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Towards a theory of self-organization phenomena in bubble-liquid mixtures
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A model for the theoretical description of one- and two-dimensional structure formation in bubble-liquid
mixtures is developed. It consists of a coupled system of partial differential equations describing the spatiotem-
poral evolution of the sound field amplitude and the redistribution of bubbles in a liquid. A linear stability
analysis of thgunstable uniform bubble distribution is presented. Numerical simulations of the evolution of
the sound field amplitude and the bubble concentration show self-organization phenomena. The relation be-
tween this system and the nonlinear Sclinger equation is discussd$1063-651X96)00311-X]

PACS numbds): 47.55.Bx, 43.25ty, 43.35:+d

INTRODUCTION acter of the phenomenon has to be taken into account: two
dimensions in space and one dimension in time. This ap-
Sound waves of high intensity propagating in a liquid proach was presented {I830—32 for the two-dimensional
give rise to the phenomenon of acoustic cavitatiar-5], case starting from plane acoustic waves in a homogeneous
whereby the liquid ruptures and forms cavities or cavitationdistribution of bubbles and investigating the stability of the
bubbles. They group themselves in a remarkable way into gonfiguration in the one-dimensional front of the wave. In
branched structure of filaments on a scale much smaller thaat model the bubbles move to specific locations of the
the wavelength of the incident sound field. The filaments arécoustic wave due t@rimary) Bjerknes forces. This motion,
called “streamers” in this context and the whole pattern however, changes the_spatlal distribution _of bubbles in the
“acoustic Lichtenberg figures” because of the striking simi- Wave front, which by itself has a strong influence on the
larity with the electrical discharge pattern obtained centuriesound field due to the dependence of the speed of sound on
ago by Lichtenberd6,7]. Figure 1 gives an example of a the bubble concentration.

bubble pattern as observed inside a cylindrical piezoelectric !N this paper a generalization of this theory is presented,
transducer operated in water at about 14 kHz. taking into account the second dimension of the front and the

A theoretical description of this phenomenon does notnfluence of added mass forces on the motion of bubbles. In

exist and a first step is presented here. The desired model ha§C- | the wave equation for bubble-liquid mixtures is de-
to incorporate self-organization properties and may be detved and discussed. In Sec. Il we derive a partial differential
rived from the theory of wave propagation in liquids with €quation for the amplitude of the sound field that is essen-
bubbles[8—25 or from the dynamics of bubble clouds tially a nonlinear Schrdinger equation where the potential is
[27,28. The most general and systematic approach to moddfplaced by the concentration of bubbles. The differential
wave phenomena in bubble-liquid mixtures has been dongduation for the bubble concentration is derived in Sec. Ill.
from the point of view of the mechanics of multiphase sys-IN Sec. IV boundary conditions and constants of motion are
tems[12,13. Here we are interested in the interaction of
acoustic waves and quasistationary bubble-liquid mixtures.

This problem can be addressed at different levels of com-
plexity. For instance, the sole action of the sound wave on
the motion of bubbles or other particles may be considered to
look into their slow motion under the influence of an acous-
tic field [13,17,1§. On the other hand, the sole action of the
bubbles on a sound field may be studied giving shock waves
and soliton alteration, self-focusing, self-transparency,
modulational instability, difference frequency generation,
etc.[19-2§ (see alsq1-5]).

In general, both the redistribution of the bubbles in the
acoustic field and the influence of this redistribution on the
acoustic wave have to be taken into account. This mutual
interaction has been considered previously by Kobelev and
Ostrovsky [29]. In their work, however, mainly the one-
dimensional self-concentration of the bubbles in the propa- FIG. 1. Photograph of a bubble pattern as observed inside a
gation direction of the sound field has been investigated. Fotylindrical piezoelectric transducer of 7 cm inner diameter, driven
streamer formation, additionally the three-dimensional charat 14 kHz.(Courtesy of A. Billo)
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discussed. Section V contains a linear stability analysis fouid and bubbles move with equal velocities, i.e., we consider
perturbations of plane waves that provides a criterion for a single-velocity approximatignand the nabla operator is
long-wavelength instability. The latter may be interpreted agjiven by V= (d/dx,d/dy,dl 9z). The equations for the num-
the reason for the pattern formation as observed in the nuser of bubbles, the mass of the mixture, and the equations of
merical simulations that will be presented in Sec. VI. Themotion for the mixture are given by

numerical methods used for solving our system of partial

:!fferentlal equations are briefly summarized in the Appen- ﬁﬂtdiv(Nv):O, )
Ixes. ot
I. WAVE EQUATION FOR BUBBLE-LIQUID MIXTURES ﬁ—p+div(pv)zo, )
In this section we follow 12,13 to derive the wave equa- o
tion for a liquid containing gas bubbles. Let us consider the dv
three-dimensional motion of an ideal weakly compressible p— +Vp=0. (10)
liquid with a low-volume content of spherical gas bubbles of dt

a given size. For simplicity thermal dissipation, capillary ef- _ .
fects, and the coalescence and destruction of bubbles al'_e Equat|ons(3) and(5)—(10) (;Oﬂﬁpltt)%tilgl d(le_scr_lé)e Fhe nor]l:
neglected. Lety, anday be the volume concentratiop,and | Near nonstationary motion of the bubble-liquid mixture. To
pg the densityp, andp, pressure values of the liquid and the

consider acoustic waves in such a system we linearize the
gas, respectively. Then the densjtyand the pressurp of system near the unperturbed state of the mixture and elimi-
the two-phase mixture are given by

nate all variables except for the pressure.
For this purpose we introduce small perturbatiqus

p=aip+ agpy, 1) p', V', N, andR’ of the equilibrium valueg, pg, Vo=0,
Ng, and Ry such that p=po+p’, p=pot+tp’, V=V,
p=ap;+ agPq, (20 N=Ny+N’, andR=Ry+R’. From(3) and(5) we obtain
wherea,+ ag=1. With pg<p|, ag<1, and the assumption s 4
that all bubbles have the same radRiswe obtain the fol- p=Lpio+ ¢ “(P=Po)]| 1= 5 7R°N|. 11
lowing approximations for the density and the pressure of the
mixture: Linearization yields
4 3 ’ -2 4 3 ’ 2 ’
p=p|(1—ay), ag=§7TR N, (3 p'=a0C p —§7TR0p|ON —4m7RgNgpoR’, (12
pP=p, (4 where a;p=1-37RNy and po=pio(1—ago) =pioaio-
) . From Egs.(6) and(7) we obtain
whereN is the number of bubbles per unit volume of the
mixture. The low compressibility of the liquid will be de- Ro| 3« d’R 3/[dR\?
scribed by the lineafacousti¢ approximation P=Po| 5| —P|RGzT5\5] |-
R dt 2\ dt
_ ~2(_
PI=Pio* € (P~ Po). ) Linearization yields
The subscript zero denotes the unperturbed state of the mix- 3kP 2R
ture andc, is the velocity of sound in the pure liquid. Here p'=- R R’—meOW. (13

and in the following we consider the polytropic equation for

the gas inside the bubbles The linearizations of Eq¥8), (9), and(10) are

RO 3k ,

=pn| — N

Pq po< R ) : ©) — +Nodiv(v') =0, (14
wherex is the polytropic exponentq= y, for adiabatic and P

«=1 for isothermal oscillations of the bubbles, wheyg L+p0div(v’)=0, (15)
denotes the gas adiabatic exponefio analyze the com- ot
bined deformation of liquid and gas it is necessary to use the

Rayleigh equation for the radial motion of the liquid near the

!

bubbles Pgr TVP=0 (18
d’R 3(/dR\? d 9 Equations(14) and (15) yield
PRaE "2 a) PP G VY @)
NI _p/
In this equation the pressure of the liqyid is replaced by No po (17

the pressure of the mixtune [see Eq.(4)], d/dt is the sub-
stantial derivativey equals the velocity of the mixturgdiq- and from(15) and(6) one obtains
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P
Substitution of(17) in (12) results in
p'=a’c 2p’ —4mR3NgpoR’, (19

which together with(13) yields

KPo > —»
ajpt ———ajoC )p’
@g0P10

(92pr (92p/
2 2
@joC) "7 T 7 | (20

2
__KPo pf_&(
Ag0oP10 3%0
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II. EVOLUTION OF THE SOUND FIELD AMPLITUDE

For describing the evolution of the pressure amplitude
p’ (p'=p—pg) of the sound field we start with the three-
dimensional wave equation

(?2 ’ (92 ’ (92 ’
B 352 " 052 " é!zlo2 ! (28
wherec,, the speed of sound in the mixture, is given by Eq.
(24). The parametes is small and of the order of 1G. If
we assume the following values for the physical parameters:
c,~10° mis, po~10° kg/m3, k~1, po~10° Nm~2
Ro~10° m, andN, ~10° m~3, we obtain, for example,
£=0.04.

Let us consider the stability of plane acoustic waves that

2
_,0%p’
Co a2

If we differentiate this equation two times with respect to propagate along the axis. In the case =0 the exact solu-

time and take into account E(L8), then we obtain the wave
equation for a liquid containing gas bubbles in the form

6,2p/ Cg (5,2 &Zpr
2 ’ 2 ’
- 4+ | — — —
712 CoAp w2cZ a2 | a2 czAp’ |=0, (21
where
_ _ Pro&
Co2=C 2+ e Co==Cy,
KPo
2_3Kp0

ago=§ngN, w? (22)

=22
P1oRg

tion of Eq. (26) for the wave propagation process may be

written as
, 1 W ) Z
p =5 0EXp lw| t C_|

whereW, is the constant complex wave amplitude and c.c.
denotes the complex conjugate. For the stability analysis we
consider perturbations &/ in the front of the plane wave.
Therefore we approximate the solution of E@6) in the
form

+c.c.,

(27)

p’:E{W(T,X,Y)eXF{iw(t_E) +C.C.}, (28)
2 Ci

Here w, is the resonance frequency of the bubbles. In EqswhereT=¢t, X=\/ex, andY = ey are slow variables. Sub-

(21) and (22) ayq is replaced by 1 because;,,<1. The
detailed analysis of Eq21) is given in[13,14.
It is easy to see that without gas bubblesy(=0,

Ro=0) this equation reduces to the classical linear wave

equation of acoustics. According to E@21) the low-
frequency wavesg<w,) propagate with velocities that are

close tocy and high-frequency waves possess a speed that

converges ta,, .

stituting the derivatives

Taking into account that during the first stage of the cavi-

tation process the bubbles are very sniadicrobubble$ and

omitting dispersive effects we may use the low-frequency

limit of the wave equatior§2l) in the form

&Zpl

s —c3Ap’'=0,

(23

where the influence of the microbubble concentration is in-

cluded in the velocity of sound, [see Eq(22)], which can
be rewritten in the form

col=c; %(1+en), (24)
2
Cipod
= <Po §7TRON*, n—m. (25)

#?p’ e PW [ z 29
#p' e[ W 2V,
0—y2——§ ﬁ—Yz-eX lw _C_| C.C.,
(30
&zp’_ (w 21 W ¢ L
07 ol 2 explw | c.C.,
(3D
#p 1 262W+2_ IW 2w
Az T 2|\F T e e
. z
xexp{m( t— c +c.c. (32
|

in Eq. (26) and neglecting the terms proportional 3
yields, with Eq.(24),

2
nW.

2iw aW_02W+(92W+
2 T ax? ' aY?

w

G (33

HereN, is some characteristic concentration of bubbles andf we use the dimensionless variablgsz, £, andw,
n is the dimensionless concentration of bubbles. Here and in 1 1
the following we will assume thah varies slowly in time é= S0T=5wst,

w w
= —X: —\/EX,
and space. 2 e g
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_wY_w\/_ W 4 R/ = 1 W { ( Z”

Z—C—I =g Ve WER (39 = R ?) r(£:7,{)c0g =5

we obtain the amplitude equation in the form —W, (&, n,g)sir{w(t— CE)H (41
[

2 2
IW W IW (35  becausalg andW, are functions that change slowly in time

i—=—>+—>+nw. S
9 an®  aL? and space. Then the oscillations of the bubble volume are
given by
Equation(35) is a nonlinear Schdinger equation with the )13
potential being replaced by the concentration of bubbles V (t)= ins’(t): wag 1+ R (t)}
9 3 3 Ro
I1l. EVOLUTION OF THE BUBBLE CONCENTRATION 3 ,
IN THE SOUND FIELD =V 1+ g R'(V

All bubbles with volumeV, experience a force 3

y (1_—
9 pioRS(wf — w?)

F=-V4Vp, (36)

X

WR<§,n,§>co{w(t—C5”

g} e

The pressure gradiep=(dp/dx,dpl/dy,dpldz) is given
by

whereVp is the pressure gradient. pf andVy vary in time
with high frequency it is possible to calculate the time aver-
age of the force. This primary Bjerknes fork33,34 can be —W,(&,7,0)sin
written as

FB=_<Vg(t)Vp(Xayizit)>1 (37)

where the angular brackets denote the time avef@agsr one ip o —[IWg
period 27/ w of the oscillation ofp). In our case, the pres- == —e ®
sure field may be described by

p {aWR s{ . z) aW, r{ (t z) ]
1 z —=—\e cosw|t— —||———sinw|t——]||{,
P=po+3 (WR+iW,)exp{iw(t—C—l) ay c ¢ C J C “3
. - Z
+(WR_|WI)eX[{_|w(t—C—|)}+ a—nglesin w(t—i +W,coz{w t—i) }
az ¢ C C

. z
_WIS'F{ ‘*’( t— C_I) } (B8 Ifwe insert Eqs(42) and(43) into Eq.(37) and average over

z
one period 2r/ w, we obtain the primary Bjerknes force

where aWRD oW
Fe=| 71 i Y1 9l 0,
W(¢,1,0) =Wr(&,7,0) +iW,(€,7,0). (39
3\/90 w
Now we shall consider a bubble located at the point 3’1:m C—lx/g (44)
r

(x,y,2) in the acoustic field and oscillating far below its
resonance frequeney, . For small deviation®’ = R— R, of
the radius of the bubbl® from its value at equilibriunRR,
we obtain the equation of motion

The interaction forces between the liquid and the bubbles
include also the Stokeffriction) force Fg and the added
mass forcd~y, . Taking into account that the temporally av-
eraged motion of the bubbles is slow and that the shape of

s, 1 z the bubbles is spherical, the simplest formulas for the forces
R'+wrR = ooRo We(€,7,£)cog t_c_| FsandFy, are
z -
—Wi(€, 7, )sin w(t—c—) ] (40 Fs=—6muRoU, 49
|
Fu= ! V Y 46
The solution of this equation is M= T 2 PI0Yg0 (46)
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where U= (U,,U,,0) is the velocity vector describing the small amplitudes of the acoustic field the energy flow into
slow displacement of the bubbles apglis the viscosity of the bubble for one period of oscillations is directly propor-
the liquid. Then the equation for slow drift of bubbles in the tional to the square of the pressure amplitude of the external
liquid is field. Therefore, the concentration of generated bubbles
should be directly proportional to the energy of the acoustic
Fg+FstFu=0. (47 field |W|2. When increasing the amplitude of the acoustic
From this equation one can derive an equation for the evof—ieId the conqentration of gent_erated bu_bbles converges o
lution of the velocity of the bubbles in the form some saturatlor_] vaIu_eNx, Whl.Ch de_scrlbes the limited
amount of gas diluted in the liquid. This fact can be phenom-

U enologically taken into account by including an additional
TZE+U:FV77§|W|2, (48  term
. SIW 2
with F((W[2)=N., 1—exp(— lN | } (55)
p1oVgo Y1 -
To=rpb—5 I'= , 49 . .
127 R ST in Eq. (54) to describe the generation of bubbles by the

. o acoustic field where the paramei@controls the generation
whereV .= (d/dn,d/d{,0) andT, is a characteristic time of bubbles. Then Eq54) can be written as
for the relaxation of the velocity of the bubbles. If we use the

dimensionless variables, {,w [see Eq(34)], and N N— F(|W[?)
U c N4 1 T
u=—, U*:E g, Y= TR 7'2:§sz8,

* (500 It should be emphasized that for the derivation of E5f)
effects connected with threshold phenomena have been omit-

we obtain a relaxational equation for velocity in the form  ted (e.g., the quasistatic Blake threshold pres§@@), be-
U cause the main aim of the present paper is to investigate the

U= —wV_(lwl?. 51 self-organizing behavior of bubble fields above the cavitation
29¢ PV el [W 61 threshold.

] ) . ) Adding the concentration growth and decay term of Eq.
Using the dimensionless variables of E@84), (25), and  (56) to Eq. (52) yields the desired partial differential equa-
(50) it is possible to rewrite the conservation law for the tjon for the evolution of the bubble concentration in a sound
bubble concentration during the slow redistribution of fjg|q. Choosing as normalizing constaNt, = 8|W, |2, the

(56)

bubbles in space, dimensionless form of this equation may be written as
oN
—+di = an a(nuy) d(nu n—f(|w|?
—+div(NU)=0, (52 gn a(nug d(nuy) _ (Jwl ), 57)
113 an a¢ T
in the form

f(Jw|?)=A2[1—exp(—|w|?/AZ)],

an d(nu,) d(nuy)
—+ + =0, 53
€ dn 7 ©3 where

with u=(uy,uy,0).
It is well known that microbubbles cannot exist for a long n=—T, (58)

time without an acoustic fielsee[35]). Applying theoreti- 2

cal resultd36], one can show that air bubbles in water with

a size of a few micrometers will dissolve in a few secondsand

Let us assume that the volume of the bubbles decreases ex-

ponentially in time. Since we consider only bubbles of fixed 2

size this effect is taken into account by an exponentially Aoo:N : (59)

decreasing number of bubbles that is given by the differential

equation The parameter is difficult to estimate exactly. In any case,

oN N however, T, has to be much larger than the periodt/2» of
T (54)  the acoustic oscillation. Finally, we want to note that for
Jt 1 7,=0 andA,—» Eq. (57) implies n=|w|? and therefore

where T, is the characteristic time of dissolution of mi- Eq. (35) becomes the ordinary nonlinear Sclirger equa-

crobubbles. tion
When an acoustic field of sufficiently high amplitude is )
switched on, it may stop the dissolution and support the for- W a_W 2
i >+ |w|°w (60)

mation of microbubbles. It is easy to estim&fe3] that for 9E an
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IV. BOUNDARY CONDITIONS w=Aexp(i®), (69)
AND CONSTANTS OF MOTION

The boundary conditions for the amplitude where A=A(¢, 7,¢) and ©=0(¢, »,Z) are real functions,

we obtain
Iw Iw 2 2 2 2
——(04,6)=7—(Ly.{,6)=0 6) _p\IO_TA TA [0, [
an an X Aag ﬁn2+(9§2 A pps + Y +An, (70
and 7 (aA 90 A a®)+ (az®+(92®) -
oW oW 0t “\aman ot 9 an® 9%
gn_ a(nuy) d(nuy) n—f(A? 2
describe the reflection from the lateral walls of the channel & oy 9 1 (72
whereL, andL are the dimensionless distances between the
walls. It is easy to show that the energy of the sound field AUy IA?
To———— X+ Y y (73)
L (L, 23 an
E(¢)= f f w(7,¢,€)|?dnd 63
(8 . 0| (7,¢,6)|*dnd{ (63) au, A2
7'2(9—52 —Uy+ ’y(?—g. (74)
is a constant of motion that depends only on the initial dis-
tribution of the amplitudew=w(7,{,0). For A.— the |tis easy to verify that
temporal evolution of the total number of bubbles
- A=Ay=const, n=f(A3), O@=—f(Ad)¢,
x [ =y
M(g)_fo J;) n(ﬂufvf)dﬂdg (64) UX=0, Uy=O (75)
can be described by the ordinary differential equation is a uniform solution of this system. The evolution of a small
perturbation of this uniform solution
oM E—M ~ ~ -
GE T (65 A=Ag+A, O=—f(A3)é+0, n=f(Ad+n,
This equation is obtained by integrating E§7) in space, Ux=ﬁx,uyzﬁy (76)
taking into account the boundary conditions for the velocity. . by the i ved .
components IS given by the linearized equations
00— 00— d0 PA PA
Ux(o,f)—O—UX(LX 1§)a uy(0,§)—0—uy(Ly,§). (66) 0= Oa—g 0—7]2+a—§2+A0n, (77)
When the initial distribution of bubbles(#,0) is chosen to _ _ _
be equal to the initial energy density of the acoustic field IA 20 9%0
|w(7,£,0)|?, thenM (0)=E(0)=E, and the total number of 025—5— ol 73,273z (78)

bubblesM has to be constant in timel (&) =E,. This fact

has been used for controlling the accuracy of the numerical Ju.  Ju 1 _
method. For all results presented in this paper the deviatioo=— + f(A(Z))(—XvL—y +—[A—2A,f"(A3A], (79
of E andM from their initial values was smaller than 1%. If § dn L] ™

M(0) is different fromEy then M(&) converges to this ~

stable equilibrium value, as can be seen directly from Eq. _ %+~ _ IA
(65) O T2 (95 UX Z’VAOO,“?, (80)

V. STABILITY ANALYSIS &Uy _ JIA
0=T2(9—§+Uy—2’yA0(9—§. (81

In this section the stability of uniform solutions of Egs.
(35), (51), and (57) with respect to small perturbations is

. - Now let us consider the evolution of a periodic perturba-
analyzed, where Eq51) is rewritten as P P

tion that can be written as

Uy

9 ~ A
X — 2 A A
T2 g Ux+7an(|W| ) (67) A A
C) 0,
Ju J "Al=!n i i
7_2_y:_uy+ y—(jw|?). 69) 11 [11 exploé+iKyn+iK ). (82
9€ a¢ U, 0,
If we write the complex amplitudev in the form Uy Uy
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The stability of the uniform solution depends on the sign of 50 -
the real part of the growth rate coefficieat In order to K )
computeos we substitute the perturbation E?2) into the 40 \ ,
linearized Eqs(77)—(81) and thus obtain the polynomial in \\ ’
a ) X\ .
’ 30 —\ \ . ) ’
f(o)=a,o*+azo’+a,o?+ao+ay, (83 \ /,’/
20§~ ¢
with X '///
ao=|K|*—2A3|K|2[f'(A3)+ 7 yf(AZ)|K|?], (84) 100 )
a;=(m1+ 1) [K[*—27,A0F (A K], (89 0 Merrry ; ; :
0 5 10 15 20A2 25
a2:1+ 7172|K|4, (86) 0
ag=r1,+75, (87) FIG. 2. Diagram for the instability of the first type for
7,=0.1, 7,=0.02, y=0.01, andA,.— . The solid line shows the
=77, |K|?=KZ+ K}Z,. (8g)  critical perturbation wave numbét, [Eq. (95)] and the shaded

area gives the region of stability. The upper and the lower dashed
According to the Hurwitz criterion all roots of this poly-  lines give the stability threshold for the nonlinear Safinger equa-
nomial possess negative real parts if and only if the follow-tion (60) and the other critical perturbation wave numbgy, [Eq.

ing quantities are positive: (96)], respectively. The threshold amplitude value eqgdal [Eq.
(94)] is shown by the vertical dotted line.

D0=a0, (89)
2
- aja
Dl_aly (90) 2> 1 4, (98)
as
D,=aja,—agas, (91
2 which may be represented in the form
D3: agDz_ ajay, (92)
D4:a4D3- (93) g(|K|2):bO_b1|K|2+b2|K|4>0a (99)
The analysis of this set of stability conditions gives us twowith
types of instabilities. ,
(i) The inequalityD,>0 implies that for bo=(71+72)f'(AD), (100
1
AZ>A2, AZE(A2)= Ty (94) bi=273A% (AD) — y(m+ m)?F(AD), (10D
perturbations with arbitrary wave length are unstable. For b2:T§(7-1+7-2)f’2(Ag)_ (102

perturbations withAg<A, the following stability criterion

holds: For the casd, <0 perturbations with arbitrary wave number

|K| are stable. Thus the instability of the second type occurs
only for b;>0. ForA,,— [see Eq.(57)] this leads to the
following stability criterion for waves with arbitrary wave-
length

2A5F" (AD)

KIP>K2 =
A L

(99

The inequalityD ;>0 yields another stability condition

, 2AGH'(AD)

275(11+ 75)
S AG<AZ, =
** 1+ 7'1/7'2 ' 0 *

_27'3—7(7'1-1-7'2)2' (103

[K[2>K (96)

SinceK, >K,, one obtains the long-wavelength instability For A,

criterion >A,, inequality (99 gives the instability condition

|K|<K, . (97) K_<|K|<K,, (109
This long-wavelength instability is more complicated that in\ynarek andK , are the roots of equatiag(|K|2) =0. The
the case of théordinary nonlinear Schrdinger equation. In asymptotic formulas foK . andK_ for A, —x are
Fig. 2 the squares of the threshold valu€s andK2, are i 0
plotted versus the square of the amplitukﬁa

(ii) It is easy to see that, sineg>0 anda;>0, the set of
conditionsD,>0, D3>0, andD,>0 is equivalent to the

condition for stability

273— (114 75)?

AZ, K2-0. (105

K2
i 75(7T1+ 72)
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8 The systematic investigation of the influence qf and
. v on the evolution of structures in the 1D case fg=0
K (i.e., without added mass forgesA.,—o, and y<0 was
61 carried out in[30]. Here we consider the influence of the
parameterst, and y>0 on the structure formation for
4] A,— .
The evolution of small perturbations of the acoustic field
given by Eqgs.(106) for 7;=0.1, 7,=0.02, andy=0.01 is
2 presented in Fig. 4. The development of long-wavelength
instability of the first type leads to the structure formation
0 shown.(For this set of parameters the instability of the sec-

ond type does not occurlt is visible that the sound field
amplitude|w| does not exceed the instability threshold value
AZ given in Eq.(94). Therefore, this structure looks stable.
FIG. 3. Diagram for the instability of the second type for The comparison of the shape of this structure with the clas-
,=0.1, 7,=1, y=0.02, andA,.—». The shaded area shows the sical soliton solution of the nonlinear Schiinger equation
region of instability and the dashed line gives the asymtotic behavis shown in Fig. 4d).
ior for K2 [see Eq(105)]. These results agree qualitatively with the results of Ref.
[30]. However, after a long timet{3700) the position of
These results of the stability analysis are illustrated by thehis structure becomes unstable and the structure jumps to
stability diagram of théK |2>—AZ plane shown in Fig. 3. The the wall of the channel, as shown in Fig. 5 for the bubble
long-wavelength instability may be interpreted as the reasomoncentratiom.
for the occurrence of nonlinear structures, which will be dis- The influence ofy on the shape of this quasistable struc-
cussed in the next section. ture is shown in Fig. @). For y—0 the shape of the qua-
sistable structure converges to the stationary solution of the
nonlinear Schrdinger equation. For increasing the pri-
mary Bjerknes force becomes stronger and therefore the
In this section we present results of numerical simulationsvidth of the structure decreases. Furthermore, the amplitude
using Egs(57), (51), and(35) for the evolution of the bubble of the structure increases and for sufficiently laggexceeds
concentration, velocity of bubbles, and the amplitude of thethe instability threshold Eq94).
sound field, respectively. We have simulated the evolution of The dependence of the transient oscillations of the maxi-
small perturbations of acoustic waves propagating along awum of the sound field amplitudev| is shown in Fig. €b).
channel with reflecting boundaries. For 71— 0 the behavior of the solution is quite similar to the
Our model contains four significant dimensionless paramyperiodic oscillations of the nonlinear Schlinger equation
etersry, 7, y, andA,. The parameterr; is the time of [30]. If 7, is increased the oscillations are more strongly
dissolution of microbubbless, is the relaxation time of the damped and the amplitude of the quasistable structure be-
velocity of the bubblesy is the characteristic parameter of comes larger.

0 1 2 SA(2)4

VI. RESULTS OF NUMERICAL SIMULATIONS

the primary Bjerknes force, arAl, is a characteristic ampli- Now let us consider the 2D case. The numerical algorithm
tude for the saturation of the generation of bubbles by theused is given in Appendix B. The initial condition consists of
sound field. a uniform distribution of the amplitude of the acoustic field

Let us start from the one-dimensiongllD) case and the concentration of bubbles that is perturbed by a cosine
(6/9¢=0). The numerical algorithm used for solving our function with small amplitude for both directionsy(and
system of partial differential equations is presented in Ap-{). For simplicity we consider a channel with a quadratic
pendix A. The initial condition consists of a uniform distri- cross section and investigate only perturbations with a wave-
bution of the amplitude of the acoustic field and the concenlength equal to the distance between the lateral walls of the
tration of bubbles that is perturbed by a cosine function withchannel given by
small amplitude. For simplicity we investigate only pertur-
bations with a wavelength equal to the distance between the
lateral walls of the channel, which is given by W(0,7,)=Wo| 1+ _[1 cog ) Jl1-cod )1, (107)

n(0,7,¢)=|w(0,7,0)/?,

Ux(oynvg):(), uy(01n1§)zoy

n(0,7)=|w(0,7)|?, ux(0,7)=0, (108 with wo=1 and w;=0.1 (i.e., the caseK,=1, K,=1,
ne[0,27], and {€[0,27]). The spatial grid consisted of
with wo=1 andw;=0.1 (i.e., the cas&,=1, n€[0,27r]). 257 points in each direction and the size of the time steps
The spatial grid consisted of 257 points and the size of thevasA£=0.1(A 5)? with A p=A[=27/256.
time steps wad ¢=0.1(A 5)? with A »=2/256. In the fol- For the nonlinear Schdinger equation in the 2D case a
lowing figures the spatial interval has been normalized by‘blowup” phenomenon takes place and the formation of a
27 t0[0,1]. solitonlike structure is impossible. The same blowup may

Wy
w(0,7)=wq| 1+ 7[1—003 7],
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FIG. 4. Transient to the quasistable solitonlike structure in the one-dimensional casg=forl, ,=0.02, y=0.01, andA,,—>. (a)
Evolution of the bubble concentration (b) Evolution of the amplitude of the sound figle|. (c) Evolution of the velocity of the bubbles
u,. (d) Comparison of the shape of the quasistable structure with the shape of a soliton solution of the nonlinendggchequation
(dotted ling.

occur in our model as illustrated in Fig.(af, where the VIl. DISCUSSION
S e e D Vet A model for the theoretical descripon of a possile
saturation of the bubble generation due to the limited amourff’€chanism of pattern formation in acoustic cavitation is de-
of diluted gas. Such a saturation was modeled in (d) veloped. It con3|sfts o_f an equaﬂo_n f_or the evolution of the
using a dimensionless saturation amplitidle. For A, =2  DBubble concentration in an acoustic figteh. (57)], an equa-

the blowup is stopped and we obtain, for small Bjerknestion for the motion of bubbles in the acoustic figkk. (51)],
forces (y=0.001), the evolution shown in Fig(ly. During ~ &nd a nonlinear Schdinger equation for the amplitude of
the transient (&t<120) a quasistable structure is generatedhe acoustic fieldEq. (35)], where the potential is replaced

in the center of the square. This can also be seen in |:ig§_y the distribution of bubbles. Linear stability analysis of
8(a)-8(c) where the corresponding pattern formation isuniform configurations of bubbles shows a long-wavelength
shown. However, like in the 1D cassee Fig. 5the position  instability. The latter is quite similar to the long-wavelength
of this structure is not stable and therefore it starts, ainstability for the nonlinear Schdinger equation and may
t~130, to move to the boundafgee Fig. 8 Because of this be interpreted as the reason for nonlinear structure formation.
collision the amplitudéw| ., grows, as shown in Fig.(). Numerical simulations for the 1D and the 2D case show a
For larger Bjerknes forcesy(>0.001) the saturation level *“self-concentration” of bubbles in the sound field yielding
A, is not small enough to stop the blowup phenomenon. localized (quasistablg solitonlike structures. These struc-
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FIG. 5. Positional instability of the solitonlike structure in the
one-dimensional case forr;=0.1, 7,=0.02, y=0.01, and

A,— o,

tures may be interpreted as a first step towards the formatio

of streamers.

Future development of this approach should take into ac-

0 1 2 3 4
Time
81(v)
6 .
3
_E 4]
B
2 -
0
0 100 200 300
Time

FIG. 7. Evolution of the maxima of the amplitude of the acous-
tic field for the two-dimensional casé) Blowup phenomenon for
7,=0.1,7,=0.02,y=0.01, andA,,— (solid line) and a compari-
son with the solution of the nonlinear Schinger equatioridashed
line). (b) Evolution of the maxima of the amplitude of the acoustic
flj.leld during the transient to the quasistable structurezfot 0.1,
75=0.02, y=0.001, andA..=2 with a jump due to the positional
instability.

count secondary Bjerknes forces, rectified diffusion, coales-
cence and destruction of bubbles of different sizes, the pres-
ence of vapor in the bubbles, the nonlinear character of
bubble oscillations, and the whole spatial pattern. Further-
more, in order to compare the theoretical approach with the
experimental result¢see Fig. 1 and7]) it is necessary to
consider the case of standing waves.
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APPENDIX A: NUMERICAL METHOD
FOR THE 1D CASE

In this appendix we discuss the numerical scheme for
solving the system of partial differential equations

oW Pw
Time IE:W_F"]W, (Al)
FIG. 6. (a) Dependence of the shape of the one-dimensional an  d(nu) n—f(|w|?)
quasistable solitonlike structure op for ,=0.1, ,=0.02, and E*’ X == ™ ) (A2)
A.— . (b) Evolution of the maxima of the amplitude of the acous-
tic field during the transient to the one-dimensional quasistable au P
itructure fory=0.01, 7,=0.02, A,—», and different values of TzEJru: _ y5(|w|2), (A3)
l.
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FIG. 8. Structure formation and the development of the positional instability,fet0.1, 7,=0.02, y=0.001, andA,.=2.

for 0<x<L andt>0. (Here we use the standard variables yn+1_"
x andt for space and time and the velocity componepts [
replaced by to obtain formulas that are more readapkeor
solving the amplitude equatiofiAl) a Crank-Nicholson
scheme for the linear Schiimger equation[38,39 was
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where w'=w(x;,t,), nj=n(xj,ty), x;=(j—1)Ax, and or explicitly formulated,

t,=nAt with j=1,... Jandn=0,1,2,.... Fornumerical N1 no1 N1 N1
computations it is necessary to rewrite this system of linear U= e Co[wih [ = w4 ), (AL6)
equations in tridiagonal form .
with
n+1 n n+1 n+1 n
w B W =R, (A5) At AL .
with QT TAt T (Rt ADAX (AL7)
- _ n+1
Bf'=—2-a;+a.n; (AB)  andj=2,...J—1. The boundary conditions are
Ri=—wl —wl i +(2-ai—an)w, (A7) uftt=0=uj"?, (A18)
where They are obtained by substituting in E@3) the boundary
conditions(61) for w and the initial conditioru(x,0)=0.
2(Ax)?i 5
a=—37 &= (A7 (A8) APPENDIX B: NUMERICAL METHOD
FOR THE 2D CASE
andj=2,....J- 1n;I'1he b(nnﬂwdary Cg’ff“ioﬂﬁq‘ﬂ) can be In this appendix we discuss the numerical scheme for
apprOX|mated bywy andwjy “=w;Z;. For solv-  gqying the system of partial differential equations
ing Eq. (A1) for the bubble concentration we used the
discretization scheme W Pw 9w
i—=—2+—2+nw, (Bl)
n?+1_n}1—1 njn+1ujn+1_njp_1ujp_1+ n+1+nn 1 at  ox ay
2At 2Ax 27, n a(nu) . anv)  n—f(w? 62
f(lwﬂz) ot X (9y T1 ’
-—1—==0 (A9)
1 au
T +tu=—vy— B3
for j=2,...J—1. This can be rewritten as an explicit e I (| 1 B3)
scheme that may be considered as a modified “staggered
leapfrog” method[39]: v d
PToS T tu =~y gy (W) (B4)
nTH bynj"~ _bZ(n?JrlanJrl_njnflujnfl)_'—b3f(|W?|2)a
(A10)  for 0<x<L, 0<y<L, andt>0. (Here we use the standard
ith variablesx, y, andt for space and time and the velocity
wit componentsu, and u, are replaced by andv.) For the
T~ At _ mAt _ 2At approximation of Eq(B1) between the time levels and
mr At 2 (FADAX] by= T +AL n+1 we use the approximation of,
(A11)
—n Mt niyt
At the bondaries we use mirror reflection boundary condi- nj, k_—z : (BS)
tions
The equation fow is solved using an alternating-direction
Up=—Uz, No=Nz, Uys1=—Uy—1, Nyr1=Ny-1, (A1) implicit method[39]. The first substep is given by
n+12_ ,n n+1/2_ n+1/2 n+1/2
which yield equations for the boundary values iWJ"kA /Zwl'k _Wi-ik 2WA2 Wik
t

n) t=bn 71— 2b,nJus+bsf(|Wi|?),  (A13)
! 272 ! +W?,k—1_2an,k+WJn,k+1

N1 1=byn1 14+ 2b,n_ul, +baf((W]|?). (Al4) A?
n n+1 ...n n+1/2
The integration scheme for the velocityis also a modified Nkt Nk Wikt Wik (B6)
staggered leapfrog meth$@9] and is given by the discreti- 2 2
zation
for i=2,...3-1, where W}, =w(x;,yi,tn),
VI SRR =0y Yot %=(-DA,  y=(k-DA,  and
Ly v U T t,=nAt with j=1,...J, k=1,...K, J=K, and
n=0,1,2,.... Intridiagonal form this equation reads

2_ 2
ZAX(|W]+1| |Wj l| ) 0 (Als) W?ji{?"—BnkW?Il/z“l‘WrI%{(Z Jk’ (B?)
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with L _moAt mAt L
1=~ T Ape 2= ) 3= )
n __o_ n n+1 T+ At (mtAHA T+ At
pk= —2—agtax(nytnyo), (B8) (B17)
=W — Wt [2—a—ap(nf + n?ﬂl)]WRk, andj=2,...J-1,k=2,... K—1. Forn we use mirror
(B9)  reflection boundary conditions. Thus we obtain, for
k=2,... K-1,
where
2A% A? Tk =bing, ' —b(2n5 U5, + 0Ty 10T =Nk 10T 1)
al= At ’ aZZT (BlO)

andj=2,...J—1. The second substep is given by

n+1 n+1/2 n+1/2 n+1/2 n+1/2
in,k “WikT Wi 2W WL
At/2 A?
n+1 n+1 n+1
Wi D= 2W Wi g
n n+1 ., n+1/2 n+1
Nj et NfT W T Wy (B11)
2 2
for k=2,... K—1. In tridiagonal form this equation reads
n+1 n+1/2, n+1 n+1 _ pn+1/2
Wi 21T Bjk ik WG =R (B12
with
B\ 2= —2-a;+a,(n] +nliY), (B13)
n+1/2__ n+1/2 n+1/2
Rik =W i~ Wik
n n+1 n+1/2
+[2—a;—ax(nj i w7, (B19)

andk=2,... K—1.
The discretization scheme for EB2) describing the
evolution of the bubble concentrationis given by

n n n n
+nj+1,kuj+1,k_nj—l,kuj—l,k
2At 2AX

nnk Unk I’]nk Unk 1

jk+1Yj k+1 j,k—1%j,k-1 _

J J J J (nm—kl n_nkl
2Ay 27'1 I X

1
— —f(jwj?)=0 (B15)
1

n+1

and the values ofi; , © may be calculated explicitly as

n
nj,

+1_ n-1_ n n AN n
k- =Dang = DNy g Uj = N kU
n n n n
TN k10 k1 Njk=1V ] k—1)

+baf(Iw] [®)  (j=2,...3-1k=2,... K-1),

(B16)

with

+baf(Jwi,[?), (B19)

n+1__ n—-1 n n n n
Ny =bing e —ba(—=2n;_ Uy 1, Nk 1V k1

—nJ 05 k1) Fhaf(W] [?). (B19)

Analogously we obtain, foj=2,...J—1,

n+1__ n—-1 n n n n n n
N1 =banj; " —=ba(Njy g Uj g 1= Ny Uj— 11205 505 5)

+hgf(w)y[?), (B20)
n?,+|<1: bl”?,_Kl_ b2(”?+ 1,KU?+ 1K™ n?— 1,KUF— 1K
=2n]_qv] 1) +hsf (W] [?). (B21)
At the corners we have
nﬁl: bln?il_ b2(2n2,1“2,1+ 2”2,20 2,2) + bsf(|W2,1|2),
(B22)
ng,ltl:bl”?}(l_bz(zng,KUQ,K_2”2,K7102,K71)
+bsf(Jwiy]?), (B23)
n311= bln’jil— by(— 2”34,1”51 11t 2”9,2”?,2)
+bsf(Jw] %), (B24)
ngllz b1n3,|_<1_ bo(—2n5_ 1 xU5_1x—2n5 K- 105 k1)
+baf(Jw] ¢[?). (B25)

The equations for the velocities have been discretized as

1 -1
T u]n,Jl: _u?,k +1(u"+1+u”_1)+ |an+l,k|2_|wjn—l,k|2
272at 20k TR Y 24
=0. (B26)
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i iz ati i ici n+l_ n-1 n 2_ [\ 2
The discretization(B26) yields the explicit scheme T v ol +1(vn+1+vn—1)+ 'yle’k+1| Wy
2 2At 2 Tk Lk 2A
1_ -1
ult=cul = co(Iwi P = wi g D), (B27) =0 (B29)
for j=2,...J-1; k=1,... K with boundary condition o
Upe=Uy,=0 fork=1,... K and or, explicitly,
1 -1
To— At yAt vl =c it eo((W 2= 1w g ) (B30)
Ci1= , Co= . B28
U tAtT P (rp+HADA (B28) ,
for k=2,... K-1; j=1,...J and at the boundary
Similarly we obtain, for the second component vj1=vjk=0forj=1,...J.
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