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Self-assembling electrical connections based on the principle of minimum resistance
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We study self-constructing and self-repairing electrical connections built by agglomeration of metallic
particles between two electrodes. Our experiments show that self-assembling electrical connections grow by
building a chain of particles between two electrodes immersed in a dielectric liquid. We find that the growth
time for the self-assembling process is a linear function of the initial average spacing of metallic particles and
a linear function of the distance between the electrodes. Furthermore, the experiments demonstrate the ability
of the electrical connection to self-repair following small perturbations. We show that the agglomeration
process occurs in such a way as to minimize the overall resistance of the system. We discuss possible future
applications of this phenomenon for fabricating nanoscale cird8t063-651%96)06407-0

PACS numbgs): 47.90:+a, 41.20.Cv, 46.16:z, 84.32-y

[. INTRODUCTION chain of metallic particles, which in turn may be considered
a self-assembled wire. We further examine the growth time

The neural system of the brain is adaptive, self-repairingpf the emerging structures as a function of the concentration
and self-assemblin§l]. These properties are some of the of particles in the oil and of the distance between the elec-
most distinctive differences between the information pro-trodes. Section Il of this report gives a description of the
cessing structures of living beings and those of current comexperimental setup, followed by an overview of the experi-
puter hardware. Over the past two decades a great deal Btental results in Sec. lll. In Sec. IV the principle of mini-
scientific effort has been devoted to further understand thEYum resistance is discussed. Finally, Sec. V provides a brief
problems of pattern formation, dendritic solidification, and to@nalysis of the results and possible future applications for
discover unifying paradigms for the dynamics and attractor$elf-assembling electrical connections.
of open nonlinear systems. The principles of extremal en-
tropy production[2], self-organized criticalityf 3—6], mar- Il. THE EXPERIMENT
ginal stability[7], and minimum resistande,9] have been )
used to help explain these phenomena. Until now, these gen- !N the setup of the experimen smooth steel spheres
eral paradigms have rarely been implemented to design matadiusr =1 mm, massn=233.0+1.3 mg are distributed at
terials and devices which could) efficiently respond to the bottom of a cylindrical cell such that the total number of
large destructive perturbationé?) effectively adapt to a SPheres within a given area #f=1 cm’ is constant. We
changing environment, d8) solve complex new tasks such refer to the average number of spheres pef @ the con-
as the construction of neural networks. However, there is agéntration of particlesC,. The cylindrical cell (radius
urgent need for such adaptive and creative materials and dé.= 70 mm consists of a thin layer of oilheighth=5 mm)
vices. Rapid progress in nanotechnology makes it possible t¢ithin an acrylic dish. Two needle-shaped electrodesnd
manufacture electronic devices on a quantum scale, e.gp, (maximum radiug.=0.5 mm are placed in the cell with
single electron tunneling transistof40]. If such nanode- a fixed distanced separating their tips. Electroda is
vices are densely packed in two or possibly three dimensiongrounded throughout the experiment while a poterifab
it seems practically impossible to design adequate noisednitiated through electrode. This potential is adjustable be-
resistant circuitry or to test the functionality of every elementtweenV=10 kV andV=25 kV. A schematic of the setup is
within these complex devices. Therefore it would be highlyshown in Fig. 1.
desirable for computer hardware to independently perform The working fluid which makes up the cell is castor oil,
the wiring according to a given task and to self-repair wherchosen for its small conductivity] o;(20 °C)<10 2
errors occur. (©m) 17, high dielectric constant,;~4.7), and high vis-

In our previous work we investigated the agglomerationcosity [ 7(20 °C)=0.990-1% Pag. The high dielectric
process of metallic particles under the influence of an electriconstant and relatively small conductivity allow a large
current. We demonstrated that it is possible to obtain selfamount of electrostatic energy to be stored in the oil, while
organized dendritic structures using a two-dimensional elecheating due to Ohmic resistance is kept to a minimum. The
trode and a point electrodé1]. These structures are stable, high viscosity of the oil causes the motion of the particles to
possess a fractal geometry, and satisfy the principle of minibe slow in comparison with the relaxation time of the distri-
mum resistance. bution of the electric charges. This property allows for a

In this paper we investigate the agglomeration process afeparation of time scales which is useful in modeling the
metallic particles which are suspended between two pointdynamics of the experiment.
electrodes in a highly viscous oil. We find that under certain For timest<<0 the spheres lie motionless in the cylindri-
conditions the agglomeration process results in a conductingal cell. They are distributed in one of two wayd) ran-
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Vg = 24.5kV

FIG. 1. Experimental setup.

domly with an average separatir,) between neighboring
spheres of2) evenly on a square grid. At tinte=0 a poten-

tial of approximatelyv =24 kV is supplied to the electrodes.
The applied voltage induces an electric field that causes the
metallic spheres within the vicinity of the electrodes to ag-
glomerate in order to reduce the resistance of the system.
Initially, the resistance between the electrodes is approxi-
mately the resistance of the castor oil. It drops by a factor of
approximately 18" almost instantaneously when a chain of
partlcles. connects  the tW(_) eleCtrOdes' We . measure  the FIG. 3. Example of an agglomeration process at different time
growth timeT, from the beginning of the experiment to the gtages for particles arranged on a gii@. t=0 s, (b) t=30 s, ()
sudden drop in resistance. Typical growth processes are rep=45 s, (d) t=65 s, (e) t=75 s, (f) t=85 s.

resented by series of pictures in Figs. 2 and 3.

f

IIl. DYNAMICS OF THE AGGLOMERATION PROCESS

When the voltagé/ is initially applied to the electrodes,
the metallic spheres in the vicinity of the electrodes are mo-
mentarily repelled. Approximately half a second later the
particles are attracted by the electrodes where they begin to
line up in almost straight chains. Typically, two to four small
chains are observed to grow from a given electrode. As the
growth process continues, branches emanating from an elec-
trode strongly compete against each other. The dominating
branch of one electrode moves toward the respective branch
from the other electrode. This agglomerated row of metallic
spheres tends to align itself along the shortest distance be-
tween the two electrodes. At this stage, if any gaps are
present in the alignment of individual spheres, additional
spheres in the vicinity are also attracted to the chain of par-
ticles to complete a circuit of minimal resistance.

The growth timeT, from the beginning of each experi-
ment to the moment of the formation of a completed chain is
measured. The arithmetic averagg of the growth timeT,
and the standard deviatier, are evaluated for ten measure-
ments. In a cell consisting of randomly distributed particles
at an average concentrati@),, the averagd is found to
be directly proportional to the distanck between the two
electrodegsee Fig. 4. An interesting observation is the fact

- f that the timeT .. is affected by the symmetry of the growing
chains. When the branches from an electrode align them-

FIG. 2. Example of an agglomeration process at different timeS€lves in a symmetrical manner along the axis defined by the
stages for randomly distributed particléa) t=0 s, (b) t=20s,(cy  €nd points of the two electrodes, the growth tifeis ap-
t=30s,(d) t=40 s,(e) t=60 s,(f) t=77 s. proximately 5 to 10 longer thai.+o.. When irregular
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FIG. 4. Average timélTC as a function of the distanakbetween

the electrodes for varying particle concentrati@s. FIG. 6. Average timeT,. as a function of the average spacing

(rp) of particles for distancesl=2 cm (short dashed lineand
patterns of chains develop the growth tiffigis found to be d=3 cm (long dashed linebetween the electrodes.
in the range off > oc. , _ mizes the resistance of the system.
The experiments were repeated with the metallic spheres
arranged on a rectangular giisee Fig. 3. In this setup, the
agglomeration occurs more slowly than in experiments with
randomly arranged particlegsee Fig. 5. This effect is not To model the dynamics of the experiment, we consider
evident for distances smaller thar=2 cm. the two-dimensional motion of metallic spheres in the hori-
Additional experiments were performed with a constantzontal plane of the dish. The experimental system has spa-
distanced between the electrodes, while the particle concentially fixed boundary conditions consisting of two point elec-
trationsC, were varied. The data show th@t are propor- trodes located ak;,y; and X,,y,, respectively, between
tional to the expectation value for the average spacing ofvhich a potential differenc¥=®(x;,y;) — P(X5,Y,) is in-
randomly distributed sphereg,;). The results are presented duced. The perimeter of the cylindrical cell is insulated, and
in Fig. 6. V(1 poundar) = 0. The total resistancRy, is defined as the
The behavior of the self-assembled electrical connectiongatio of the potential differenc& to the total current
following small perturbations was also investigated. First arflowing from one electrode to another. In the following, we
electrical connection was established. The voltage was thesissume that all of the current flowing out of one electrode
switched off and the chain of spheres was slightly disturbedenters the other electrode, i.6,= —1,=1y. After defining
After the voltage was reapplied to the electrodes, the rea few relations, we examine the temporal behavior of the
moved particles returned to their original position in lesstotal resistancé®,,, and demonstrate thaltR,,,/dt<0.
than 2 s(see Fig. 7. The behavior of the metallic spheres  The continuity equation
suggests that their dynamics may be described in terms of a
variational principle. In the following section, we show that . ap(X,y)
the dynamics of self-assembling electrical connections mini- V-J(xy)+ o

IV. THE PRINCIPLE OF MINIMUM RESISTANCE

0 (1)

expresses the local conservation of charge in the system. In

50 Agrid ’,A’ the experiment, t_he motion of thg metallic spheres is heavily
40 - o random T e damped by the viscous castor oil. The mation of the spheres
) LA T is slow compared to the rate of charge relaxaiiQp/ €,; of
- 30 4 /4' .... 29 the oil. Therefore the time dependence of the charge density
“_o ,A"‘..-'&'" p(x,y) may be neglected through adiabatic eliminatitg].
@ 5. Rl We then have the steady current condition
£ 8 .-
* 0. 3 V-J(x,y)=0. 2
-"f" . . . . . . Since the spheres are heavily damped, we neglect inertial
1 1.5 2 25 3 35 4 forces and introduce an equation of motion of the form
distance d [cm] 1
Fi=yri=zJ Efdafy (i=1,...N), (3
oil J S

FIG. 5. Average timd; as a function of the distanakbetween
the electrodes for a particle concentration @f=4/cm®. Short . _ I L2 .
dashes represent experiments with randomly arranged particles aMYPere'y 1S an eﬁeCt'V? friction coeff|IC|.emr, is the velocn.y
long dashes represent experiments with particles arranged on a re@f  SPhere i, €y is the permittivity of the oil,
angular grid. E(x,y)=—V®(x,y) is the electric field at the surface of the
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We introduce a two-dimensional model to describe the
dynamics of the conductors. For two circular conductors in
two dimensions, the electric field distribution can be found
exactly by using the method of images. From this result, we
show in Appendix C that the force on each of the two con-
ductors may be written in terms of the gradient of the total
resistance between conductors with respect to the location of
each conductor:

€ >
Fij:—%lﬁvriRij (,j=1,2 #j). (6)
Furthermore, in Appendix D we show that the force between
a point charge and a sphere may be written using an expres-
sion similar to the one above. This result is used for the
force-resistance relation for a single conducting sphere and a
point electrode.

To find the total force on a given sphdrewe then make
the following approximation: we add vectorially the two-
body forces between spheilie and the other conducting
spheres, each of which is written in terms of the gradient of
the resistance between spheres. In doing so, the resistance
between spheres is defined in terms of the total current
Jij = oE;j; which flows directly from sphere to sphergj.

The total force on a given conducting spheéris written

lfi=—2

IBEL ZUI”V R 0

With Eg. 3, the equation of motion becomes
> € i
yhi=— 2 >—IiV Ry, (8)

j'j;ti 2(T

where vy is the effective viscosity. Since the two electrodes
are held fixed, we also havg=0 andr,=0.
Using the relation, derived in Appendix A of this manu-

script,
2
lij Rt )
— =
FIG. 7. Example of a self-repairing electrical connecti¢a. ot IRij
connection before the destructive perturbatiln), connection at h . f ion b
time of perturbation(c) connection 2 s after the perturbation. the equation of motion becomes
. . . > IRt [ IR;i . IRy
conducting spher¢l4], and the integral is taken over the r=— tz “’t( J +_'Jy)_ (10)
surface of the sphere, whefe is its normal. INE 2 i
We consider Ohmic media, for which the current density

We now consider the time dependence of the total resistance
between the fixed electrodes. Due to the separation of time
scales, the total resistan&®,; is not an explicit function of

time, but depends only on the Iocatioﬁs)f the conductors.

where o is the local |Sotr0p|c Conduct|v|ty As shown in The total time derivative ORtot is written in terms of partlal
Appendix B, the total charge on an isolated sphéee derivatives with respect to the sphere locations

is

J(x,y)=cE(x,y), (4)

which is not connected to the battery terminasszero. rl—x X+VyiV.
If there exists a potential difference
i =D(x;,y;)—P(x;,y;) between spheresandj, a cur- ARt _ 12 > IRt [ IR %_‘_ IR %_‘_ dR;j dx;
rent will flow between them according to dt 297 53 oR; | oxg dt gy, dt - 9x dt
q)ijzlinij y (5) ale dy]
+— 7, dai (11

where |;; is the current which leaves sphereand enters
spherej directly. R;; is the resistance of the curreht be-  Substituting Eq(10) for the velocities of conductoisj, we
tween spheres andj, andR;;=R;; . have



500 M. DUEWEKE, U. DIERKER, AND A. HUBLER 54

dRot _ €l fo IRwt| IR IRt IRk | | IRjj IRt Rik| IR IRt IRjm
dt Ayo T 7% IR | 9% \Kkzi IR X i \ Kk=i IRk 9y, X \ mm#j IRjm  9X;
OR;; IRt IR;
ij tot ON\jm . (12)
ﬁyj m,m#j ale &yj

Rewriting Eq.(12) we have

d Ryt elgy IR IRj; IRt IRk IR IRj; IRt IR IRt IR
aibros DI IRt IR vt R IR DI v [ I R vl DI DI v
dt 4')/0' i IDEA (9R|] &XI K, k#i &R|k &Xl i ji#Fi &le z9y| k,k#i &R”( &yl IBEA i &R” &XJ
IRt IR; IRt IR IRt IR
3 B, 5 (3 Ra)( 5 Sl @
m,m# j jm X j#i T JdRij 9Yj )\ mm=j IRjm 9Y;

Sincej andk are dummy indices in the first and second products of Eq. 13 amdm are dummy indices in the third and
fourth products, and using the fact tiat =R;; , we find the time derivative of the total resistance is

dRot elfot[. (E @ﬁ)i(z @@)ZH_ (14)

i

IRy IR | 2 IRt IR | 2
tot ij i tot J] + 2
i54i IRy X iT=i dRij 9y, INEL

dt —4’)/0' aR” (9XJ i aR” ﬁy]

Thus we see thafﬁtotso; that is,Ry. is a Lyapunov function . > =
for the dynamics of the system. F=— 55!V R (15)

V. DISCUSSION We suggest that this relation may be useful to describe the

) ) . dynamics of an open, linearly dissipative system when iner-
We have presented the experimental and theoretical insg| forces may be neglected.

vestigation of self-assembling electrical connections. We aq gn example of the applicability of this relation, we

found linear relationships between the distadceeparating  onsider the problem of a leaky parallel-plate capacitor filled

the electrodes and the average growth time of the connegyity an Ohmic dielectric. The force between capacitor plates
tions T,. The experimental data suggest that the averaggay be written

initial separation of particlegr,) is directly proportional

to T.. In addition we found that self-assembled wires are Fi=1¢€EPAR; (i=1,2, (16)
stable, reconnecting quickly when the chains are broken. We

further observed that the agglomeration is comparablyvheree is the permittivity of the dielectricE= —V® is the
slower when symmetrical patterns of chains develop duringlectric field at the surface of plate A; is the area of plate
the growth process. We propose that these patterns are staiesand n; is its outward normal. We consider general
of unstable equilibrium. position-dependent boundary conditions, such that the poten-

We also found that the speed of the growth process deial difference between the plateb,— ®,=A®, is an arbi-
pends on the initial arrangement of the particles. This Obsertrary, continuous function of the plate separatiag,— X,
vation may be due to the fact that the expectation value fore. Ad=A®d(x,—x,). The electric field between the plates
the distance to the next neighbor for randomly distributedsg
particles,(rp), is smaller than the distance between spheres
on a rectangular grid. For small distancesbetween the R AD(X,—X1) .
electrodes the characteristic longer timeis not evident for E(Xp=x) =~ Xo— Xy X (17)
uniformly distributed patrticles. This may be due to the fact
that particles located in the vicinity of the electrodes areand the force between them is
momentarily repelled at the beginning of the experiment. It )
can be assumed that at relatively small distandethis _ Ad)(xz—xl)> AR (18)
causes uniformly placed particles to be randomly distributed Xo— X1 e
in the area affected throughout the experiment. In turn, this
would yield growth times similar to those experiments start-The force may also be described in terms of the resistance
ing with randomly distributed spheres.

In addition, we have shown, using a simple two- g (Xg—X1)= A®(xz—X1) _ Ad(xa—xy) _XemX
dimensional model for the dynamics of the particles, that the ' Lot o|E|A, oA
total resistance between electrodes is a Lyapunov function. (19
For some simple open systems, we derived an expression for ] ]
the force on a conductor in terms of a gradient of the totaMith A;=A;=A. Using our relation, Eg.(15), and
resistance and current in the system: l.oi= o|E|A, we find the force between the plates as

R 1
Filxa=x)=5¢€
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. € . 1 .. The above equation is known as Tellegen’s theofé,

Fi=— %Itzotv Rtot:§€|E|2Aini (i=1,2 (200  which expresses the conservation of power. Taking the par-

tial derivative of the above equation with respect to a given

in agreement with Eq(16). The dynamics of the capacitor resistanceRy;, we obtain
plates may be determined through the minimization of the

N—1 N
resistance, regardless of the nat(eey., constant potential or 25|tot| R 412 IRt 3 2<9|ij | R.412
constant chargeof the boundary conditions. This resultis in =~ “gR,, O TR T & & R, T K

stark contrast to the theory of minimal entropy production (A4)
[2], for in our leaky capacitor example, the dissipation
P=12 Ry decreases as the plates move together when the The procedure for the proof of the equivalence of the
charges are held constant, but increases if the potential disecond term
ference is held constant.

In this paper we have experimentally and theoretically T.=|2 ﬂtot (A5)
described the dynamics of self-assembling macroscopic 27 T0tR,
wires. We propose to further investigate the dynamics of
polar atoms in periodic potential wells. In particular, ag-and fourth term
glomerates of gold atoms between electrodes on silicon sur- )
faces are expected to form stable nanowires at much smaller Ta=li (A6)
voltages. This phenomenon could be utilized to build self- . )
assembling circuitry in densely packed complex electroni€Onsists of the following steps. o
devices. These circuits are expected to be more tolerant of (1) Label the nodes of the network=1,... N arbitrarily.
errors than contemporary nanocircuits. They also could b&€fine the current which leaves nodand enters nodg as

easily modified by regrowing the electrical connections ac{he branch curreri; . For the purposes of this proof, and for
cording to a given task. the solution of the network, the chosen directions of the

branch currents need not be the directions of the currents in
the actual physical system.
(2) Choose a tred [15] of the graphg of the network,
This work was supported by the Office of Naval Researchsuch that7 does not include the branch which contains the
and the Beckman Institute of the University of lllinois. One source of emfV,. Determine the fundamental loops corre-
of the authorgM.D.) acknowledges support from NSF Grant sponding to the links of the treE We denote each loop as
No. NSF-GER 93-54978. The authors wish to thank Atleea set of indicegaq}(q=1,... n), where eachy, represents
Jackson for his helpful discussions and comments. One &i node of the network and appears only once in the set
the authorgU.D.) would like to thank Keebum Chang and {aq}, except for the first;, which appears twice:
Christoph Wargitsch for their helpful suggestions.
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a={ai,as,a3,...,0y,0n:1= a1} (A7)
APPENDIX A: DERIVATION OF THE ) .
CURRENT-RESISTANCE RELATION For each fundamental loog, define a |00p current, with
the associated reference direction of its corresponding link.
|ﬁ| IRt Exactly one of the fundamental loops="a will include the
7z = : (A1) branch containingV,, and its associated loop current
Iz=1lst, the total current in the network due ¥;. The

branches, in which pairs of nodes are connected by singlagde law £q_,V, =0 for any closed loopfor each fun-
linear resistorsR;;, andi,j=(1,...N). An arbitrary net- damental loop associated with the tréeare linearly inde-
work of linear resistors may be represented this way, througpenden{ 16].

series and parallel additions of resistors between nodes. We (3) Write all branch currents;; in terms of loop currents
consider a single source of env,, within a branch between 1, only. Each branch curremf; is the sum or difference of a
two arbitrary nodes of the network. The total power dissi-number of loop currents, .

pated in the network is the sum of the Ohmic dissipation in

each branch,
lij=2 Caijla (A8)

N—1 N
Pot= IZR;; . A2 —
tot ,Zl i:,zﬂ R (A2) whereC,;;C(1,0,—1). When the direction of a loop current

. coincides with the direction of a branch current in the same
The total resistance of the network between the two selectegranch of the network, the coefficie@t,; of the loop cur-
nodes borderins is Ryo, and the total potential difference rent is+ 1. If the loop and branch currents oppose each other
between the two nodes at any instan¥is= | Ryt Thus the  in the same branch of the network, the coefficieny; of the

total Ohmic dissipation is loop current is— 1. If the loop and branch currents do not
N—1 N coexist in any branch of the network, the coefficiény; of
Vel o= 12 Rioi= JE ' D |iszij ) (A3) the loop current is zero.

=1 iZj+1 (4) Now consider the term
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N—-1 N
T;=> > 2— IR (A9)
i=1i<T+1 dR
Substitute forlj; in dl;;/dRy, only, using Eq.(A8)
N—1 N
A(Cijla)
Ty= 22— LR
=1 i;rlg IR Y
S % Zzﬁlac IR A10
A4 ﬁkl aijlij i - (A10)
Group all terms which have a given ,/dRy, .
| N—1
Z E  Cail (A11)

IRy =

Factoring outl ,/9R,,, we are left with the sum of terms in
C.ijlijRij - Traversing a given loop in its specified direc-
tion While summing voltage drops, we obtain

(A12)

N—-1 N
Ez CaijlijRij=0
=j+1

=1

for eacha#a by Kirchhoffs voltage loop rule.
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the direction of a branch current changes the sign of its
C,; coefficient, but when summing the voltage drops around
a closed current loop the new sign is taken into account, and
the sum is again zero.

APPENDIX B: NET CHARGE ON A CONDUCTING
SPHERE

To obtain the net charge on a conducting sphere which is
not connected to a battery and resides in a poorly conducting
medium, we begin with the steady current condition, €.

fj(x,y).dézo (B1)
S

and the conditiod;,= J,, for the normal components of the

current density on the interfac@between media, where the

subscript 1 refers to the poorly conducting fluid and sub-

script 2 refers to the medium of the conducting sphere.
We consider Ohmic media, for which the current density

is

(i=1,2),

Ji(x.y)=0oiEi(x,y) (B2)

where g; is the local isotropic conductivity in medium

(5) The loop a="a includes the branch containing the Together with the boundary conditiah,=J,,,, we obtain

source of emfVg, and has a corresponding loop current

lz=1lwt. Summing voltage drops around tfke loop, one
obtains

n
2 a1 “q”fﬁl =0. (AL3)

SinceV =Ry, by definition, then
n
| oiRior= qzl |E;%+1RZ;%H- (A14)
Thus the third ternT 5 in Eq. (A4) is
- N—1 N
ﬁlu al
A ot
=2 aR" loReot (A15)
and is equivalent to the first term
tot
T1= zﬁkl ltotRtot (Al6)

in Eq. (A4).
Therefore the second and fourth terms in E44) are
equivalent, and we have

2
15[2 &Rmt
8RH'

(A17)

I 2
tot

With regard to the above proof, it does not matter if the

01E1n(X,Y) = 02Eon(X,Y) = Jn(X,Y). (B3)
Applying Gauss’s law
f D-da=Q inside S (B4)
S
for a dielectric medium, we obtain
D1n(X,¥) = Dan(X,y) = At(X,y), (BS)

whereA(x,y) is the free charge density on the interface of
media 1 and 2. Or, sinc®;(x,y) = &E;(x,y)(i=1,2),

€1E1n(X,Y) — €2E24(X,Y) = A(X,Y), (B6)
and from Eqgs(4) and (B3), we have
€1 €y
(O_—— —) Ja(x.Y)=Ag(x.Y). (B7)
1

The total free charge on a conducting sphere,

Q= f Af<x,y>da=g|2iTx(§—11—§—22) f 3 (x.y)da
(89)

equals zero by EqB1) for any conducting sphere which is
not directly injected with chargé.e., not connected to an
external current source such as a baltery

In addition, the net currenl . through any spheré is

assigned branch currents have the same directions as the aero, and is the sum of all currents between spheued the
tual branch currents flowing in the network, since changingother spheres.
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o o is the distance of each image line charge from the origin. The
line= 2 Iij:J Jn(x,y)da= E—Qf=€—_2 Qi electrostatic force on a conductor may be found from the
i S ! L7 electric field at its surfacfl4],

(B9)
where ﬁ.:i E2da:f: (C4)
172 )TN
€1
Q”:a_ll” B0\ here E; is the electric field at the surface amg is its

_ _ direction. Integrating over the entire surface of the conduc-
and Q;=0 is the total free charge on a conducting spheretor, the force per unit length on a cylindrical conductor is
Since eachQ;; is directly proportional tol;;, and since
Iij:_lji,Weﬁnd [E] )\2 ~
T 47'rea| ' (€5

Qij=—Qji, (B11)

that is, the charge induced on the surface of spheree to ~ Where—1 indicates that the force is attractive. _
the interaction with spherg is equal and opposite to the We next consider the resistance between two cylinders.

charge induced on the surface of sphgrdue to the same For the example above of two conducting cylinders of equal

interaction. radii, the resistance of a unit length of the cylinder$1i3]
1 1 IIJ
APPENDIX C: FORCE-RESISTANCE RELATION RijZ—COSh ﬁ , (Co)
FOR TWO PARALLEL INFINITE CYLINDERS o

For two circular conductors in two dimensions, the elec-whereo is the conductivity of the medium between the con-
tric field distribution can be found exactly by using the ductors and
method of images. We consider the analogous problem in
three-dimensional cylindrical coordinates and neglectzhe Ly = V(X = %)%+ (yi—y))? (C7)
component, since the field is uniform in this direction. The
medium between the cylinders is assumed to be linear ani§ the distance between the centers of the conductors in terms
isotropic with permittivitye and conductivitys. The poten-  Of two-dimensional Cartesian coordinates. _
tial outside of two infinite, cylindrical conductoisandj is We now consider the gradient of the resistafgewith
that of two parallel infinite line charges appropriately placedrespect to conductor locatian=x;x+Y;V:
within the conductor boundarig43]. In cylindrical coordi-

nates for cylinders with identical radii, the potential is - J|1 lij | |4 1 1 A
r-Rij:_ _COSh_l =M= > IIJ
\ ) [ ar| wo 2R 270 \/(hj) 5
> _, —| —R
d(p)= —2W€|oge( pj), (CY
- . 1
where\ (—\) is the charge per unit length of each of the _Zmral” , (C8

image line charges; andp; are the respective perpendicu-

lar distances from the point to each image line charge, and \ypere we have used E(CI) andfij is a unit vector along

the origin is taken as the midpoint between the image lingne girection of the displacement vector between the centers
charges. The centers of the circular conductors are also equit the conductors:

distant from the origin, and the distance between the centers

isl. ° °
R Xi— X )X+ (Y=Y,
Using Eg.(CY), the electric field at the surface of the I = (X~ %) > i yj)yz, (C9
conductor at the higher potential is found to be VX —=X) 2+ (YY)
. \a R From Egs.(C5), (C8), and\A=Q/L, the force on conductor
Ejzz,n-eR['/Z_l_ Rcos )] " (€2 atlocationx; due to the fieldE;; may be written
I I 1 - > g >
whereR is the rad|u§ of r—.:ach conductap, is an angle be Ei=— _Qizjvr-Rij . (C10
tween a radial vectdR;=Rn; from the center of the conduc- 2e :
tor and the outward axis formed by the origin and the center
of the same conductor, and And from Eq.(B10) we have
pi 2 = € 2¢
| > (p_) -1 | Fij:_zlijvriRi] (Cll)
a= (E) —RZZ —Jr E (C3)
(ﬂ +1 as the force on conductardue to its interaction with con-
Pj ductorj.
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APPENDIX D: FORCE-RESISTANCE RELATION FOR A RE.dF
POINT CHARGE AND A GROUNDED, CONDUCTING Rio= e, (D2)
SPHERE Js E-da

For the problem of an isolated point charge and a
grounded conducting sphere, the force on the point charge
may be determined by considering the gradient of a resistatwhere E= —V®(r) is the electrostatic field outside the
celike quantity,R,,;. In order to demonstrate this method, sphereSy, is a closed surface abogg, anda andb are end
we first solve for the electric field everywhere outside thepoints of the total field configuratid.e., the location of the
sphere by using the approprizite image charge. We considergint charge,X,, and any point on a boundary where
point chargeqo>0 located axo and a sphere of radius @ (r)=0]. Fromx,, the total vector fieldthe vector sum of
centered ak where|xo|>|x,|. The electric field outside the the electrostatic fields due ty, andq’) approaches one of
sphere is determined in the standard way by placmg an imwo possible boundaries: the surface of the conducting
age charge)’ = —ro/(Xo—Xs) a distancen=rZ/(Xo—Xs)  sphere or the boundary at infinity. The total vector field may
from X, in theX direction. The location off, andq’ satisfies  be divided into two subspaces corresponding to the regions
the boundary conditions tha(r)=0 on the surface of the Of the total field which terminate at one boundary or the
sphere and at infinity. The force between the point charg@ther. We then determine the quanti® for each of these
and sphere may now be found directly using Coulomb’s lawsubspaces. In keeping with the idea tfais resistancelike,
the integral/ E- dr must be the same for each subspace. The
F= SX=— et J<E-da terms may be determined in this case from Gauss's
Amey (Xo—Xs— 1) 4meq [(Xo—Xs) 5] 1) law. dr andda are defined along the direction of the total
electric fieldE, such that each integrand is non-negative.
Alternatively, we may determine the force between the For the subspace of the total vector field which terminates
point charge and sphere through the introduction of the reen the surface of the conducting sphére., the region of the

.1 qQa’ . 1 rga(Xo—xs)

sistancelike scalar quantity electrostatic field betweeqy, andq’), we define the quantity
|
R [RE-dr e i JXO ® 1 |_GodX —q'dx 1 (Xo—Xs) {qo Jo

= im =——lim| - — ———

0 fséE-da (— q)(sﬂo xs+rs47760 (Xo— X) (X_Xs_77)2 47 1o 50 0 (Xp=Xs—Trg)
I'sfo I'sdo 1 X0~ Xs (XO_Xs)

- —Ilim - 5 (D3)

(Xo=Xg)(Xo—=Xs— 1) (Xo—Xg)(rs—7) 4775H0 rsé (Xp—Xg)“—r

where we have usegl=r2/(x,—x,). We have takex, as the limita of the integral/2E-dr=— [°E . dx by introducing the
parameteid and taking the limits— 0. This definition introduces a singularity R}, but does not lead to a divergence in the
expression for the force. The other limit of this integtad xs+rg, corresponds to the point where theaxis intersects the
surface of the sphere, whedg(x,+r.)=0. The integralfs(r)ﬁ- da, taken over the region of the vector space which terminates

on the surface of the sphere, is equakq’/ ey from Gauss’s law, by taking a Gaussian surface around the conducting sphere.
For the subspace of the total vector field which extends to infinity, we define the quantity

_ JSE-dr € . (= 1 [ godx q’dx
Ro="—=== 7 “mJ 2 2
JsE-da (Qotd )50 xgt oA TEY| (Xo—X)"  (X—Xs— 1)
:i (XO_Xs) Iim[@_ I'sdo - —lim X0~ Xs _ rs(XO_Xs)
4 qO(XO_Xs_rs)aﬂo 0 (Xg=Xg)(Xg—Xs— 1) 4775H0 (Xg=Xs—Tg)d [(XO_XS)Z_rg](XO_Xs_rs) '

(D4)

where we have again used=r§/(x0—xs). The limits of integration area=Ilims_q(Xg+ ) and c=o. The integral
fsgé- da, corresponding to the subregion of the total vector field which extends to infinity, is equgj-ta()/ ey by taking
a Gaussian surface around both charges.

Next we show thaR, has resistancelike properties. If we consi@rand R, as quantifying the flux of electrostatic field

in different subspaces of the total field but between the same potential differences, we may think of these quantities as resistors
in parallel. Then the total “field resistance” of the system may be defined by
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1 01 1 _fséé-dé fsaoédé_fsmté-dé

— =y = (D5)
Riot 7?/o 7?/o ng~dI’ ng-dl’ ng~dI’
where we have used
b N b R [ N c._ R
fE~dr=—f E-dx=j E-dx=f E-dr (D6)
a a a a
and
N TN ! +q’ N
JE~da+f E'da=—q—+M=%=J’ E-da (D7)
Sy Sy €0 €0 €0 ot

The force between the point charge and the sphere may be expressed in terms of the grédigntitsf respect to the
point charge Iocatiorio or the sphere Iocatioﬁs. The gradient ofR,,; with respect tGZO is

- IRiot IRy IRt IRg | .
Xo Vot = 7 % X (D8)
We now proceed to evaluate the partial derivatives in the above expression.
From Eq.(D5), Ry is given by
RoRo
tot™ Ré‘l‘ Rooc . (D9)

The partial derivatives o, with respect toR, and R are

(_“m (Xo—Xs) r's(Xo—Xs) Dz

IRt (Rp)? Ay o (Xo=Xs—Ts)6 [(Xo—Xs)>—TZ](Xg—Xs—T) r2 q'\?

IRy (Ro+R)? [ L [ (X=X’ (Xo—%s)? ZZ(XO—XS)ZZ(%) (010
(EM Fs(Xo—Xs—r9)d [(x0—xs>2—r§]<x0—xs—rs>})

and

ilim (XO_XS)_ (XO_XS) 2
aRtot_ (R(,))z _ 4775—*0 I’35 [(XO_XS)z_rg] _ (XO_Xs_rs)z_ q’+q0 2
JROOC (R6+R(O)c)2 i”m (XO_XS)2 _ (XO_XS)2 2 (XO_XS)2 Jo
47T,$H() rs(Xo—=Xs—rs)d [(XO_XS)Z_ré](XO_Xs_rs)
(D11
The partial derivatives oR; and Ry with respect tax, are
IRy 1 1 (Xo—Xg) 2412
—=—lim|—t ————>> D12
Xo 47T(slino rsd  [(Xo—xXg)?—rg]? (b12)
and
IRy 1 r 2r(Xo—Xe) 3 —r2(Xg—xg)2—r2
—2 = jim| - S A N H S ) (D13)
X 4775_>o 5(X0_Xs_rs) {[(XO_XS) —rs](XQ—XS—I’S)}
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We now consider the product of E¢P8) with the square of the magnitude of the point charge:

1 (XO_Xs)2+r§

N (' +00)* 1
rsd  [(Xo—xg)?—r5]?

2 _I|m
o AT o

z(aRtotaR(,) IRot aROoO)A_ 2((‘1’)2 1

2w H
Vi Rioi= - —Iim
G0V o= Ao\ G axg T IRE %o | ¢ O\ TqZ amsy

«| = Is 2rs(X0_Xs)3_rg(xo_xs)z_rg "—i 2rs(X0_Xs)QC2) % (D14)
5(X0_Xs_rs)2 {[(XO_XS)Z_rg](xo_xs_rs)}z A [(XO_XS)Z_r§]2 .
T
Comparing the above equation b@ﬁxontot with Eq. (D1), The actual re_sistance between the conducting sphere and
we find that the force on the point charge may be written point electrode is
2 ADy, [JSE-dr  [SE.dr
> Jdo - _ ot Jp _Jp
—_ Riot= == — D1
Fq, ZEOVXORM. (D15 O T [d.da of £ da (D17)

We now consider the case where the point chajgand  and is related to the field resistan®g,; by
grounded conducting sphere exist in a linear, isotropic, ho-
mogeneous medium of permittivity and conductivityo. Riot
The poi . ; Rigi=—, (D18

point chargey, is now considered as a current source, o

e.g., a point electrode in the experimental system. If the time
scale of the motion of the sphere or electrode is large comwhere Ad,, is the total potential difference between the
pared to the time scale of the relaxation of the charge distripoint electrode and the spherg, is the total current be-
bution /o, we may neglect the time dependence of thetween themp is the location of the point electrode, SS is a
charge densityp(x,y) in the medium. The steady current point on the surface of the sphere, @& the entire surface
condition, Eq. (1), along with Ohm's law, of the sphere. In terms of the physical resistaRgg, the

Ji(x,y)=0cEi(x,y), implies the surface charge density- force between a conducting sphere and a point electrode is

current relation, Eq(B10), estimated as
€ q2 €
2 totz >
QSpher(a;; I sphere (D16) qut: - ZtvxoRtot: - % I tzothORtot- (D19)
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