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We present a method for the generation of periodic embedded surfaces of nonpositive Gaussian curvature
and multiply continuous phases. The structures are related to the local minima of the scalar order parameter
Landau-Ginzburg Hamiltonian for microemulsions. In the bicontinuous structure the single surface separates
the volume into two disjoint subvolumes. In some of our phases~multiply continuous! there is more than one
periodic surface that disconnects the volume into three or more disjoint subvolumes. We show that some of
these surfaces are triply periodic minimal surfaces. We have generated known minimal surfaces~e.g., Schwarz
primitive P, diamondD, and Schoen-Luzatti gyroidG and many surfaces of high genus. We speculate that the
structure of microemulsion can be related to the high-genus gyroid structures, since the high-genus surfaces
were most easily generated in the phase diagram close to the microemulsion stability region. We study in detail
the geometrical characteristics of these phases, such as genus per unit cell, surface area per unit volume, and
volume fraction occupied by oil or water in such a structure. Our discovery calls for new experimental
techniques, which could be used to discern between bicontinuous and multiply continuous structures. We
observe that multiply continuous structures are most easily generated close to the water-oil coexistence region.
@S1063-651X~96!01311-6#

PACS number~s!: 61.20.2p, 64.75.1g, 68.10.2m, 02.40.2k

I. INTRODUCTION: MICROEMULSION

Amphiphilic molecules are composed of two different
parts: a hydrophobic tail and a hydrophilic head. The tail is
composed of one or more hydrocarbon chains, usually with
6–20 carbon atoms; the head is composed of chemical
groups of high affinity to water@1,2#. Such a composition of
amphiphilic molecules results in many amazing properties of
systems containing these molecules. Adding an appropriate
amount of amphiphile to a mixture of oil and water, two
liquids that are immiscible under normal conditions, causes
complete mixing of these liquids. The amount of amphiphile
necessary to cause mixing depends on the strength of the
amphiphile. The longer the hydrocarbon chain the stronger
the amphiphile. The strength of the amphiphile similarly de-
pends on the number of hydrophilic groups in the am-
phiphilic molecule. Complete mixing is enabled by lowering
the oil-water surface tension by the amphiphile. That is why
the amphiphilic molecules are also called surfactants: surface
active agents. The surfactant assembles at the interface,
forming a monolayer, in such a way that the hydrophilic part
of the amphiphile is located in water and the hydrophobic
part in oil. The surfactant monolayer separates coherent re-
gions of oil and water. Usually the monolayer width is small
compared to the size of oil and water regions unless the
concentration of surfactant is very high. In such a situation
the formation of water and oil droplets suspended in the
surfactant solution is possible. Surfactants dissolved in water
can form micells of different shape: spherical or cylindrical.
They can also assemble into bilayers grouping the hydropho-
bic part of the surfactant inside the bilayer. Such a system is
called the sponge phase.

When comparable amounts of oil and water are mixed
with the surfactant a new homogeneous, isotropic, thermo-

dynamically stable phase is created@3#. This phase, called
microemulsion, can coexist with oil and water@4,1,2#. The
measurements of electrical conductivity, self-diffusion,
NMR, and freeze fracture microscopy studies indicate that
the structure of microemulsion is bicontinuous@5,6,1,7,8#.
That is, the microemulsion is composed of water and oil
channels mutually interwoven, separated by the monolayer
of surfactant. The amphiphilic systems can form apart from
the structured disordered phase like microemulsion, many-
ordered phases. The most common are the lamellar and hex-
agonal. The lamellar phase is composed of the regions of
water and oil separated by the surfactant monolayer. The
lamellar phase looks like a sandwich composed of the slices
of water and oil separated by a monolayer of surfactant. The
hexagonal phase is composed of cylinders of water or oil
bounded by the layer of surfactant, arranged on a hexagonal
lattice, immersed in oil or water. The most interesting are the
ordered cubic bicontinuous phases. The most prominent ex-
amples are the gyroid, double diamond~sometimes called
diamond! @9#, and simple cubic phase.

The systems containing surfactants are difficult to charac-
terize. They are structured liquid ternary mixtures. For ex-
ample, microemulsion on a macroscopic level looks like an
ordinary homogeneous fluid. However, it is known that the
microemulsion is composed of three components: two of
them, oil and water, do not mix in the absence of the third
one, the surfactant. Thus the presence of the surfactant is
crucial. It is obvious that information about the location of
surfactant in its mixtures characterizes the mixtures in the
best way. The surfactant forms a monolayer at the water-oil
interface. This monolayer can be approximated in the theory
by a mathematical surface. Thus, in order to characterize the
systems containing surfactants it is enough to characterize
this surface and its properties such as the surface area, genus,
and its curvatures@10–14#.

PHYSICAL REVIEW E NOVEMBER 1996VOLUME 54, NUMBER 5

541063-651X/96/54~5!/5012~16!/$10.00 5012 © 1996 The American Physical Society



There are three levels of description of these mixtures:
macroscopic, mesoscopic, and microscopic. Here we concen-
trate on the mesoscopic level, described by the Landau-
Ginzburg theory developed recently. We note that the most
interesting phenomena take place on the mesoscopic scale,
which is intermediate between the microscopic and macro-
scopic. The typical sizes of oil-rich domains in the mixture
are often 1000 Å, which is much larger than the size of a
surfactant~25 Å!, but much smaller than the macroscopic
scale of millimeters@1#. This means that microemulsion is
structured on the mesoscopic scale, which justifies the choice
of the Landau-Ginzburg model for its descriptions. In the
next section we describe the Landau-Ginzburg theory that
we use to generate the surfaces in the oil, water, and surfac-
tant mixtures.

The paper is arranged as follows. In Sec. II we describe
the Landau-Ginzburg functional used in our calculations.
Section III describes numerical procedure used to solve the
functional. In Sec. IV we present the results.

II. LANDAU-GINZBURG MODEL

The theoretical model describing the behavior of the sys-
tem containing surfactants originates from the expansion in
gradients of the Landau-Ginzburg free energy@15#:

F@f~r !#5E d3r @a01a1f~r !1a2f~r !21a3f~r !3

1a4f~r !41a5f~r !51a6f~r !61•••

1c1u¹f~r !u21c2uDf~r !u21•••

1f~r !2u¹f~r !u21•••#. ~1!

This is the simplest model with a single scalar order param-
eterf~r !. The analysis of~1! shows that the essential fea-
tures of systems with internal interfaces can be recovered by
keepingc1,0 and c2.0. The gradient term with negative
coefficientc1 tends to create the interface, whereas the La-
placian term with the positive coefficientc2 stabilizes the
system. The number of terms and the values of coefficients
in the expansion of the scalar order parameterf~r ! in power
series depends on the problem to be studied. In order to
study microemulsion and ordered phases that appear in sys-
tems containing surfactants the following Landau-Ginzburg
functional was proposed@16,17# based on~1!:

F@f~r !#5E d3r @cuDf~r !u21g„f~r !…u¹f~r !u21 f „f~r !…

1mf~r !#. ~2!

We have used in our calculations the model~2! with the
functionsg„f~r !… and f „f~r !… given by

g„f~r !…5g2f~r !21g0 , ~3!

f „f~r !…5v@f~r !1fw#2@f~r !21 f 0#@f~r !1fo#
2, ~4!

and the set of constantsfo52fw51, c51, v51, andm50.
The values of the fieldf~r ! are proportional to the differ-

ence in oil and water concentrations and are negative for

water and positive for oil regions or vice versa. The sign is
just a matter of convention. The surface

f~r !50 ~5!

describes the interface between oil and water. The function
f „f~r !… is the bulk free energy.m is the chemical potential
difference between oil and water. The surfactant degrees of
freedom are considered as being integrated out and the sur-
factant properties enter the functional~2! through the form of
the functionsg„f~r !… and f „f~r !…. The functional~2! can be
used also to model the sponge phase. In such a case the
negative values of the order parameter are interpreted as the
interior part of the sponge phase and the positive values as
the exterior part of the phase~or vice versa!.

The function f „f~r !… has by construction three minima,
which guarantees three phase coexistence, i.e., oil, water, and
microemulsion. The minima for oil-rich and water-rich
phases are of equal depth, which makes the system symmet-
ric; thereforem has to be set to zero. Varying the parameter
f 0 makes the middle phase~microemulsion! more or less
stable with respect to two bulk phases. Thusf 0 is propor-
tional to the chemical potential of microemulsion. The con-
stantg2 depends ong0 and f 0 and is chosen in such a way
that the correlation functionG(r )5^f~r !f~0!& decays mono-
tonically in the oil-rich and water-rich phases@17,5#. Here
we takeg254A11 f 02g010.01. The more negativeg0 the
stronger or more surfactant used.

In the Gaussian approximation the water-water structure
factorSww(k) for ~2! is given by

Sww~k!}
1

ck41g~fb!k
21 1

2 f 9~fb!
, ~6!

fbP$fw ,fm ,f0%. For the oil-rich phasêf~r !& .f0, for
the water-rich phasêf~r !&.fw , and for microemulsion
^f~r !&.fm50. A peak atk.0 ~for fb5fm! indicates a lo-
cal structure of microemulsion with characteristic size
j;2p/k. For fb5f0 or fw the structure factor has a peak
only atk50, indicating that pure oil and water phases behave
like a normal liquid with no internal structure. The water-
water structure factorSww(k) can be measured in experi-
ments. Thus the quality of the theory can be checked out by
comparing theoretical predictions with an experiment. It
turns out that~6! describes extremely well the data from the
scattering experiments@16,7#. The model~2! has been suc-
cessfully used to describe the wetting behavior of the micro-
emulsion at the oil-water interface@17–20# to investigate a
few ordered phases such as lamellar, double diamond, simple
cubic, hexagonal, or crystals of spherical micells@21,22# and
to study the mixtures containing surfactant in a confined ge-
ometry @23#.

An enormous advantage of the model~2! is its simplicity.
It is extraordinary that the properties of a very complex sys-
tem are described by the one scalar order parameter field.
There are a few Landau-Ginzburg theories with more than
one order parameter field@5,24–28#. However, adding a new
order parameter field does not automatically make the model
better. It does, for sure, make solving the model more diffi-
cult and it involves the introduction of new parameters, the
physical meaning of which is not always clear.
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In the mean-field approximation the stable or metastable
phases of the system correspond to the minimum of the func-
tional ~2! and the crucial information about the structure is
contained in the properties of the surfacef~r !50 formed, in
the system, by surfactant. We have observed@29# the very
special property of the functional~2! related to this surface.
We have discovered it by analyzing the formula for the mean
curvature ~Fig. 1! expressed in terms of the three-
dimensional fieldf~r !. From the form of~2! one can realize
that for some local minima of~2! the average curvature given
by

H~r !52
1

2
¹S ¹f~r !

u¹f~r !u D52
1

2

Df~r !

¹f~r !u
1

¹f~r !¹u¹f~r !u
2u¹f~r !u2

~7!

vanishes at every point of thef~r !50 surface. It follows
from the second term of~2! that u¹f~r !u should have the
maximal value forf~r !50 ~note thatg0,0! and conse-
quently the second term„which after a small algebra can be
written as@]u¹f~r !u/]n#/2u¹f~r !u, with ]n denoting the de-
rivative along the normal to the surface… in ~7! vanishes.
Also for thef~r !,2f~r ! symmetry we know thatH~r ! aver-
aged over the whole surface should be zero. This means that
Df~r ! either is exactly zero at the surface or changes sign.
From the first term of~2! it follows that the former is favored
and consequentlyH~r !50 at every pointr at the surface
f~r !50. The surface such that the mean curvature vanishes
at its every point is called minimal. Therefore, before solving
~2! we observe that among the local minima of the functional
~2! the structures with minimal surfaces should be favored.
The argument presented here has a local nature and does not
rule out other possibilities.

III. MINIMIZATION OF THE FUNCTIONAL

In order to find the local minima of the functional~2! we
have discretized it on the cubic lattice. Thus the functional
F@f~r !# becomes a functionF($f i , j ,k%) of N3 variables,
whereL5(N21)h is the linear dimension of the cubic lat-
tice, h is the lattice spacing, and$fi , j ,k% stands for the set of
all variables of the function. Each variablefi , j ,k represents
the value of the fieldf~r ! at the pointr5( i , j ,k)h and i , j ,k

51,...,N. In our calculations we useN5129, which results
in over 23106 points per unit cell.

All structures we have investigated are periodic. Thus pe-
riodicity had to be incorporated into the functional~2!. It was
done by periodic boundary conditions f1,j ,k
5fN, j ,kf2,j ,k5fN11,j ,k, f3,j ,k5fN12,j ,kf0,j ,k5fN21,j ,k,
and f21,j ,k5fN22,j ,k, and similarly in they and z direc-
tions. The points outside the unit cell, given by the periodic
boundary conditions, enter the functional through the calcu-
lations of derivatives of points at the boundary and near the
boundary of the lattice, i.e., when at least one of the indices
i , j ,k is equal to 1,2,N21,N.

The first and second derivatives in the gradient and La-
placian term of the functional~2! at the pointr5( i , j ,k)h on
the lattice were calculated according to the formulas@30#

]f~r !

]x
→

f i11,j ,k2f i21,j ,k

2h
~8!

and

]2f~r !

]x2
→

1

12h2
~2f i12,j ,k116f i11,j ,k230f i , j ,k

116f i21,j ,k2f i22,j ,k!, ~9!

and similarly in they andz directions. The mixed derivatives
used in~18! and ~19! are calculated according to@30#

]2f~r !

]x]y
→2

1

2h2
~f i11,j ,k1f i21,j ,k1f i , j11,k1f i , j21,k

22f i , j ,k2f i11,j11,k2f i21,j21,k!. ~10!

A. Choosing the surface

The order parameter fieldf~r ! carries an enormous
amount of information about the local structure of the phases
we have investigated. The most interesting is the topology of
the phases, described by the surface

f„r5~x,y,z!…50, ~11!

dividing positive and negative regions of the order parameter
field. Thus it was crucial in our studies to find the location of
the surfacef~r !50.

It is highly unlikely, because of numerical accuracy, that a
value of the fieldf~r !5fi , j ,k at the pointr5( i , j ,k)h on the
lattice is exactly zero. Therefore the points of the surface
have to be localized by interpolation between the neighbor-
ing sites of the lattice. Iff„r15( i , j ,k)h…5fi , j ,k,0 and
f„r25( i11,j ,k)h…5fi11,j ,k.0, then the pointr0, for which
f~r0!50, must lie between the pointsr15( i , j ,k)h and
r25( i11,j ,k)h. Moreover, the location ofr0 depends on the
values of the field at the pointsr1 and r2 as

r05S i1 uf i , j ,ku
uf i , j ,k2f i11,j ,ku

, j ,kDh. ~12!

B. Triangulation, surface area, and volume

In the way described in the preceding section, one can
find the points of the surfacef~r !50 located between the

FIG. 1. Piece of surface with nonpositive Gaussian curvature.
R1 andR2 are the principal radii. The Gaussian (K) and the mean
(H) curvatures are expressed in terms of the principal radii as
H51/2R111/2R2 andK51/R1R2 . If R152R2 at every point, the
surface is called minimal. This implies thatK is nonpositive at
every point.
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neighboring lattice sites. However, this is not enough to de-
scribe the surface. It is also necessary to specify the connec-
tions between these points to characterize the surface.

Due to discretization the unit cell is divided on~N21!3

small cubes of the size of the lattice spacingh. The surface
f~r !50 passing through a small cube cuts out of it a poly-
gon, whose edges are formed by the intersection of the sur-
face and faces of the small cube. The edges of the polygon
can be approximated by straight lines. The possible configu-
rations of the surfacef~r !50 cutting a small cube are pic-
tured in Fig. 2. The surfacef~r !50 can cut out only four
kinds of polygons: a triangle, a tetragon, a pentagon, and a
hexagon. The edges of these polygons, except the triangle,
do not lie in a common plane. It is necessary to specify also
the connections between the vertices of the polygon, to char-
acterize the surface unambiguously. This was done in the
way shown in Fig. 2, with thick dotted lines in the patches of
the surface inside the small cubes. This procedure makes the
surface covered only with triangles. The triangulation de-
scribed above was used to calculate the surface area inside a
unit cell by summing up the surface area of all triangles.

The triangulation was also used to calculate the volume
ratio of the two subvolumes. The surfacef~r !50 separates
the volume of a given phase into two subvolumes, first oc-
cupied by the fieldf~r !.0 and second byf~r !,0. In order
to calculate the volume occupied by the negative or positive
values of the fieldf~r ! the volume of the small cubes not cut
by the surfacef~r !50 is calculated. Next we use the trian-
gulated surfacef~r !50 to divide the small cubes with the
values of the fieldf~r ! of different sign at the vertices. The
surfacef~r !50 divides a small cube into two polyhedra. The
volumes of these polyhedra for negative and positive values
of the fieldf~r ! were calculated and added to the previously

calculated volume for regions of positive and negative values
of f~r !.

For more than one periodic surface, in the unit cell, it is
necessary to separate different surfaces to be able to calcu-
late the surface area and genus of each surface. In order to
find the points that belong to the same surface one has to
choose an arbitrary point on one of the surfaces and follow
the connections between points to find the rest of the points
belonging to this surface. The set of connections will
uniquely specify the surface. Figure 3 illustrates the way this
process can be done for two surfaces. Having chosen an
arbitrary point on one surface, represented by a black circle
in Fig. 3~a!, one has to find among all the connections be-
tween couples of points specified by the triangulation the
connections including this point. They are represented by
thick solid lines connecting the black circle with the white
circles. Next one has to chose arbitrarily a point among the
points represented by white circles and find all connections
between this point and the points remaining after removing
from the set of connections the connections containing the
first point. This is shown in Fig. 3~b!. Such a procedure has
to be repeated until no more than one point represented by
the white circle is left.

C. Euler characteristics and genus

The triangulation can also be used to calculate the Euler
characteristicsx of the surface inside the unit cell. The cal-
culation ofx can be done according to the Euler formula@31#

x5F1V2E, ~13!

whereF,V,E are the numbers of faces (F), vertices (V), and
edges (E) of the polygons cut out by the surfacef~r !50 in
the small cubes of dimension of lattice spacing~Fig. 3!. The
fact that each polygon is inside a small cube makes the cal-

FIG. 2. Possible configurations of passing the surfacef~r !50
through the fieldf~r ! discretized on the lattice. Black circles rep-
resentfi , j ,k,0, whereas white circlesfi , j ,k.0. The cubes represent
the smallest pieces of the lattice of linear dimensionh. For smooth
surfaces studied here cases of 3–6 vertices of the surface in a small
cube are the only cases. Cases of 7–9 and 12 vertices in a single
cube have not been encountered.

FIG. 3. Schematic illustration of the separation of two disjoint
surfaces.

54 5015TRIPLY PERIODIC SURFACES AND MULTIPLY . . .



culation very easy because each vertex of the polygon be-
longs to four polygons since it lies on the edge of the small
cube. Therefore, to calculatex one does not need to know
the connections between points. It is sufficient to know only
how many times the surfacef~r !50 cuts the edges of the
small cube and how many cubes it cuts. The number of faces
(F) is therefore the number of small cubes cut by the surface
f~r !50, that is, the cubes with the values of the field
f~r !5fi , j ,k of different sign at its vertices. The number of
vertices is given by the number of intersections of the surface
f~r !50 with the edges of the small cubs taken with a weight
1
4 because each edge belongs to four cubes. The number of
edges (E) is the same as the number of vertices, but it has to
be taken with a weight12 because the polygon edges lie in the
faces of small cubes and each face belongs to two cubes.
Only the last case shown in Fig. 2 needs a slightly different
treatment since one face of the surface lies on the face of the
small cube.

The Euler characteristic for the closed surface is related to
the Gaussian (K) curvature and genus (g) of this surface as
@31,32#

x5
1

2p E
S
K dS52~12g!, ~14!

where the integral is taken over the surfaceS. The genus is
an integer number and tells how many holes are in a closed
surface. For example, the genus for a sphere is zero, for a
torus one, and for a pretzel is two. The structures we have
investigated are infinite and periodic. The genus for an infi-
nite surface is infinite, of course, but for a finite piece of this
surface, in a unit cell, it is finite and characterizes the sur-
face. Due to periodicity the unit cubic cell can be treated as
a closed surface in four dimensions, making the calculation
of the genus for the infinite periodic surface fully justified
@33#. Therefore, the genera of the structures were calculated
according tog512x/2, wherex is the Euler characteristic
for the surface inside a unit cell.

D. Curvatures

The Gaussian and the mean curvatures present another
characteristic of the internal surfaces given byf~r !50. In the
description of the model we have mentioned that some of the
structures in the model should be characterized by zero mean
curvature at every point of the internal interface. Here we
present the method used to compute Gaussian and mean cur-
vatures. The unit normaln~r ! at the pointr is given by the
gradient of the fieldf~r !,

n~r !5
¹f~r !

u¹f~r !u
. ~15!

The mean (H) curvatures is given by the divergence of the
unit vector@34#, normal to the surface at the pointr , n~r !,

H~r !52
1

2
¹n~r !52

1

2
¹

¹f~r !

u¹f~r !u
~16!

and the Gaussian curvature (K) by the formula@35#

K~r !5 1
2 $2~] inj !

21@¹n~r !#2%. ~17!

In numerical calculations of the curvatures we used the for-
mulas@34,36#

H52
1

2Afx
21fy

21fz
2

B

A
, ~18!

K5
1

fx
21fy

21fz
2

C

A
, ~19!

whereA, B, andC are obtained from

detS ~fxx2l!

fyx

fzx

fx

fxy

~fyy2l!

fzy

fy

fxz

fyz

~fzz2l!

fz

fx

fy

fz

0
D

5Al21Bl1C ~20!

and are given by

A52~fx
21fy

21fz
2!, ~21!

B5fx
2~fyy1fzz!1fy

2~fxx1fzz!1fz
2~fxx1fyy!

22fxfyfxy22fxfzfxz22fyfzfyz , ~22!

C5fx
2~fyz

2 2fyyfzz!1fy
2~fxz

2 2fxxfzz!

1fz
2~fxy

2 2fxxfyy!12fxfz~fxzfyy2fxyfyz!

12fxfy~fxyfzz2fxzfyz!

12fyfz~fyzfxx2fxyfxz!. ~23!

The mean and Gaussian curvatures have to be computed
at the points of the surfacef~r !50. These points do not lie
exactly at the lattice sites. In order to calculate the deriva-
tives of the fieldf~r ! at the pointr0, for which f~r0!50,
according to the formulas~8!–~10! the values of the field
f~r ! at the points r01~0,0,h!, r01~0,h,0!, r01~h,0,0!,
r01~0,0,2h!, r01~0,2h,0!, r01~2h,0,0!, r01(0,h,h),
r01(h,h,0), and r01(h,0,h) have to be interpolated. The
point r0 is uf i , j ,ku/uf i , j ,k2f i , j11,ku5Dh away from the
point r5( i , j ,k)h. Then the value of the fieldf~r ! at, e.g.,
the point r01~0,h,0! is Dh(f i , j11,k2f i , j ,k). The values of
the fieldf~r ! in the remaining points can be calculated in a
similar way.

E. Building an initial configuration

The minimization procedure always requires an initial
configuration. Here we present the initial configurations used
in minimization of structures of different symmetries.

The initial configuration is set up by building the field
f~r ! for a unit cell first on a small cubic lattice,N53 or 5,
analogously to a two-componentAB molecular crystal. The
value of the fieldf~r !5fi , j ,k at the pointr5( i , j ,k)h on the
lattice is set to 1 if in the molecular crystal an atomA is in
this place; if there is an atomB, fi , j ,k is set to21; if there is
an empty placefi , j ,k is set to 0. Figure 4~a! shows the initial
configuration used to build the fieldf~r ! for the simple cubic
phase unit cell. Filled black circles represent atoms of typeA
and hollow circles represent atoms of typeB. In this case all
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sites are occupied by atomsA or B. Figure 4~a! shows the
initial configuration used to build the fieldf~r ! for the
double diamond phase in18 of the unit cell. There are unoc-
cupied sites in this case and in these sites the value of the
fieldf~r !5fi , j ,k is set to zero. It would be difficult to present
the initial configuration for the gyroid phase because it
would require drawing the picture of lattice of sizeN59.
Such a picture would be unreadable. Therefore we present
this configuration schematically in Fig. 5~a!. The solid and
dotted lines show the channels of oil and water. The thick
dashed lines show the region occupied by a rectangular par-
allelopiped used to build the unit cell. The fractions represent
the value of thez coordinate of an atom in the unit cell. In
order to better visualize this configuration we present in Fig.
5~b! the points on the lattice, in a unit cell, with the values of
the fieldf~r ! set initially to21 ~light gray spheres! and11
~dark gray spheres!.

The tetrahedrons drawn in Figs. 4~a! and 4~b! with thick
solid lines are the kaleidoscopic cells used to build the unit
cell. The way of constructing the unit cell by replicating the
kaleidoscopic cell is described in Sec. III F. One can easily
see now that in order to build the field in a unit cell on a
small cubic latticeN53 it is enough to specify the values of
the field f~r !5fi , j ,k only at the points inside the tetrahe-
drons. The values of the field at the remaining points can be
set by using the symmetry of the structures. Thus, instead of
specifying 33527 values offi , j ,k one has to specify these
values at four point of the cubic lattice for the simple cubic
structure. Using this method in the case of double diamond
structures gives even bigger gain, where it is sufficient to set
the values of the field at five points in order to set up the field
for a cubic lattice containing 535125 points.

The small lattice can be enlarged to the desired size by
changing the number of points fromN to 2N21 and finding
the values offi , j ,k in new lattice sites by interpolation. The
interpolation done to enlarge the lattice has no influence on
the results. It may only speed up the calculations if it is done
appropriately.

F. Symmetry

We impose on the fieldf~r ! the symmetry of the structure
we are looking for by building up the field inside a unit cubic
cell of a smaller polyhedron, replicating it by reflections,
translations, and rotations. These polyhedra are pictured with
thick solid lines in Figs. 6~a!–6~c!. They are identical to the
polyhedra described by Coxeter@37# as kaleidoscopic cells.
Such a procedure not only guarantees that the field has re-
quired symmetry but also enables substantial reduction of
independent variablesfi , j ,k in the functionF($f i , j ,k%).

The structures we have generated can be, in principle,
characterized by space group symmetry@38,39,32#, analo-
gous to molecular crystals. The simple cubic structure has

FIG. 4. Initial configuration used to create structures of symme-
try of ~a! the simple cubic phase and~b! the double diamond phase.

FIG. 5. Initial configuration used to create structures of symme-
try of gyroid phase:~a! schematic representation and~b! field rep-
resentation.

FIG. 6. Thick solid lines show the kaleidoscopic cell used to
create~a! the unit cell for the structures of simple cubic phase
symmetry ~the quadrirectangular tetrahedron is the kaleidoscopic
cell! @see Fig. 4~a!#, ~b! 1

8 of the unit cell for the structures of double
diamond symmetry~the trirectangular tetrahedron is the kaleido-
scopic cell! @see Fig. 4~b!# and~c! the unit cell for the structures of
gyroid phase symmetry~the rectangular parallelopiped is the kalei-
doscopic cell! ~see Fig. 5!.
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the space groupIm3̄m, double diamondF4̄3m, and gyroid
Ia3̄d. However, this is not always obvious even for the
structures of simple topology, which a Bravais lattice should
be assigned to for a given structure@32#. For more complex
structures, assigning a Bravais lattice becomes unclear.
Therefore we decided to characterize the symmetry of the
structures we have generated by including it in the class of
symmetry characteristic for the following structures: simple
cubic, double diamond, and gyroid. All these structures be-
long to the class of cubic symmetry; thus here we generate
only the structures belonging to this class.

The structures having the symmetry of the simple cubic
phase are built of a quadrirectangular tetrahedron replicating
it by reflection@Fig. 6~a!#. The faces of the tetrahedron lie
in the planes of mirror symmetry. The volume of the tetra-
hedron is 1

48 of the unit cell volume.
The structures of the double diamond phase symmetry are

built in the following way. First the unit cell is divided into
eight smaller cubes. The field in the one of the small cubes is
built of trirectangular tetrahedron in the same way as in the
previous case@Fig. 6~b!#. The volume of the tetrahedron is
1
24 of the unit cell volume. Next the field in the unit cell is
built of this cube by translations and translations combined
with a change of sign of the field fromfi , j ,k to 2fi , j ,k . The
cube with the field build of the tetrahedron is translated by
the vectors (L/2,L/2,0), (0,L/2,L/2), and (L/2,0,L/2). Next
the sign of the field in the small cube is changed and the cube
with such a different field is translated by the vectors
~0,0,L/2!, ~0,L/2,0!, ~L/2,0,0!, and (L/2,L/2,L/2). L in both
cases is the unit cell length. Such a procedure enables the
reduction of the unit cell volume by a factor 1/~8324!5 1

192.
If the f~r !,2f~r ! symmetry is not applied, the trirectan-

gular tetrahedron can also be used to create the structures of
double diamond phase symmetry. In such a case the cube
shown in Fig. 6~b! as 1

8 of the unit cell becomes the unit cell.
The unit cell volume is therefore reduced by a factor1

24.
The structures of gyroid phase symmetry are built of a

rectangular parallelopiped@Fig. 6~c!#. It consists 1
16 of the

unit cell volume. The parallelopiped is rotated by 90° ac-
cording to a fourfold screw rotation axis parallel to thez
direction, located at the pointr5(L/4,L/4,L/4) and trans-
lated in the direction of thez axis by the vector~L/4,0,0!.
Repeating this operation three times fills out1

4 of the unit cell
volume with a new rectangular parallelopiped spanned by a
vector (L,L/2,L/2) located at the pointr5~0,0,0!. Next this
new parallelopiped is rotated according to a twofold rotation
axis parallel to they direction and located at the pointr
5(L/2,0,L/2). The parallelopiped created by this operation
spanned by the vector (L,L/2,L/2) located at the point
r5~L/2,0,0! is translated by the vector (2L/2,L/2,0). The
sign of the field in this parallelopiped is changed fromfi , j ,k
to 2fi , j ,k . After these transformation12 of the unit cell is
recreated. The other half of the unit cell is created of the
previous one by rotating it according to the twofold rotation
axis parallel to thez direction and located at the pointr
5(L/2,L/2,0).

G. Accuracy of numerical computations

We use the conjugate gradient method@40# to minimize
the functionF($f i , j ,k%). Minimization was done with respect

to $fi , j ,k% for a given value of the cell lengthL5(N21)h.
We have variedh to find the cell length for the lowest value
of the functionF($f i , j ,k%).

The solution for the discretized model of a continuous
functional is obtained with a certain accuracy. The accuracy
depends on the value of the lattice spacingh and the number
of pointsN. We have checked the accuracy of our results by
calculating the free energy and the surface area off~r !50
for a few different sizes of the lattice. Figure 7~a! shows that
the free energy is very sensitive for the lattice size. We used
in our calculationsN5129, which results in over 23106

points per unit cell. This value seems to give sufficient ac-
curacy for the calculation of the free energy. For the calcu-
lation of the surface area off~r !50 a smaller lattice can be
used to obtain high accuracy. Figure 7~b! shows that the
values of the surface area of the internal interface change
only slightly for N533,65,129.

IV. RESULTS

We have generated many unknown structures as well as a
few known ones. Among the generated surfaces are the triply
periodic minimal surfaces. These surfaces have been consid-
ered as paradigms of the internal interface in the ordered
phases formed in the mixtures containing a surfactant. We
describe these surfaces in Sec. IV A. To the best of our
knowledge the results we present are the first ones showing
that a triply periodic minimal surface can be the solution of a
physical model. The surfaces of high genus are presented in
Sec. IV B. The pictures of these surfaces strongly resemble
the pictures of microemulsion taken during freeze fracture
microscopy studies. In Sec. IV C we describe another type of
structure,the multiply continuous structure. Our discovery
calls for new experiments confirming or rejecting the exist-
ence of such structures in real systems~so far only bicon-
tinuous structures have been considered!. The phase diagram
of the model is presented in Sec. IV D.

FIG. 7. ~a! Free energy per unit volume and~b! normalized
surface area per face of the unit cell off~r !50 for the simple cubic
structure, calculated from the functional~2! for the parameters
f 050 andg0523.0 as a function of the lattice size.
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A. Minimal surfaces

The following simple experiment can be used for the di-
rect visualization of a simple patch of minimal surface. Take
a metal nonplanar frame and immerse it in a water solution
of soap. The soap bubble that forms on this frame assumes
the shape that minimizes its surface free energy associated
with the surface tension and consequently it forms a surface
of least area. Thus these surfaces are called minimal sur-
faces. Such experiments can be traced back to Leonardo da
Vinci, but in fact detailed studies of this type were done and
published by Plateau@41# and hence later the problem of a
surface of least area spanning a given loop has been named
the Plateau problem.

The history of physics and mathematics of minimal sur-
faces ran in parallel. Lagrange, in 1761~before Plateau!, de-
rived equations for a surface of least area that are equivalent
to the condition of vanishing mean curvature at every point
on the surface. The representation of these surfaces in terms
of harmonic functions was given by Weierstrass in 1866 and
this representation has served many researchers up to date
for their generations. Further qualitative insight into the
mathematics of the problem was obtained by Schwarz and
Neovius, who showed that simple patches of minimal sur-
faces can be put together to give smooth periodic three-
dimensional structures, which are called now triply periodic
minimal surfaces or sometimes infinite periodic minimal sur-
faces. They identified five phases, three of which were of
cubic symmetry, i.e.,P, D, andC(P). Plateau and Schwarz
in fact entertained scientific contacts, but none of them had
envisaged the role of these surfaces as physical interfaces.
The rediscovery of the problem is attributable to Schoen
@39#, who identified four surfaces of cubic symmetry~G,
I -WP, F-RD, andO,C-TO!. In 1976 Scriven@42# hypoth-
esized that such surfaces could be used for the description of
physical interfaces appearing in ternary mixtures of water,
oil, and surfactants. In 1967–1968 Luzzatiet al. @43–46#
observed this type of ordering in the lecithin-water and lipid-
water systems. One of the phases observed by them was the
phase of the same symmetry as theG Schoen minimal sur-
face. It seems that the discoveries of Schoen and Luzzati
et al.were made independently. In fact, this phase appears to
be very common in biological systems. Another example of
such surfaces is found in the system of diblock copolymers,
commercially important materials for the production of plas-
tics. An AB diblock copolymer consists of two macromol-
ecules chemically bonded together. At low temperatures the
system forms orderedA-rich andB-rich domains, with the
points of bondage at the interface between the domains. In
1988 Thomaset al. @47# observed that the polystyrene-
polyisoprene~PS-PI! diblock copolymer forms a structure of
the same symmetry as theD ~diamond! Schwarz surface and
argued on the basis of the relative volume fraction of PS and
PI component that the resulting physical interface must be
the surface of constant mean curvature at every point of the
surface. Such a surface belongs to the family of minimal
surfaces@39,32,48#.

Surfaces are ubiquitous. Even in the ionic crystals one can
imagine a periodic zero potential surface~POPS! having the
same symmetry as the crystal@49#. Although POPSs do not
usually have the same geometry as the minimal surfaces
~their mean curvature varies along the surface!, nonetheless

they share the same topology~genus, etc.! and symmetry as
the latter.

The minimal surfaces are usually described in terms of
Weierstrass integral equations. The Weierstrass representa-
tion gives the coordinates (x,y,z) on a minimal surface of
the point represented byv in the complex plane@50#

x5Re E
v0

v1
~12v2!R~v!dv,

y5Re E
v0

v1
i ~11v2!R~v!dv,

z5Re E
v0

v1
2vR~v!dv, ~24!

whereR~v! is the Weierstrass characteristic function for the
surface, Re stands for the ‘‘real part,’’v5va1 ivb , andi5
A21. When the functionR~v! is replaced withR(v)eiu the
surface described by the functionR~v! is transformed into
another surface called the adjoint surface. Such a transforma-
tion is called the Bonnet transformation@51# andu is known
as the Bonnet angle. The Bonnet transformation preserves
the Gaussian and mean curvatures.

1. Schwarz surfaces D,P and Schoen surface G

The Schwarz primitive surfaceP @Fig. 8~a!# and Schoen
gyroid surfaceG @Fig. 8~c!# are related to theD surface@Fig.
8~b!# by the Bonnet transformation: the Bonnet angle for the
P surface is 90° and for theG surface it is 38.015°. The
Weierstrass function for the fundamental element of the sur-
facesD is given by@50,52#

R~v!5~v8214v411!21/2, ~25!

FIG. 8. Minimal surfaces generated from the functional~2!: ~a!
Schwarz simple cubicP, ~b! Schwarz diamond surfaceD, and~c!
Schoen gyroidG. The unit cell is shown from an off front view.
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with an integration domain given by the points around the
origin limited by four circles with radius& and centers at
6&,6i&.

Here we use our model to generate surfaces. The fact that
the P,D,G ~see Fig. 8! surfaces are adjoint means that the
histograms of the Gaussian curvature for these surfaces
should be the same. In fact, the histograms look very similar
~see Fig. 9!; the small differences result from the numerical
accuracy. The mean curvature of the minimal surface is zero
at every point; thus its histogram should be a single infinitely
sharp peak atH50. Here it is smeared~see Fig. 9! due to
numerical accuracy. In fact, it serves as a good estimate of
the errors for curvatures.

It is interesting that the value of the free energy in our
model~2! for each of these structures is the lowest for all the
structures of given symmetry, i.e., among all structures of the
symmetry of gyroid phaseG, this phase has the lowest free
energy. These phases are generated independently of the ini-
tial configuration, provided that the unit cell length is set
close to the minimal length. If the cell length is taken close
to multiple length of the unit cell then multiple images of a
given structure are formed.

The fact that theG andD structures are the most stable
among the structures of a given symmetry suggest that they
can be found in real systems. In fact, the phases diamondD

and gyroid G have been discovered in real systems in
diblock copolymers@47,53–56#. However, the discovery of
the gyroid phase, after the diamond phase had been found in
real systems, was not straightforward. It took the researchers
about six years after the discovery ofD phase to find the
gyroid phase in the PI-PS system of diblock copolymers.
Recent studies@57# show that the diamond phase in diblock
copolymer systems is not stable. The only stable one is the
gyroid phase. This is in accord with our calculations where
the free-energy value for the gyroid phase is smaller than for
the diamond phase.

2. Schoen I-WP and O,C-TO minimal surface

The I -WP surface@Fig. 10~a!# was discovered by Schoen
@39#. He built the models of the surface, and identified its
space group asIm3̄m. That is why the letterI is in the first
part of the name given by him to this surface. The WP stands
for ‘‘wrapped package’’ because of the resemblance of finite
portions of the graph to the arrangement of string on a sim-
ply wrapped package. The Weierstrass characteristic func-
tion for the I -WP surface is@51,58#

R~v!5~v625v425v211!22/3. ~26!

The I -WP surface was found in star block copolymers@59#.

FIG. 9. Histograms of the Gaussian (K) and mean (H) curvature for the surface:~a! SchwarzP, ~b! SchwarzD, and~c! SchoenG.
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The results of our study suggest that it can also be found in
the ternary surfactant mixtures.

The O,C-TO surface @Fig. 10~b!# was discovered by
Schoen@39#. The Weierstrass function for this surface is not
known and no other information except the genus and the
symmetry are described in the literature. Here we report the
volume fraction of the two subvolumes divided by theO,C-
TO surface; see Table I. As far as we know, nobody so far
has shown the existence of this structure in real systems. The
surface obtained from the functional~2! strongly resembles
the one described by Schoen. The histogram of the mean
curvature suggests that this surface can be minimal. How-
ever, this is the only structure that cannot be minimized with
respect to the cell length. For all structures except this one
we were able to find the minimal cell length, i.e., varying the
cell length we were able to find such a length for which the
free-energy density of the functional~2! is minimal. The
O,C-TO structure collapses toI -WP when the cell length is
varied. Such a behavior suggests that this structure is very
unstable and finding it in real systems is problematic.

It should be pointed out here that although the free energy
depends on the cell length, the geometric properties of the
surfacef~r !50 do not. The surface area per face of the unit
cell S̃ is the same, for a given structure, at different points of
the phase diagram and for different values of the cell length.
The free energy depends on the three-dimensional scalar
field f~r ! and that is why it varies for different values of the

cell length and for different points on the phase diagram.
However, S̃ and the mean curvatureH~r ! for the surface
f~r !50 are scale invariant.

B. High-genus embedded periodic surfaces

The high-genus surfaces are most easily generated for the
values of parametersf 0 andg0 in ~2! taken near the boundary
of lamellar and microemulsion phase and for a larger unit
cell lengthL5(N21)h than the length of structures of low
genus. This suggests that the microemulsion can be consid-
ered as a bicontinuous structure of the high-genus surface.
These are only speculations based upon theoretical studies.
New experiments are needed to check these speculations. We
hope that our results will help experimentalists design such
experiments.

FIG. 11. High-genus surfaces generated from the functional~2!:
~a! the surfaceSCN1 of symmetry of theP surface@see Fig. 8~a!#,
~b! the surfaceCD of symmetry of theD surface@see Fig. 8~b!#, ~c!
the surfaceGX5 of symmetry of theG surface@see Fig. 8~c!#. The
unit cell is shown from an off front view.

FIG. 10. Schoen minimal surfaces generated from the functional
~2!: ~a! I -WP and~b! O,C-TO. The unit cell is shown from an off
front view.

TABLE I. Geometrical properties of the known minimal surfaces obtained from the functional~2!, for the
parametersf 050.0 andg0523.0. The exact values found in the literature are given in square brackets. The
surface areaS̃ is the normalized per face of the unit cubeL2 surface areaS of the interface in the unit cell
S̃5S/L2 andL5(N21)h. The energy is given per unit volume.

Name
Cell
length Energy

Surface
area Genus

Volume
fraction

P 7.88 20.181 2.3453 3 0.5
@2.345 106 8#

D 12.56 20.188 3.8387 9 0.5
@3.837 786 2#

I -WP 11.78 20.180 3.4640 7 0.533
@3.464 601 6#

G 10.08 20.190 3.0919 5 0.5

O,C-TO 14.68 20.162 3.6805 10 0.535
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We present in this section several examples of high-genus
surfaces of different symmetry. The structureSCN1 @Fig.
11~a!# has the symmetry of the simple cubic phase@Fig.
8~a!#, the structureCD @Fig. 11~b!# has the symmetry of
double diamond phase@Fig. 8~b!#, and the structuresGX5
@Fig. 11~c!#, GX1 @Fig. 12~a!#, GX2 @Fig. 12~b!#, andGX3
@Fig. 12~c!# have the gyroid phase@Fig. 8~c!# symmetry, see
also @60#.

TheSCN1 surface@Fig. 11~a!# is similar to theBFY sur-
face@29#, but because its unit cell length is larger, the surface
is more complex. A comparison of these surfaces can be
used as an example of how the functional~2! keeps the size
of the water and oil regions the same for different structures.
For a bigger cell length the surface dividing the oil and water
regions is folded a few times in order to keep the sizes of the
oil and water regions resulted from the functional~2! for
given values of the parametersf 0 ,g0 .

TheCD @Fig. 11~b!# structure is especially interesting be-
cause it has the same symmetry as the Schwartz diamondD
phase. It has been generated in the same way as the diamond
D phase, that is, we have reduced the unit cell by a factor1

192

. Having done such a reduction, we hardly expected the pos-
sibility of the generation of a new surface. In fact, enlarging

FIG. 12. High-genus gyroid surfaces generated from the func-
tional ~2!: ~a! GX1, ~b! GX2, and~c! GX3. The unit cell is shown
from an off front view.

FIG. 13. Histograms of the Gaussian (K) and mean (H) curvature for the surface:~a! SCN1 @Fig. 8~a!#, ~b! CD @Fig. 8~b!#, and~c! GX5
@Fig. 8~c!#.
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the length of the cubic cell, we usually obtained the multiple
replicas of the diamondD structure, except for the case when
theCD structure was generated.

We have generated high-genus surfaces of vanishing cur-
vatures; see Figs. 13 and 14. The existence of such surfaces
in real systems was questioned. The researches argued that it
is impossible to build high-genus periodic surfaces because
of large curvatures, which could not be accommodated by
the displacement of surfactant molecules at the surface@61#.
As we can see from Table II, high-genus surfaces have large
unit cells and therefore their curvatures~see the Gaussian
curvatures! are similar in magnitude to those of surfaces of
low genus. Therefore the argument against the existence of
these surfaces does not hold.

The pictures of the high-genus structures, especially the
gyroid ones, strongly resemble the pictures of microemulsion
taken during freeze fracture microscopy studies@5,8#. The
gyroid high-genus surfaces have in general lower free energy
than the surfaces of other symmetries. We can speculate that
this symmetry would be preferred in real systems. In fact, the
Schoen gyroidG minimal surface is the most common in
nature among the known minimal surfaces. The gyroid sur-
faces do not have planes of symmetry. This may cause easier
adaptation of their shape to the structures encountered in

nature, such as diblock copolymers, lipid-water solutions, or
surfactant mixtures.

The properties of high-genus surfaces are calculated with
lower accuracy than the properties of those of low genus.

FIG. 14. Histograms of the Gaussian~K! and mean (H) curvature for the surface:~a! GX1 @Fig. 12~a!#, ~b! GX2 @Fig. 12~b!#, and~c! GX3
@Fig. 12~c!#.

TABLE II. Geometrical properties of high-genus surfaces ob-
tained from the functional~2!, for the parametersf 050.0 and
g0523.0. The surface areaS̃ is the normalized per face of the unit
cubeL2 surface areaS of the interface in the unit cellS̃5S/L2 and
L5(N21)h. The energy is given per unit volume. The volume
fraction for all structures is 0.5.

Name
Cell
length Energy

Surface
area Genus

SCN1 25.6 20.178 7.4288 45

CD 28.88 20.167 8.2257 73

GX1 26.16 20.186 7.907 53

GX2 26.48 20.183 8.081 69

GX3 31.72 20.181 9.657 109

GX5 34.40 20.178 10.519 157
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This is so because we have used the same size of the lattice
N for the unit cell. This results in a bigger lattice spacingh.
For high-genus structures more surface has to be accommo-
dated in the unit cell; therefore the calculation of the deriva-
tives is less accurate.

The biggest errors are in calculations of the curvatures
because all possible approximations are accommodated in
these calculations. First is the approximation used to find the
surfacef~r !50. The location of this surface has to be lin-
early interpolated between the lattice sites. The formulas for
the mean and Gaussian curvature are also numerical approxi-
mations of the analytic expressions. The derivatives used in
calculations are also numerical approximations. The points
used to calculate the derivatives have to be interpolated be-
tween the lattice sites. Finally, the discretization and minimi-
zation of the functional also introduces some errors. It is
amazing that, in spite of all those sources of errors, the cur-
vatures are calculated with such a high accuracy, which can
be seen by looking at the histograms of the mean curvature
for P,D,G minimal surfaces; see Fig. 9.

C. Multiply continuous embedded periodic surfaces

The possibility of the existence of multiply continuous
structures in ternary mixtures of oil water and surfactant has
not been discussed so far~see, however, the paper on triblock
copolymers@62#!. In the bicontinuous structure the single
surface separates the volume into two disjoint subvolumes.
In our phases there is more than one periodic surface that
disconnects the volume into three or more disjoint subvol-
umes. The multiply continuous structures are most easily
generated for the values of parametersf 0 andg0 in ~2! taken
near the boundary of lamellar and water~oil! phase and for
the bigger unit cell lengthL5(N21)h than the length of
structures of low genus. The experimental results do not rule
out the existence of such structures; contrarily, the experi-
ment on the electrical conductivity supports the idea@5,6#. It
would be very interesting to design an experiment answering
the question whether the structures considered so far as bi-
continuous are only bicontinuous or maybe multiply continu-
ous.

We present the multiply continuous structures of the
simple cubic phase symmetry~SCL1 andSCL2 in Fig. 15!
and of the gyroid phase symmetry~GL1 andGL2 in Fig. 16!.
TheSCL1 structure is triply continuous, theGL1 andSCL2
are quadruply continuous, andGL2 is sixtuply continuous.
For bigger unit cells one is able to generate the structures
n-tuply continuous. It is remarkable that the volume fraction
of oil and water is 0.5 for all these structures. The genera for
all surfaces in a given structure are the same. Other proper-
ties of the multiply continuous structures are described in
Table III.

The SCL1 surface is especially interesting. Although the
outer and the inner surface look different in Fig. 15~a!, they
have the same surface area; see Table III. In fact, they are
built of the same piece of the surface. The picture of1

8 of the
unit cell @see Fig. 15~b!# explains how two different periodic
surfaces can be built of the same surface patch.

TheSCL2 structure is composed of three different embed-
ded periodic surfaces@Fig. 15~c!#. The middle surface is the
Schwarz minimal surfaceP and its normalized surface area

of these surfaces is the same within the numerical errors; see
Tables III and I. Similarly, the middle phase surface inGL1
@Fig. 16~a!# andGL2 @Fig. 16~b!# structures is the Schoen
minimal surfaceG; see Tables III and I.

TheGL2 structure suggests that one can generate arbitrary
n-tuply continuous structures. It is only necessary to set the
cell length sufficiently large. We have not attempted genera-
tion of such structures because, due to the limits imposed by
computer memory and the speed of the processor, the lattice
spacing would be too big for a given size of the lattice to
obtain reasonable accuracy.

D. Stability of different phases in the model

We have investigated many bicontinuous phases of differ-
ent symmetries, genera, and dimensions of the unit cell. The

FIG. 15. Multiply continuous structures of symmetry of the
simple cubic phase@see Fig. 8~a!#, generated from the functional
~2!: ~a! the unit cell of theSCL1 triply continuous structure,~b! 1

8 of
the unit cell of theSCL1 structure,~c! the unit cell ofSCL2 qua-
druply continuous structure, and~d! 1

8 of the unit cell of SCL2
structure. The unit cell is shown from an off front view.

FIG. 16. Multiply continuous structures of symmetry of the gy-
roid phase@see Fig. 8~c!#, generated from the functional~2!: ~a! the
unit cell of quadruply continuousGL1 structure and~b! the unit
cell of sixtuply continuousGL2 structure. The unit cell is shown
from an off front view.
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bicontinuous phase with the lowest value of the free energy
turned out to be the gyroid, but the only stable liquid crys-
talline phase in this model is the lamellar phase. Figure 17
shows the plot of the free energy as a function of the param-
eter f 0 for the lamellar and gyroid phases. The phase diagram
for the model~2!, in the mean-field approximation, calcu-
lated by Gompper and Zschocke@22# and checked here is
shown in Fig. 18. Other bicontinuous phases behave in the
same way as the gyroid and lamellar. The value of the free
energy in the vicinity of microemulsion boundary converges
to the value of the free energy for the microemulsion. The
geometric characteristics such as genus and normalized sur-
face area are the same for all phases in different places of the
phase diagram.

We have also studied the stability of bicontinuous phases
for different functions describing the surfactantg„f~r !…. We
have used the following form ofg„f~r !…:

g„f~r !…5g2f~r !41g0 . ~27!

We have expected that this form ofg„f~r !… would make the
interface between oil and water sharper and therefore it
would lower the free energy. The interface indeed was
sharper as we expected, but the unit cell length decreased
also. This resulted in higher values of the free energy than
before and all bicontinuous phases were metastable as in the
previous case. It might suggest that one order parameter
functional is not sufficient to describe the behavior of or-
dered phases. We note that in the case of multiparameter
Landau models introduced in recent years@5# we may expect
the stabilization of the various phases that in the one order
parameter Landau model are only metastable@26#. Our cur-
rent results are a very good starting point for the investiga-
tion of the stability of bicontinuous phases in multiparameter
Landau functionals.

V. CONCLUSION

It is amazing that the solutions of the physical model of
microemulsion can be triply periodic minimal surfaces. So
far the triply periodic minimal surfaces were generated from
the Weirstrass representation or from the definition of the
mean curvature. For over 100 years mathematicians have
discovered a few infinite embedded periodic minimal sur-
faces of cubic symmetry.

We found that the surfaces generated from the functional
~2! are triply periodic surfaces of nonpositive Gaussian cur-
vature. Some of them may be new minimal surfaces. Espe-
cially interesting are the surfaces of high genus. The exist-
ence of such surfaces may suggest that microemulsion can be
the structure with such a surface of very high genus.

We have discovered multiply continuous cubic structures
formed in ternary mixtures of water, oil, and surfactant. The
idea of multiple continuity of cubic structures is different.
Our results call for new experimental techniques that could
be used to discern between bicontinuous and multiply con-
tinuous structures. We hope that these new structures will
soon be discovered in real systems.

We have not only calculated the properties of many cubic
structures and investigated their stability, but also presented
the pictures of new structures. We hope that this will help
other workers better understand the phenomena in ternary
liquid mixtures, diblock copolymers, and biological systems.

FIG. 18. Phase diagram for the model~2!.

TABLE III. Geometrical properties of multiply continuous
structures obtained from the functional~2!, for the parameters
f 050.0 andg0523.0. The surface areaS̃ is the normalized per face
of the unit cubeL2 surface areaS of the interface in the unit cell
S̃5S/L2 and L5(N21)h. The energy is given per unit volume.
The volume fraction for all surfaces is 0.5. The genus is given for
any single surface in the structure.

Name
Cell
length Energy

Surface
area Genus

SCL1 14.96 20.175 4.090 3
1 2.045
2 2.045

SCL2 21.14 20.178 5.780 3
1 1.716
2 2.348
3 1.716

GL1 26.32 20.187 7.546 5
1 2.226
2 3.096
3 2.226

GL2 41.16 20.185 11.887 5
1 1.659
2 2.736
3 3.097
4 2.736
5 1.659

FIG. 17. Free energy per unit volume for the lamellar phase
~dashed line! and gyroid phase~solid line! for the model~2!. The
parameterg0523.0.
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We have presented the general method for the generation
of periodic surfaces of nonpositive Gaussian curvature. This
method can be well applied by physicists working in soft
condensed matter, mathematicians working in topology, bi-
ologists, and crystallographers. Certainly the richness of the
method is far from being completely explored by our work.

Our results are also an ideal starting point, for theoreti-
cians, to pursue the studies of Landau-Ginzburg models with
more than one order parameter field@26#, to investigate dy-
namical properties of complex systems@63,64#, or to study
complex fluids in confined geometries@23#. These are only a
few benefits of this work and this is not a complete list.

Note added.We would like to thank Dr. Veit Elser for
sending us a copy of his work on quasicrystalline minimal
surfaces@65#. He has obtained minimal surfaces from a simi-
lar model of the free-energy functional.
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