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We study self-constructing and self-repairing electrical connections built by agglomeration of metallic
particles between two electrodes. Our experiments show that self-assembling electrical connections grow by
building a chain of particles between two electrodes immersed in a dielectric liquid. We find that the growth
time for the self-assembling process is a linear function of the initial average spacing of metallic particles and
a linear function of the distance between the electrodes. Furthermore, the experiments demonstrate the ability
of the electrical connection to self-repair following small perturbations. We show that the agglomeration
process occurs in such a way as to minimize the overall resistance of the system. We discuss possible future
applications of this phenomenon for fabricating nanoscale circuits.@S1063-651X~96!06407-0#

PACS number~s!: 47.90.1a, 41.20.Cv, 46.10.1z, 84.32.2y

I. INTRODUCTION

The neural system of the brain is adaptive, self-repairing,
and self-assembling@1#. These properties are some of the
most distinctive differences between the information pro-
cessing structures of living beings and those of current com-
puter hardware. Over the past two decades a great deal of
scientific effort has been devoted to further understand the
problems of pattern formation, dendritic solidification, and to
discover unifying paradigms for the dynamics and attractors
of open nonlinear systems. The principles of extremal en-
tropy production@2#, self-organized criticality@3–6#, mar-
ginal stability @7#, and minimum resistance@8,9# have been
used to help explain these phenomena. Until now, these gen-
eral paradigms have rarely been implemented to design ma-
terials and devices which could~1! efficiently respond to
large destructive perturbations,~2! effectively adapt to a
changing environment, or~3! solve complex new tasks such
as the construction of neural networks. However, there is an
urgent need for such adaptive and creative materials and de-
vices. Rapid progress in nanotechnology makes it possible to
manufacture electronic devices on a quantum scale, e.g.,
single electron tunneling transistors@10#. If such nanode-
vices are densely packed in two or possibly three dimensions
it seems practically impossible to design adequate noise-
resistant circuitry or to test the functionality of every element
within these complex devices. Therefore it would be highly
desirable for computer hardware to independently perform
the wiring according to a given task and to self-repair when
errors occur.

In our previous work we investigated the agglomeration
process of metallic particles under the influence of an electric
current. We demonstrated that it is possible to obtain self-
organized dendritic structures using a two-dimensional elec-
trode and a point electrode@11#. These structures are stable,
possess a fractal geometry, and satisfy the principle of mini-
mum resistance.

In this paper we investigate the agglomeration process of
metallic particles which are suspended between two point
electrodes in a highly viscous oil. We find that under certain
conditions the agglomeration process results in a conducting

chain of metallic particles, which in turn may be considered
a self-assembled wire. We further examine the growth time
of the emerging structures as a function of the concentration
of particles in the oil and of the distance between the elec-
trodes. Section II of this report gives a description of the
experimental setup, followed by an overview of the experi-
mental results in Sec. III. In Sec. IV the principle of mini-
mum resistance is discussed. Finally, Sec. V provides a brief
analysis of the results and possible future applications for
self-assembling electrical connections.

II. THE EXPERIMENT

In the setup of the experiment,N smooth steel spheres
~radiusr51 mm, massm533.061.3 mg! are distributed at
the bottom of a cylindrical cell such that the total number of
spheres within a given area ofA51 cm2 is constant. We
refer to the average number of spheres per cm2 as the con-
centration of particlesCp . The cylindrical cell ~radius
r c570 mm! consists of a thin layer of oil~heighth55 mm!
within an acrylic dish. Two needle-shaped electrodesa and
b ~maximum radiusr e50.5 mm! are placed in the cell with
a fixed distanced separating their tips. Electrodea is
grounded throughout the experiment while a potentialV is
initiated through electrodeb. This potential is adjustable be-
tweenV510 kV andV525 kV. A schematic of the setup is
shown in Fig. 1.

The working fluid which makes up the cell is castor oil,
chosen for its small conductivity@soil(20 °C)<10212

(Vm! 21#, high dielectric constant (koil'4.7), and high vis-
cosity @h(20 °C)50.99061% Pa s#. The high dielectric
constant and relatively small conductivity allow a large
amount of electrostatic energy to be stored in the oil, while
heating due to Ohmic resistance is kept to a minimum. The
high viscosity of the oil causes the motion of the particles to
be slow in comparison with the relaxation time of the distri-
bution of the electric charges. This property allows for a
separation of time scales which is useful in modeling the
dynamics of the experiment.

For timest,0 the spheres lie motionless in the cylindri-
cal cell. They are distributed in one of two ways:~1! ran-
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domly with an average separation^r p& between neighboring
spheres or~2! evenly on a square grid. At timet50 a poten-
tial of approximatelyV524 kV is supplied to the electrodes.
The applied voltage induces an electric field that causes the
metallic spheres within the vicinity of the electrodes to ag-
glomerate in order to reduce the resistance of the system.
Initially, the resistance between the electrodes is approxi-
mately the resistance of the castor oil. It drops by a factor of
approximately 1011 almost instantaneously when a chain of
particles connects the two electrodes. We measure the
growth timeTc from the beginning of the experiment to the
sudden drop in resistance. Typical growth processes are rep-
resented by series of pictures in Figs. 2 and 3.

III. DYNAMICS OF THE AGGLOMERATION PROCESS

When the voltageV is initially applied to the electrodes,
the metallic spheres in the vicinity of the electrodes are mo-
mentarily repelled. Approximately half a second later the
particles are attracted by the electrodes where they begin to
line up in almost straight chains. Typically, two to four small
chains are observed to grow from a given electrode. As the
growth process continues, branches emanating from an elec-
trode strongly compete against each other. The dominating
branch of one electrode moves toward the respective branch
from the other electrode. This agglomerated row of metallic
spheres tends to align itself along the shortest distance be-
tween the two electrodes. At this stage, if any gaps are
present in the alignment of individual spheres, additional
spheres in the vicinity are also attracted to the chain of par-
ticles to complete a circuit of minimal resistance.

The growth timeTc from the beginning of each experi-
ment to the moment of the formation of a completed chain is
measured. The arithmetic averageT̄c of the growth timeTc
and the standard deviationsc are evaluated for ten measure-
ments. In a cell consisting of randomly distributed particles
at an average concentrationCp , the averageT̄c is found to
be directly proportional to the distanced between the two
electrodes~see Fig. 4!. An interesting observation is the fact
that the timeTc is affected by the symmetry of the growing
chains. When the branches from an electrode align them-
selves in a symmetrical manner along the axis defined by the
end points of the two electrodes, the growth timeTc is ap-
proximately 5 to 10 longer thanT̄c1sc . When irregular

FIG. 1. Experimental setup.

FIG. 2. Example of an agglomeration process at different time
stages for randomly distributed particles.~a! t50 s,~b! t520 s,~c!
t530 s,~d! t540 s,~e! t560 s,~f! t577 s.

FIG. 3. Example of an agglomeration process at different time
stages for particles arranged on a grid.~a! t50 s, ~b! t530 s, ~c!
t545 s,~d! t565 s,~e! t575 s,~f! t585 s.
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patterns of chains develop the growth timeTc is found to be
in the range ofT̄c6sc .

The experiments were repeated with the metallic spheres
arranged on a rectangular grid~see Fig. 3!. In this setup, the
agglomeration occurs more slowly than in experiments with
randomly arranged particles~see Fig. 5!. This effect is not
evident for distances smaller thand52 cm.

Additional experiments were performed with a constant
distanced between the electrodes, while the particle concen-
trationsCp were varied. The data show thatT̄c are propor-
tional to the expectation value for the average spacing of
randomly distributed spheres,^r p&. The results are presented
in Fig. 6.

The behavior of the self-assembled electrical connections
following small perturbations was also investigated. First an
electrical connection was established. The voltage was then
switched off and the chain of spheres was slightly disturbed.
After the voltage was reapplied to the electrodes, the re-
moved particles returned to their original position in less
than 2 s~see Fig. 7!. The behavior of the metallic spheres
suggests that their dynamics may be described in terms of a
variational principle. In the following section, we show that
the dynamics of self-assembling electrical connections mini-

mizes the resistance of the system.

IV. THE PRINCIPLE OF MINIMUM RESISTANCE

To model the dynamics of the experiment, we consider
the two-dimensional motion of metallic spheres in the hori-
zontal plane of the dish. The experimental system has spa-
tially fixed boundary conditions consisting of two point elec-
trodes located atx1 ,y1 and x2 ,y2 , respectively, between
which a potential differenceV5F(x1 ,y1)2F(x2 ,y2) is in-
duced. The perimeter of the cylindrical cell is insulated, and
¹W F(r boundary)50. The total resistanceRtot , is defined as the
ratio of the potential differenceV to the total currentI tot
flowing from one electrode to another. In the following, we
assume that all of the current flowing out of one electrode
enters the other electrode, i.e.,I 152I 25I tot . After defining
a few relations, we examine the temporal behavior of the
total resistanceRtot and demonstrate thatdRtot /dt<0.

The continuity equation

¹W •JW~x,y!1
]r~x,y!

]t
50 ~1!

expresses the local conservation of charge in the system. In
the experiment, the motion of the metallic spheres is heavily
damped by the viscous castor oil. The motion of the spheres
is slow compared to the rate of charge relaxationsoil /eoil of
the oil. Therefore the time dependence of the charge density
r(x,y) may be neglected through adiabatic elimination@12#.
We then have the steady current condition

¹W •JW~x,y!50. ~2!

Since the spheres are heavily damped, we neglect inertial
forces and introduce an equation of motion of the form

FW i5g ṙW i5
1

2eoil
E
S
EW i
2dain̂i ~ i51, . . . ,N!, ~3!

whereg is an effective friction coefficient,ṙW is the velocity
of sphere i , eoil is the permittivity of the oil,
EW (x,y)52¹W F(x,y) is the electric field at the surface of the

FIG. 4. Average timeT̄c as a function of the distanced between
the electrodes for varying particle concentrationsCp .

FIG. 5. Average timeT̄c as a function of the distanced between
the electrodes for a particle concentration ofCp54/cm2. Short
dashes represent experiments with randomly arranged particles and
long dashes represent experiments with particles arranged on a rect-
angular grid.

FIG. 6. Average timeT̄c as a function of the average spacing
^r p& of particles for distancesd52 cm ~short dashed line! and
d53 cm ~long dashed line! between the electrodes.
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conducting sphere@14#, and the integral is taken over the
surface of the sphere, wheren̂i is its normal.

We consider Ohmic media, for which the current density
is

JW~x,y!5sEW ~x,y!, ~4!

where s is the local isotropic conductivity. As shown in
Appendix B, the total charge on an isolated sphere~one
which is not connected to the battery terminals! is zero.

If there exists a potential difference
F i j5F(xi ,yi)2F(xj ,yj ) between spheresi and j , a cur-
rent will flow between them according to

F i j5I i j Ri j , ~5!

where I i j is the current which leaves spherei and enters
spherej directly. Ri j is the resistance of the currentI i j be-
tween spheresi and j , andRi j5Rji .

We introduce a two-dimensional model to describe the
dynamics of the conductors. For two circular conductors in
two dimensions, the electric field distribution can be found
exactly by using the method of images. From this result, we
show in Appendix C that the force on each of the two con-
ductors may be written in terms of the gradient of the total
resistance between conductors with respect to the location of
each conductor:

FW i j52
e

2s
I i j
2¹W r i

Ri j ~ i , j51,2;iÞ j !. ~6!

Furthermore, in Appendix D we show that the force between
a point charge and a sphere may be written using an expres-
sion similar to the one above. This result is used for the
force-resistance relation for a single conducting sphere and a
point electrode.

To find the total force on a given spherei , we then make
the following approximation: we add vectorially the two-
body forces between spherei and the other conducting
spheres, each of which is written in terms of the gradient of
the resistance between spheres. In doing so, the resistance
between spheres is defined in terms of the total current
Ji j5sEi j which flows directly from spherei to spherej .

The total force on a given conducting spherei is written

FW i52 (
j , jÞ i

e

2s
I i j
2¹W r i

Ri j . ~7!

With Eq. 3, the equation of motion becomes

g ṙW i52 (
j , jÞ i

e

2s
I i j
2¹W r i

Ri j , ~8!

whereg is the effective viscosity. Since the two electrodes
are held fixed, we also haveṙ 150 and ṙ 250.

Using the relation, derived in Appendix A of this manu-
script,

I i j
2

I tot
2 5

]Rtot

]Ri j
~9!

the equation of motion becomes

ṙW i52
e

2gs
I tot
2 (
j , jÞ i

]Rtot

]Ri j
S ]Ri j

]xi
x̂1

]Ri j

]yi
ŷD . ~10!

We now consider the time dependence of the total resistance
between the fixed electrodes. Due to the separation of time
scales, the total resistanceRtot is not an explicit function of
time, but depends only on the locationsrW i of the conductors.
The total time derivative ofRtot is written in terms of partial
derivatives with respect to the sphere locations
rW i5xi x̂1yi ŷ.

dRtot
dt

5
1

2(i (
j , jÞ i

]Rtot

]Ri j
S ]Ri j

]xi

dxi
dt

1
]Ri j

]yi

dyi
dt

1
]Ri j

]xj

dxj
dt

1
]Ri j

]yj

dyj
dt D . ~11!

Substituting Eq.~10! for the velocities of conductorsi , j , we
have

FIG. 7. Example of a self-repairing electrical connection.~a!
connection before the destructive perturbation,~b! connection at
time of perturbation,~c! connection 2 s after the perturbation.
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dRtot
dt

52
eI tot

2

4gs(
i

(
j , jÞ i

]Rtot

]Ri j
F ]Ri j

]xi
S (
k,kÞ i

]Rtot

]Rik

]Rik

]xi
D 1

]Ri j

]yi
S (
k,kÞ i

]Rtot

]Rik

]Rik

]yi
D 1

]Ri j

]xj
S (
m,mÞ j

]Rtot

]Rjm

]Rjm

]xj
D

1
]Ri j

]yj
S (
m,mÞ j

]Rtot

]Rjm

]Rjm

]yj
D G . ~12!

Rewriting Eq.~12! we have

dRtot
dt

52
eI tot

2

4gs F(
i

S (
j , jÞ i

]Rtot

]Ri j

]Ri j

]xi
D S (

k,kÞ i

]Rtot

]Rik

]Rik

]xi
D 1(

i
S (
j , jÞ i

]Rtot

]Ri j

]Ri j

]yi
D S (

k,kÞ i

]Rtot

]Rik

]Rik

]yi
D 1 (

j , jÞ i
S (

i

]Rtot

]Ri j

]Ri j

]xj
D

3S (
m,mÞ j

]Rtot

]Rjm

]Rjm

]xj
D 1 (

j , jÞ i
S (

i

]Rtot

]Ri j

]Ri j

]yj
D S (

m,mÞ j

]Rtot

]Rjm

]Rjm

]yj
D G . ~13!

Since j andk are dummy indices in the first and second products of Eq. 13, andi andm are dummy indices in the third and
fourth products, and using the fact thatRi j5Rji , we find the time derivative of the total resistance is

dRtot
dt

52
eI tot

2

4gs H(
i

F S (
j , jÞ i

]Rtot

]Ri j

]Ri j

]xi
D 21S (

j , jÞ i

]Rtot

]Ri j

]Ri j

]yi
D 2G1 (

j , jÞ i
F S (

i

]Rtot

]Ri j

]Ri j

]xj
D 21S (

i

]Rtot

]Ri j

]Ri j

]yj
D 2G J . ~14!

Thus we see thatṘtot<0; that is,Rtot is a Lyapunov function
for the dynamics of the system.

V. DISCUSSION

We have presented the experimental and theoretical in-
vestigation of self-assembling electrical connections. We
found linear relationships between the distanced separating
the electrodes and the average growth time of the connec-
tions T̄c . The experimental data suggest that the average
initial separation of particleŝr p& is directly proportional
to T̄c . In addition we found that self-assembled wires are
stable, reconnecting quickly when the chains are broken. We
further observed that the agglomeration is comparably
slower when symmetrical patterns of chains develop during
the growth process. We propose that these patterns are states
of unstable equilibrium.

We also found that the speed of the growth process de-
pends on the initial arrangement of the particles. This obser-
vation may be due to the fact that the expectation value for
the distance to the next neighbor for randomly distributed
particles,^r p&, is smaller than the distance between spheres
on a rectangular grid. For small distancesd between the
electrodes the characteristic longer timeT̄c is not evident for
uniformly distributed particles. This may be due to the fact
that particles located in the vicinity of the electrodes are
momentarily repelled at the beginning of the experiment. It
can be assumed that at relatively small distancesd this
causes uniformly placed particles to be randomly distributed
in the area affected throughout the experiment. In turn, this
would yield growth times similar to those experiments start-
ing with randomly distributed spheres.

In addition, we have shown, using a simple two-
dimensional model for the dynamics of the particles, that the
total resistance between electrodes is a Lyapunov function.
For some simple open systems, we derived an expression for
the force on a conductor in terms of a gradient of the total
resistance and current in the system:

FW 52
e

2s
I tot
2 ¹W Rtot . ~15!

We suggest that this relation may be useful to describe the
dynamics of an open, linearly dissipative system when iner-
tial forces may be neglected.

As an example of the applicability of this relation, we
consider the problem of a leaky parallel-plate capacitor filled
with an Ohmic dielectric. The force between capacitor plates
may be written

FW i5
1
2 euEW u2Ain̂i ~ i51,2!, ~16!

wheree is the permittivity of the dielectric,EW 52¹W F is the
electric field at the surface of platei , Ai is the area of plate
i , and n̂i is its outward normal. We consider general
position-dependent boundary conditions, such that the poten-
tial difference between the plates,F22F15DF, is an arbi-
trary, continuous function of the plate separation,x22x1 ,
i.e.,DF5DF(x22x1). The electric field between the plates
is

EW ~x22x1!52
DF~x22x1!

x22x1
x̂ ~17!

and the force between them is

FW i~x22x1!5
1

2
eS 2

DF~x22x1!

x22x1
D 2Ain̂i . ~18!

The force may also be described in terms of the resistance

Rtot~x22x1!5
DF~x22x1!

I tot
5

DF~x22x1!

suEW uAi

5
x22x1

sA
,

~19!

with A25A15A. Using our relation, Eq. ~15!, and
I tot5suEW uA, we find the force between the plates as
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FW i52
e

2s
I tot
2 ¹W Rtot5

1

2
euEW u2Ain̂i ~ i51,2! ~20!

in agreement with Eq.~16!. The dynamics of the capacitor
plates may be determined through the minimization of the
resistance, regardless of the nature~e.g., constant potential or
constant charge! of the boundary conditions. This result is in
stark contrast to the theory of minimal entropy production
@2#, for in our leaky capacitor example, the dissipation
P5I tot

2 Rtot decreases as the plates move together when the
charges are held constant, but increases if the potential dif-
ference is held constant.

In this paper we have experimentally and theoretically
described the dynamics of self-assembling macroscopic
wires. We propose to further investigate the dynamics of
polar atoms in periodic potential wells. In particular, ag-
glomerates of gold atoms between electrodes on silicon sur-
faces are expected to form stable nanowires at much smaller
voltages. This phenomenon could be utilized to build self-
assembling circuitry in densely packed complex electronic
devices. These circuits are expected to be more tolerant of
errors than contemporary nanocircuits. They also could be
easily modified by regrowing the electrical connections ac-
cording to a given task.
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APPENDIX A: DERIVATION OF THE
CURRENT-RESISTANCE RELATION

I kl
2

I tot
2 5

]Rtot

]Rkl
. ~A1!

We consider a resistive network ofN nodes andb
branches, in which pairs of nodes are connected by single
linear resistorsRi j , and i , j5(1, . . . ,N). An arbitrary net-
work of linear resistors may be represented this way, through
series and parallel additions of resistors between nodes. We
consider a single source of emf,Vs , within a branch between
two arbitrary nodes of the network. The total power dissi-
pated in the network is the sum of the Ohmic dissipation in
each branch,

Ptot5 (
j51

N21

(
i5 j11

N

I i j
2Ri j . ~A2!

The total resistance of the network between the two selected
nodes borderingVs is Rtot , and the total potential difference
between the two nodes at any instant isVs5I totRtot . Thus the
total Ohmic dissipation is

VsI tot5I tot
2 Rtot5 (

j51

N21

(
i5 j11

N

I i j
2Ri j . ~A3!

The above equation is known as Tellegen’s theorem@15#,
which expresses the conservation of power. Taking the par-
tial derivative of the above equation with respect to a given
resistanceRkl , we obtain

2
]I tot
]Rkl

I totRtot1I tot
2 ]Rtot

]Rkl
5 (

j51

N21

(
i5 j11

N

2
]I i j
]Rkl

I i j Ri j1I kl
2 .

~A4!

The procedure for the proof of the equivalence of the
second term

T25I tot
2 ]Rtot

]Rkl
~A5!

and fourth term

T45I kl
2 ~A6!

consists of the following steps.
~1! Label the nodes of the networki51, . . . ,N arbitrarily.

Define the current which leaves nodei and enters nodej as
the branch currentI i j . For the purposes of this proof, and for
the solution of the network, the chosen directions of the
branch currents need not be the directions of the currents in
the actual physical system.

~2! Choose a treeT @15# of the graphG of the network,
such thatT does not include the branch which contains the
source of emf,Vs . Determine the fundamental loops corre-
sponding to the links of the treeT. We denote each loopa as
a set of indices$aq%(q51, . . . ,n), where eachaq represents
a node of the network and appears only once in the set
$aq%, except for the first,a1 , which appears twice:

a5$a1 ,a2 ,a3 , . . . ,an ,an115a1%. ~A7!

For each fundamental loopa, define a loop currentI a with
the associated reference direction of its corresponding link.
Exactly one of the fundamental loopsa5ã will include the
branch containingVs , and its associated loop current
I ã5I tot , the total current in the network due toVs . The
l5b2N11 equations obtained by writing Kirchhoff’s volt-
age law ((q51

n Vaqaq11
50 for any closed loop! for each fun-

damental loop associated with the treeT are linearly inde-
pendent@16#.

~3! Write all branch currentsI i j in terms of loop currents
I a only. Each branch currentI i j is the sum or difference of a
number of loop currentsI a .

I i j5(
a

Ca i j I a , ~A8!

whereCa i j,(1,0,21). When the direction of a loop current
coincides with the direction of a branch current in the same
branch of the network, the coefficientCa i j of the loop cur-
rent is11. If the loop and branch currents oppose each other
in the same branch of the network, the coefficientCa i j of the
loop current is21. If the loop and branch currents do not
coexist in any branch of the network, the coefficientCa i j of
the loop current is zero.

~4! Now consider the term
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T35 (
j51

N21

(
i5 j11

N

2
]I i j
]Rkl

I i j Ri j . ~A9!

Substitute forI i j in ]I i j /]Rkl only, using Eq.~A8!,

T35 (
j51

N21

(
i5 j11

N

(
a

2
]~Ca i j I a!

]Rkl
I i j Ri j

5 (
j51

N21

(
i5 j11

N

(
a

2
]I a

]Rkl
Ca i j I i j Ri j . ~A10!

Group all terms which have a given]I a /]Rkl .

T35(
a

2
]I a

]Rkl
S (
j51

N21

(
i5 j11

N

Ca i j I i j Ri j D . ~A11!

Factoring out]I a /]Rkl , we are left with the sum of terms in
Ca i j I i j Ri j . Traversing a given loopa in its specified direc-
tion while summing voltage drops, we obtain

(
j51

N21

(
i5 j11

N

Ca i j I i j Ri j50 ~A12!

for eachaÞã by Kirchhoff’s voltage loop rule.
~5! The loop a5ã includes the branch containing the

source of emf,Vs , and has a corresponding loop current
I ã5I tot . Summing voltage drops around theã loop, one
obtains

Vs2 (
q51

n

I ãqãq11
Rãqãq11

50. ~A13!

SinceVs5I totRtot by definition, then

I totRtot5 (
q51

n

I ãqãq11
Rãqãq11

. ~A14!

Thus the third termT3 in Eq. ~A4! is

T35 (
j51

N21

(
i5 j11

2
]I i j
]Rkl

I i j Ri j52
]I ã

]Rkl
S (
j51

N21

(
i5 j11

N

Cã i j I i j Ri j D
52

]I tot
]Rkl

I totRtot ~A15!

and is equivalent to the first term

T152
]I tot
]Rkl

I totRtot ~A16!

in Eq. ~A4!.
Therefore the second and fourth terms in Eq.~A4! are

equivalent, and we have

I kl
2

I tot
2 5

]Rtot

]Rkl
. ~A17!

With regard to the above proof, it does not matter if the
assigned branch currents have the same directions as the ac-
tual branch currents flowing in the network, since changing

the direction of a branch current changes the sign of its
Ca i coefficient, but when summing the voltage drops around
a closed current loop the new sign is taken into account, and
the sum is again zero.

APPENDIX B: NET CHARGE ON A CONDUCTING
SPHERE

To obtain the net charge on a conducting sphere which is
not connected to a battery and resides in a poorly conducting
medium, we begin with the steady current condition, Eq.~2!:

E
S
JW~x,y!•daW 50 ~B1!

and the conditionJ1n5J2n for the normal components of the
current density on the interfaceS between media, where the
subscript 1 refers to the poorly conducting fluid and sub-
script 2 refers to the medium of the conducting sphere.

We consider Ohmic media, for which the current density
is

JW i~x,y!5s iEW i~x,y! ~ i51,2!, ~B2!

wheres i is the local isotropic conductivity in mediumi .
Together with the boundary conditionJ1n5J2n , we obtain

s1E1n~x,y!5s2E2n~x,y!5Jn~x,y!. ~B3!

Applying Gauss’s law

E
S
DW •daW 5Q inside S ~B4!

for a dielectric medium, we obtain

D1n~x,y!2D2n~x,y!5L f~x,y!, ~B5!

whereL f(x,y) is the free charge density on the interface of
media 1 and 2. Or, sinceDW i(x,y)5e iEW i(x,y)( i51,2),

e1E1n~x,y!2e2E2n~x,y!5L f~x,y!, ~B6!

and from Eqs.~4! and ~B3!, we have

S e1
s1

2
e2
s2

D Jn~x,y!5L f~x,y!. ~B7!

The total free charge on a conducting sphere,

Qf5E L f~x,y!da5 lim
s2→`

S e1
s1

2
e2
s2

D E Jn~x,y!da

~B8!

equals zero by Eq.~B1! for any conducting sphere which is
not directly injected with charge~i.e., not connected to an
external current source such as a battery!.

In addition, the net currentI i ,net through any spherei is
zero, and is the sum of all currents between spherei and the
other spheres.
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I i ,net5 (
j , jÞ i

I i j5E
Si

Jn~x,y!da5
s1

e1
Qf5

s1

e1
(
j , jÞ i

Qi j ,

~B9!

where

Qi j5
e1
s1

I i j ~B10!

andQf50 is the total free charge on a conducting sphere.
Since eachQi j is directly proportional toI i j , and since
I i j52I j i , we find

Qi j52Qji , ~B11!

that is, the charge induced on the surface of spherei due to
the interaction with spherej is equal and opposite to the
charge induced on the surface of spherej due to the same
interaction.

APPENDIX C: FORCE-RESISTANCE RELATION
FOR TWO PARALLEL INFINITE CYLINDERS

For two circular conductors in two dimensions, the elec-
tric field distribution can be found exactly by using the
method of images. We consider the analogous problem in
three-dimensional cylindrical coordinates and neglect theẑ
component, since the field is uniform in this direction. The
medium between the cylinders is assumed to be linear and
isotropic with permittivitye and conductivitys. The poten-
tial outside of two infinite, cylindrical conductorsi and j is
that of two parallel infinite line charges appropriately placed
within the conductor boundaries@13#. In cylindrical coordi-
nates for cylinders with identical radii, the potential is

F~rW !5
l

2pe
logeS r i

r j
D , ~C1!

wherel (2l) is the charge per unit length of each of the
image line charges,r i andr j are the respective perpendicu-
lar distances from the pointrW to each image line charge, and
the origin is taken as the midpoint between the image line
charges. The centers of the circular conductors are also equi-
distant from the origin, and the distance between the centers
is l .

Using Eq. ~C1!, the electric field at the surface of the
conductor at the higher potential is found to be

EW j5
la

2peR@ l /21Rcos~w!#
n̂ j , ~C2!

whereR is the radius of each conductor,w is an angle be-
tween a radial vectorRW j5Rn̂j from the center of the conduc-
tor and the outward axis formed by the origin and the center
of the same conductor, and

a5AS l2D
2

2R25S S r i
r j

D 221

S r i
r j

D 211
D l

2
~C3!

is the distance of each image line charge from the origin. The
electrostatic force on a conductor may be found from the
electric field at its surface@14#,

FW j5
1

2eESjEj
2daj n̂j , ~C4!

where EW j is the electric field at the surface andn̂ j is its
direction. Integrating over the entire surface of the conduc-
tor, the force per unit length on a cylindrical conductor is

FW j

L
52

l2

4pea
l̂ , ~C5!

where2 l̂ indicates that the force is attractive.
We next consider the resistance between two cylinders.

For the example above of two conducting cylinders of equal
radii, the resistance of a unit length of the cylinders is@13#

Ri j5
1

ps
cosh21S l i j2RD , ~C6!

wheres is the conductivity of the medium between the con-
ductors and

l i j5A~xi2xj !
21~yi2yj !

2 ~C7!

is the distance between the centers of the conductors in terms
of two-dimensional Cartesian coordinates.

We now consider the gradient of the resistanceRi j with
respect to conductor locationrW i5xi x̂1yi ŷ:

¹W r i
Ri j5

]

]r i
F 1

ps
cosh21S l i j2RD G r̂ i5 1

2ps

1

AS l i j2 D 22R2

l̂ i j

5
1

2psa
l̂ i j , ~C8!

where we have used Eq.~C3! and l̂ i j is a unit vector along
the direction of the displacement vector between the centers
of the conductors:

l̂ i j5
~xi2xj !x̂1~yi2yj !ŷ

A~xi2xj !
21~yi2yj !

2
. ~C9!

From Eqs.~C5!, ~C8!, andl5Q/L, the force on conductor
i at locationxW i due to the fieldEW i j may be written

FW i j52
s

2e
Qi j
2¹W r i

Ri j . ~C10!

And from Eq.~B10! we have

FW i j52
e

2s
I i j
2¹W r i

Ri j ~C11!

as the force on conductori due to its interaction with con-
ductor j .
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APPENDIX D: FORCE-RESISTANCE RELATION FOR A
POINT CHARGE AND A GROUNDED, CONDUCTING

SPHERE

For the problem of an isolated point charge and a
grounded conducting sphere, the force on the point charge
may be determined by considering the gradient of a resistan-
celike quantity,Rtot . In order to demonstrate this method,
we first solve for the electric field everywhere outside the
sphere by using the appropriate image charge. We consider a
point chargeq0.0 located atxW0 and a sphere of radiusr s
centered atxW s whereuxW0u.uxW su. The electric field outside the
sphere is determined in the standard way by placing an im-
age chargeq852r sq0 /(x02xs) a distanceh5r s

2/(x02xs)

from xW s in the x̂ direction. The location ofq0 andq8 satisfies
the boundary conditions thatF(rW)50 on the surface of the
sphere and at infinity. The force between the point charge
and sphere may now be found directly using Coulomb’s law:

FW 5
1

4pe0

q0q8

~x02xs2h!2
x̂52

1

4pe0

r sq0
2~x02xs!

@~x02xs!
22r s

2#2
x̂.

~D1!

Alternatively, we may determine the force between the
point charge and sphere through the introduction of the re-
sistancelike scalar quantity

Rtot5
*a
bEW •drW

*StotE
W
•daW

, ~D2!

where EW 52¹W F(rW) is the electrostatic field outside the
sphere,Stot is a closed surface aboutq0 , anda andb are end
points of the total field configuration@i.e., the location of the

point charge,xW0 , and any point on a boundary where

F(rW)50#. FromxW0 , the total vector field~the vector sum of
the electrostatic fields due toq0 andq8) approaches one of
two possible boundaries: the surface of the conducting
sphere or the boundary at infinity. The total vector field may
be divided into two subspaces corresponding to the regions
of the total field which terminate at one boundary or the
other. We then determine the quantityR for each of these
subspaces. In keeping with the idea thatR is resistancelike,

the integral*EW •drW must be the same for each subspace. The

*SEW •daW terms may be determined in this case from Gauss’s
law. drW anddaW are defined along the direction of the total
electric fieldEW , such that each integrand is non-negative.

For the subspace of the total vector field which terminates
on the surface of the conducting sphere~i.e., the region of the
electrostatic field betweenq0 andq8), we define the quantity

R085
*a
bEW •drW

*S
08
EW •daW

5
e0

~2q8!
lim
d→0

E
xs1r s

x02d 1

4pe0
F q0dx

~x02x!2
1

2q8dx

~x2xs2h!2G5
1

4p

~x02xs!

r sq0
lim
d→0

Fq0d 2
q0

~x02xs2r s!

2
r sq0

~x02xs!~x02xs2h!
1

r sq0
~x02xs!~r s2h!G5

1

4p
lim
d→0

Fx02xs
r sd

2
~x02xs!

~x02xs!
22r s

2G , ~D3!

where we have usedh5r s
2/(x02xs). We have takenxW0 as the limita of the integral*a

bEW •drW52*a
bEW •dxW by introducing the

parameterd and taking the limitd→0. This definition introduces a singularity inR08 , but does not lead to a divergence in the
expression for the force. The other limit of this integral,b5xs1r s , corresponds to the point where thex axis intersects the
surface of the sphere, whereF(xs6r s)50. The integral*S

08
EW •daW , taken over the region of the vector space which terminates

on the surface of the sphere, is equal to2q8/e0 from Gauss’s law, by taking a Gaussian surface around the conducting sphere.
For the subspace of the total vector field which extends to infinity, we define the quantity

R0
`5

*a
cEW •drW

*S
0
`EW •daW

5
e0

~q01q8!
lim
d→0

E
x01d

` 1

4pe0
F q0dx

~x02x!2
1

q8dx

~x2xs2h!2G
5

1

4p

~x02xs!

q0~x02xs2r s!
lim
d→0

Fq0d 2
r sq0

~x02xs!~x02xs2h!G5
1

4p
lim
d→0

F x02xs
~x02xs2r s!d

2
r s~x02xs!

@~x02xs!
22r s

2#~x02xs2r s!
G ,

~D4!

where we have again usedh5r s
2/(x02xs). The limits of integration area5 limd→0(x01d) and c5`. The integral

*S
0
`EW •daW , corresponding to the subregion of the total vector field which extends to infinity, is equal to (q01q8)/e0 by taking

a Gaussian surface around both charges.
Next we show thatRtot has resistancelike properties. If we considerR08 andR0

` as quantifying the flux of electrostatic field
in different subspaces of the total field but between the same potential differences, we may think of these quantities as resistors
in parallel. Then the total ‘‘field resistance’’ of the system may be defined by
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1

Rtot
5

1

R08
1

1

R0
` 5

*S
08
EW •daW

*a
bEW •drW

1
*S

0
`EW •daW

*a
cEW •drW

5
*StotE

W
•daW

*a
bEW •drW

, ~D5!

where we have used

E
a

b

EW •drW52E
a

b

EW •dxW5E
a

c

EW •dxW5E
a

c

EW •drW ~D6!

and

E
S08
EW •daW 1E

S0
`
EW •daW 52

q8

e0
1

~q01q8!

e0
5
q0
e0

5E
Stot

EW •daW . ~D7!

The force between the point charge and the sphere may be expressed in terms of the gradient ofRtot with respect to the
point charge locationxW0 or the sphere locationxW s . The gradient ofRtot with respect toxW0 is

¹W x0
Rtot5S ]Rtot

]R08

]R08

]x0
1

]Rtot

]R0
`

]R0
`

]x0
D x̂. ~D8!

We now proceed to evaluate the partial derivatives in the above expression.
From Eq.~D5!, Rtot is given by

Rtot5
R08R0

`

R081R0
` . ~D9!

The partial derivatives ofRtot with respect toR08 andR0
` are

]Rtot

]R08
5

~R0
`!2

~R081R0
`!2

5

S 1

4p
lim
d→0

F ~x02xs!

~x02xs2r s!d
2

r s~x02xs!

@~x02xs!
22r s

2#~x02xs2r s!G D
2

S 1

4p
lim
d→0

F ~x02xs!
2

r s~x02xs2r s!d
2

~x02xs!
2

@~x02xs!
22r s

2#~x02xs2r s!G D
2 5

r s
2

~x02xs!
2 5S q8

q0
D 2 ~D10!

and

]Rtot

]R0
` 5

~R08!2

~R081R0
`!2

5

S 1

4p
lim
d→0

F ~x02xs!

r sd
2

~x02xs!

@~x02xs!
22r s

2#G D 2
S 1

4p
lim
d→0

F ~x02xs!
2

r s~x02xs2r s!d
2

~x02xs!
2

@~x02xs!
22r s

2#~x02xs2r s!G D
2 5

~x02xs2r s!
2

~x02xs!
2 5S q81q0

q0
D 2.

~D11!

The partial derivatives ofR08 andR0
` with respect tox0 are

]R08

]x0
5

1

4p
lim
d→0

F 1

r sd
1

~x02xs!
21r s

2

@~x02xs!
22r s

2#2
G ~D12!

and

]R0
`

]x0
5

1

4p
lim
d→0

F2
r s

d~x02xs2r s!
2 1

2r s~x02xs!
32r s

2~x02xs!
22r s

4

$@~x02xs!
22r s

2#~x02xs2r s!%
2G . ~D13!
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We now consider the product of Eq.~D8! with the square of the magnitude of the point charge:

q0
2¹W x0
Rtot5q0

2S ]Rtot

]R08

]R08

]x0
1

]Rtot

]R0
`

]R0
`

]x0 D x̂5q0
2S ~q8!2

q0
2

1

4p
lim
d→0

F 1

r sd
1

~x02xs!
21r s

2

@~x02xs!
22r s

2#2G1
~q81q0!

2

q0
2

1

4p
lim
d→0

3F2
r s

d~x02xs2r s!
2 1

2r s~x02xs!
32r s

2~x02xs!
22r s

4

$@~x02xs!
22r s

2#~x02xs2r s!%
2G D x̂5

1

4p F 2r s~x02xs!q0
2

@~x02xs!
22r s

2#2G x̂. ~D14!

Comparing the above equation forq0
2¹W x0
Rtot with Eq. ~D1!,

we find that the force on the point charge may be written

FW q0
52

q0
2

2e0
¹W x0
Rtot . ~D15!

We now consider the case where the point chargeq0 and
grounded conducting sphere exist in a linear, isotropic, ho-
mogeneous medium of permittivitye and conductivitys.
The point chargeq0 is now considered as a current source,
e.g., a point electrode in the experimental system. If the time
scale of the motion of the sphere or electrode is large com-
pared to the time scale of the relaxation of the charge distri-
bution e/s, we may neglect the time dependence of the
charge densityr(x,y) in the medium. The steady current
condition, Eq. ~1!, along with Ohm’s law,
JW i(x,y)5s iEW i(x,y), implies the surface charge density-
current relation, Eq.~B10!,

qsphere5
e

s
I sphere. ~D16!

The actual resistance between the conducting sphere and
point electrode is

Rtot5
DF tot

I tot
5

*p
SSEW •drW

*SJW•daW
5

*p
SSEW •drW

s*SEW •daW
~D17!

and is related to the field resistanceRtot by

Rtot5
Rtot

s
, ~D18!

where DF tot is the total potential difference between the
point electrode and the sphere,I tot is the total current be-
tween them,p is the location of the point electrode, SS is a
point on the surface of the sphere, andS is the entire surface
of the sphere. In terms of the physical resistanceRtot , the
force between a conducting sphere and a point electrode is
estimated as

FW qtot
52

qtot
2

2e
¹W x0
Rtot52

e

2s
I tot
2 ¹W x0

Rtot . ~D19!
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