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We present a method for the generation of periodic embedded surfaces of nonpositive Gaussian curvature
and multiply continuous phases. The structures are related to the local minima of the scalar order parameter
Landau-Ginzburg Hamiltonian for microemulsions. In the bicontinuous structure the single surface separates
the volume into two disjoint subvolumes. In some of our phdsadtiply continuou$ there is more than one
periodic surface that disconnects the volume into three or more disjoint subvolumes. We show that some of
these surfaces are triply periodic minimal surfaces. We have generated known minimal d@rfac&chwarz
primitive P, diamondD, and Schoen-Luzatti gyroi@ and many surfaces of high genus. We speculate that the
structure of microemulsion can be related to the high-genus gyroid structures, since the high-genus surfaces
were most easily generated in the phase diagram close to the microemulsion stability region. We study in detail
the geometrical characteristics of these phases, such as genus per unit cell, surface area per unit volume, and
volume fraction occupied by oil or water in such a structure. Our discovery calls for new experimental
techniques, which could be used to discern between bicontinuous and multiply continuous structures. We
observe that multiply continuous structures are most easily generated close to the water-oil coexistence region.
[S1063-651%96)01311-9

PACS numbdss): 61.20—p, 64.75:+g, 68.10—m, 02.40-k

[. INTRODUCTION: MICROEMULSION dynamically stable phase is creatg®]. This phase, called
microemulsion, can coexist with oil and watet,1,2. The
Amphiphilic molecules are composed of two different measurements of electrical conductivity, self-diffusion,
parts: a hydrophobic tail and a hydrophilic head. The tail isNMR, and freeze fracture microscopy studies indicate that
composed of one or more hydrocarbon chains, usually witfhe structure of microemulsion is bicontinuolt6,1,7,8.
6—20 carbon atoms; the head is composed of chemicd/hat is, the microemulsion is composed of water and oil
groups of high affinity to watef,2]. Such a composition of c¢hannels mutually interwoven, separated by the monolayer
amphiphilic molecules results in many amazing properties off surfactant. The amphiphilic systems can form apart from
systems containing these molecules. Adding an appropriatré‘e structured disordered phase like microemulsion, many-
amount of amphiphile to a mixture of oil and water, two ordered phases. The most common are the lamellar and hex-

liquids that are immiscible under normal conditions, cause?gonal' The_lamellar phase is composed of the regions of
complete mixing of these liquids. The amount of amphiphileWater and oil separat_ed by the s_urfactant monolayer. _The
necessary to cause mixing depends on the strength of tri;%mellar phase_ looks like a sandwich composed of the slices
T . water and oil separated by a monolayer of surfactant. The
amph|ph|I_e. The longer the hydrocarbon _chgm t.he. Strongeﬁexagonal phase is composed of cylinders of water or oil
the amphiphile. The strength of the g_mphlphne §|m|larly de'bounded by the layer of surfactant, arranged on a hexagonal
pends on the number of hydrophilic groups in the am-aice immersed in oil or water. The most interesting are the
phiphilic molecule. Complete mixing is enabled by lowering ordered cubic bicontinuous phases. The most prominent ex-
the oil-water surface tension by the amphiphile. That is Whyamples are the gyroid, double diamofebmetimes called
the amphiphilic molecules are also called surfactants: SUFfaC@iamond [9], and simple cubic phase.
active agents. The surfactant assembles at the interface, The systems containing surfactants are difficult to charac-
forming a monolayer, in such a way that the hydrophilic partterize. They are structured liquid ternary mixtures. For ex-
of the amphiphile is located in water and the hydrophobicample, microemulsion on a macroscopic level looks like an
part in oil. The surfactant monolayer separates coherent resrdinary homogeneous fluid. However, it is known that the
gions of oil and water. Usually the monolayer width is small microemulsion is composed of three components: two of
compared to the size of oil and water regions unless théhem, oil and water, do not mix in the absence of the third
concentration of surfactant is very high. In such a situatiorone, the surfactant. Thus the presence of the surfactant is
the formation of water and oil droplets suspended in thecrucial. It is obvious that information about the location of
surfactant solution is possible. Surfactants dissolved in watesurfactant in its mixtures characterizes the mixtures in the
can form micells of different shape: spherical or cylindrical. best way. The surfactant forms a monolayer at the water-oil
They can also assemble into bilayers grouping the hydrophdnterface. This monolayer can be approximated in the theory
bic part of the surfactant inside the bilayer. Such a system iby a mathematical surface. Thus, in order to characterize the
called the sponge phase. systems containing surfactants it is enough to characterize
When comparable amounts of oil and water are mixedhis surface and its properties such as the surface area, genus,
with the surfactant a new homogeneous, isotropic, thermoand its curvaturef10—14.
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There are three levels of description of these mixtureswater and positive for oil regions or vice versa. The sign is
macroscopic, mesoscopic, and microscopic. Here we concejust a matter of convention. The surface
trate on the mesoscopic level, described by the Landau-
Ginzburg theory developed recently. We note that the most $(r)=0 5
interesting phenomena take place on the mesoscopic scale,
which is intermediate between the microscopic and macrodescribes the interface between oil and water. The function
scopic. The typical sizes of oil-rich domains in the mixture f(4(r)) is the bulk free energyu is the chemical potential
are often 1000 A, which is much larger than the size of adifference between oil and water. The surfactant degrees of
surfactant(25 A), but much smaller than the macroscopic freedom are considered as being integrated out and the sur-
scale of millimeterd1]. This means that microemulsion is factant properties enter the functiortd) through the form of
structured on the mesoscopic scale, which justifies the choid@e functionsg(¢(r)) andf(é(r)). The functional(2) can be
of the Landau-Ginzburg model for its descriptions. In theused also to model the sponge phase. In such a case the
next section we describe the Landau-Ginzburg theory thafegative values of the order parameter are interpreted as the
we use to generate the surfaces in the oil, water, and surfatterior part of the sponge phase and the positive values as
tant mixtures. the exterior part of the phager vice versa

The paper is arranged as follows. In Sec. Il we describe The functionf(é(r)) has by construction three minima,
the Landau-Ginzburg functional used in our calculationswhich guarantees three phase coexistence, i.e., oil, water, and
Section 1l describes numerical procedure used to solve thelicroemulsion. The minima for oil-rich and water-rich

functional. In Sec. IV we present the results. phases are of equal depth, which makes the system symmet-
ric; thereforeu has to be set to zero. Varying the parameter
Il LANDAU-GINZBURG MODEL f, makes the middle phasgnicroemulsion more or less

stable with respect to two bulk phases. THysis propor-

The theoretical model describing the behavior of the systional to the chemical potential of microemulsion. The con-
tem containing surfactants originates from the expansion istantg, depends om, and f, and is chosen in such a way
gradients of the Landau-Ginzburg free enefd§l: that the correlation functio®(r) =((r)$(0)) decays mono-
tonically in the oil-rich and water-rich phasg$7,5]. Here
we takeg,=41+fy—gy+0.01. The more negativg, the
stronger or more surfactant used.

In the Gaussian approximation the water-water structure

Ao01= | Erlagtaip()+ab(r)+asp(r)’

Tagp(r)*+ase(r)+agp(r) + - factor S,,(k) for (2) is given by
+Cq| V(NP4 o Ap(r)[ 2+ -+ 1
+d(DZV()|2+---]. @) Sl ck+g(dp)k?+ 31" (o) ©

This is the simplest model with a single scalar order param- .
eter ¢(r). The analysis of1) shows that the essential fea- ‘ﬁbe{qﬁ‘”"ﬁm 'r?O}h For the B'I'”Ch pgafsdqﬁ(r» =o, lfqr

tures of systems with internal interfaces can be recovered by'® Wfter'i'c P asﬁgb(lir())—qﬁ\f,\,, an_ or m&qroemu S||0n
keepingc,<0 andc,>0. The gradient term with negative (#(1)=¢n=0. A peak atk>0 (for ¢, = ¢y, indicates a lo-

coefficientc, tends to create the interface, whereas the Lgcal structure of microemulsion with characteristic size

placian term with the positive coefficiemt, stabilizes the §~2mlk. For_¢b_= ¢9 or ¢, the structure factor has a peak
system. The number of terms and the values of coefficientQ"y atk=0, indicating that pure oil and water phases behave
in the expansion of the scalar order paramef@j in power ike a normal liquid with no internal structure. The water-
series depends on the problem to be studied. In order (Y2t strﬁcturﬁ fathi,s\Nw(fk)h carr: be meaZUfeﬂ Inkegpen-b
study microemulsion and ordered phases that appear in sy8€nts. Thus the quality of the theory can be checked out by

tems containing surfactants the following Landau-Ginzbur omparing theoretlca! predictions with an experiment. It
functional was proposefl6,17 based or(1): urns out thai6) describes extremely well the data from the

scattering experimen{s6,7]. The model(2) has been suc-
cessfully used to describe the wetting behavior of the micro-
f[d)(r)]:f d3r[c|Ao(r)|2+g(d(r)|Ve(r)|2+f(h(r)) emulsion at the oil-water interfadd 7—20 to investigate a
few ordered phases such as lamellar, double diamond, simple
+ud()]. (2)  cubic, hexagonal, or crystals of spherical micg#$,22 and
to study the mixtures containing surfactant in a confined ge-
We have used in our calculations the mod2l with the  ometry[23].

functionsg(¢(r)) andf(¢(r)) given by An enormous advantage of the mod2) is its simplicity.
It is extraordinary that the properties of a very complex sys-
g((r)=g,4(r)%+go, 3 tem are described by the one scalar order parameter field.

There are a few Landau-Ginzburg theories with more than
f(p(r)=w[ (1) + b, ] d(r) 2+ ][ (1) + do]% (4  one order parameter fie[d,24—2§. However, adding a new
order parameter field does not automatically make the model
and the set of constanty,=—d¢,=1, c=1, =1, andu=0.  Dbetter. It does, for sure, make solving the model more diffi-
The values of the field(r) are proportional to the differ- cult and it involves the introduction of new parameters, the
ence in oil and water concentrations and are negative fophysical meaning of which is not always clear.
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=1,...N. In our calculations we us®=129, which results
in over 2<10° points per unit cell.

All structures we have investigated are periodic. Thus pe-
riodicity had to be incorporated into the functiorid). It was
done by periodic boundary  conditions ¢
= ¢N,j,k¢2,j,k: ¢N+1,j,k: ¢3,j,k: ¢N+2,j,k¢o,j,k: ¢N—1,j,k:
and ¢_ 4 y=¢n-_2jk and similarly in they and z direc-
tions. The points outside the unit cell, given by the periodic
boundary conditions, enter the functional through the calcu-
lations of derivatives of points at the boundary and near the
boundary of the lattice, i.e., when at least one of the indices
) ) N ) i,j,kis equal to 1,2—1N.

FIG. 1. Piece of surface with nonpositive Gaussian curvature. The first and second derivatives in the gradient and La-
R; andR, are the principal radii. The GaussiaK) and the mean lacian term of the functiondPR) at the point =(i,j,k)h on

(H) curvatures are expressed in terms of the principal radii a he latti .
. ice wer Icul rdin he formyzg)
H=1/2R,+ 1/2R, andK =1/R;R,. If R;=—R, at every point, the ¢ lattice were calculated according to the formy

surface is called minimal. This implies th#t is nonpositive at AB(r)  divrik— Pi1ik
every point. ax o N =

()

In the mean-field approximation the stable or metastabl
phases of the system correspond to the minimum of the func-
tional (2) and the crucial information about the structure is 2p(r) 1
contained in the properties of the surfag@)=0 formed, in = o2 (T Piv2j kT 160111 k=300 j
the system, by surfactant. We have obser{29] the very
special property of the functioné®) related to this surface. +16¢; 1) k= Pi—2j k), 9)
We have discovered it by analyzing the formula for the mean
curvature (Fig. 1) expressed in terms of the three- and similarly in they andz directions. The mixed derivatives
dimensional fieldy(r). From the form of(2) one can realize used in(18) and(19) are calculated according {80]

that for some local minima dR) the average curvature given
by PP p(r) 1
axay AT (iv1jkt di—1jkt dijrict dij-1x

X2

1_[ Ve(r) 1 Ap(r)  Ve(r)V[Ve(n)
H(r):_fv(m):_iv¢(r)|+ AV (]2 —2¢i k= Pir1jrik— Di-1j-1K)- (10
7
( A. Choosing the surface
vanishes at every point of the(r)=0 surface. It follows
from the second term of2) that |[V¢(r)| should have the
maximal value for¢(r)=0 (note thatg,<0) and conse-
guently the second terfwhich after a small algebra can be
written as[d|V(r)|/an]/2lVe(r)|, with gn denoting the de-
rivative along the normal to the surfgcen (7) vanishes. é(r=(x,y,2))=0, (12)
Also for the ¢(r),— ¢(r) symmetry we know thal (r) aver-
aged over the whole surface should be zero. This means thdividing positive and negative regions of the order parameter
A¢(r) either is exactly zero at the surface or changes signfield. Thus it was crucial in our studies to find the location of
From the first term of2) it follows that the former is favored the surfacep(r)=0.
and consequentlH(r)=0 at every pointr at the surface Itis highly unlikely, because of numerical accuracy, that a
¢(r)=0. The surface such that the mean curvature vanishegalue of the fieldé(r)=¢, ;  at the pointr =(i,j,k)h on the
at its every point is called minimal. Therefore, before solvinglattice is exactly zero. Therefore the points of the surface
(2) we observe that among the local minima of the functionalhave to be localized by interpolation between the neighbor-
(2) the structures with minimal surfaces should be favoreding sites of the lattice. Ifé(r,=(i,j,k)h)=¢ ; (<0 and
The argument presented here has a local nature and does rit ,=(i + 1,j,k)h)=¢; .1 >0, then the point,, for which

The order parameter fields(r) carries an enormous
amount of information about the local structure of the phases
we have investigated. The most interesting is the topology of
the phases, described by the surface

rule out other possibilities. @(rp)=0, must lie between the points;=(i,j,k)h and
r,=(i+1,j,k)h. Moreover, the location af, depends on the
lll. MINIMIZATION OF THE FUNCTIONAL values of the field at the points andr; as
In order to find the local minima of the functioné) we . |¢i,j,k|

r j.k|h. (12

have discretized it on the cubic lattice. Thus the functional o= |1+ |bi i «— Ditiiu s
. 3 . i,j,k i+1j,k
Fl¢(r)] becomes a functiorF({¢; ; «}) of N° variables,
whereL=(N—1)h is the linear dimension of the cubic lat-
tice, h is the lattice spacing, ani@; ; .} stands for the set of
all variables of the function. Each variabg ; , represents In the way described in the preceding section, one can

the value of the fieldp(r) at the pointr =(i,j,k)h andi,j,k  find the points of the surface(r)=0 located between the

B. Triangulation, surface area, and volume



54 TRIPLY PERIODIC SURFACES AND MULTIPL . .. 5015

FIG. 2. Possible configurations of passing the surfé@e=0
through the fielde(r) discretized on the lattice. Black circles rep-
resentg; ; <0, whereas white circleg, ; >0. The cubes represent
the smallest pieces of the lattice of linear dimendiorfror smooth o ] ] o
surfaces studied here cases of 3—6 vertices of the surface in a small FIG. 3. Schematic illustration of the separation of two disjoint
cube are the only cases. Cases of 7-9 and 12 vertices in a singhrfaces.
cube have not been encountered.

calculated volume for regions of positive and negative values

. . . . L of ¢&(r).
ne|ghbor|ng lattice S|t.es. However, this is not qnough to de- For more than one periodic surface, in the unit cell, it is
scribe the surface. It is also necessary to specify the connefeessary to separate different surfaces to be able to calcu-
tions between these points to characterize the surfaceé late the surface area and genus of each surface. In order to
Due to discretization the unit cell is divided ¢dN—1)"  fing the points that belong to the same surface one has to
small cubes of the size of the lattice spacgThe surface  choose an arbitrary point on one of the surfaces and follow
¢(r)=0 passing through a small cube cuts out of it a poly-the connections between points to find the rest of the points
gon, whose edges are formed by the intersection of the subelonging to this surface. The set of connections will
face and faces of the small cube. The edges of the polygonniquely specify the surface. Figure 3 illustrates the way this
can be approximated by straight lines. The possible configusrocess can be done for two surfaces. Having chosen an
rations of the surface(r)=0 cutting a small cube are pic- arbitrary point on one surface, represented by a black circle
tured in Fig. 2. The surface(r)=0 can cut out only four in Fig. 3(@), one has to find among all the connections be-
kinds of polygons: a triangle, a tetragon, a pentagon, and tween couples of points specified by the triangulation the
hexagon. The edges of these polygons, except the trianglépnnections including this point. They are represented by
do not lie in a common plane. It is necessary to specify alsdhick solid lines connecting the black circle with the white
the connections between the vertices of the polygon, to chafircles. Next one has to chose arbitrarily a point among the
acterize the surface unambiguously. This was done in thB0ints represented by white circles and find all connections
way shown in Fig. 2, with thick dotted lines in the patches ofP€tween this point and the points remaining after removing

the surface inside the small cubes. This procedure makes t@M the set of connections the connections containing the
first point. This is shown in Fig.(®). Such a procedure has

surface covered only with triangles. The triangulation de- b q | h . db
scribed above was used to calculate the surface area insidd® P€ repeated until no more than one point represented by

unit cell by summing up the surface area of all triangles. '€ White circle is left.
The triangulation was also used to calculate the volume o
ratio of the two subvolumes. The surfagér)=0 separates C. Euler characteristics and genus

the volume of a given phase into two subvolumes, first oc-  The triangulation can also be used to calculate the Euler
cupied by the fieldp(r)>0 and second bys(r)<0. In order  characteristicsy of the surface inside the unit cell. The cal-

to calculate the volume occupied by the negative or positiveulation ofy can be done according to the Euler form{84]
values of the fieldp(r) the volume of the small cubes not cut

by the surfacep(r)=0 is calculated. Next we use the trian- x=F+V—E, (13
gulated surfacep(r)=0 to divide the small cubes with the

values of the fieldp(r) of different sign at the vertices. The whereF,V,E are the numbers of faceE}, vertices {), and
surfaceg(r)=0 divides a small cube into two polyhedra. The edges E) of the polygons cut out by the surfaggr)=0 in
volumes of these polyhedra for negative and positive valuethe small cubes of dimension of lattice spacifig. 3). The

of the field ¢(r) were calculated and added to the previouslyfact that each polygon is inside a small cube makes the cal-
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culation very easy because each vertex of the polygon bdn numerical calculations of the curvatures we used the for-
longs to four polygons since it lies on the edge of the smalimulas[34,36]

cube. Therefore, to calculate one does not need to know

the connections between points. It is sufficient to know only 1 B

how many times the surfacé(r)=0 cuts the edges of the H=- WK' (18)
small cube and how many cubes it cuts. The number of faces T Ty Tz

(F) is therefore the number of small cubes cut by the surface 1 c
¢(r)=0, that is, the cubes with the values of the field Ks——5—5—, (19
#(r)=¢, ;  of different sign at its vertices. The number of bt dyt bz A
vertices is given by the number of intersections of the surface .
¢(r)=0 with the edges of the small cubs taken with a WeightWhereA’ B, andC are obtained from
1 because each edge belongs to four cubes. The number of (byy—\) b b b
edges E) is the same as the number of vertices, but it has to XX X Xz X
be taken with a weigh} because the polygon edges lie in the de Pyx (byy=\) Py by
faces of small cubes and each face belongs to two cubes. bax b2y (dz2z=N) ¢
Only the last case shown in Fig. 2 needs a slightly different bx by b, 0
treatment since one face of the surface lies on the face of the — AN24+BA4C (20)
small cube.
The Euler characteristic for the closed surface is related tgnq are given by
the GaussianK) curvature and genugy} of this surface as
[31,32 A=—(dit dy+¢2), (21)
- % LK ds=2(1—g). (14) B= 3Byt bod T b5 bt b)+ $2 bt Byy)
- 2¢x¢y¢xy_ 2¢x¢z¢xz_ 2¢y¢z¢yza (22)
where the integral is taken over the surfé&eThe genus is - -
an integer number and tells how many holes are in a closed C= @x(dy,— dyydz0) + Sy (s~ Puxbz2)
surface. For example, the genus for a sphere is zero, for a 2, ,2
torus one, and for a pretzel is two. The structures we have T bo( by ™ buxbyy) + 21 babyy = buydya)
investigated are i_nfinite and periodic. The genus for an in_fi- +2¢h by brybr— by
nite surface is infinite, of course, but for a finite piece of this
surface, in a unit cell, it is finite and characterizes the sur- +2¢y b by rPxx— bxybxa)- (23

face. Due to periodicity the unit cubic cell can be treated as ,
a closed surface in four dimensions, making the calculation "€ mean and Gaussian curvatures have to be computed

of the genus for the infinite periodic surface fully justified &t the points of the surfacé(r)=0. These points do not lie
[33]. Therefore, the genera of the structures were Ca|Cu|ateaxactIy at the lattice sites. In order to calculate the deriva-

according tog=1— /2, wherey is the Euler characteristic tves of the field¢(r) at the pointrg, for which ¢(ro)=0,
for the surface inside a unit cell. according to the formulagd)—(10) the values of the field

¢(r) at the pointsry+(0,0h), ro+(0h,0), ry+(h,0,0,

ro+(0,0,2n), ry+(0,2h,0), rg+(2h,0,0, ry+(0h,h),

ro+(h,h,0), andry+(h,0,h) have to be interpolated. The
The Gaussian and the mean curvatures present anothesint rq is | ; /| #i  «— ¢ij+1x/=Ah away from the

characteristic of the internal surfaces givenddy)=0. Inthe  point r=(i,j,k)h. Then the value of the field(r) at, e.g.,

description of the model we have mentioned that some of thene pointry+(0,h,0) is Ah(; ;14— i j4)- The values of

structures in the model should be characterized by zero meahe field ¢(r) in the remaining points can be calculated in a

curvature at every point of the internal interface. Here wesimilar way.

present the method used to compute Gaussian and mean cur-

vatures. The unit normai(r) at the pointr is given by the E. Building an initial configuration

gradient of the fieldp(r),

D. Curvatures

The minimization procedure always requires an initial
V(r) configuration. Here we present the initial configurations used
W- (15 in minimization of structures of different symmetries.

The initial configuration is set up by building the field

The mean K) curvatures is given by the divergence of the ¢(r) for a unit cell first on a small cubic latticéy=3 or 5,

n(r)=

unit vector[34], normal to the surface at the pointn(r), analogously to a two-componeAt molecular crystal. The
value of the fieldg(r)=¢ ;  at the pointr=(i,j,k)h on the
1 1 _ V() lattice is set to 1 if in the molecular crystal an at@mis in
HN==3Vn==3V FTaml (16)  this place; if there is an atoB, ¢ , is set to—1; if there is

an empty placep ;  is set to 0. Figure @) shows the initial

and the Gaussian curvaturk by the formula[35] configuration used to build the fielgkr) for the simple cubic

phase unit cell. Filled black circles represent atoms of #pe
K(r)= %{—(ainj)2+[Vn(r)]2}. (17 and hollow circles represent atoms of tyeln this case all
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(a) (b)

(a) (b)

FIG. 4. Initial configuration used to create structures of symme-
try of (a) the simple cubic phase aitk) the double diamond phase.

sites are occupied by aton#s or B. Figure 4a) shows the

initial configuration used to build the field(r) for the . z y
double diamond phase #of the unit cell. There are unoc-
cupied sites in this case and in these sites the value of the (e) x

field ¢(r)=¢ ;  is set to zero. It would be difficult to present

the initial configuration for the gyroid phase because it kG, 6. Thick solid lines show the kaleidoscopic cell used to
would require drawing the picture of lattice of sidé=9.  create(a) the unit cell for the structures of simple cubic phase
Such a picture would be unreadable. Therefore we preseymmetry (the quadrirectangular tetrahedron is the kaleidoscopic
this configuration schematically in Fig(&. The solid and cell) [see Fig. 4a)], (b) 3 of the unit cell for the structures of double
dotted lines show the channels of oil and water. The thickdiamond symmetrythe trirectangular tetrahedron is the kaleido-
dashed lines show the region occupied by a rectangular paseopic cell [see Fig. 4b)] and(c) the unit cell for the structures of
allelopiped used to build the unit cell. The fractions represengyroid phase symmetrithe rectangular parallelopiped is the kalei-
the value of thez coordinate of an atom in the unit cell. In doscopic ce)l (see Fig. 5.

order to better visualize this configuration we present in Fig. - . .
5(b) the points on the lattice, in a unit cell, with the values of The. tetrahedrons drc_awn n F|gs(.a§l and 4b) W'th thick .
the field ¢(r) set initially to —1 (light gray spheresand +1 solid lines are the kaleldo_scop|c ceI_Is used to bglld _the unit
(dark gray spheras ceII..The way of cqnstructlng thg unit cell by replicating thg
kaleidoscopic cell is described in Sec. Il F. One can easily
--------- [ see now that in order to build the field in a unit cell on a
' o small cubic latticeN=3 it is enough to specify the values of

! the field ¢(r)=d¢, ; « only at the points inside the tetrahe-
| drons. The values of the field at the remaining points can be
: set by using the symmetry of the structures. Thus, instead of
) ! specifying 3=27 values ofé, ; x one has to specify these
CICIE . T values at four point of the cubic lattice for the simple cubic
R : structure. Using this method in the case of double diamond
! structures gives even bigger gain, where it is sufficient to set
| the values of the field at five points in order to set up the field
:
I
|

.........

18 718 13 58
3/8 5/8 L 1/8 7/8.

Jeeeecaal

RS IRV S B TR

1 58 sei V| e for a cubic lattice containing®s=125 points.
P s The small lattice can be enlarged to the desired size by
(8) i =V changing the number of points frolhto 2N—1 and finding

the values of¢, ;  in new lattice sites by interpolation. The
interpolation done to enlarge the lattice has no influence on
the results. It may only speed up the calculations if it is done
appropriately.

F. Symmetry

We impose on the field(r) the symmetry of the structure
we are looking for by building up the field inside a unit cubic
cell of a smaller polyhedron, replicating it by reflections,
translations, and rotations. These polyhedra are pictured with
thick solid lines in Figs. @)—6(c). They are identical to the
polyhedra described by CoxetE37] as kaleidoscopic cells.
Such a procedure not only guarantees that the field has re-
quired symmetry but also enables substantial reduction of
independent variable ;  in the functionF ({¢; ; v}).

FIG. 5. Initial configuration used to create structures of symme- The structures we have generated can be, in principle,
try of gyroid phase{a) schematic representation aft) field rep-  characterized by space group symmdi8g,39,33, analo-
resentation. gous to molecular crystals. The simple cubic structure has

) &
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the space groupmgn, double diamond:4_3m, and gyroid -0.05 Frr—r—
la3d. However, this is not always obvious even for the

structures of simple topology, which a Bravais lattice should - 010 | i
be assigned to for a given structy®2]. For more complex g
structures, assigning a Bravais lattice becomes unclear. w915 | 4

Therefore we decided to characterize the symmetry of the
structures we have generated by including it in the class of 020 b . ;
symmetry characteristic for the following structures: simple 591733 65 129
cubic, double diamond, and gyroid. All these structures be-
long to the class of cubic symmetry; thus here we generate 2.45 F— . .
only the structures belonging to this class.
The structures having the symmetry of the simple cubic 2.40 | -
phase are built of a quadrirectangular tetrahedron replicating
it by reflection[Fig. 6@]. The faces of the tetrahedron lie 235 4
in the planes of mirror symmetry. The volume of the tetra-
hedron isz of the unit cell volume. 230 Lut . s
The structures of the double diamond phase symmetry are 5917 33 65N 129 )
built in the following way. First the unit cell is divided into
eight smaller cubes. The field in the one of the small cubes is G 7. (a) Free energy per unit volume ar(#) normalized
built of trirectangular tetrahedron in the same way as in th&urface area per face of the unit cell#fr)=0 for the simple cubic
previous cas¢Fig. 6b)]. The volume of the tetrahedron is structure, calculated from the function&) for the parameters
2; Of the unit cell volume. Next the field in the unit cell is f,=0 andg,=—3.0 as a function of the lattice size.
built of this cube by translations and translations combined
with a change of sign of the field from, ; , to —¢; ; . The
cube with the field build of the tetrahedron is translated b
the vectors L/2,L/2,0), (OL/2,L/2), and (/2,0,L/2). Next .
the sign of the field in the small cube is changed and the cubd’ the functhnF({ i,j.K)- . . .
with such a different field is translated by the vectors The 50',““0” fpr the'dlscreuze_d model of a continuous
(0,0L/2), (0.L/2,0, (L/2,0,0, and (L/2,L/2,L/2). L in both functional is obtained with a cer'taln accuracy. The accuracy
cases is the unit cell length. Such a procedure enables tifi€Pends on the value of the lattice spadingnd the number
reduction of the unit cell volume by a factor(8k 24)= 1. of pointsN. We have checked the accuracy of our results by
If the &(r),—(r) symmetry is not applied, the trirectan- calculating the free energy and the surface areg(©j=0
gular tetrahedron can also be used to create the structures fer a few different sizes of the lattice. Figuréay shows that
double diamond phase symmetry. In such a case the CuﬁBe free energy is very sensitive for the lattice size. We used
shown in Fig. €b) as? of the unit cell becomes the unit cell. in our calculationsN=129, which results in over 21¢°
The unit cell volume is therefore reduced by a fackpr points per unit cell. This value seems to give sufficient ac-
The structures of gyroid phase symmetry are built of acuracy for the calculation of the free energy. For the calcu-
rectangu|ar para”ek)pipeij:ig_ G(C)] It Consistsll6 of the lation of the surface area Qf(l’)zo a smaller lattice can be
unit cell volume. The parallelopiped is rotated by 90° ac-used to obtain high accuracy. Figur¢b) shows that the
cording to a fourfold screw rotation axis parallel to the Values of the surface area of the internal interface change
direction, located at the point=(L/4,L/4,L/4) and trans- only slightly for N=33,65,129.
lated in the direction of the axis by the vectolL/4,0,0.
Repeating this operation three times fills guif the unit cell IV. RESULTS

volume with a new rectangular parallelopiped spanned by a
9 P bip b Y2 \we have generated many unknown structures as well as a

vector (L,L/2,L/2) located at the point=(0,0,0. Next this fow k A h ted surf the tripl
new parallelopiped is rotated according to a twofold rotation ew known ones. Among the generated surtaces are the triply
periodic minimal surfaces. These surfaces have been consid-

axis parallel to they direction and located at the point ered as paradigms of the internal interface in the ordered
=(L/2,0L/2). The parallelopiped created by this Operatlonphases formed in the mixtures containing a surfactant. We

spanned by the vectorL(L/2,L/2) located at the point

r=(L/2,0,0 is translated by the vector«L/2,L/2,0). The Eescrllbg thtehse surfl?ces n Sec.t v A;[hTOf. thte best ﬁf our
sign of the field in this parallelopiped is changed frefm nowlecge tne results we present are the irst ones snowing

to —d ;. After these transformatiod of the unit cell is thatgtriply periodic minimal surfaqe can be the solution of a
recreaf(]éd. The other half of the unit cell is created of theDhySICaI model. The surfaces of high genus are presented in

previous one by rotating it according to the twofold rotation Sec. IV B. The pictures of these surfaces strongly resemble

axis parallel to thez direction and located at the point the pictures of microemulsion taken during freeze fracture
—(L/2,L/2,0). microscopy studies. In Sec. IV C we describe another type of

structure,the multiply continuous structureéDur discovery
calls for new experiments confirming or rejecting the exist-
ence of such structures in real systefas far only bicon-

We use the conjugate gradient methdd] to minimize tinuous structures have been consider@tie phase diagram
the functionF ({ ¢; ; «}). Minimization was done with respect of the model is presented in Sec. IV D.

Surface Area

to {¢; ; «} for a given value of the cell length=(N—1)h.
YWe have varied to find the cell length for the lowest value

G. Accuracy of numerical computations
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A. Minimal surfaces

The following simple experiment can be used for the di- ~
rect visualization of a simple patch of minimal surface. Take
a metal nonplanar frame and immerse it in a water solution
of soap. The soap bubble that forms on this frame assume
the shape that minimizes its surface free energy associate
with the surface tension and consequently it forms a surface
of least area. Thus these surfaces are called minimal sul
faces. Such experiments can be traced back to Leonardo ¢
Vinci, but in fact detailed studies of this type were done and
published by Platea[41] and hence later the problem of a
surface of least area spanning a given loop has been name
the Plateau problem.

The history of physics and mathematics of minimal sur-
faces ran in parallel. Lagrange, in 17@defore Platea)) de-
rived equations for a surface of least area that are equivaler
to the condition of vanishing mean curvature at every point
on the surface. The representation of these surfaces in tern
of harmonic functions was given by Weierstrass in 1866 anc —
this representation has served many researchers up to ds (c)
for their generations. Further qualitative insight into the
mathematics of the problem was obtained by Schwarz and FIG. 8. Minimal surfaces generated from the functiot®l (a)
Neovius, who showed that simple patches of minimal surSchwarz simple cubi®, (b) Schwarz diamond surfad®, and(c)
faces can be put together to give smooth periodic threeSchoen gyroids. The unit cell is shown from an off front view.
dimensional structures, which are called now triply periodic
minimal surfaces or sometimes infinite periodic minimal sur-they share the same topologyenus, etg.and symmetry as
faces. They identified five phases, three of which were ofhe latter.
cubic symmetry, i.e.P, D, andC(P). Plateau and Schwarz The minimal surfaces are usually described in terms of
in fact entertained scientific contacts, but none of them hadVeierstrass integral equations. The Weierstrass representa-
envisaged the role of these surfaces as physical interfacetion gives the coordinatesxfy,z) on a minimal surface of
The rediscovery of the problem is attributable to Schoerthe point represented kb in the complex plang50]

[39], who identified four surfaces of cubic symmet(€,
[-WP, F-RD, andO,C-TO). In 1976 Scriver{42] hypoth- _ J“’l _ 2

esized that such surfaces could be used for the description of x=Re (1~ 0IR(w)do,
physical interfaces appearing in ternary mixtures of water,

(b)

@Q

oil, and surfactants. In 1967-1968 Luzzatial. [43—-44 @y

observed this type of ordering in the lecithin-water and lipid- y=Re f i(1+ 0?)R(w)dw,

water systems. One of the phases observed by them was the “0

phase of the same symmetry as theSchoen minimal sur-

face. It seems that the discoveries of Schoen and Luzzati @1

et al. were made independently. In fact, this phase appears to z=Re LO 20R(w)dw, (24)

be very common in biological systems. Another example of

such S“ff.aces. is found in the _system of diblock ?Op(’lymers\whereR(w) is the Weierstrass characteristic function for the
commercially important materials for the production of plas'surface Re stands for the “real part@=w,+iwy, andi =
1 a ’

tlcs.l An ﬁB qlblﬁci cogo(ljy;ner t(;lonSI:\E[SI of ttWO mactromolih —1. When the functioR(w) is replaced WitrR(w)em the
ecules chemically bonded togetner. ow temperatures g - e described by the functid®(w) is transformed into

system forms ordered-rich andB-rich domains, with the - et gurface called the adjoint surface. Such a transforma-

points of bondage at the interface between the domains. Iﬁon is called the Bonnet transformatiési] and @ is known
1988 Thomaset al. [47] observed that the polystyrene- as the Bonnet angle. The Bonnet transformation preserves

polyisoprengPS-P) diblock cppolymer forms a structure of the Gaussian and mean curvatures.
the same symmetry as tiie (diamond Schwarz surface and
argued on the basis of the relative volume fraction of PS and
Pl component that the resulting physical interface must be
the surface of constant mean curvature at every point of the The Schwarz primitive surface [Fig. 8@)] and Schoen
surface. Such a surface belongs to the family of minimagyroid surfaceG [Fig. 8(c)] are related to th® surfacefFig.
surfaceq 39,32,48. 8(b)] by the Bonnet transformation: the Bonnet angle for the
Surfaces are ubiquitous. Even in the ionic crystals one caR surface is 90° and for th& surface it is 38.015°. The
imagine a periodic zero potential surfad®OP$ having the  Weierstrass function for the fundamental element of the sur-
same symmetry as the crysfd9]. Although POPSs do not facesD is given by[50,52
usually have the same geometry as the minimal surfaces
(their mean curvature varies along the surjac®netheless R(w)=(0®—140w*+1)"2 (25)

1. Schwarz surfaces P and Schoen surface G
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FIG. 9. Histograms of the GaussiaK) and mean i) curvature for the surfacéa) SchwarzP, (b) SchwarzD, and(c) SchoenG.

with an integration domain given by the points around theand gyroid G have been discovered in real systems in
origin limited by four circles with radius’2 and centers at diblock copolymerd47,53—56. However, the discovery of
+v2,xiv2. the gyroid phase, after the diamond phase had been found in

Here we use our model to generate surfaces. The fact thagal systems, was not straightforward. It took the researchers
the P,D,G (see Fig. 8 surfaces are adjoint means that theabout six years after the discovery bf phase to find the
histograms of the Gaussian curvature for these surfacegyroid phase in the PI-PS system of diblock copolymers.
should be the same. In fact, the histograms look very similaRecent studief57] show that the diamond phase in diblock
(see Fig. 9 the small differences result from the numerical copolymer systems is not stable. The only stable one is the
accuracy. The mean curvature of the minimal surface is zergyroid phase. This is in accord with our calculations where
at every point; thus its histogram should be a single infinitelythe free-energy value for the gyroid phase is smaller than for
sharp peak aH=0. Here it is smeare@see Fig. 9 due to  the diamond phase.

numerical accuracy. In fact, it serves as a good estimate of
the errors for curvatures. 2. Schoen FWP and OQ,C-TO minimal surface

It is interesting that the value of the free energy in our  The | \wp surfacqFig. 10@)] was discovered by Schoen
model(2) for each of these structures is the lowest for all the[39]_ He built the models of the surface. and identified its
structures of giver) symmetry, i..e., among all structures of th%pace group akm3m. That is why the lettet is in the first
symmetry of gyroid phasé, this phasg has the lowest free.p'art of the name given by him to this surface. The WP stands
energy. These phases are generated independently of the iy “wrapped package” because of the resemblance of finite
tial configuration, provided that the unit cell length is set portions of the graph to the arrangement of string on a sim-

close to the minimal length. If the cell length is taken cIosep|y wrapped package. The Weierstrass characteristic func-
to multiple length of the unit cell then multiple images of a tjg for the |-WP surface i§51,58

given structure are formed.

The fact that theG andD structures are the most stable R(w)=(w®—50w*—5w?+1)" %5 (26)
among the structures of a given symmetry suggest that they
can be found in real systems. In fact, the phases diarfibnd The |-WP surface was found in star block copolymgs8].
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() (b) (b)

FIG. 10. Schoen minimal surfaces generated from the functional
(2): (@) I-WP and(b) O,C-TO. The unit cell is shown from an off
front view.

The results of our study suggest that it can also be found ir
the ternary surfactant mixtures.

The O,C-TO surface[Fig. 10b)] was discovered by
Schoen39]. The Weierstrass function for this surface is not
known and no other information except the genus and the
symmetry are described in the literature. Here we report the ) ©) _
volume fraction of the two subvolumes divided by BeC- FIG. 11. High-genus surfaces generated from the fqnctl(ﬁ)al
TO surface; see Table I. As far as we know, nobody so fa(@ the surfac&SCNL of symmetry of theP surfacefsee Fig. &),
has shown the existence of this structure in real systems. T ) the surfacéD of symmetry of theD surfacelsee Fig. &)}, (©

. . e surfaceGX5 of symmetry of theG surface[see Fig. &)]. The
surface obtained from the functioné) strongly resembles unit cell is shown from an off front view
the one described by Schoen. The histogram of the mean '
curvature suggests that this surface can be m"_"”_‘a'- Howsg) length_and for different points on the phase diagram.
ever, this is the only structure that cannot be m|n|m|zeq witl owever, S and the mean curvaturel(r) for the surface
respect to the cell length. For all structures except this On%(r)=0 are scale invariant.
we were able to find the minimal cell length, i.e., varying the
cell length we were able to find such a length for which the
free-energy density of the function&®) is minimal. The
O,C-TO structure collapses tioWP when the cell length is The high-genus surfaces are most easily generated for the
varied. Such a behavior suggests that this structure is vewyalues of parameteffg andgg in (2) taken near the boundary
unstable and finding it in real systems is problematic. of lamellar and microemulsion phase and for a larger unit

It should be pointed out here that although the free energgell lengthL=(N—1)h than the length of structures of low
depends on the cell length, the geometric properties of thgenus. This suggests that the microemulsion can be consid-
surface¢(r)=0 do not. The surface area per face of the unitered as a bicontinuous structure of the high-genus surface.
cell Sis the same, for a given structure, at different points ofThese are only speculations based upon theoretical studies.
the phase diagram and for different values of the cell lengthNew experiments are needed to check these speculations. We
The free energy depends on the three-dimensional scal&wope that our results will help experimentalists design such
field ¢(r) and that is why it varies for different values of the experiments.

B. High-genus embedded periodic surfaces

TABLE I. Geometrical properties of the known minimal surfaces obtained from the functi@nébr the
parameters,=0.0 andg,=—3.0. The exact values found in the literature are given in square brackets. The
surface ared is the normalized per face of the unit cub surface ares of the interface in the unit cell
S=5/L? andL=(N—1)h. The energy is given per unit volume.

Cell Surface Volume
Name length Energy area Genus fraction
P 7.88 —0.181 2.3453 3 0.5
[2.345106 8
D 12.56 —0.188 3.8387 9 0.5
[3.837 786 2
I-WP 11.78 —0.180 3.4640 7 0.533
[3.464 601 6
G 10.08 —0.190 3.0919 5 0.5

0,C-TO 14.68 —0.162 3.6805 10 0.535
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(b)

We present in this section several examples of high-genus
surfaces of different symmetry. The structuB&€NL [Fig.
11(a)] has the symmetry of the simple cubic phdség.
8(a)], the structureCD [Fig. 11(b)] has the symmetry of
double diamond phasiig. 8b)], and the structure&X5
[Fig. 11(c)], GX1 [Fig. 12a)], GX2 [Fig. 12b)], and GX3
[Fig. 12¢)] have the gyroid phadd-ig. 8(c)] symmetry, see
also[60].

The SCNL surfacg Fig. 11(a)] is similar to theBFY sur-
face[29], but because its unit cell length is larger, the surface
is more complex. A comparison of these surfaces can be
used as an example of how the functiof@l keeps the size
of the water and oil regions the same for different structures.
For a bigger cell length the surface dividing the oil and water
regions is folded a few times in order to keep the sizes of the
oil and water regions resulted from the functiorig) for
given values of the parametefs,g,.

The CD [Fig. 11(b)] structure is especially interesting be-
cause it has the same symmetry as the Schwartz diafond
phase. It has been generated in the same way as the diamond
D phase, that is, we have reduced the unit cell by a fagtor

FIG. 12. High-genus gyroid surfaces generated from the func- Having done such a reduction, we hardly expected the pos-
tional (2): (a) GX1, (b) GX2, and(c) GX3. The unit cell is shown

from an off front view.
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sibility of the generation of a new surface. In fact, enlarging

0.20 T T T

0.10 .

0.00 L 1
-0.140  -0.070 0.000 0.070

H

0.20 | -

0.10 F .

0.00 bl
-0.130 0.000 0.130

0.40 .

0.20 -

000 LTI LT T4

-0.090 0.000 0.090

FIG. 13. Histograms of the Gaussialki)(and mean 1) curvature for the surfacéa) SCNL [Fig. 8@)], (b) CD [Fig. 8b)], and(c) GX5

[Fig. 8c)].
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FIG. 14. Histograms of the Gaussiéf) and meanl) curvature for the surfac€éa) GX1 [Fig. 12a)], (b) GX2[Fig. 12b)], and(c) GX3
[Fig. 12c)].

the length of the cubic cell, we usually obtained the multiplenature, such as diblock copolymers, lipid-water solutions, or

replicas of the diamonb structure, except for the case when surfactant mixtures.

the CD structure was generated. The properties of high-genus surfaces are calculated with
We have generated high-genus surfaces of vanishing cutewer accuracy than the properties of those of low genus.

vatures; see Figs. 13 and 14. The existence of such surfaces

in real systems was questioned. The researches argued that itTABLE 1l. Geometrical properties of high-genus surfaces ob-

is impossible to build high-genus periodic surfaces becaustined from the functional2), for the parameters,=0.0 and

of large curvatures, which could not be accommodated bge=—3.0. The surface aredis the normalized per face of the unit

the displacement of surfactant molecules at the sufffatke cubeL? surface are& of the interface in the unit ce=S/L2 and

As we can see from Table II, high-genus surfaces have large=(N—1)h. The energy is given per unit volume. The volume

unit cells and therefore their curvaturésee the Gaussian fraction for all structures is 0.5.

curvatureg are similar in magnitude to those of surfaces of

low genus. Therefore the argument against the existence of Cell Surface

these surfaces does not hold. ame length Energy area Genus
The pictures of the high-genus structures, especially thecny 25.6 —0.178 7.4288 45

gyroid ones, strongly resemble the pictures of microemulsion

taken during freeze fracture microscopy studibs3]. The CD 28.88 —0.167 8.2257 73

gyroid high-genus surfaces have |n'general lower free ener X1 26.16 _0.186 7907 53

than the surfaces of other symmetries. We can speculate that

this symmetry would be preferred in real systems. In fact, the&sX2 26.48 —-0.183 8.081 69

Schoen gyroidG minimal surface is the most common in 3172 _0.181 0.657 109

nature among the known minimal surfaces. The gyroid sur-
faces do not have planes of symmetry. This may cause easieixs 34.40 -0.178 10.519 157
adaptation of their shape to the structures encountered ia
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This is so because we have used the same size of the lattic
N for the unit cell. This results in a bigger lattice spachng _
For high-genus structures more surface has to be accommc|
dated in the unit cell; therefore the calculation of the deriva-
tives is less accurate.

The biggest errors are in calculations of the curvatures ;
because all possible approximations are accommodated i | -
these calculations. First is the approximation used to find the ==
surface@(r)=0. The location of this surface has to be lin-
early interpolated between the lattice sites. The formulas fol @) (b)
the mean and Gaussian curvature are also numerical approx
mations of the analytic expressions. The derivatives used it
calculations are also numerical approximations. The points -
used to calculate the derivatives have to be interpolated be
tween the lattice sites. Finally, the discretization and minimi-
zation of the functional also introduces some errors. It is
amazing that, in spite of all those sources of errors, the cur
vatures are calculated with such a high accuracy, which cai |
be seen by looking at the histograms of the mean curvaturt “-
for P,D,G minimal surfaces; see Fig. 9.

(0 (d)
C. Multiply continuous embedded periodic surfaces FIG. 15. Multiply continuous structures of symmetry of the
The possibility of the existence of multiply continuous simple cubic phasgsee Fig. 8)], generated from the functional
structures in ternary mixtures of oil water and surfactant hag2): (a) the unit cell of theSCL1 triply continuous structureb) 3 of
not been discussed so fi@ee, however, the paper on triblock the unit cell of theSCL1 structure,(c) the unit cell of SCI2 qua-
copolymers[62]). In the bicontinuous structure the single druply continuous structure, an@) 3 of the unit cell of SCL2
surface separates the volume into two disjoint subvolumesstructure. The unit cell is shown from an off front view.

In our phases there is more than one periodic surface that ) o ]
disconnects the volume into three or more disjoint subvolLf these surfaces is the same within the numerical errors; see

umes. The multiply continuous structures are most easily ables Ill and I. Similarly, the middle phase surfaceGhl
generated for the values of parametiyandg, in (2) taken  LFig- 16a)] and GL2 [Fig. 16b)] structures is the Schoen
near the boundary of lamellar and wateil) phase and for Minimal surfaceG; see Tables Il and I. _

the bigger unit cell length.=(N—1)h than the length of TheGL2 structure suggests thgt one can generate arbitrary
structures of low genus. The experimental results do not rul@-tuply continuous structures. It is only necessary to set the
out the existence of such structures; contrarily, the expericell length sufficiently large. We have not attempted genera-
ment on the electrical conductivity supports the i§g#]. It~ tion of such structures because, due to the limits imposed _by
would be very interesting to design an experiment answeringomputer memory and the speed of the processor, the lattice
the question whether the structures considered so far as biPacing would be too big for a given size of the lattice to
continuous are only bicontinuous or maybe multiply continu-OPtain reasonable accuracy.

ous.
We present the multiply continuous structures of the D. Stability of different phases in the model
simple cubic phase symmet(BCLL andSCL2 in Fig. 13 We have investigated many bicontinuous phases of differ-

and of the gyroid phase symmet@L1 andGL2 in Fig. 16.  gnt symmetries, genera, and dimensions of the unit cell. The
The SCL1 structure is triply continuous, th&L1 andSCL2

are quadruply continuous, ar@L?2 is sixtuply continuous. »
For bigger unit cells one is able to generate the structure: g
n-tuply continuous. It is remarkable that the volume fraction
of oil and water is 0.5 for all these structures. The genera for
all surfaces in a given structure are the same. Other proper M
ties of the multiply continuous structures are described in §
Table 111
The SCL1 surface is especially interesting. Although the *
outer and the inner surface look different in Fig(d5they
have the same surface area; see Table lll. In fact, they ar (@) (b)
built of the same piece of the surface. The picturg of the
unit cell [see Fig. 18)] explains how two different periodic  FIG. 16. Multiply continuous structures of symmetry of the gy-
surfaces can be built of the same surface patch. roid phasdsee Fig. &)], generated from the function&®): (a) the
The SCI2 structure is composed of three different embed-unit cell of quadruply continuou§L1 structure andb) the unit
ded periodic surfaced=ig. 15c)]. The middle surface is the cell of sixtuply continuousGL2 structure. The unit cell is shown
Schwarz minimal surfac® and its normalized surface area from an off front view.
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We have also studied the stability of bicontinuous phases

structures obtained from the function&2), for the parameters for different functions describing the surfactay(i(r)). We
fo=0.0 andgo=—3.0. The surface aredis the normalized per face have used the following form aj(¢(r)):

of the unit cubel? surface ares of the interface in the unit cell
S=S/L? andL=(N—1)h. The energy is given per unit volume.

9(h(r))=g20(r)*+go. (27)

The volume fraction for all surfaces is 0.5. The genus is given for
any single surface in the structure.

We have expected that this form g€#(r)) would make the
interface between oil and water sharper and therefore it

Cell Surface would lower the free energy. The interface indeed was
Name length Energy area Genus sharper as we expected, but the unit cell length decreased
also. This resulted in higher values of the free energy than
scu 14.96 —0.175 4.090 8 before and all bicontinuous phases were metastable as in the
1 2.045 previous case. It might suggest that one order parameter
2 2.045 functional is not sufficient to describe the behavior of or-
ScCL2 21.14 ~-0.178 5.780 3 dered phases. We note that in the case of multiparameter
1 1.716 Landau models introduced in recent yeldgbwe may expect
2 2348 the stabilization of the various phases that in the one order
3 1716 parameter Landau model are only metast@B®. Our cur-
rent results are a very good starting point for the investiga-
GL1 26.32 —0.187 7.546 5 tion of the stability of bicontinuous phases in multiparameter
1 2.226 Landau functionals.
2 3.096
3 2.226 V. CONCLUSION
GL2 41.16 —0.185 11.887 5 It is amazing that the solutions of the physical model of
1 1.659 microemulsion can be triply periodic minimal surfaces. So
2 2.736 far the triply periodic minimal surfaces were generated from
3 3.097 the Weirstrass representation or from the definition of the
4 2.736 mean curvature. For over 100 years mathematicians have
5 1.659 discovered a few infinite embedded periodic minimal sur-

faces of cubic symmetry.
We found that the surfaces generated from the functional

bicontinuous phase with the lowest value of the free energ ) are triply periodic surfaces of nonpositive Gaussian cur-

turned out to be the gyroid, but the only stable liquid crys- ature. Some of them may be new minimal surfaces. Espe-

talline phase in this model is the lamellar phase. Figure 11,‘|ally interesting are the surfaces of hlgh.genus. The exist
) ence of such surfaces may suggest that microemulsion can be
shows the plot of the free energy as a function of the para

. ParaMa, e structure with such a surface of very high genus.
eterf, for the lamellar and gyroid phases. The phase diagram \ye naye discovered multiply continuous cubic structures

for the model(2), in the mean-field approximation, calcu- ormed in ternary mixtures of water, oil, and surfactant. The
lated by Gompper and Zschockg2] and checked here is ja5 of multiple continuity of cubic structures is different.

shown in Fig. 18. Other bicontinuous phases behave in they - regyits call for new experimental techniques that could
same way as the gyroid and lamellar. The value of the fregq \;seq to discern between bicontinuous and multiply con-

energy in the vicinity of microemulsion boundary convergesin qys structures. We hope that these new structures will
to the value of the free energy for the microemulsion. Theg,,, pe discovered in real systems.

geometric characteristics such as genus and normalized sur-\ye have not only calculated the properties of many cubic
face area are the same for all phases in different places of th&y,cres and investigated their stability, but also presented
phase diagram. the pictures of new structures. We hope that this will help
other workers better understand the phenomena in ternary
liquid mixtures, diblock copolymers, and biological systems.

z -0.20 F 05 F . i

® micro-
G 40 | o 1.5 - emulsion|  ojl-water T
> 25| e i

//
-060 1 1 1 1 1 i » 1
06 -04 -02 00 02 04 3.5 lamellar
f0 '4.5 1 1 N

10 05 00 05 10 15

FIG. 17. Free energy per unit volume for the lamellar phase

(dashed ling and gyroid phasésolid line) for the model(2). The

parameteigy=—3.0.

FIG. 18. Phase diagram for the mod&).
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We have presented the general method for the generation Note addedWe would like to thank Dr. Veit Elser for
of periodic surfaces of nonpositive Gaussian curvature. Thisending us a copy of his work on quasicrystalline minimal
method can be well applied by physicists working in softsurfaceg65]. He has obtained minimal surfaces from a simi-

condensed matter, mathematicians working in topology, bitar model of the free-energy functional.
ologists, and crystallographers. Certainly the richness of the

method is far from being completely explored by our work.

Our results are also an ideal starting point, for theoreti-
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