperatures and observing the maximum and minimur@Xistence of spurious, nonzero velocities in the interface re-
densities. Typically simulations were carried out on latticesgion even in equilibrium. For the scheme described here they
of size 128<128 and allowed to equilibriate for 1Gime  are zero for an interface parallel to a lattice direction, a for-
steps. The line is the analytic result obtained from a Maxweltuitous consequence of the imposition of the Maxwell con-
construction for the free enerd§1). Good agreement is ob- Struction. However, spurious velocities do exist for interfaces
tained over a wide range of density differences. in other directions.

To demonstrate the extent to which the correct interfacial Evidence that these velocities are due to the finite space
profile is reproduced, a planar interface, parallel to a latticeand time steps inherent in the simulation is presented in Fig.
axis, was set up by relaxing a periodic density variation for4. This displays the maximum magnitude of the spurious
~10* time steps. Figure (8) shows how the shape of the velocity across the interface of an equilibrated circular drop-
equilibrated interface varies with. The solid lines are es- et as a function of the relaxation parameterThere is a
sentially exact numerical solutions for the interface profile ofpronounced minimum close to the valu& = (1+1/y/3)/2,
the continuum model described by the nonlocal free energyhere term((At)?) in the expansioi3) vanish. Note also
(10) and the data points represent the densities obtained frothat as« is reduced and the interface becomes sharper the
lattice Boltzmann simulations at lattice sites through the in-Spurious velocities become greater as expected. A more de-
terface. Simulation parameters are given in the caption téailed discussion of the dependence of the spurious velocities
Fig. 2. To provide a more transparent demonstration of th@n the model parameters and a comparison of their magni-
accuracy of the results the density difference between thtides to those obtained in other lattice Boltzmann schemes
lattice Boltzmann and continuum solutions is plotted in Fig.for phase separation will be given elsewh2es.

2(b). Errors, which are a consequence of the discreteness of A useful check that the kinetics of the lattice Boltzmann
space and time, are less than 1%, becoming, as expectegtheme, that is, the way in which the system approaches
larger as the interface becomes sharper. We note that integquilibrium, lies within the expected universality class is
faces of width~2 lattice spacings can be obtained. Suchprovided by the rate of decay of an equilibrated interface
narrow interfaces are useful in numerical simulations of, for21,17. An equilibrium interface was set up for an initial
example, domain growth where several domains are needd@mperaturd;<T., whereT is the critical temperature and

to give good statistics on a lattice of limited size. the decay of the nonequilibrium surface tension

To check the isotropy of the interface with respect to the )
lattice, circular droplets of diameters20 and~ 30 lattice ch M4z (20
spacings were equilibriated for 4@ime steps. The density 7 Jz '

was plotted as a function of the distance from the center of
mass of the drops for all lattice points. The results, shown irwherez is the coordinate perpendicular to the interface, was
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FIG. 4. Dependence of the spurious interface velocity on the
relaxation parameter. There is a minimum near* where terms L ) ) ) ) Al
O[(At)?] in expansion(3) vanish. U, is the maximum value of constant velocity along a lattice direction. The droplet is elliptical

s ¥max

the interface velocity for a circular equilibrated droplet. Results2nd the ratio of the lengths of the minor to the major axér) is
were obtained fora=9/49, b=2/21, k=0.01 (triangles, and plotted. Results for the one-component flygtjuares show large

«=0.02 (squares coresponding to interfaces of widths5 and deviations from circular, resulting from a lack of Galilean invari-
~8 lattice spacings, respectively. ance. For the binary fluidX) the droplet remains circular, showing

that the system is very close to Galilean invariant.

FIG. 5. Equilibrium droplet shape for a system moving with

measured following an instantaneous quench to final tem-
peraturesT;=T, or T(>T.. The results are @1(UgdoN+Uqadpn) + 0ol dydap (22)

are added to the pressure ten@r By appropriate choice of

w4, and w, it is possible to remove some of the Galilean-

invariant terms, but not all, as discussed in Appendix A. A

consistent with the modé\ dynamics expected for a system moving droplet then deforms to a new equilibrium shape, an

with a nonconserved order parameter. ellipse, with the ratio of the lengths of the minor and major
These values follow from a scaling argument. From theaxes decreasing with increasing flow velocity as shown in

definition (20), o~ né/L, wherelL is the interface width and Fig. 5. An unphysical step in the velocity is seen across the

n, the value of the density far from the interface. For modelinterface.

A dynamics L~tY2T;=T.. For very early timesn,

~ const, but these times are not accessible to the simulation. V. A LATTICE BOLTZMANN SCHEME

For later timesig~t~ Y2 T=T, andn,~e !, T>T,, leading FOR BINARY FLUIDS

to the results(21). An important feature of these results is o o . .

that they show that the lattice Boltzmann scheme described ©ur @im in this section is to describe how the lattice Boltz-

here gives sensible kinetics for temperatufesT, as well ~Mann approach can be extended to describe the dynamics of

as in the two-phase region. binary fluids [22]. The main difference from the one-

We note that for later times hydrodynamic modes are excomponent case is that, as there are now two independent
pected to change the universality class of the fluid kineticsdensities, two sets of lattice Boltzmann distribution functions
These are not seen in a consideration of interface decay, butit @hd{gi} are now needed to correctly mirror the dynam-
their effects have been observed in a simulation of domaif¢S Of the conserved quantities. These are taken to evolve
growth [6]. according to the usual single relaxation-time lattice Boltz-

In systems that phase separate, significant density gradi®@nn equatiosee(1)][18]
ents are created and this leads to measurable non-Galilean- 1
invariant effects in the simulations. Note that the viscous f(X+GALEL+AL) —fi(X,1)=— —(f;—10), (23
terms in the Navier-Stokes equati@) contain functions of 71
the density within the first derivative and hence are not Gal-
ilean invariant.

To demonstrate the effect of the lack of Galilean invari-
ance a circular droplet was brought to equilibrium and then a
quickly came to rest. densityn, the mean fluid velocity], and the density differ-

A partial improvement follows if additional terms ence between the two fluid componedts=n;—n,, where

o~t%2 T=T.; o~el, T>T., (21

S R 1
gi(X+gALt+AL) —gi(x,1)=— T—2<gi—g?>. (24)
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n, andn, are the individual component densities. The physi- Following the route for the one-component fluid in Sec.

cal variables are related to the distribution functions by II, we now describe the thermodynamic aspects of the model
that here are manifest through bd?; andA ».. We choose
HZE i) nUa:E fier,, (25) the simplest model of a binary liquid: two ideal gases with a

repulsive interaction energy that corresponds to the free-
energy functional

An=Zgi. (26) . K , K )
[ ‘lf=fdr ¢(T,n,An)+§(Vn) +§(VAn) ) (36)

These three quantities are locally conserved in any collision
giving three constraints on the equilibrium distribution func- The bulk free-energy density at a temperatlires
tions

A An? T n+An
w(An,n,T)=4 (1— ) Tn+—(n+An)In( 5 )

> f0=n, El o ,=nu,, (27)

N -

n—An
+ (n—An)In( > ) (37)

> g’=An. (28)

' where A measures the strength of the interaction. For
T<T.=3\ the bulk system phase separates into one of two

hases, with density differencesAn. The chemical poten-

al difference and pressure tensor follow from the free en-
ergy in the usual way?23],

The higher moments of? and g° are defined so that the
resulting continuum equations describe the dynamics of
binary liquid mixture. A suitable choice is

Op o — NAn T [1+An/n
Eif,elae,g Paﬂ-i—nuauﬁ, (29 A (An,n,T) 2 N +§ n(m>—KV2(An),
(38
0
Eigl ia a ( ) 5 Jn dn JdAn JdAn 39
Pag(r)=p(1) '3+K(9x axBJ”‘axa axg’ 39
0 _
Zgi €,8ip=lAud,ptAnu,ug, (31 where

whereP ; is the pressure tensak,u is the chemical poten-

> 2 2Am_ K 2 2
tial difference between the two components, &ht a mo- P(r)=nT=«(nV°n+AnVZAn) 2(|Vn| VA,

bility. (40
This leadsO((At)?) to the continuity equation for the ) o ) 0
total density Finally, we present explicit expressions féf and g°.
Working, as for the one-component fluid, on a triangular
on+4d,(nu,)=0, (32 Ilattice, we define
the Navier-Stokes equation for the mean fluid momentum f9=A+Bu,e,+Cu+ Du,ugei Eigt Gp€in€is,
41
d(NUg) +d,(NUUE) = —dgPo+ sz(nuﬁ) “D
0_ 2
+ oMM du(nuy)}, (33 fo= Ao Coll™ 42
and a convection-diffusion equation for the density differ- 90 =H+Ku,&,+IU?+Qu,Uze &4, (43
ence
g9=Ho+Jou?. (44)

An
— 2 _
IAN+3,(ANU,) =T 6V-Au— 69 ( 9P aﬂ) (34) A suitable choice of the coefficients in these expansions,

consistent with Eqs(27)—(31), is
The parameters in these equations are given by
Ap=n—6A, A=(py—«AnV2An—knV?n)3c?

(A (r-12), v=2T N (e
0=(A0(1,=1/2),  v="——g——(A)C%, B=n/3c?, C=-n/6c%, Cyo=-—nl/c?>, D=2n/3c*
1 ¢ dpg k [{on\2 [on)\?
“’”:( )“(Tﬁ) (39 Gxe‘Gwzw((& oy

Their derivation from the expansidB) is detailed in Appen- " L( ( ‘m”)z_(‘m_”) 2]

dix B. 3cH| | ox ay
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FIG. 7. (&) Equilibrium density profiles normal to a flat interface

FIG. 6. Coexistence curve, the relation between the density dlffor the binary fluid defined by the free energyo) with A=1.1.
ference between the two phasks and the temperaturg, for the  An is the density difference between the two phases arte
binary fluid defined by the equation of std®¥) for A\=1.1 corre-  position on the lattice measured normal to the interface. Results are
sponding toT¢= 0.55. Different symbols denote simulations run at gjven for k=0.01 andT=0.498, 0.511, and 0.526b) Difference
different uniform fluid velocities:u=0.0 (filled squareys u=0.1 between the results of the lattice Boltzmann simulatiomg (and
(triangles, u=0.2 (hexagons The solid line is the exact result. ~ exact results for the continuum modeld). (c) Variation of the

densityn across the interface.

2 |[dndn  JAn dAn . _ .
GXYZFK (9—(7—+ v |’ the phase wittAn>0 within the phase wittAn<0 were
¢ Loxady ox Yy brought to equilibrium. Figure 8 displaysn at all lattice
points as a function of the distance from the point at which

H.o=An—6H H= FA_M K = ﬂ J=_ ﬂ the first moment ofAn is zero for each droplet. There is no
0 ' 3c? 3c?’ 6c°’ evidence that any data points lie on different curves, thus
showing that the droplets are at least very close to isotropic.
B ) B 2An
JO——An/C ) Q—W (45) -
L s N
VI. RESULTS FOR A BINARY FLUID 0.4 )
Here we detail the results of simulations on the binary r
fluid mixture. To check that the expected equilibrium is ob- 02k
tained we measured the coexistence curvenferl.l corre- -
sponding tokT.=0.55. The results, typically obtained from [
runs on lattices of size 128128 equilibrated for % 10* g ol
time steps, are shown in Fig. 6. The exact coexistence curve, <
which can be calculated from the free enefgy), is given i
for comparison. Similar measurements taken when the sys- -o0.2|-
tem was moving at a constant velocity, which provide a i
check on the Galilean invariance of the model, are also i :
shown and will be discussed below. -0.4 "
The profiles of a flat interface parallel to a lattice axis for [ S 2
the same value of and different temperatures are displayed T
in Fig. 7(a). Figure 1b) shows the deviations of the density 0 5 10 15 20 25
profiles from the exact continuum results, which follow from r—-r.m
the nonlocal free energB6). These results suggest that dis-
creteness errors in the simulations1-2%. Figure Tc) FIG. 8. Order parametekn of equilibrated droplets plotted as
shows the total density across the interface, which is apthe distance from the center of mass of the droplet. . The
proximately constant. points lie on a single curve for each droplet showing that any an-

Another important check concerns the isotropy of the in-isotropy in the droplet shape is very small. These simulations were
terface profile with respect to the lattice. Circular domains ofrun for A\=1.1, x=0.2, andT=0.5.
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0.0012[ throughout the fluid. To demonstrate this the coexistence
curve was measured for systems moving at a constant bulk
velocity. The results, plotted in Fig. 6, show no velocity
dependence. A second set of results, which highlights the
difference between the one- and two-component fluids is
shown in Fig. 5. The deformation of an originally circular
droplet in a fluid moving with constant velocity seen in the
former case does not occur for the latter. However, we note

0.00115

E that the problem will reappear if the two components of the
= binary fluid have different massé24].
0.0011}F VIl. COMPARISON TO OTHER LATTICE BOLTZMANN

SCHEMES OF PHASE SEPARATION

We now compare our approach to other lattice Boltzmann
schemes for phase separation appearing in the literature. A
scheme for modeling immiscible binary mixtures, which has
B | T been widely used, was introduced for cellular automata by

’ T, Rothman and Kellef25] and extended to the lattice Boltz-
mann framework by Gunstensenal.[10]. The Gunstensen

FIG. 9. Dependence of the spurious interface velocity on theSt @l- scheme induces phase separation by a phenomenologi-
relaxation parameter. There is a minimum near* where terms ~ Cal rewriting of the collision rules. It can be described within
O((At)?) in the expansior3) vanish.u, is the maximum value the framework of a Bhatnagar-Gross-Krook approximation
of the interface velocity for a circular equilibrated droplet. Results[18] in two steps.
were obtained fon=1.1, k=0.2, andT=0.5 corresponding to an In the first step the distribution function for the total den-
interface of width~5 lattice spacings. sity {f;} is updated as usu@Eq. (23)] but with an equilib-

rium distributionfiO corresponding to an ideal gas. A color

Just as for the one-component fluid, discreteness errors igradient is then defined at each node
the simulation lead to spurious velocities in equilibrium in
the interface region for the binary fluid. An example of these - IR - -
is plotted in Fig. 9. Again, there is a pronounced minimum qa(r):Zeia{nr(r+ei)_nb(r+ei)}~302’9aAnv

near ;=7 where termsO((At)?) disappear from the ex- (49)
pansion(3). For a flat interface parallel to a lattice axis there
are no spurious velocities. wheren,=(n+An)/2 andn,=(n—An)/2 are the densities

It_ _is intergsting to compare re;ults for the depay of ansf the two species. An extra term
equilibrated interface following an instantaneous increase in

temperature toT;=T, or T;>T, to those for a one-
component fluid[21]. They are expected to differ because
the binary fluid has a conserved order parameter. This mean
that it lies in the modeB universality class in the regime where

when hydrodynamics is unimportarit7].

B1la|cos2; , (49)

The nonequilibrium surface tension Cosp = &-éi (50)

=75

a(An)\2 |allei]
O'OCJ' (46)
9z is added tof;}.
I Writing
was measured and was found to decay with time as
o~t V4 Ti=T. o~t72 T>T.. (47 0,038 48ip

CoS2p,=2c0g ¢ —1=2 1, (51)

These results should be compared to those for the liquid gas |ql?c?
system(21).

The values are again in agreement with a simple scaling iS apparent that the initial updating, together with the ad-
argument. Front46) o~ (Ang)?/L, whereL is the interface  dition of the extra tern{49), is equivalent to a single updat-
width andAn, the value of the density difference far from N9, but with a redefined equilibrium distribution function
the interface. For modeB dynamicsAng~const; L~t12, . _

T>T.; and L~tY4 T=T,, leading immediately tq47). f0=A+Be U, +CUu2+DU,Uge; &5+ G,€ €.
This provides a very clean and simple numerical test that our (52
model does indeed lie within the mod@luniversality class.

The lack of Galilean invariance for the one-componentThe coefficient8,C,D (and those appearing ng) are iden-
fluid does not occur for the binary fluid simulations. This istical to those defined in Eq45). However, differences ap-

because, in the latter case, the density is essentially constgpear in



54 LATTICE BOLTZMANN SIMULATIONS OF LIQUID-GAS ... 5049

A=n/3— ,317|(3|, These definitions for the moments tf lead, in the usual
way (see Appendix A to a continuity equation, but with a
287, — 28T, — 2Bir spurious diffusive term
Gyx= Cz|6| X1 ny: Cz|(.:i| Ay ny:quQy- 2
(53 N+ U, =——V2, (57)

These coefficients correspond to the definitions of the MO 4 to the Navier-Stokes equation with a nonideal equation
ments offi0 given in equation$27) and(29) if the pressure q q

tensor is taken to be of state
c?[(1—dg)n
1 |

— . 3 — 2
Pog=P(F) gt Iljl 702(362)29,(AN)ag(AN), (54) Po=5| g 3GV M), 58
q

where dy is a constant. Hence the system spontaneously
phase separates with(1—dg)/G behaving in a way akin to
—= 3 > 5 temperature.

P(r)=(n—3pB17lql)c”. (55 The primary drawback of this approach is that the equi-

This form for the pressure tensor should be compared to quprium _state is not thermodynamically coqsistent and has no
(39) and(40). The important term that gives rise to an energlyunderlymg free energy. This means that, in general, calcula-

associated with density gradients and hence to a surface teffr?ssi:r]: ttiiﬁrogeﬁssg;ie :ysfsar&gor f?gﬁmﬁf' trhees Ssurrface
SSocia Sradie _ , i .
sion k=3p,(3c?)?7c?/|q| is included in the Gunstensen g PP pressure

! ) tensoj or a thermodynamic approache., from a Maxwell
et al. approach, but the Iack'dflen terms in the 'dlagonal .construction on theyequationp%f statare inconsistent. It
part of t_he pressure tensor |n(_j|cates that there is no CONSIFould be interesting to ascertain whether this approach gives
tency with a free-energy functional the correct kinetics for the approach to equilibrium by, say,
In the secgnd step of the Gur)stgnmral. approact{10] following the decay of an interface equilibrated beldwas
the two densities, andn,, are redistributed so as to preserve the temperature is raised T, or whether the additional

a sharp interface. The prescription for this is to maximize th‘?jiffusive term in the continuity equation drives a crossover
scalar pri)duct of the color gradiefg. (48)] and the color to a different universality class.
flux Zigie; at a site with the constraints that tfieand the Shan and DoolefiL3] have more recently given a detailed
total densities of the two species remain constant. account of the application of this approach to miscible binary
~ The maximization step is carried out numerically preclud-fiyids. There is an extra momentum exchange between the
ing an analytic comparison to the approach described hergomponents, introduced as an extra term in the definition of
However, its effect is to leavBgP=An, as in Eq.(28), but  the first moment of the equilibrium distribution function Eq.
to introduce complicated additional terms into batg’e;,  (30). Given care in the identification of the macroscopic fluid
and Eg?emeiﬁ, which presumably mimic the effect of the velocity this leads to convection-diffusion equations for each
chemical potential. In the Gunstenseial. approach the in- component. The diffusion is driven by the difference in the
terfaces are sharp, but this appears not to affect the kinetidkiid densities from their equilibrium values and the diffu-
of domain growth[26]. An extension of the method that sion coefficients are a complicated function of the fluid con-
allows a phenomenological parameter that can be used wentrations and the parameters appearing in the interaction
tune the interface width has been proposed by D’Ortonderms.
et al. [27]. We emphasize that in the approach described in this paper
A different approach to the introduction of phase separaphase separation is driven by terms in the second moments
tion has been proposed by Shan and Chkh12. These of the equilibrium distribution functions, whereas in the
authors base their development on the assumption that phaSé#an-Chen-Doolen method the additional terms appear in the
separation is driven by microscopic interactions between thérst moments. Although one might argue that considering
lattice Boltzmann sites. The effect of the interactions is tomicroscopic interactions naturally leads to momentum
introduce an additionainomentunchange at each iteration changes it is far from obvious that the lattice Boltzmann sites
of the recursion equations. should be viewed as microscopic entities. Regarding the
Hence, for one-component fluids, the equatiBnfor the  simulation as mesoscopic, the effect of interactions are more
first moment of the equilibrium distribution function is re- physically input as corrections to thermodynamic variables
placed by such as the pressure tensor. This approach has the advantage
of no spurious diffusion term in the equation for one-
component flow, a thermodynamically consistent equilib-
rium state, and a much simpler diffusion equation for binary
flow.
whereG measures the strength of the interaction gnis a As far as we are aware the only other scheme in the lit-
function of the densityn. The second moment of the equi- erature that relies on corrections to the second moment of the
librium distribution function is taken as equal to the pressurelistribution function is a lattice Boltzmann scheme for mis-
of anideal gas, together with a streaming tefoompare Eq. cible fluids due to Flekkp [28]. The main difference be-
(6)]. tween his approach and that presented here is that3y.

where

> fe,=nu,—1GY(x) D, Y(x+e)e,, (56



5050 SWIFT, ORLANDINI, OSBORN, AND YEOMANS 54

which defines the second moment of the distribution functioran ideal ga$29] it is far from obvious how to treat potential

for the density difference, is replaced by energy correctly. Moreover, on a microscopic level, ldn
theorem must be identified before a fully thermodynamically
consistent scheme is possible. Perhaps one should emphasize
that the Navier-Stokes equations themselves contain only the
equation of state and are reproduced by virtually any method
This, together with the assumptions tHaf;= %néaﬁ and  of driving phase separation that conserves momentum. The
that the density is constant, leads to a diffusion equatioractual equilibrium obtained is determined by higher-order

> 9%i,85=ANS,402. (59)
I

(rewritten in the notation of this paper corrections in the simulation. A corollary is that to get en-
5 ergy flow correct, it will not only be necessary to simulate
dAn+u,d,An= (7= 1AV An/2—u,ugd,dpAn}. the correct macroscopic conservation equations but also to

(60) introduce the correct relations between the microscopic ther-
modynamic properties.

Another interesting direction for future research is the re-
ionship between lattice Boltzmann and finite-difference
approaches to the solution of the Navier-Stokes equations.
That the two schemes are intimately related was pointed out
by Ancona[30]. Recently Nadiga and Zalesk31] have in-
troduced the correct nonideal pressure tensor into a finite-
difference simulation of the Navier-Stokes equations ensur-
ing that a thermodynamically consistent equilibrium is
obtained.

A difference between this and equati(®4) is the appear-
ance of the non-Galilean-invariant term on the right-hano\at
side of (60). This gives a velocity dependence to the diffu-
sion coefficient that can be removed by addihgu,u, to
the right-hand side of the definitio{9). A more physical
difference is that the diffusion is driven by the density dif-
ference An rather than the chemical potential difference
A . Hence the simulation will be unstable in the immiscible
regime.
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a chosen free energy. Hence mechanical and thermodynamic
calculations of physical properties are, by construction, con-
sistent in the steady state. The approach to equilibrium is
governed by the input free energy in a way similar in spiritto  Our aim is to show how the continuity and Navier-Stokes
the Cahn-Hillard approach to phase separation in binary alequations for a one-component fluid follow from the single
loys. Bulk flow properties are described by the continuityrelaxation time lattice Boltzmann approximation Et). Our
and Navier-Stokes equations. For the binary fluid there istarting point is Eq(3).

also a convection-diffusion equation for the density differ- Summing both sides of Eq3) overi and using Eqs(4)
ence with the diffusion being controlled by the chemical po-and(5) gives

tential difference between the two components.

APPENDIX A

Numerical results for the coexistence curve and interface _ o 2
profiles were shown to be in excellent agreement with the 0=0in+du(nuy) = (7= 12)At) Gin+27,9(nu,)
analytic calculations. Evidence presented here and elsewhere
[6] indicates that the kinetics of phase separation at early 0n a 2
times lies within the modeA universality class for the one- +a“aﬂzi fi€iagip| +OUALY). (A1)

component fluid for which the order parameter is not con-

served and the modeB universality class for the two- Multiplying Eq. (3) by €;; and summing over gives
component fluid where it is. Moreover, the scheme has
sensible kinetics above and at, as well as below, the critical
temperature.

A problem is the lack of Galilean invariance, which oc-
curs for the liquid-gas system because of variations in the o 2 0, A
density that appear inside derivatives in the Navier-Stokes (7 1/2)At{&t(nuﬁ)+2ataa§i:fi CiaCis
equation. Although this can be alleviated by including addi-
tional terms in the pressure tensor ), it cannot be re- 0n o o 2
moved. The continuum Boltzmann equation is, of course, +0“07§i: fie'“e'ﬁe'7]+o((At) ) (A2)
Galilean invariant, and the invariance is lost in going to the
lattice version. More work is needed to understand and overfrom Eqgs.(Al) and(A2), respectively,
come this shortcoming.

Still missing from the approach is a correct treatment of
the flow of energy: a macroscopic differential equation de-
scrlblng energy co'nservatlo.n is needed. Although such an 0t(nug)=—ﬁa2fioeiaeiﬁJfO(At)- (A4)
equation has been included in a lattice Boltzmann scheme for i

0=(?t(nuﬁ)+<9az fioeiaeiﬁ
I

an=—4a,(nu,)+O(At), (A3)
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Substituting these expressions into the curly brackets in Eqnvariant. This occurs because the second momen?,d&q.
(A1) shows that this term vanishes to this order and we aré6), is symmetric with respect to interchange of its indices,
left with the continuity equatior(7). but the viscosity terms do not have this symmetry. To im-
Similarly using Eq.(A4) shows that the first, together prove the behavior when Galilean invariance is important a
with half of the second, term in the curly brackets in Eq.sensible choice is
(A2) can be neglected as higher order. We consider the re-
maining terms in(A2) in turn. w1=—{, wy=N\. (A10)
(i) Using the definition of the second momentfdf, Eq.

(6) APPENDIX B

Here we present the steps involved in obtaining the equa-
tions of motion(32)—(34) from the lattice Boltzmann scheme
(A5) defined by Eqs(23) and(24). The derivation of the continu-
ity equation(32) and the Navier-Stokes equatid83) fol-
using (12) and neglecting higher-order derivatives. lows that for the one-component fluid presented in Appendix
(i) Similarly, A

&az f|0e|ae|ﬁ=aapaﬁ+ ﬁa(nuaulg)%&ﬁpo"' (9a(nuauﬁ)
I

To obtain the convection-diffusion equati¢®4) we start
0d 9% e .=9.d (P ~+nu.u f_rom the equatlpn analogous (_6) fo_r the d|str|but|on_func-
! “Z €ia€ip= It0a(Pag alip) tions {g;} describing the density difference. Summing over

i and using(26) and (28) gives
~0do0iPoT 9ol Undi(NUg) +NUgAU, |

m—aﬁd_noay(nuy) 0 &tAn aaEigl ela (T Z)At
~ 9a(UqadpPot UgdaPo), (A6) X atzAn+2aaatEi Qe+ aaaBEi g%€i.€i 5
again neglecting higher-order derivatives. The final step fol- )
lows from using Eqs(A3)—(A5). +O((At)9). (B1)

(iii) Using the definition of°, Eq.(15), together with the ) ) ) )
property of the lattice vectors EL4), the final term in curly It follows immediately from the first two terms on the right-

brackets in Eq(A2) may be rewritten as hand side of this equation that
CZ
a0y fioeiaeiﬁeiy=z(9aay(nuy5aﬁ+nu35a7+nuaﬁﬁy) dhAn= —%Z glei,+ O(AL). (B2
I
c? Using E i i
_“ 2 g Eq.(B2) shows that the first, together with half of the
T4 [2957,(NU,) +V NU] (A7) second, term in curly brackets in E@1) is of higher order

and can be neglected. To simplify the remainder of this equa-
Substituting (A5)—(A7) back into (A2), one obtains the tion we shall use
Navier-Stokes level equatiof8).
The viscous terms in the momentum equatiBnare not 0 An 0
Galilean invariant when density gradients are present. Some Zgi eia=AnUa:7z fi€iq, (B3)
of the non-Galilean invariant terms can be removed by add- ' '

ing terms to the pressure tensor &6). where the second equality follows from E5). This is

tantamount to assuming that each component is moving with

> 2%, ,8i 5= Popt NUUg+ 01 (UgduN+U,dgN) the mean fluid velocityl. We consider each of the remaining
' terms in(B1) in turn.
+ wyu,d,N. (A8) (i) Using Eq.(B3)
The Navier-Stokes level equation then becomes 0
002 00810= da(ANU,). (B4)
I(NUR) + d(NULU ) = — 3 gPo+ 1d (NI R) + d5(NNJ,U,,) '
+ [ (v—w1— {Upd,n] (i) Similarly,
+dg[ (A~ w2)Uadan] An
’ 000 0010 = aaat(—nua) . (B5)
+do[(—{—w1)uadpn], (A9) i n
wherev and\ are defined in Eq(9) and{=2v—A\. Differentiating each term in the product and replacing the

Equation(A9) shows that it is not possible to choosg  time derivatives by space derivatives using H@s3), (A4),
and w, so that the momentum equation is fully Galilean and(B2) this term gives a contribution
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An
—(701 &ﬁ(AhUﬁ)ua‘l'((?'gua)AnUB"' T(gﬁpﬁa]' ﬁaﬁﬁEigioeiaei,3=ﬁa&B{FAM5a5+AnuauB}. (B?)
(B6)
where we have used the definiti29) to rewrite the second Substituting(B4), (B6), and(B7) back into(B1) and noting
moment offiO in terms of the pressure tensor. that the first two terms ifiB6) cancel with the last term in
(iii) Using the definition(31) (B7) gives the convection-diffusion equatidgd4).

[1] R. Benzi, S. Succi, and M. Vergassola, Phys. R&g2, 145 [17] AJ. Bray, Adv. Phys43, 357 (1994).

(1992. [18] P.L. Bhatnagar, E.P. Gross, and M. Krook, Phys. Fdy511
[2] D.H. Rothman and S. Zaleski, Rev. Mod. Ph6, 1417 (1954; H.D. Chen, S.Y. Chen, and W.H. Matthaeus, Phys.
(19949. Rev. A 45, R5339(1992; Y.H. Qian, D. d’Humiges, and P.
[3] U. Frish, B. Hasslacher, and Y. Pomeau, Phys. Rev. Béft. Lallemand, Europhys. Letfl7, 479(1992.
1505(1986. [19] M.R. Swift, W.R. Osborn, and J.M. Yeomans, Phys. Rev. Lett.
[4] F.J. Higuera, S. Succi, and R. Benzi, Europhys. L@tt345 75, 830(1995.
(1989. [20] M. De Menech, Laurea thesis, University of Padva, 1996.
[5] I. Ginzbourg and D. d’Humiees (unpublishedl [21] W.-J. Ma, P. Keblinski, A. Maritan, J. Koplik and J.R. Bana-
[6] W.R. Osborn, E. Orlandini, M.R. Swift, J.M. Yeomans, and var, Phys. Rev. Lett71, 3465(1993.
J.R. Banavar, Phys. Rev. Lef#t5, 4031(1995. [22] E. Orlandini, M.R. Swift, and J.M. Yeomans, Europhys. Lett.
[7] F.J. Alexander, S. Chen and D.W. Grunau, Phys. Re¥8B 32, 463(1995.
R634(1993. [23] L.E. Reichl,A Modern Course in Statistical Physi¢arnold,
[8] S.Y. Chen and T. Lookman, J. Stat. Phg4, 223(1995. London, 1980.
[9] A.K. Gunstensen and D.H. Rothman, J. Geophys. Res. Solifi24] D. d’Humieres (private communication
Earth98, 6431(1993. [25] D.H. Rothman and J.M. Keller, J. Stat. Ph$g, 1119(1988.
[10] A.K. Gunstensen, D.H. Rothman, S. Zaleski, and G. Zannetti[26] C. Appert, J.F. Olson, D.H. Rothman, and S. Zaleski, J. Stat.
Phys. Rev. A43, 4320(199). Phys.81, 181(1995.
[11] X.W. Shan and H.D. Chen, Phys. Rev4F 1815(1993. [27] U. D'Ortona, D. Salin, M. Cieplak, R.B. Rybka, and J.R. Ba-
[12] X.W. Shan and H.D. Chen, Phys. Rev4H 2941(1994 navar, Phys. Rev. B1, 3718(1995.
[13] X.W. Shan and G. Doolen, J. Stat. Phg§g, 379(1995. [28] E.G. Flekkay, Phys. Rev. &7, 4247(1993.
[14] J.S. Rowlinson and B. WidonMolecular Theory of Capillar- [29] F.J. Alexander, S. Chen, and J.D. Sterling, Phys. Re¥7E
ity (Clarendon, Oxford, 1982 R2249(1993.
[15] R. Evans, Adv. Phys28, 143(1979. [30] M.G. Ancona, J. Comput. Phy&15 107 (1994.

[16] J.W. Cahn and J.E. Hilliard, J. Chem. Phg8, 258 (1958. [31] B.T. Nadiga and S. Zaleskunpublished



