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Short-wavelength instability in systems with slow long-wavelength dynamics
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One-dimensional systems undergoing short-wavelength instability of spatially uniform states are studied. It
is assumed that the spectrum of perturbations of the uniform stateas a long-wavelength slowly-relaxing
branch, detaching from a neutrally staliféoldstoné mode with zero wave number, whose existence is a
consequence of the problem’s symmetry. The other important feature of the problem is quadratic nonlinearity
that provides coupling between slowly-varying short-wavelength and long-wavelength modes. It is shown that
the case is characterized by mixing of different scales in perturbative calculations. The latter makes the pattern
stability problem essentially nonlocal and sensitive to very subtle characteristics of the spegtramnal
nonlinear mode-coupling. The equation governing longitudinal seismic waves in viscoelastic media is studied
in detail as the simplest particular example of such systems. Possible extension of the obtained results to other
physical problems, including electroconvection in a homeotropically aligned nematic layer and permeation of
cholesterics or smectics in capillaries, is discus$8d063-651%96)11910-3

PACS numbefs): 47.10:+g, 47.20.Ky, 81.10.Aj, 82.40.Py

INTRODUCTION atic layer with homeotropic boundary conditioigs-12], the
second to the so-callegermeationof cholesterics or smec-
In the present paper the pattern formation problem in systics at their motion through capillarig43,14]. We will re-
tems with short-wavelength instability and slow long- turn to these two problems in Sec. IV of the present paper.
wavelength dynamics associated with the problem’s symme- The main advantage of Eql) compared to these ex-
try is studied. One of the simplest realizations of the problenamples is its relative simplicity. The latter provides the op-

is connected with the equation portunity to see quite clearly the basic features of the phe-
5 212 nomenon that are not obscured by a number of minor details,
‘?_U + g 1+ d + ‘?_U =0 1 and to trace back close connections of these features with the
ik —2z| (vt : )
gt ox X X problem’s symmetry.

) ) ) Equation(1) was already studied by Malom¢ti5]. Start-
The equation was proposed in REt] to describe propaga- jng from this equation, he arrived at the system of the
tion of longitudinal seismic waves in viscoelastic med'a-coupled generalized Ginzburg-Landau equations for slowly-
Here the real control parameteis supposed to be small and 5 1ving amplitudes and analyzed solutions of the system and
visa sca[ar quantity, Wh'Ch. has the meaning of the dlmenfheir stability. However, the generalized Ginzburg-Landau
sionless qhgplacemgnt velocity. . . equations considered in Rdfl5] are inadequate to study
The trivial solution of Eq.(1), v=0, bgmg s_table at underlying Eq.(1). The point is that Eq(1) has additional
<0, undergoes at>0 short-wavelength instability with . . .
AN ; S . (compared to the conventional spatiotemporal translations
respect to infinitesimal spatially periodic perturbations of the : . . :
form and spatial reflectionssymmetry. The symmetry gives rise
to certain peculiarities of perturbative calculations on this
Svexp vt +ikx), ) equation of the same nature. as those discussed earlier in the
case of the free-slip convectidB,4]. As a result, some cor-
with wave numbers from a narrow band, centered around theections to the amplitude equations higher-ordee jromit-
pointk=1. ted in Ref[15], contribute terms of leading order to the final
Other examples of systems of such a kind may exhibidispersion equation in the pattern stability problem
Rayleigh-B@ard convection with the so-called “free-slip” (e-scale-mixing. In what follows the analysis of Eql) free
boundary conditiong2—4], systems with Galilean invariance from the above-mentioned incorrectness of R&g] is de-
[5], traveling front in phase transition phenomena or inveloped. It is shown that at smallall steady spatially peri-
reaction-diffusion system,7], and otherg8]. odic solutions of Eq(1) are unstable, contrary to RéfL5],
Among the variety of problems there are two of specialwhere the finite range of stability was found.
interest. Both of them belong to physics of liquid crystals. However, the main goal of the present paper is not to
The first problem corresponds to electroconvection in a nemeorrect the results of Ref15]. The goal is, considering Eq.
(1) as the simplest particular example of the systems with
short-wavelength instability and additional continuous group
“Electronic address: tribel@ms.u-tokyo.ac.jp of symmetry, to call attention to the fact that properties of
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these systems differ from conventional so drastically that itis Looking for nonlinear spatially periodic solutions to Eqg.

worth singling them out into a separate class of pattern{3), it is natural to represent them in the form of Fourier

forming systems. series, i.e.,
The structure of the paper is as follows. In Skea family

of steady specially periodic solutions to equations of the type _

of Eq. (1) is obtained. In Sec. Il the peculiarities of the sta- u(x,t)= _2 UnHe™ Un=U_n. (10

bility analysis of these solutions related to the e

s-scale-mixing_ are di_scussed and the origin of the mixing i ubstituting Eq(10) into Eq.(3), we arrive at the following
revealed. In this section the adequate approach to the stab et of coupled equations for the Fourier coefficiegaspli-
ity problem is developed. The section ends in the derivatio udes U, with n#0:

n :

of the dispersion equation for small perturbations of the
steady spatially periodic solutions. In Sec. Il the dispersion

oo

equation is analyzed. Section IV is devoted to general dis- dU"k=ynkUnk+ k2 > I(n—NHUpUnoe, (12

cussion of the results. dt 1= e
| SPATIALLY PERIODIC PATTERNS andoa detached equation for(t) obtained from this set at

n=0:
First of all let us show that Eq1) does possess the ad-

ditional symmetry. With this end in view we consider the dUg ) ) )

equation TR Z 12U (12
au g 9\ au\? : : _
—+——le—|1+—5]| |u+|—]| =0. (3) Thus, the amplituddJy(t) is slaved to those witim+0.
gt dx X X An interesting consequence of E42) is that any nontrivial

dynamics yieldsiegativecorrections tdJ,(t). However, be-

Differentiating it with respect t9< and renaming @, as v, ing x-independent, the mode with=0 plays no role in pat-
we reduce Eq(3) to Eq.(1); that is to say, both the equations oy formation and always may be excluded from the prob-

are equivalent. Note now that besides the conventional SYMam by means of the transformatiaigx,t) = u(x,t)— Uy(t).

metry transformations As for the amplitudes witm+0, truncating the set of
4) equations at finitg¢n| > 2, it is easy to find that, at arkyfrom

t—t+const, ; .
- the segmenk;<k<k,, there is a steady solution to these
X— X+ const, (5) equations of the form
X— —X, (6) Unk:% U;"Q), UgrE):O(s(|n|+2m>/2);

Eq. (3) is invariant under the transformation
n#0, m=0,12.... (13

u—u+ const. (7) _
For example, ah=*+1,+2, we obtain
Explicit manifestation of this additional symmetry makes Eq.

(3) much more convenient for the subsequent analysis com- YkY2k

pared to Eq(l) |Uk|2= - 4k4 [1+O(8)], (14)
Linearizing Eq.(3) about the trivial statee=0 and taking

the perturbations in the same form as that in &) we can k2U2+k

easily obtain the spectrum, . The spectrum is Uig=— 'YZI: [1+0O(e)]. (15

=k~ (K*=1)%]. ) . .
Note that at smalk andk;<k<k, the quantityy,, being
Qualitative difference between expressi@hand the cor-  positive, has the ordef, while y,<0 and is of order 1.
responding spectra of the conventional problems, such as The errors of Eqs(14) and (15) are connected with the
Rayleigh-Baard convection with the rigidno slip bound- truncation procedure exclusively — expressions fgrand
ary conditions[8], is vanishing ofy, at k=0. In turn, the Y2 are regarded here axactones, given by Eq8). On the
vanishing is an apparent consequence of symmetry transfogther hand, since Eq$14) and (15) are valid only ate <1,
mation(7) that generates a neutrally stab@oldstong mode  the expressions foy, and y,, may be expanded in powers
Sdu=const in the spectrum of perturbations of the trivial of small differencex=k—1, see Eq.(9). In this case to
state. lowest order in the expansion parameter E44) and (15)
At £>0 there is a band of unstable perturbations, whosé¢ead as follows:
boundariesk, , are defined by the conditiong, ,=0,y,>0

atk;<k<k,. In particular, at <e<1 we obtain |UW?=9(e - 4k*)[1+0(Ve)], (16)

Je u2

k17~ 1= 75 [1+0(o)]. © U o= [1+0()] @
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[note the different accuracy of Eqél4) and (15) and Eqgs.  k,<k<k, [i.e.,k=0(\/e) or less than that, see E@.6)] the

(16) and(17)]. quantitiesy,, are of ordere atn=0,+1 and of order 1
[ Ynks p= —N?(N?—1)2+0(V£)] at any other values off,
Il. PATTERN STABILITY PROBLEM see Eqs(8) and(9). Thus,o in Eg. (19 cannot be neglected

As it was already mentioned in the Introduction, stability co_mpared t%km at least at three values of namely, at
n=0,*1, which correspond to the wave numbegrsand

analysis of the steady spatially periodic solutions obtained in,_ K velv. i he | imation
the preceding section requires high accuracy of intermediatg + P, 'res.pect|ve Y. 1€, the ovyesF apprQX|mat|on' oto
calculations. To arrive at the right stability conditions in the begin W'th_'SNzl' It yields acubic dispersion eq_uaﬂon for
case of thes-scale-mixing we must consecutively increase? 12king into account the guess=0(e), we arrive at the
accuracy of intermediate calculations until the stability con-conclusion that the discussed dispersion equation must be
ditions stop to change in a leading approximation. Howeveraccurateat leastto O(&°) inclusively.

later we will see that only a few higher-order terms in inter- ~ The dispersion equation &t=1 reads as follows:

mediate expressions produce a contribution of leading order

to the final stability conditions, while all other corrections

are negligible. For this reason to simplify the calculations it T~ Y—k+p 2kpU_y 4k(k+p)U_

is important to select among the variety of equivalent ap- | —2k(—k+p)U, o=y, 2k(k+p)U_y| _

proaches to the pattern stability problem the most effective =0.

one, which allows us to detect the ‘“crucial” corrections —A4k(=k+p)Uz —2kpU O™ Yk+p

without calculations of those that may be neglected. In the (20)
generally accepted method of slowly-varying amplitudes

each higher-order term has itelividual structure and there-

fore has to be calculateekplicitly. The latter makes rather  According to the general routine, now we have to increase
inconvenient application of the method to the problem undel considering, step by step, determinants s, 7x 7, etc.,
consideration. Much more beneficial is representation of thgyhere each next is obtained from previous by “framing” it
steady solution in the form of Eq$10) and (13), where jn one additional top and bottom row, and one left and right
explicit expressions for the amplitudss,, are not used until  column. Note now that all elements of the “frames” except
the final stage of calculations, while perturbations of thisthose on the leading diagonal have a certain smallness in

solution are written as follows: As for the elements on the leading diagonal, they have the
form o — y.nkip, Whereo=0(e) and is small compared to
su=e"tS Vnk+pei(nk+p)x, (18)  Yenk+p [We recall y. o p=0(1) at|n|>1]. It means that
n at any N>1 terms of lowest ordefboth in ¢ and in o)
generated by evaluation of the corresponding determinant,
where all the coefficient¥,, , are constants. are products ofy. ., from the leading diagonal of the
Linearizing Eq.(3) about the unperturbed solution, we “frames” and determinant20). In other words, increase of
easily derive the following set of equations g, : N does not change the lowest orderdnof the dispersion
equ%tion, compared to EO), i.e., thenecessaryaccuracy
(0= Yo p)Vnk+p_22| (n—=1)(Ik+p)KU Vi p=0. So(r? ) simultaneously isufficientto the lowest approxima-
(19 Proceeding with practical calculations it is convenient to

transform rows of the “frame” to those of a triangular ma-

Note that besides the above-mentioned convenience ofix. In this case the dispersion equation at amy 1 is re-
calculations such an approach provides the opportunity tduced to the form of Eq(20), where the elements of the
obtain the final stability conditions, employing just qualita- determinant receive certain corrections. Physically such a
tive features of the spectral curwg, without the concrete procedure corresponds to exclusion of slaved modes.
definition of its particular form that, actually, is a natural At the moment let us pay attention to a remarkable pecu-
generalization of the problem. liarity of determinant(20): the lowest order of terms its

Truncation of the set of Eq19) is the key point of the evaluation yields is not® — it is %2, see, e.g., the product
analysis. Therefore let us discuss it in detail. Formally the[4k(k+ p)U _,]2kpU,[2k(—k+p)U,]. Note that even if
procedure is trivial: taking some integirand dropping all  terms of order:>? cancel each other out entirely, it may not
Viksp With In|>N, we obtain a system of 2+1 linear be the case focorrectionsto these terms. The latter means
equations for remaininy ., ,. Next, as usual, the disper- that to arrive at the dispersion equation with accuracy
sion equation folo(p,k) is obtained by equating the deter- O(e®) we must take into accouratll correctionswith rela-
minant of this system to zero. TheN,increases by onwith  tive smallness to ordex/= to all elements of determinant
simultaneous increase of accuracy of calculations of ampli(20) but the one standing on the middle of the leading diag-
tudes Y,k the routine is repeated, and so on. The quesonal, i.e.,c—y,. In particular, the relative smallness of
tion is to find the adequate value bf to terminate the rou- dropped terms in expressiori$4) and (15) is O(g) and
tine. therefore these expressions may be used in their present

As always, it is reasonable to expect for unstable perturform, while the accuracy of Eq$16) and (17) is not suffi-
bations thatr=0O(¢) andp=0(\/e) — a guess that will be cient for our purposes. The discussed peculiarity of determi-
verified later, see Sec. Ill. Besides, at=0(\e) and nant(20) is the actual grounds for the-scale-mixing.
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It is a matter of straightforward calculations to obtain that bs p? [ by
T1L2= TP\ T 5 (
Yk

under the specified accuracy, reduction of the “frame” to a — | =——b,|+0(p3. (23

“triangular” form generates corrections only to the two mar- A7\ 2%
ginal elements of the leading diagonal of determin@®,  sjnce, is positive atk,<k<k,, stability of these branches
and the corrections do n.ot changeNat-2. The corrected gre defined by sign dis, and by interplay of the coefficients
elements read as follows: ba/2y, andb, in the second term on the right-hand side of
Eq. (23. The evident stability conditions are
4k (p= k) (p=2K)|U,? 29b,>b3>0.
Y+2k+p Let us focus attention on the coefficidng. It is easy to
see from Eq(21d) that

O~ Yrk+p 70~ YVxk+p™

This replacement in Eq20) yields the desirable dispersion
equation. , ' o
Expandingy .., in powers of smalp andx=k—1 [we bs=— K YaYY T 4(v2= 7v2) v
recall p=0(\/&) and « is not greater than thatevaluating
the determinant, and dropping terms of order higher thaerm 4(y,— y5) yﬁ is obviously of orders?. As for term
&3, after trivial but rather tedious calculations we arrive at— 2y, y, /K it should be analyzed more carefully. We be-

the following dispersion equation: gin the analysis with the case=0(\/¢). The leading ap-
5 5 proximation tok is 1 and toy,, it is y,=0(1). Themost
o +a;otazo+az=0, (218 general expression foy, may be written ag («)(e— cx?).
Heref(0)=1 andf’(0), c are constants of order 1, so that
ay(k,p)=2v— ¥ip’~ 7, (21D y=0(e). For y; we havey,=vy;+ y{x+0O(«?), where
v1=0(e) and y]=0(1), seeabove the expression foy; .
ap(k,p)=—[ (272 Y1) %t (vi)?1p? At k=0(\/e) it yields y, = vk +O(&)=0(4/&). Finally, at
" 2 the specified«x we obtain — 2y, Y/ k= —2v,y] Yk

p*, (219 *+0(£%)=0(&¥), which generates tbs/2y, the following
leading approximationbs/2y,= — y,7ik+O(e)=0( e).
Taking into account that, as it is clearly seen from E{.0),
b,=0(e), we arrive at the conclusion that at=0(\/s)
termb, on the right-hand side of E§23) may be neglected
compared td3/2y, . However, it immediately follows from
Eq. (23) that the neglect ob, yields instability associated
either with the first term on the right-hand side of this equa-
V|2 tion (b3/2y,<0) or with the second onebg/2v,>0).

N2 o 2_ |71 44 Approaching zerox becomes of ordet that makes the
+[[(7k) *7ndp ( 2 ) P bp neglect of b, in Eqg. (23 irrelevant. Thus, the case
(214 k=0(e) should be considered separately. Note that due to

the obtained instability of all the spatially periodic solutions
Here primes denote derivatives with respeckktand sub-  at x=0(y/), the only opportunity for the solutions to be
scripts stand for the values &f so that, for exampley] is stable may be associated with the just specified values of
the value ofd?y, /dk? atk=1 (x=0), i.e., just a number of Of ordere. Since the result practically does not depend on
order 1; meanwhiley,, i, v, and v, (unspecified values the concrete expressions foy 5, it reflects a generic feature

of the subscriptsmeans that they are functions pf k, and of the systems with additional symmetry — the stability
2k, respectively. band for spatially periodic solutions in these systems nar-

rows dramatically fronO(+/e) in the conventional cas¢8]
to O(e) [3,4,12,15,18
Proceeding with the analysis &&= O(¢) it is more con-
First of all let us examine the dispersion equati@d) in ~ venient to employ fory, the explicit expressiori8), since
the limit p—0 (sidebandperturbations In this limit Eq.  general formulag21b)—(21d) for the coefficientsa, , zresult

— (2% ¥ip?) vp+

71
2

2 2 ' 2.2
aS(kap):_E'YZKVK'Ykp +4(y2—v2) vikP

"
Y1

+| 713 )mkp“

[ll. ANALYSIS OF THE DISPERSION EQUATION

(21) may be written in the following form: in a very awkward dispersion equati¢?la. Then, expand-
ing a;,3 in powers of x, introducing new dimensionless
a3+ 2,02+ b,yp2a+byp?=0, (22)  variables
where coefficientd, 3 do not depend orp, being certain _C _k _p 24
functions ofk, whose explicit form may be easily obtained =5 =g = E (24)

from comparison of Eq(22) with Egs.(21). The double root

o1,=0 of Eq.(22) at p=0 corresponds to two Goldstone and dropping terms higher order inthat appear due to the
modes originated in symmetry transformatiois$ and (7),  decrease ok from O(4/&) to O(e), we can reduce Eq21)
reSpeCtiVEIy. BUIIdIng up the solution of ECQZ) in powers to the fo”owing nondimensional form:

of p, we can find the twoGoldstone branchesdetaching

from these modes: 28+ c,7°+cz+c3=0, (253
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FIG. 1. QuantitiesT (—) andc; (——) as functions of{ at various fixed values of from different characteristic regionsa)
x=—9<—4513/576b) —4513/576< y= —6<91/144;(c) 91/144< xy=0.7<11/12[second intersection of the cureg(¢) with  axis lies
far to the right from the poinf=1 and is not show (d) y=1>11/12.

C1=24972, c,=2(41+120%) 2, its complex roots must enter by a complex conjugate pair.
One and only one root with positive real part means that this
03:48( 11— 12X) £2_ 568§4+ 16§6 (25b) root must bq)urely real

Generally speaking, two roots with positive real parts may

Note that the fact that the dispersion equation may bdn€an either a pair of complex conjugate roots or two purely
reduced to a nondimensional form by the scale transformad €@l roots. However, the left-hand side of £25) is amono-
tion (24) justifies the estimations of the characteristic valuedONic function of z at z>0 and hence this equation cannot
of o andp made in the preceding section. have more thawnepurely real positive root. In'other words

Comparison of Eqs(22), (23), and(25) brings about the case(nl)_(_:orresponds to a pair afomplex conjugate roots
conclusion that the analyzed spatially periodic solutions ofVith positive real part.

Eq. (3) are stable against the sideband perturbations if the NOt€ now that the quantity parametrizes given spa-
quantity y satisfies the conditions tially periodic solution, whose stability agairety perturba-

tion is studied. Therefore the most natural way to describe

the stability spectrum is to presemtas a function ofZ,
91 11 S . '
—<y<—. consideringy as a parameter that may have different fixed
144 12 value.

Trivial analysis of Eqs(25hb) and (27) shows thafl has
However, the stability against the sideband perturbations igegative values inside a finite segment §<{(x) at
only anecessar_ynqn_dition: it does not guarantee stabili_ty for x<91/144, being positive at any#0 when y exceeds
disturbances wittiinite wave numbers. In other words insta- 91/144. As for the coefficients, it is strictly positive at any
bility may be connected with modes from a band separateg. g jf y< —4513/576. At—4513/576< y<11/12 there is a
from the Goldstone modes by a finite gap. For this reason thnjte segmeniz;(y)<{<{,(x) wherec, is negative. The
stability analysis should be extended to the case of arbitrarnaf; poundary of this segment;(x) is separated from the
values of{. To do this it is convenient to employ the Routh- 40t /=0 by a finite gap untily remains smaller than 11/12.
Hurwitz criterion[16]. Being applied to the problem under a; y=11/12 the gap vanishes, so thatat 11/12 the seg-
consideration, the criterion says the number of unstablgnent of negative values af; is defined by the inequalities
br_anches of the spectrum descrlbe(_j by E2p) coincides 0< < ¢5(x) with finite £,(x). The behavior off andcs as
with the number of changes of sign in the sequence functions of¢ at different values of is shown in Fig. 1.

Summarizing these results, we arrive at the following

1cs,¢4T,C3, (26)  classification of the spectrum.

(i) x<—4513/576. Inside the domain<0/<{1(x) the

wherec, , ;are defined according to ERSh) andT stands  signs in sequenc@6) are (+ + — +), which corresponds to

for the following quantity: two complex conjugate unstable Goldstone branches, i.e., to
oscillatory instability.
T=c,C,— C3=200,%+ 1354*+ (576y—364) 2. (27) (i) —4513/576< y<91/144. The oscillatory instability of

the same kind as before-(+ — +), accompanied in the do-

Sincec, is strictly positive, the only possibility for se- main {;(x)<{<{»(x) by aperiodic instability ¢+ + —)
guence(26) to have negative terms may be associated withwith purely real growth rate. Note thaf;(y) is always
negativeness of or/andc;. It allows the following numbers greater thari+(x), so that at any from the specified seg-
of changes of sign in sequen¢g6): (i) zero, (i) one, and ment unstable oscillatory and aperiodic branches are sepa-
(ii ) two. Case(i) obviously corresponds to stable perturba-rated from each other by a finite gap of stable perturbations.
tions. Caseii) means that Eq25) hasoneandonly oneroot (i) 91/144x<11/12. The sign sequence is
with positive real part. Since E@25) hasreal coefficients, (+++ —), which means aperiodic instability in the domain
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FIG. 3. Growth of an unstable eigenmode from the band of
pscillatory instability of steady solutio(13). The solid line corre-
steady spatially periodic solutions to E®) in the y-{ plane. Un- spond§ to numeriC_aI integration of E®), the dashed_ one displays
hatched region corresponds to stable perturbations; hatched one fatalytical expressiol,(t) =V,(0)expet), whereo is given by
dicates aperiodic instability; cross-hatched region shows the rangglution ~ of Eq. (29); =10 !, k=1, p=38.125¢10 %,

of oscillatory instability. Note the gap between the two bands ofReVp(o)/‘/;:O-ql' ImV,=0. The induction time is about &/—
instability atz=0 and 91/144 y<11/12. note the sharp divergence of the curvesiat 4 caused by nonlin-

ear effects.

FIG. 2. The band structure of the spectrum of perturbations o

L(x)<<&(x) — the only branch of unstable perturba- transformation(6)], which may bring about drastic changes

tions is separated from the Goldstone modes by the finite galpto the pattern stability spectrufd8]. Thus, any equation,
0<<ii(x). whose operator includes odd spatial derivatives, requires a

(iv) x>11/12. The same aperiodic branch ¢ + —) de- separate consideration, so the question about steady solutions
taches from one of the Goldstone modgg=0). to governing equation of Refl19] and their stability, actu-

Thus, we can see that at 91/X44<11/12 the system &lly, remains open. _ _ _
does possess a band of unstable modes which are not relatedNOte besides that, strictly speaking, the numerical results
to Goldstone branches. Since the solutions witying out-  ©f Ref.[19] are ambiguous and admit another interpretation.
side this segment, are unstable for the sideband perturbd1e authors of this work point out that their numeric code is
tions, it means instability of all the spatially periodic solu- StaPle only at<7/Reyy, i.e., the simulations cover just the
tions obtained in Sec. I. To complete the discussion of thes¥e'Y initial stage of pattern dynamics. On the other hand, all
properties of the spectrum, note that boundaries of differenf’® Patterns displayed in R¢fl9] as examples of the steady
bands of instability are defined by the conditiohs 0 and states exhibit quite clear long-wavelength modulations that

cs=0, respectively, which yields the band structure showrmay be regarded as the beginning of the instability discussed
in Fig. 2. in the present paper. An additional argument in favor of this

interpretation is that imll our simulations growth of unstable
égng-wavelength modes, initially rather slow, suddenly, after
& certain induction time of several inverse becomes very
sharp(in the same time-scale, see Fig.ahd gives rise to
iramatic increase of the corresponding amplitudes. Remark-
e agreement between the induction time and the stability

All results of the analytical study of the problem were
checked against computer simulation, whose detailed d
scription as well as discussion of the asymptotic state of th
system att—o were reported elsewhefd2,17,18. In all
cases for small perturbations the computed instability growt
rates coincide quantitatively with the results of analytical"’_lbI

consideration of the problem developed in the present papdimit of the code in Ref[19] provides grounds to suppose
(see Fig. 3 as an exampland contradict to those of Ref. that @ similar change of the pattern dynamics may be the
[15]. actual reason for the numeric instability in wdrk9].

Ending this section we would like to emphasize that since
the discussed instability is connected with the growth of
long-wavelength modes, the problem is very sensitive to cut-
off of the spectrum caused by finiteness of spatial size of a
real systen(size-effegtthat is important both for computer

dynamics described in RefL9] corresponded to transforma- ;imulations and for experimental verification of the instabil-
tion of white-noise-like initial conditions into spatially peri- ity [12,17,18.
odic patterns, which the authors identified as steady states.

The results seem to be in contradiction with those discussed

above. However, we have to emphasize that such a compari- Naturally, the instability of all steady spatially periodic
son of our results is irrelevant. Indeed, the third spatial depatterns governed by EB) is a specific peculiarity of this
rivative breaks left-right parity of the problefsymmetry  particular equation. However, thact that a pattern-forming

It is also worth mentioning the results of computer simu-
lations reported in Ref.19]. The authors of this paper con-
sidered the equation of the type of Ef)) supplemented with
the third spatial derivative of, which adds to the depen-
dence y, the imaginary part of the form Imxik®. The

IV. GENERAL DISCUSSION
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system may possess such a peculiarity at small values of thhis coefficient is amoothfunction ofk,k, ,k,. Really, look-
control parameter is a generic property of problems with ading for a spatially periodic solution to E8) that ink space
ditional symmetry[3,4,12,18 (we remind the reader that at is described by a series of tl#functions, it is easy to inte-
small ¢ the conventional systems without slow long- grate the equation. The integration yields a set of equations
wavelength dynamics always have a finite domain of stabilfor U’s of the same type as that of E@.1). Then, linearizing
ity of these patterns, see, e.f8)). Eq. (28) about the steady periodic solution, representing per-
Another generic property of the problem is the turbations as a Eourier t_ransform_ of E(:l._8), taking into
e-scale-mixing. As a result, dispersion equati@i) con-  account that the integral in E¢28) is dominated by small

tains, in addition to the conventional quanti#{, the deriva- N€ighborhoods of points=0, *1, +2,..., andexpand-
tives v/ and v} [see Eq.(21d], that enter into the leading ing ayy,k, in powers of deviations of its arguments from the
approximation to the final stability conditions. Thus, the sta-dominant points, we arrive at the system of linear equations
bility conditions depend on the “skewness™{) of the for V's similar to Eq.(19). The only.dllfference b.et'ween
dispersion curvey, at the vicinity of the poink=1 and on these. two systems is that now coefﬂcugnts descridiny

its slope far inside the stability regionyf). Besides, to ar- coup[lng have a more general form obtained from the above-
five at the specified accura€y(&°) in the dispersion equa- mentioned expansion afy y,. The same reasons that forced

tion (21) the quantityy, in the first term on the right-hand us to consider first corrections with relative smallness to or-

side of Eq.(21d must be expanded in powers ofto order der\/E in ex_pansions of terms_ related 4Q are_valid now f_or

e inclusively. Let us remember now that at smalive have  the expansion oty , too. Finally we obtain that besides
Ye=7vi+ 3/1’,(.4_0(,(2), wherey;=0(e) andy]=0(1), see the sensitivity to subtle details of the spectryip, the gen-

the discussion of Eq23) in the preceding section. Thus, at eralized problen(28) is also sensitive to fine characteristics
k=0(¢) the two first terms in the expansion f in pow- of nonlinear mode coupling. The cqnclusion is identical to
ers of  both are of ordee. The latter means that neither those drawn in cases of the free-slip convectié] and

! nor y!/x may be neglected in the expansion. In otherreaction-diffusion systems subjected mean field effézis
words the shift of the wave number, maximizing at finite ~ EXt€nsion of Eq.(28) to oscillatory short-wave instability

&, with respect to the poirk=1 also yields a contribution to and/or a complex order parameter also is a straightforward

the stability conditions in the leading approximation. Al Matter. _ L _
these peculiarities make the pattern stability problem essen- L€t Us discuss now possible application of the obtained
tially nonlocal and sensitive to very subtle details of the®€Sults to two more problems related to liquid crys{ais14
spectrumy, . that were alregdy 'mentloned in t_he Intro_ductlon. In case of
As it was already mentioned in Sec. I, the actual ground;lectroconvechon ina homeotroplcally aligned nematic layer
for the e-scale-mixing are the presence of terms of order(afXes of ”_'O'ec_“'es are pgrpendlcular to bogno!ary sur)‘a_ces
£52in the evaluated form of determinaf0). In turn, there with negative d|elec_tr|c anisotropy, the electric field, applied
are only two elements of the determinant of ordg, across the layer, tries to turn the molecules parallel to the

namely = 2k(=k+ p)U. ., while the rest ar®(e). Being layer’s plane, i.e., it conflicts with the grlentgtlon |mp9§ed by

. : o the boundary surfaces. As a result Breederickszransition
entirely responsible for the-scale-mixing, these two ele- . - .
ments both stand on the second row of the determinant. Ta 22] occurs beyond a certain critical value of the electric
S . . . L L ield, and the equilibrium orientation of the molecules in the
ing into account, finally, that this row is originated in the = T . . .

o ) : . midplane and its vicinity becomes tilted. Since there is not
projection of the evolution equation for perturbatid®) on

the slowly varying mode with the wave number equapio any singled out direction in plane of the layer, the system

. . " : eyond the threshold of the Fraericksz transition is degen-
and that this mode is the additional independent degree Ograte with respect to rotations around an axis perpendicular

o e ona ot o s plane. Usualy e veshold o the i
the only cause of the mixinfd]. sition lies below the one of t.he eIectroponvecnon, SO that
Let us discuss now possible generalizations of the prob(—:Iose o onset of the convecpon the qL_uesc@ulnvecnon— -
. , L ) les9 state possesses the desirable additional symmetry, origi-

lem. With this end in view it is convenient to employ the

. . i oo nated in the above-mentioned degeneracy.
following representation of the governing equation: : . . .
Certainly, electroconvection patterns in this system are

JU two—dimen_sional, contrary to the one-dimensional .problem
_k:kakJrf @ik Ui Uk Sk ke dkgdkot - - -, analyzed in the present paper. However, the detailed com-
ot N parison of the stability spectra of roll-patterns in two- and

(28) one-dimensional systems with additional symmetry devel-

] ) oped in Ref[18] indicates identity in all qualitative features
where presentl (t) is the Fourier transform ai(x,t) and  of the spectra, provided transformations of the additional
5stand$ for thes function. Equ_atlons of SL_Jch atype are well groups of symmetry in these systems are parametrized by
known in the pattern formation analysis, see, e.g., Refsgne continuous scalar quantig3]. Thus, despite the differ-
[4,21]. Equations(1) and(3) are particular cases of E®8)  ence in the spatial dimensionality, electroconvection under
with: a ik, = —1(Ky+k2)/2 and ay k, = kiko, respectively.  the specified conditions may be a good tool to obtain experi-
However, the convenience of E(®8) is associated with the mental evidence of the discussed peculiarities of &,
fact that steady solutions of this equation may be obtainethcluding possible instability of all spatially periodic pat-
and their stability may be analyzed without concrete definiterns. Indeed, the very first experimental studies of the phe-
tion of the explicit form of the coefficientzkklkz, provided nomeng 10-17 detected already spatiotemporal chaos very
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similar to that observed in computer simulations of pattern Ending the general discussion, we would like to empha-
dynamics governed by Edq3) [12,17,18. The chaos defi- size that an additional group of continuous symmetry
nitely was originated in the degeneracy caused by thed-re changes the pattern formation problem qualitatively. Among
ericksz transition: When the degeneracy was lifted by a magether things, it may give rise to scale mixing in perturbative
netic field applied in the layer's planghe field breaks the expansions, so that a lowest approximation to initial under-
rotational symmetrythe chaotic patterns evolved to steady lying equations becomes irrelevant and yields a wrong dis-
spatially periodic rolls. However the ordering was reversiblepersion relation in the corresponding pattern stability prob-
— as soon as the magnetic field was switched off the chaoem — the circumstance one should always keep in mind,
was restored11,12. The framework of the present paper studying such systems.

does not allow us to pay more attention to this question. The
detailed discussion of this problem will be the subject of a
separate publication.
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