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We present an extensive experimental study of the very-low-frequency~VLF! mode, a very slow time-
periodic oscillation with azimuthal wave numberm50 in axisymmetric Taylor-Couette flow. The VLF mode
appears as a secondary or higher time-dependent instability in the entire wavelength range for flow systems
with radius ratio 0.5. We focus on measurements which cover a parameter range that reaches from the onset of
time dependence to the transition to chaos in the wavelength rangel,1.78d ~d is the gap width of the
cylinder! appearing in flow systems having 10–50 vortices. It was found that, increasing the Reynolds number,
one observes—independently of the number of vortices of the flow system—always the same ‘‘sequence’’ of
states. This is, first, the transition from Taylor vortex flow to the onset of the time-periodic small-jet mode via
a Hopf bifurcation going along with a simultaneous breaking of the axial symmetry of the flow, second, the
onset of the VLF mode via a homoclinic bifurcation for smaller cylinders where the underlying wavy Taylor
vortex flow is still the small-jet mode~therefore we have aT2 torus!; and finally, the transitions to chaos, which
were found to occur as period-doubling routes onT2 tori. Additionally a quantitative description of this
transition to chaos is given, calculating the correlation dimension on the basis of a proper reconstructed phase
space. A model of interacting time-dependent Taylor vortex flow is discussed and compared to the appearance
of VLF-mode oscillations in the flow.@S1063-651X~96!08410-3#

PACS number~s!: 47.20.2k, 05.45.1b

I. INTRODUCTION

The Taylor-Couette flow reported here consists of a vis-
cous fluid between two concentric cylinders with the inner
one rotating, while the outer cylinder and end plates are held
at rest. When the Reynolds number Re is very small, the flow
appears to be a circular shear flow, thecircular Couette flow
~CCF!. The end plates cause only small perturbations on this
flow when the cylinder is long enough, but they have a cru-
cial effect on the bifurcations obtained for the infinite cylin-
der model. However, when Re is increased to a quasicritical
range near ReTVF , the flow becomes centrifugally unstable
and changes to a regular cellular vortex structure in which
ring vortices alternating in flow direction enclose the axis of
rotation. The flow remains stationary and the vortex structure
is axisymmetric and periodic in the axial direction with
wavelengthl. This flow is calledTaylor vortex flow~TVF!
after Taylor @1#, who first described it experimentally and
theoretically. In an experiment one has a system with finite
ends, following that the transition to TVF takes place as a
disconnected pitchfork bifurcation where the vortices grow
in smoothly from the ends. This boundary-induced effect
causes a disconnection by a factor of approximately 2.5, i.e.,
the ratio of the critical Reynolds numbers of the anomalous
and the normal TVF modes@2–4#, only the latter we con-
sider here.

Increasing the inner cylinder’s angular velocityV1, which
is proportional to the Reynolds number, the flow undergoes a
series of transitions~the ‘‘main sequence’’! which are char-
acterized by changes in the symmetry group that leaves the
flow invariant @5#. The Navier-Stokes equations linearized

around Taylor vortex flow are autonomous inQ and t, so
generically any mode which breaks these symmetries will
have the mathematical form of a rotating wave. In this time-
dependent flow regime, which is referred to aswavy Taylor
vortex flow ~WVF!, the motion becomes time independent
when observed in a corotating frame@6#. Transitions to WVF
have been observed experimentally by Coles in his seminal
paper@7#, and different aspects of WVF by King and Swin-
ney @8#, King @9#, Pfisteret al. @10,11# and Park@12#. The
sensitive dependence of the critical Reynolds number of the
first Hopf bifurcation on the number of cells in a given cyl-
inder length was investigated by Mullin and Benjamin@13#
and Mullin @14# first and later studied in detail by Gerdts
et al. @15#. Numerical studies have been performed by Davey
et al. @16#, Jones@17#, Marcus@18#, Edwardset al. @19# and
DiPrima et al. @20#, for example. Depending on the geo-
metrical boundary conditions there can exist different wavy
Taylor vortex flows, amongst them the ‘‘classical’’ Wavy
mode@15,17#. To exclude misunderstandings concerning the
labeling of the ‘‘Wavy mode’’ and the ‘‘wavy Taylor vortex
flow’’ we often refer to the latter as ‘‘time-periodic~Taylor
vortex! flow.’’

At larger Reynolds numbers the azimuthally traveling
wave can bifurcate to a doubly periodic flow regime, which
is temporally periodic when viewed from the frame rotating
at the wave speed of the underlying time-periodic flow
mode. This transition may again be accompanied by a
change in the azimuthal symmetry@21# and the appearing
doubly periodic flow is calledmodulated wavy vortex flow
~MWVF!. Such flows have been investigated experimentally
by Gorman and Swinney~GS mode! @22# and Zhang and
Swinney~ZS mode! @23#, occurring as preturbulent flow re-
gimes@24,25#, by King and Swinney~KS mode! @8# occur-
ring as a result of the competition of at least two WVF*Electronic address: pfister@ang-physik.uni-kiel.de

PHYSICAL REVIEW E NOVEMBER 1996VOLUME 54, NUMBER 5

541063-651X/96/54~5!/4938~20!/$10.00 4938 © 1996 The American Physical Society



modes for dominance. Mullinet al. @26# found that, decreas-
ing the Reynolds number, the interaction between a
symmetry-breaking bifurcation and a fold point gives rise to
subcritical Hopf bifurcation points to a tilt wave~an axially
localized azimuthally traveling wave with azimuthal wave
numberm51! and the onset of a modulation of this tilt
wave. Additionally they experimentally and numerically dis-
covered anm50 mode which is then modulated at a second-
ary Hopf bifurcation by anm51 mode.

In an extensive numerical study of MWVF, Coughlin and
Marcus have performed numerical simulations of the stabil-
ity of GS and ZS modes, showing that several branches of
quasiperiodic solutions exist, and not all of them occur as
direct bifurcations from rotating waves as the main sequence
suggests@21#. Furthermore the modulated flows studied in
@8# and @26# and the appearance of the axisymmetric VLF
mode as a secondary time-dependent flow@15# show that the
main sequence does not seem to display a universal behavior
in Taylor-Couette flow where the outer cylinder is held at
rest. In fact, it is doubtful that the work of Golubitzky and
Stewart@5# is directly relevant to flows where the outer cyl-
inder is at rest, because, first, in this case modulation occurs
at a value of Re several times larger than the critical value
for the time-periodic flow; second, Golubitzky and Stewart
looked at transitions in counterrotating cylinders~just! near a
fixed ratio of the outer to inner cylinder rotation frequency
for which six eigenmodes of CCF become unstable at the
same inner cylinder rotation frequency@27#; and, third, the
flows with radius ratioh,0.77 show qualitatively different
behavior compared to the flows with radius ratioh.0.79, i.e,
for narrow gaps, the transition to WVF takes place at a low
value of Re near 1.2 ReTVF , for wide gaps the onset of the
waves is delayed to much higher Reynolds numbers
@12,17,28,29#. Considering these facts we conclude that the
main sequence, which is defined as the sequence of states

CCF→TVF→WVF→MWVF→chaos,

is just useful as a schematic guide to the transitions in the
system.

Here we are going to display an experimental study of a
different main sequence to chaos in Taylor-Couette flow,
which is valid for wide parameter ranges and thus may dis-
play a ‘‘general’’ behavior in this flow, at least for flow
systems with radius ratioh50.5. This is the sequence

CCF→TVF→WVF→VLF→chaos.

In the concluding section we also discuss this sequence of
states in the context of a model of interacting time-dependent
Taylor vortex flow developed by L’vov and Predtechensky
@30–32#. In Sec. II we present the experimental setup of our
flow system; in Sec. III, the measurement technique is dis-
cussed, which is necessary due to the different notations we
use as a measure when the VLF mode appears. In the fourth
section previous results on the VLF mode are presented to
set our current results in context. In the next section a com-
plete scenario in the 10-vortex flow forG58 is presented to
reveal the complexity of VLF mode. After that the symmetry
breaking in large aspect ratio systems is investigated from
G58 up to G542 ~i.e., 10–50 vortices!. This leads to the
characterization of the bifurcation towards the VLF mode.

The VLF mode, together with the small-jet mode, exhibits
period-doubling routes on tori to chaos which are investi-
gated in the sixth section. Before the results are discussed in
the final section, a quantitative characterization of this tran-
sition to chaos is presented in Sec. VII.

II. EXPERIMENTAL SETUP

The flow of interest is bounded by two high-precision
coaxial cylinders. The rotating inner cylinder of the Taylor-
Couette experiment is machined from stainless steel having a
radius ofr i512.5 mm. The stationary outer cylinder is made
of optical polished glass with a radius ofr 0525.0 mm, giv-
ing a radius ratio ofh50.5. The accuracy of the radii is
better than 0.01 mm over the entire length of 640 mm. We
measured an eccentricity of the cylinders of«<0.005 mm
and the power spectrum of the local velocity distribution is
noticeable by the absence ofVi at any location in the fluid.

The top and bottom plates are at rest. The length of the
gap can be varied continuously by moving the metal collar
which provides the top surface of the flow domain. The as-
pect ratioG5L/d used as a geometric control parameter is
defined as the ratio of gap lengthL to gap widthd5r 02r i .
As a working fluid we use silicon oil with different viscosi-
tiesn depending on the flow situation. The Reynolds number
is then defined as Re5(V i r id)/n. The temperature of the
fluid is held constant to within 0.01 K by circulating thermo-
statically controlled oil through a surrounding square box. A
phase locked loop~PLL! circuit controls the speed of the
inner cylinder with an accuracy of better than one part in
1024 in the short term and better than one part in 1027 in the
long-term average. The uncertainty of the absolute value of
the Reynolds number is smaller than 1%.

The local velocity is measured by a real-fringe laser-
Doppler velocimeter~LDV ! and recorded by a PLL-analogue
tracker. After filtering by an analog Bessel filter of fourth
order, the velocity signal is fed into an analog-to-digital con-
verter ~ADC! with a 14-bit resolution and then into a com-
puter where the data processing is performed. For more de-
tails of the experimental setup see@33#.

III. MEASUREMENT TECHNIQUE

Presenting our experimental results we use different nota-
tions for the plots of the VLF-mode oscillations. The VLF
mode has an azimuthal wave numberm50. This was con-
firmed by simultaneous measurements of the velocity in the
time-dependent regime at different azimuthal angles having
the same axial position. Therefore it can be understood as a
very slow time-dependent shift of the whole bulk of time-
periodic Taylor vortices with decaying shift amplitudes to-
wards the ends. To make this clear and to represent the sym-
metry properties of the flow~in Sec. V! we used thelocal
axial displacementDz of the Taylor vortices instead of the
axial velocity componentvz(t) as a measure in the corre-
sponding figures.

Indeed these two measures can be used identically and
can be derived experimentally from each other by recording
the axial velocity profile and determining the local gradient
Dz/Dvz from this measurement. To detect the axial displace-
ment of the vortices in most cases the best location for the
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LDV measurement volume is the middle of the cylinder (z
5L/2) in axial direction and a distance ofr52 mm to r53
mm from the inner cylinder in radial direction. We demon-
strate this in Figs. 1~a!–1~d!. In Fig. 1~a! a Taylor cylinder
with a schematically drawn 12-vortex flow and in Fig. 1~b! a
blowup of the flow field of the two vortices in the middle is
depicted. Figure 1~c! shows the corresponding velocity pro-
file of the stationary flow field close to the onset of time
dependence. It was recorded by moving the measurement
volume continuously in axial direction with a distance of
r53 mm from the inner cylinder. The axial trail of the LDV-
measurement volume in the flow is marked with the broken
vertical line in Fig. 1~b!. Because the velocity profile is lin-
ear in this position (z5L/2) the changes in the axial velocity
Dvz are directly proportional to the axial displacementDz of
the vortex system@Fig. 1~d!#. Additionally to the oscillatory
displacement caused by the VLF mode, the underlying vor-
tex system can show an axial symmetry breaking. Therefore,
when considering the symmetry properties of the flow sys-
tem one has to determine the mean value ofDz. This yields
the averaged axial displacementDz as a measure for the
axial symmetry of the flow.

IV. VLF MODE

In previous papers@15,34# we presented first results of the
interaction of VLF-mode oscillations with different underly-
ing WVF modes. To set our work in context, we present a
brief review of these experimental findings.

The previous experimental investigations concentrated on
smaller cylinders—especially the 10-vortex flow—covering
the entire wavelength range of the underlying Taylor vortex
flow. The VLF mode qualitatively and quantitatively differs
from all other known time-periodic flows in the Taylor cyl-
inder. In our experiments it always occurs as a secondary or
higher time-dependent instability, whereby, it was shown
that its occurrence depends on the strength of the spatial
coupling of the oscillations of the underlying WVF modes.
The fact, that the VLF mode appears in the entire wavelength

range as a secondary or higher time-dependent instability
and that for increasing Reynolds numbers the flow in the
VLF regime shows transitions to chaotic behavior, could be
a hint to a universal significance of it.

The VLF mode appears in the entire range where the un-
derlying Taylor vortices are stable, as shown in Fig. 2 for the
10-vortex flow. The onset of the VLF mode is marked with
the thick lines including the triangles whereas all other mea-
sured stability lines in this diagram are marked with circles.
Starting with stationary Taylor vortices~dotted section in
Fig. 2!, the lines denote the transitions to the time-periodic
Taylor vortex regime when the Reynolds number is in-
creased. In the experiments one observes physically different
time-periodic Taylor vortex flows~WVF!. The special physi-
cal type of these rotating waves depends on geometrical
boundary conditions~compare to Fig. 1 and Table I in@15#!.
On the left-hand side the stability line for the onset of the
small-jet mode is located, an oscillation of the outward flow
while the inward flow remains stationary. Adjacent outward
flows oscillate in antiphase. On the right-hand side the sta-
bility lines for the wavy mode, an axial oscillation of the
entire vortex, and in midrange for the antijet mode, an oscil-
lation having its main amplitude in the inward flow@15#.

All experimental observations support the conjecture that
there is a causal connection between the appearance of the
VLF mode and the presence of the underlying time-periodic
flow modes. The shift of the phases of oscillations in neigh-
boring vortices causes the occurrence of the VLF mode
which appears in the entire measuredG range. The interac-
tion of the VLF mode with the underlying time-periodic flow
modes reveals that the VLF mode is caused by the strength
of coupling of the phases of the underlying time-periodic
flow modes. These modes cause a variation of the wave-
length of the vortices in the flow. So there is a coupling
between these modes and an axial phase diffusion. Further-
more the wave speeds of the time-periodic flow modes de-
pend on the wavelength of the vortices. Due to this a local
disturbance of the wavelength leads to a change in the wave

FIG. 1. ~a! Taylor cylinder with schematically plotted flow field
of a 12-vortex flow,~b! blowup of the flow field of two vortices in
the middle of the cylinder,~c! the corresponding axial velocity
component, recorded 3 mm from the inner cylinder@broken line in
~b!#, and~d! blowup of the local axial velocity component.

FIG. 2. Stability diagram for the onset of primary and higher
time-dependent modes in the 10-vortex flow in a Taylor-Couette
system withh50.5. The dotted section marks the stationary 10-
vortex flow.
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speed. A shift of the phases between the oscillations of
neighboring vortices occurs. These phase differences are
most likely the driving forces for the VLF mode.

The VLF mode shows various features and different de-
pendence of amplitudeA and frequencyvVLF on Reynolds
number Re, depending on the underlying time-dependent
flows. In one example it occurs with an frequency starting
from vVLF50 and a finite amplitudeAÞ0 when the under-
lying flow is a WVF, and on the other hand with an fre-
quency having a finite valuevVLFÞ0 and an amplitude in-
creasing with a square-root law from the valueA50
corresponding to a Hopf bifurcation which was observed
only when the underlying flow is a MWVF@15,35#.

V. SYMMETRY BREAKING

To demonstrate, first, the large variety of VLF-mode os-
cillations, and second, the fact that the VLF mode not only
appears in the entire wave-number range~as shown for the
10-vortex flow in Fig. 2! but also in wide Reynolds-number
ranges, and thus influences the dynamics of the flow system
in wide parameter ranges, we first of all give a view to a
complete scenario for increasing Reynolds number, whereas,
in the second part of this section, we focus on the symmetry
breaking which appears simultaneously with the onset of the
first time-dependent flow, the small-jet mode. This symmetry
breaking leads to the onset of the VLF mode via a ho-
moclinic bifurcation for smaller aspect ratios, which is
shown in the last part of this section.

A. Complete scenario in the 10-vortex flow forG58

Figures 3~a!–3~f!, showing six different VLF oscillations
for G58 which are all recorded atz5L/2 in axial direction,
reveals that some of the appearing VLF-mode oscillations

are asymmetric in axial direction~breaking theZ2 symme-
try!. For all time-series depicted in the figure the local axial
displacementDz of the vortex pattern was recorded versus
time t. Note the different, extremely long time scales. Due to
symmetry arguments—neglecting imperfections due to the
experimental setup—there always have to be VLF oscilla-
tions opposite in sign ofDz. This is shown in the bifurcation
diagram in Fig. 4 for the 10-vortex flow forG58, where the
axial displacementDz is recorded versus the Reynolds num-
ber which is scanned quasistatically from Re5300 to Re
5500 with D Re/Dt50.025 s21. The location of the LDV
measurement was again placed in the midplane of the appa-
ratus near the inner cylinder (z5L/2). Thus it is suitable to
characterize deviations from the symmetric state whereDz
50. The vertical line in Fig. 2 marks the measurement route
of the bifurcation diagram shown in Fig. 4. The plots of the
bifurcation diagram in Fig. 4 and the time series in Fig. 3 are
filtered with a low-pass Bessel filter of fourth order having a
cutoff frequency at 0.1 Hz to make the structure of the VLF
oscillation visible.

Considering the 10-vortex flow atG58 one observes the
onset of the small-jet mode at ReSJ5296.3 and the onset of
the VLF mode at ReVLF5356.4. A delay of the critical Rey-
nolds numbers in Fig. 4 is due to the quasistatic recording.
As depicted in Fig. 5, where the frequency of the VLF mode
is plotted versus Reynolds number, the frequency of the VLF
oscillation goes to zero at onset~marked with trianglesD in
this figure!. Figure 3~a! shows this oscillation slightly above
its onset with an frequency of approximatelyvVLF50.1 mHz
corresponding to a period of about 2.5 h. The vortex system
needs almost the whole period to elongate into one end po-
sition while the elongation back to the opposite end position
needs only about 15 sec.

Whereas the frequency goes to zero at onset of the VLF
mode at ReVLF , the amplitudeA and axial asymmetryDz
exhibit finite values as apparent from Figs. 5~b! and 5~c!. If
the Reynolds number is changed to values slightly below or

FIG. 3. Six different VLF oscillations recorded in the 10-vortex
flow at G58 ~G/N50.80!. ~a! for Re5356.4,~b! for Re5365.4,~c!
for Re5405.0, ~d! for Re5454.3, ~e! for Re5479.0 and~f! for
Re5612.4. Note the different time scales.

FIG. 4. Bifurcation diagram for the 10-vortex flow atG58 ~G/
N50.80!. The axial displacementDz is recorded versus the Rey-
nolds number which is scanned from Re5300 to Re5500 with
D Re/Dt50.025 s21. The small-jet oscillations are averaged out to
make the VLF-mode oscillations visible. The amplitude of the VLF
mode can be depicted from the scan, while the oscillation gives
only a qualitative impression of the frequency due to the measure-
ment procedure.
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above the onset of the VLF mode, no buildup or dying of the
oscillation is observable. The oscillation appears with con-
stant frequencyvVLF and amplitudeA and disappears imme-
diately for Reynolds numbers Re,ReVLF showing an expo-

nential decay of the temporary shift towards zero in opposite
to the observations in WVF@11#.

Increasing the Reynolds number the frequencyvVLF
grows rapidly@Fig. 5~a!# whereas amplitudeAVLF @Fig. 5~b!#

and asymmetryDz @Fig. 5~c!# show a slight fall off. A time
series is shown in Fig. 3~b!. Comparing Figs. 3~a! and 3~b!
one realizes that the steep slope of the oscillation is nearly
unaffected by a change in Reynolds number whereas, in-
creasing the Reynolds number, the flat slope of the oscilla-
tion curve becomes more and more steep. In Fig. 3~a! the
system needs about 9200 sec to reach the maximum shift
whereas in Fig. 3~b! the periodonly lasts about 120 sec.

The VLF oscillations exhibiting values ofDz which are
opposite in sign are marked with the symbols¹ in the Fig.
5~a!–5~c!. For G58 this branch can be reached by a sudden
jump in Reynolds number only. This is also apparent from
Fig. 4 where the branch with positiveDz is disconnected.
The frequencies of this state are approximately by a factor of
2 smaller whereas amplitudeAVLF @Fig. 5~b!# and axial
asymmetryD̄z @Fig. 5~c!# exhibit only little deviations from
the values of the VLF flow appearing on the other branch. At
Re5395 the flow state with positiveDz ends and the system
jumps into the state with negativeDz @Fig. 4#. This reveals
that the experimental apparatus has a small asymmetry
which causes that one of the asymmetric branches is pre-
ferred. This has often been observed near bifurcation points
~where the coercion forces are very small! and thus one
branch is decoupled@36#. This apparative asymmetry can
assume only very small extension, otherwise only one branch
or even no VLF mode would be observable.

After the frequencyvVLF of the VLF mode passes a maxi-
mum at Re'390 it shows a strong decay for higher Reynolds
numbers. At Re5404 a minimum is reached and one ob-
serves a sudden change in the structure of the VLF oscilla-
tion. A comparison of Figs. 3~b! with 3~c! reveals that the
size of the amplitude becomes approximately twice as large
as before@see Fig. 5~b!, marked with circless# and the
asymmetry goes to zero, i.e., the flow becomes symmetric
again@Fig. 5~c!#. This is also illustrated by the development
of the VLF oscillation in the bifurcation diagram in Fig. 4.
The transition between the symmetric and the asymmetric
state exhibits a small hysteresis in Reynolds number. The
branches are disconnected by an imperfection in the appara-
tus. But even assuming a perfect symmetry the VLF mode
would not remain symmetric for decreasing Reynolds num-
bers and the symmetric branch does not coexist with both
axially asymmetric branches, because it has to be an unstable
solution of saddle-node type between ReVLF5356.4 and Re
5404. This is discussed in Sec. V C.

A further increase in the Reynolds number leads to a
growth of the value of the frequencyvVLF of the VLF mode,
whereas its amplitude shows a slight decay@Figs. 5~a! and
5~b!, symbolss#, the flow remains symmetric in axial direc-
tion @Fig. 5~c!#. At Re'430 the VLF oscillation becomes
irregular in time and amplitude@marked with the hatched
sections in Figs. 5~a! and~b!#, i.e. the flow becomes weakly
turbulent. Furthermore this chaotic flow is characterized by
sudden jumps in phase of the VLF oscillation@Fig. 3~b!#; the
flow still remains symmetric in axial direction@Fig. 5~c!#.
Before the VLF mode disappears at Re5482 caused by the
onset of the large-jet mode which shows a strong coupling of

FIG. 5. ~a! FrequencyvVLF and~b! amplitudeAVLF of the VLF-
mode oscillations plotted versus Reynolds number recorded in the
10-vortex flow forG58 ~G/N50.80!, ~c! axial asymmetryDz of the
10-vortex flow forG58 ~G/N50.80! plotted versus Reynolds num-
ber.
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the phases of neighbouring outward flows@15,37#, the ir-
regularities in frequency and amplitude pass a maximum.
Fig. 3~e! reveals that after exceeding this maximum the cha-
otic flow shows a qualitative change. The irregularities in
frequency and amplitude in the VLF oscillations have be-
come small. When the system exceeds the critical value a
Re5482 the amplitude of the VLF mode shows the form of
a damped oscillation going towards zero. The Reynolds-
number range between Re5482 and R5568.9 is dominated
by the appearance of the large-jet mode which, together with
the small-jet mode, exhibits frequency locking which is in
contradiction to previous theoretical considerations@37#.

As apparent from Figs. 5~a!–5~c! the VLF mode shows a
second onset at Re5568.9 exhibiting a quite different depen-
dence of amplitudeA and frequencyvVLF on Reynolds num-
ber Re in this case. Other than at its first onset at Re5356.4
where it occurs with an frequency starting fromvVLF50 and
a finite amplitudeAÞ0, it here appears with an frequency
having a finite valuevVLFÞ0 and an amplitude increasing
with a square-root law from the valueA50 corresponding to
a Hopf bifurcation at second onset. The underlying flow
modes are a time-periodic Taylor vortex flow in the first and
a modulated wavy vortex flow in the second case@15#, where
the frequency of the VLF oscillation is approximately by a
factor 10 larger than in the first case Fig. 5~a!. The flow still
remains axially symmetric@Dz50, Fig. 5~c!#.

A further smooth increase of the Reynolds number leads
to a transition to 8-vortex flow at Re5588.7. Increasing the
Reynolds number by a sudden change to Re>600 the flow
assumes two axially asymmetric states@marked with crosses
~1! in Figs. 5~a!–5~c!#. As in the lower Reynolds-number
range there are two corresponding asymmetric VLF-flow
modes having opposite sign inDz. The branch exhibiting
positiveDz is preferred. This is again caused by the imper-
fection of the apparatus, but due to the coercion forces which
are much larger compared to those in the lower Reynolds-
number range, this asymmetry hardly influences the frequen-
cies and amplitudes of both asymmetric branches.

Figure 3~f! reveals that the axially asymmetric VLF
modes exhibits two superimposing oscillations. One ob-
serves a ‘‘high frequency’’~vVLF1

>120 mHz! and a ‘‘slow

frequency’’ component~vVLF2
>10 mHz!. Both components

of the VLF oscillation show an onset with amplitudeA50
and a finite value of frequencyvVLF1

, vVLF2
Þ0 at Re

5580.8@Figs. 5~a! and 5~b! marked with crosses~1!#.
For Reynolds numbers Re.580.8 the symmetric VLF

mode also exhibits the slow frequency component (vVLF2
>10 mHz!, but due to the fact that this branch becomes
unstable against a transition to 8-vortex flow for lower Rey-
nolds numbers, the amplitude of this oscillation remains
small.

The axially asymmetric VLF modes remain stable to-
wards larger Reynolds numbers than the symmetric flow
state, exhibiting a transition to 8-vortex flow at Re5615.3.
Towards smaller Reynolds numbers the asymmetric
branches show a transition to the symmetric flow at Re
5532.4@Fig. 5~c!#. Due to the fact that the VLF oscillations
disappear at Re5580.8, there exists a Reynolds-number
range from Re5532.4 to Re5580.8 where both asymmetric

branches and the symmetric one coexist showing no VLF
oscillation.

Comparing the bifurcation diagrams of the scenarios in
Fig. 4, whereG/N50.80, and in Fig. 6 in@15#, where the
bifurcation diagram in 10-vortex flow forG/N50.84 is
shown, it is noticed that the flow in the smaller cylinder—
slightly above the onset of the VLF mode—becomes sym-
metric again, whereas it remains axially asymmetric as long
as the VLF mode is apparent, in larger aspect ratios. One
observes that in smaller cylinders—up to the 8-vortex
flow—the system exhibits no axial symmetry breaking si-
multaneously with the onset of the small-jet mode or prior to
the onset of the VLF mode oscillation. In flow systems hav-
ing more than 10 vortices there is always found an axial
symmetry breaking going along with the onset of the small-
jet mode~compare to the next section! and the flow always
remains axially asymmetric as long as the VLF mode is ap-
parent. The dynamical behavior in 10-vortex flow is differ-
ent. Here both, the axially symmetric as well as the axially
asymmetric states, depending on the wavelength of the Tay-
lor vortices, occur in the limit of accuracy of the experiment.

B. Symmetry breaking in large aspect ratios

To study the axial symmetry breaking we concentrate on
the analysis of the flow states in larger cylinders~N>10! in
the wavelength range 2G/N5l,1.78d where one
observes—independently of the numberN of the vortices of
the flow system—always the samesequence of statesappear-
ing with increasing Reynolds number. This is, first, the tran-
sition from stationary TVF to the time-dependent small-jet
mode via a Hopf bifurcation going along with a simultaneous
breaking of the axial symmetry of the flow; second, the onset
of the VLF mode via a homoclinic bifurcation for smaller
cylinders where the underlying WVF is still the small-jet
mode~therefore we have aT2 torus! and finally, the transi-
tion to chaos~compare to Fig. 6 in@15# and to Fig. 4!.

Due to the fact that the underlying WVF of the VLF mode
is always the small-jet mode the VLF-flow states appearing
in different aspect-ratio systems can be compared to each
other and so this fact makes it possible to discover the de-
pendence of this scenario on the geometrical boundary con-
ditions, i.e., for increasing cylinder length. Such a compari-
son of flow states is not possible forl.1.78d, because in
this wavelength range different WVF modes appear as first
time-dependent instabilities showing different interactions
with the underlying Taylor-vortex structure and the appear-
ing VLF mode~compare to Fig. 1 in@15#, examples for such
different VLF modes are given in Fig. 3 in@15#!.

It is remarkable that, simultaneously with the onset of the
small-jet mode at the critical Reynolds number ReSJ, the
flow undergoes an axial symmetry breaking, i.e., theZ2
symmetry of the system is broken. This was measured for the
10-, 12-, 14-, 16-, 20-, 24-, 30-, 36-, 40-, 42-, 46-, and 50-
vortex flow, and within an accuracy of60.2 Reynolds num-
bers the symmetry breaking was observed to appear simulta-
neously with the onset of the time-dependent small-jet mode.
Thus the flow bifurcates at Resj towards two branches which
are symmetric to each other relative to the midplane of the
cylinder. Figure 6 shows the profiles of the small-jet ampli-
tude of both branches for the 30-vortex flow for different
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Reynolds numbers, reflecting this symmetry breaking. The
profiles for Re5361.7 @marked with filled~d! circles#, Re
5370.3@marked with open~s! circles#, Re5377.2@marked
with squares~h!# and Re5383.2@marked with crosses~1!#
are plotted versus axial position, respectively. The axial po-
sition is given as the distance from the bottom plate in mm.
Dimensionless units of the axial position can be obtained by
dividing it by the gap width, which is with 12.5 mm the same
for all experiments. The broken lines—giving the
envelope—are just to guide the eyes. The figure reveals that
for increasing Reynolds number the asymmetry of the flow
system grows, i.e., the initially bell-shaped amplitude profile
@filled ~d! circles# of the small-jet mode becomes more and
more asymmetric and the amplitude is growing towards the
cylinder ends for both branches, respectively. Increasing the
Reynolds number further, the VLF mode appears on both
branches at a critical Reynolds number ReVLF ~compare also
to Fig. 6 in @15#!.

Figures 7 and 8 show the amplitudeA of the VLF oscil-
lation appearing in the 10-, 12-, 14-, 16-, 18-, 20-, and 30-
vortex flow, plotted versus the axial position. In each case
the amplitude profile for only one branch is depicted. The
measurements have been performed for Reynolds numbers
slightly above the critical Reynolds numbers for the onset of
the VLF oscillation. To ensure a comparison of the different
flow states, all VLF amplitudes were measured in cylinders
having the same aspect ratioG to vortex numberN ratio, i.e.,
G/N was adjusted to 0.84. Thus the average wavelength of
the flow is the same for all cylinders. The abscissa and ordi-

nate axis of each of the seven diagrams are plotted in the
same scale, respectively.

Due to the axial symmetry breaking at ReSJ one expects
that this symmetry breaking also appears in the symmetry of

FIG. 6. Axial profiles of the small-jet amplitude of both
branches recorded in 30-vortex flow for different Reynolds numbers
at G/N50.84, plotted versus axial position. The profile for Re
5361.7 is marked with filled~d! circles, for Re5370.3 is marked
with open~s! circles, for Re5377.2 is marked with squares~h!,
and for Re5383.2 is marked with crosses~1!.

FIG. 7. AmplitudeA of the VLF oscillation appearing in the
10-, 12-, 14-, and 16-vortex flow atG/N50.84 plotted versus the
axial position recorded just above the threshold.

FIG. 8. The same as Fig. 7 for the 18-, 20-, and 30-vortex.
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the VLF oscillations. This is in fact the case. While the VLF-
amplitude profile in the 10-vortex flow breaks theZ2 sym-
metry only very weakly, the amplitude profiles depicted in
Figs. 7 and 8 reveal a much stronger symmetry breaking for
longer cylinders beginning with the 12-vortex flow. All VLF
oscillations ~including the 10-vortex flow! exhibit a maxi-
mum in amplitude at a cylinder length of approximately
L'50 mm. Furthermore, in the VLF-amplitude profile for
the 12- to the 20-vortex flow one observes a strong decay of
the amplitude at a length of approximatelyL'80 mm. This
decay separates the VLF-amplitude profile for the 12- to the
20-vortex flow into a part with larger amplitude which, apart
from the height of the amplitude, shows always the same
structure, and a ‘‘tail’’ towards larger cylinder lengths. For
larger aspect ratios this separated structure passes into a
smooth amplitude profile as shown in Fig. 8 for the 30-
vortex flow. One result is very significant: The longer the
cylinder, the more the VLF oscillations are localized towards

the cylinder ends. The reason for this behavior becomes un-
derstandable by analyzing the next figures comparing the
amplitude profiles of the VLF mode, the underlying small-jet
mode and the corresponding distribution of axial wave-
lengths of the Taylor vortex structure.

In the top of Figs. 9, 10, and 11 the profiles of the VLF
amplitudeAVLF of both branches@one is marked with open
~s!, the other with filled~d! circles# for the 20-, 30-, and
40-vortex flow at Reynolds number Re5383.2 are plotted
versus axial position, respectively. In the middle, the corre-
sponding distribution of the wavelengthsl/d ~neglecting the
end-vortex pairs and recorded slightly below the onset of the
VLF modes!, and in the bottom of Figs. 9, 10, and 11, the
corresponding profiles of the amplitude of the underlying
small-jet modes, which are also plotted versus axial position,
are depicted. The plots of the amplitude of the VLF, the
small-jet mode and the underlying wavelengths, which be-
long to the same branch are marked with open~s! and filled
~d! circles, respectively. The broken lines are again plotted
to guide the eyes. In each of Figs. 9–11 in the middle and in
the bottom one error bar is depicted which indicates the
maximum error of the single measurement.

These figures reveal that the VLF mode appears in those
regions of the cylinder, where the amplitude of the small-jet
mode is small, which is due to the shift of the wavelengths of

FIG. 9. Top: Profile of the VLF amplitude of both branches@one
is marked with open~s!, the other with filled~d! circles# for the
20-vortex flow at Reynolds number Re5383.2 and atG/N50.84,
plotted versus axial position. Middle: Corresponding distribution of
the wavelengthsl/d ~neglecting the wavelengths of the end-vortex
pairs and recorded slightly below the onset of the VLF modes!.
Bottom: Corresponding profiles of the amplitude of the underlying
small-jet modes~also recorded slightly below the onset of the VLF
mode! plotted versus axial position.

FIG. 10. The same as Fig. 9 for the 30-vortex flow.
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the underlying Taylor vortices~caused by the axial symme-
try breaking at onset of the small-jet mode!, i.e., it appears in
regions of the cylinder; where, due to the small amplitude of
the small-jet mode, the coupling of neighboring small-jet os-
cillations is small. This is in agreement with the results we
reported in a previous paper@15# for the onset of the VLF
mode. After that, one observes the onset of the VLF mode if
the amplitudes of neighboring oscillations in the underlying
time-periodic flow modes are coupled weakly.

Figure 12 shows the evolution of the maximum height of
the amplitudeAVLF of the VLF oscillations for successively
increased cylinder lengths from the 8- to the 50-vortex flow.
Again for these measurementsG/N was adjusted to 0.84. For

the 8- to the 20-vortex flow the amplitudes were measured at
Reynolds numbers slightly above the onset of the VLF
modes, for the larger~longer! cylinders at a Reynolds num-
ber Re5380.6. The figure reveals a significant maximum at
vortex numberN512 and an apparently convergence for
longer cylinder to a value ofAVLF'0.20 mm.

Figure 13 shows the corresponding critical Reynolds
numbers for the onset of these flow modes, again for succes-
sively increased cylinders from the 10- to the 50-vortex flow.
For every flow with constant vortex numberN three critical
Reynolds numbers are depicted. The smallest, ReSJ for the
onset of the small-jet mode@marked with squares~h!#, in the
middle the critical Reynolds number for the onset of the VLF
oscillations, ReVLF @marked with crosses~1!#, and the larg-
est for the transitions to chaos@marked with filled circles
~d!#. Obviously, the Reynolds-number ranges where the dif-
ferent flow states are stable, shrink for increasing cylinder
lengths. Though the ranges become very narrow for large
aspect ratios, they do not disappear, but showing a conver-
gence to apparently constant Reynolds numbers.

Wave speeds in the small-jet and in the VLF flow regime

Additionally we have investigated the dependence of the
azimuthal and axial wave speed of the small-jet and the VLF
mode as a function of aspect ratio, respectively. Measure-
ments of the frequency of wave speeds of traveling azi-
muthal waves in WVF and in MWVF in concentric cylinder
systems with the inner cylinder rotating and the outer cylin-
der held at rest have been reported by Coles@7# and King
et al. @38#. King and co-workers have performed measure-
ments on the dependence of the azimuthal wave speedss1 of
the classical Wavy mode~which they report on as WVF! and
s2 of the second traveling wave in MWVF on aspect ratio
~we use the labeling for the wave speeds of the WVF and the

FIG. 11. The same as Fig. 9 for the 40-vortex flow.

FIG. 12. Maximum height of the amplitudeAVLF of the VLF
oscillations for successively increased cylinders from 8 to 50 vorti-
ces. For all measurementsG/N was adjusted to an amount of 0.84.

FIG. 13. Critical Reynolds numbers for the onset of the small-
jet, the VLF mode and the transition to the chaotic flow, plotted for
successively increased cylinders from 10 to 50 vortices atG/N
50.84. For every flow with constant vortex numberN three critical
Reynolds numbers are depicted: The smallest, ReSJ, for the onset of
the small-jet mode@marked with squares~h!#, in the middle for the
onset of the VLF oscillations, ReVLF @marked with crosses~1!#,
and the largest for the transitions to chaos@marked with filled
circles ~d!#.
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MWVF introduced by Coughlin and Marcus@21#!. Their
data suggested aG dependence ofs1 that can be described by
functions that depend on 1/G. Depicting the Figs. 14 and 15,
where the dependence of the azimuthal wave speedsSJof the
small-jet mode and the frequency of the VLF mode normal-
ized to the inner cylinder rotation frequencysVLF are plotted
versus aspect ratio, a 1/G dependence of these data on aspect
ratio also becomes obvious. Thus we fitted the data to the
functions

SSJ~G!5SSJ~`!1
aSJ

G
, ~1!

SVLF~G!5SVLF~`!2
aVLF

G
, ~2!

which are marked with the dashed curves in the Figs. 14 and
15. The results of the least-squares fits of the data tosSJ~G!
andsVLF~G! are given in Table I. The measurement errors are
within the circles representing the data in the Figs. 14 and
15. A comparison of the Figs. 2 and 3 in@38# with the Figs.
14 and 15 presented here, reveals that the WVF modes, that
are the Wavy mode investigated by Kinget al.and the small-
jet mode investigated by us, show the same qualitative and
quantitative behavior of azimuthal wave speed on aspect ra-
tio ~up to the values of the constants; see Table I!, whereas it
is different for the wave speeds2 of the second traveling
wave in the MWVF and the normalized frequencysVLF of
the VLF mode. Since the dependence ofs2 on G was found
to be very weak~too weak to determine any functional de-
pendence from the data! @38#, the dependence ofsVLF yields
a quite good fit to Eq.~2!. This behavior also underlines the
different properties of the doubly periodic axisymmetric
VLF flow compared to the doubly periodic azimuthally trav-
eling MWVF.

C. Characterization of the bifurcation towards the VLF mode

The local behavior of systems near homoclinic orbits to
stationary points of saddle-focus type has been investigated
numerically by Glendinning and Sparrow@39#. In their
analysis they obtained explicit results how a periodic orbit
approaches homoclinicity as the control parameter is varied
around the value at which they had homoclinicity. Summa-
rizing their results they found in one major case that, as the
parameterm decreases to zero, the period of the orbit through
the fixed point increases to infinity@39#. They moreover de-
duce the equation

~period!}2~ ln m! ~3!

for the period of the single orbit asm tends to zero. An
experimental verification was given by Mullin and Price
@40#, for example.

The bifurcation diagram in Fig. 4 suggests such a behav-
ior, since the periods of the VLF oscillations become larger
and larger, reducing the Reynolds number towards the criti-
cal value for the onset of the VLF mode. This behavior was
also reported in a previous paper~compare to Figs. 4 and 6 in

FIG. 14. Dependence of the azimuthal wave speedssSJ of the
small-jet mode on aspect ratio for an average axial wavelengthl/d
51.68 ~G/N50.84! recorded at Reynolds number Re5371 versus
aspect ratioG. The dashed curve gives the least-squares fit to Eq.
~1!.

FIG. 15. Frequencies of the VLF-mode oscillationssVLF nor-
malized to the inner cylinder rotation speed versus aspect ratio for
an average axial wavelengthl/d51.68 ~G/N50.84!, recorded at
Reynolds number Re5383 forN.28 and slightly below the tran-
sition to chaos forN,28. The dashed curve gives the least-squares
fit to Eq. ~2!.

TABLE I. Values of the fit parameter for the aspect-ratio dependence of the wave speeds of the small-jet
and the normalized frequency of the VLF mode.n is the number of data points.

Fit to ~1!

Re l/d n sSJ ~`! aSJ j2

371 1.68 22 0.486 0.143 7.31631027

Fit to ~2!

Re l/d n sVLF ~`! aVLF j2

383 1.68 15 0.011 0.064 1.08231028

aFor flow systems having more than 28 vortices.
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@15#!. Applying Glendinning’s and Sparrow’s model to the
Taylor-Couette flow the system undergoes a homoclinic bi-
furcation at onset of the VLF-mode oscillations, which are
homoclinic to the symmetric solution which becomes un-
stable at ReSJ, corresponding to a solution of saddle-focus
type.

Figure 16 shows the plot of the periodT of different VLF
modes versus the natural logarithm of the reduced Reynolds
number

«5
Re2ReVLF
ReVLF

~4!

for the 10- @Fig. 16~a!#, the 14- @Fig. 16~b!#, and the 20-
vortex flow @Fig. 16~c!# at G/N50.84. ReVLF is again the
critical Reynolds number for the onset of the VLF mode. The
figure reveals that the smaller the aspect ratio of the flow, the
better Eq.~3! is satisfied. While the linear fit in Fig. 16~a! is
quite satisfactory, the curve of the plot of the period versus
reduced Reynolds number becomes slightly nonlinear in the

logarithmic plot in Fig. 16~b! and in Fig. 16~c! a linear fit
only very close to the critical Reynolds number makes sense.
This behavior continues with increasing cylinder length until
the homoclinic behavior disappears.

From the measurements it is not possible to state whether
the homoclinic bifurcation at onset of the VLF mode disap-
pears in 20-, 22-, etc., or at 30-vortex flow, because the
change to a different behavior is not sharp. The analysis of
the experimental results only reveals that from the plots in
Fig. 16 it becomes convincing that the transition is ho-
moclinic up to 20-vortex flow.

To analyze the bifurcation to the VLF mode additionally,
we compare the buildup of this time-dependent mode after a
small sudden jump above the critical Reynolds number in
small and large aspect-ratio systems. Hence Fig. 17 shows
this buildup of the VLF oscillations in 12-@Fig. 17~a!# up to
the 42-vortex flow@Fig. 17~f!#, all recorded for a flow with
G/N50.84. The small jump in Reynolds number above the
critical value is marked with an arrow in the figures. They
reveal the quite different behavior of the small and large
aspect ratio systems.

Though we find a continuous increase in frequency with
increasing values ofG, indicating that we deal with the same
flow mode, Fig. 15, the behavior at onset changes qualita-
tively: The transition to VLF mode at smallG as a sudden
onset to full amplitude—identified as homoclinic behavior—
while for largeG the buildup of the amplitude displays a

FIG. 16. PeriodT of different VLF-mode oscillations~a! for the
10-, ~b! for the 14-, and~c! for the 20-vortex flow recorded at
G/N50.84, plotted versus the natural logarithm of the reduced Rey-
nolds number«.

FIG. 17. Buildup of the VLF-mode oscillations~a! in 12-, ~b! in
14-, ~c! in 16-, ~d! in 20-, ~e! in 24-, and~e! in 42-vortex flow after
a small jump in Reynolds number from«520.006 to«510.006
over the critical value for the onset~G/N50.84!. The scaling in the
axial velocity vz is different, thus one cannot compare the ampli-
tude heights of the different flow states due to these measurements.
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dynamic behavior one would expect for a Hopf-type bifur-
cation @11#.

Furthermore, the VLF oscillations in 12-, 14-, and 16-
vortex flow have a zigzag structure whereas it is apparently
sinusoidal in the larger flow systems. This behavior has an-
other consequence, which we focus on in Sec. VII.

VI. PERIOD DOUBLING ON A TORUS

Until now we have presented an experimental study of an
additional ‘‘main sequence’’ to chaos in Taylor-Couette
flow, which is valid for wide wave-number and aspect-ratio
ranges in Taylor-Couette flow~with radius ratioh50.5! and
we thus stated that it may display a ‘‘general’’ behavior in
this flow system. After analyzing the onset of time depen-
dence and the transition to the VLF regime in 10- to 50-
vortex flow, we now concentrate on the transition to chaos. It
is amazing that, again, the flow exhibits the same scenario as
a transition to chaos in a wide parameter range, i.e., from 10-
to 50-vortex flow ~and for l,1.78d! the flow shows a
period-doubling-on-a-Torus route to chaos. Such scenarios
have been measured in 8-, 10-, 14-, 18-, 20-, 24-, 30-, and
34-vortex flow. Detailed measurements in 40- or even in
50-vortex flow are hard to perform, because transients be-
come very long; in fact the relaxation time of the system
grows withL2 @41#, i.e., in our system for the onset of the
first period doubling up to approximately 70 h in 50-vortex
flow. In these systems~40–50 vortices! only the first period
doubling of the VLF oscillation was measured to confirm
that the transition to chaos is the same in all considered flow
systems, so we conject that the transition to chaos are also
determined by period-doubling-on-a-Torus routes as mea-
sured in the smaller aspect-ratio systems.

Experimental evidence for period-doubling-on-a-Torus
has been reported, for example, in the following systems: In
an electrochemical reaction@42#, convecting molten gallium
bounded by a rectangular box@43#, a double pendulum@44#,
and in an annular array of Raleigh-Be´nard convection pattern
@45#. Another experiment@46# was reported in@45#. The en-
tire scenario had only been observed by Skeldon and Mullin
@44# and by Flesselleset al. @45#. Theoretical investigations
have been made by Skeldon and Mullin@44#, Franceschini
@47#, Kaneko @48#, and Arnéodo et al. @49#. Skeldon and
Mullin, in addition to their experimental investigations, stud-
ied numerically the equations of motion of a parametrically
excited double pendulum which they derived from the La-
grangian, Franceschini found Torus-doubling bifurcations in
a truncated mode expansion of the Navier-Stokes equation,
Kaneko has published a numerical study of Torus-doubling
cascades in coupled maps, and Arne´odo et al. studied nu-
merically a periodically forced normal form known to ex-
hibit a period-doubling cascade.

The onset of the Torus doubling occurs with the appear-
ance of the subharmonicvVLF/2 of the lowest frequency
vVLF in the velocity power spectrum. This is shown in Figs.
18–21, where eight different axial velocity power spectra of
a period-doubling-on-a-Torus scenario in 20-vortex flow at
the transition to chaos of a doubly periodic flow consisting of
small-jet and VLF mode at aspect ratioG516.8 ~G/N50.84!
are depicted, for example. Only the doublings of the VLF
mode in the spectrum are shown, because the peak of the

much faster small-jet mode appears at approximately
vSJ'2.2 Hz in the power spectra and thus, depicting the
whole spectra, the period-doubling peaks of the VLF mode
would lie too close to be observable. The power spectra were
calculated from time series having 1 048 576 data points
~apart from the time series recorded for Fig. 19, which has
only 262 144 data points, reflected in the worse resolution of
the power-spectrum plot!. Figure 18 shows the velocity

FIG. 18. Axial velocity power spectra of a period-doubling-on-
a-Torus scenario in 20-vortex flow slightly below the transition to
chaos of a doubly periodic flow consisting of small-jet and VLF
mode at aspect ratioG516.8~G/N50.84!. Only the doublings of the
VLF mode in the spectrum are depicted;~a! The velocity power
spectrum of a period-2 torus at Reynolds number Re5389.3;~b! a
period-4 torus at Re5392.7.

FIG. 19. The same as Fig. 18 for a flow at the transition point to
chaos at Re5393.1. Here the period-4 and the period-8 peaks are
disturbed.
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power spectra of a period-2 torus at Reynolds number Re
5389.3@Fig. 18~a!# and a period-4 torus at Re5392.7~b!.

In Fig. 19 at Re5393.1 the appearance of additional
period-4 and period-8 peaks in the power spectrum can be
seen. The period-4 and period-8 peaks are split. Such split-
tings of the subharmonics has been found experimentally by
Pfister@50#, who explained this feature by a coupling of dif-
ferent time-periodic flow modes present in a very small
2-vortex Taylor-Couette system corresponding to theoretical
investigations by Horner@51# who studied the effect of a
periodic perturbation on a nonlinear dynamic system under-
going a sequence of period doublings, numerically. Horner
assumed that the degrees of freedom responsible for the pe-
riod doubling are coupled to a weak external periodic pertur-
bation of unknown origin or to other oscillating internal de-
grees of freedom which are observed otherwise in the
system. Applying this model to the doubly periodic flow
consisting of small-jet and VLF mode, the VLF mode is
responsible for the period doublings and is coupled weakly
to the underlying small-jet mode, which corresponds to the
weak external periodic perturbation. To demonstrate such a
dynamical behavior Horner has studied a one-dimensional
map exhibiting a period-doubling sequence which he
coupled to a periodic function and found splittings of the
subharmonics in the corresponding power spectra. Addition-
ally he found that the periodic perturbation destroys higher
bifurcations. This is in accordance with our experimental ob-
servations where we never found higher subharmonics than
those corresponding to a period-8 in the doubling cascade

prior to the first onset of chaos. After passing the critical
Reynolds number the flow undergoes an inverse cascade,
whereby the subharmonics disappear after splitting. This is
shown in Figs. 20~a! and 20~b! where first@Fig. 20~a!# the
period-4 and period-8 peaks disappeared and then the
period-2 peaks are split@Fig. 20~b!#. Figures 21~a!–~c!
shows three examples of periodic windows,~a! a ‘‘period-11
window’’ at Re5394.4, ~b! a ‘‘period-6 window’’ at Re
5395.0, and~c! a ‘‘period-5 window’’ at Re5395.3. Due to
the intensities of the subharmonic peaks we identify the state
in Fig. 21~b! as a period-6 window and not as a doubled
period-3 window. According to the simple model of the one-
dimensional logistic equation the period-11 window should
appear for higher Reynolds numbers than the period-6 and

FIG. 20. The same as Fig. 18 for~a! a chaotic flow at Re5394.9
where the period-4 peaks are disappeared and~b! a chaotic at Re
5395.1 where the period-2 peaks are split.

FIG. 21. The same as Fig. 18 for~a! a period-11 window at
Re5394.4,~b! a period-6 window at Re5395.0, and~c! a period-5
window at Re5395.3.

4950 54J. von STAMM, U. GERDTS, TH. BUZUG, AND G. PFISTER



period-5 windows, but one should not overestimate this
model. Further analysis of period doubling routes to chaos in
a very small annulus having two vortices have shown that
this simple model is not suitable to describe the dynamics of
the period doublings to chaos even in such a small system
where the dynamics is expected to be simpler than in larger
aspect ratios@52,53#.

Another example is given in Fig. 22 where a period-
doubling-on-a-torus scenario in 14-vortex flow at aspect ratio
G511.76 ~G/N50.84! is shown by exhibiting the two-
dimensional projections of the reconstructions of the attrac-
tors in phase space in the left column and the corresponding
Poincare´-sections of these attractors in the right column.

From the top to the bottom the torus, consisting of small-jet
and VLF mode, at Re5410, the doubled torus at Re5418, a
chaotic attractor at Re5422, and an attractor recorded from a
time series recorded in a period-3 window at Re5423.

In Fig. 23~a!–23~c! bifurcation cascades to the chaotic
regime are shown for three different flow systems. Here the
underlying small-jet mode was filtered and only the succes-
sive extrema of the axial velocity componentvz were plotted

FIG. 22. A period-doubling-on-a-torus scenario in 14-vortex
flow at aspect ratioG511.76~G/N50.84!. Left column: Projections
of three-dimensional reconstructions of the attractors in phase
space. Right column: The corresponding Poincare´ sections as indi-
cated by the line in the third quadrant in the left figures. From the
top to the bottom the simple torus, consisting of small-jet and VLF
mode, at Re5410, the doubled torus at Re5418, a chaotic attractor
at Re5422, and an attractor recorded in a period-3 window at Re
5423.

FIG. 23. Bifurcation cascades of period-doubling-on-a-torus
scenarios to the chaotic regime for three different flow systems. The
underlying small-jet mode was filtered and only the successive ex-
trema of the axial velocity componentvz are plotted while the Rey-
nolds number is ramped quasistatically~a! A bifurcation diagram of
the 14-vortex flow forG511.76 ~G/N50.84!, where the Reynolds
number was increased quasistatically withinDRe/Dt51.63
31024 s21, ~b! the bifurcation diagram of the 20-vortex flow for
G516.8 ~G/N50.84!, the Reynolds number was increased quasis-
tatically within DRe/Dt53.2631024 s21, and~c! shows a bifurca-
tion diagram of the 24-vortex flow forG520.16 ~G/N50.84!. The
Reynolds number was increased quasistatically within
DRe/Dt51.6331024 s21.
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while the Reynolds number was ramped quasistatically
within DRe/Dt'331024 s21. Figure 23~a! shows a bifurca-
tion diagram of a period-doubling-on-a-torus scenario in the
14-vortex flow forG511.76~G/N50.84!. The figure reveals
period doublings up to period-4 and a periodic period-3 win-
dow in the chaotic regime. Obviously the bifurcation from
period-1 to period-2 is chaotic, which is a characteristic for
the smaller flow systems from 10 up to 16 vortices. In Fig.
23~b! the bifurcation diagram of a period-doubling-on-a-
torus scenario in the 20-vortex flow forG516.8~G/N50.84!
is depicted. Prior to the onset of chaos at Re5396.8 the flow
exhibits a doubling cascade up to period-2. Two periodic
windows with period-2 at Re5400 and with period-3 at Re
5405 are visible. Figure 23~c! finally shows a bifurcation
diagram of a period-doubling-on-a-torus scenario in the 24-
vortex flow for G520.16 ~G/N50.84!. This flow shows a
doubling cascade up to period-4 before it becomes chaotic
and a wide period-3 window in the chaotic regime at Re
'393. The figures reveal that, first, the Reynolds-number
ranges of the doubling sequences become more and more
narrow for increasing cylinder length, which was expected
from Fig. 13 where one observes that the Reynolds-number
ranges of occurrence of the different flow states shrink for
increasing cylinder lengths, and secondly, the doublings be-
come more and more ‘‘perfect’’ though they are more and
more difficult to record, because the the length of the tran-
sients grows quadratically with cylinder length. Due to this
fact it becomes nearly impossible to record such doubling
sequences for even longer cylinders.

Figure 24~a! and 24~b! shows two bifurcation diagrams of
the period-doubling-on-a-torus scenario in a flow with the
same vortex numberN, hereN514, but for slightly different
aspect ratios to demonstrate the strong dependence of the
bifurcation sequences on the geometrical boundary condi-
tions. For these recordings the Reynolds number was in-
creased quasistatically withinDRe/Dt'331024 s21. From
Fig. 24~a! to Fig. 24~b! the cylinder length was increased
from L5146.9 mm to L5147.2 mm, respectively. This
yields aspect ratiosG511.752 ~G/N50.8394! for the flow
shown in Fig. 24~a! and G511.776 ~G/N50.8411! for the
flow shown in Fig. 24~b!. While the period-2 range is rela-
tive robust against this small changes in cylinder length, the
period-4 sequences and the periodic windows in the chaotic
regime are very sensitive to the change of the boundary con-
ditions, which is expected for chaotic flows.

To demonstrate the measured structure of the periodic
windows, in Fig. 25~a! the doubling sequence which was
formerly depicted in Fig. 23~b! is shown with extensions of
the regime around the two visible periodic windows. Figure
25~b! reveals a doubling from period 2 to period 4 and in the
second periodic window a doubling from period 3 to period
6 becomes visible. These doublings are not observable in
Fig. 25~a!, which is due to the velocityDRe/Dt with which
the time series are recorded. While the extended plots are
recorded withinDRe/Dt53.1231025 s21 the bifurcation dia-
gram in Fig. 25~a! was recorded withinDRe/Dt53.2631024

s21, i.e., approximately ten times faster than for the exten-
sions of the periodic windows. This demonstrates the sensi-
tivity of the recordings on the ramping rate and on the tran-
sients which increase strongly with increasing cylinder
length. This also explains why the period doubling in the

FIG. 24. Two bifurcation diagrams of period-doubling-on-a-
torus scenarios in the 14-vortex flow recorded for slightly different
aspect ratios. Only successive extrema of the axial velocity compo-
nent vz are plotted while the Reynolds number is ramped quasis-
tatically. For these recordings the Reynolds number was increased
quasistatically within DRe/Dt51.6331024 s21. The diagram
shown in~a! was recorded atL5146.9 mm~G/N50.8394!, in ~b! at
L5147.2 mm~G/N50.8411!.

FIG. 25. The doubling sequence which was formerly depicted in
Fig. 23~b! is shown with extensions of the regime around the
two visible periodic windows. ~b! reveals a doubling from
period-2 to period-4 and in~c! a doubling from period-3 to period-6
becomes visible. The extended plots are recorded within
DRe/Dt53.1231025 s21.
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structure of the VLF-mode oscillations cannot be observed in
the bifurcation diagram in Fig. 4.

VII. QUANTITATIVE CHARACTERIZATION
OF THE TRANSITION TO CHAOS

Many methods are available to characterize time series
measured on nonlinear dynamical systems. So one can cal-
culate power spectra using methods like fast-Fourier-
transform ~FFT! algorithms as shown in the last section
~Figs. 18–21!. But these methods based on linear system
theory are limited giving a quantitative characterization of
the transition to chaos, estimating the critical Reynolds num-
ber for such a transition or comparing different chaotic time
series.

More detailed results to characterize the transition to
chaos can be obtained with powerful methods developed
within the theory of nonlinear systems. These mathematical
methods, which are state of art, cannot be described in detail
here. So we restrict the mathematical review to a brief sum-
mary of the methods we actually applied here. To classify
the time series

$nz~ ts!%, sP$1,...,Ndat2~dE21!t/Ta%, ~5!

wheredE is the embedding dimension,Ndat the number of
sampled data points,t the delay time, andTa the sampling
time, one first reconstructs the phase space~or rather embed-
ding space! of the nonlinear dynamical system. We used
Takens’ delay time coordinates@54#, where a vector in the
embedding space is given by

xW~ ts!5~nz~ ts!,nz~ ts1t!,...,nz„ts1t~dE21!…!. ~6!

For convenience we shall writexs instead ofx(ts).
To find optimal embedding parameters, i.e., the proper

delay timet and a sufficiently large embedding dimension
dE , one has to calculate the fill factorf dE(t) ~a measure of
the utilization of the embedding space in any embedding
dimension! or the integral local deformationDdE

(t) ~a mea-
sure of the homogeneity of the local flow!.

The fill factor is defined by

f dE~t!:5 log10S 1

Nref

(k51
NrefVdEk

~t!

^VdE
& D , ~7!

whereVdEk
(t) is the volume of thekth parallelepiped de-

fined by ~dE11! corner points which are arbitrarily distrib-
uted on the attractor,̂VdE

& is a normalization by the mini-
mum enclosing box of the attractor in each embedding
dimensiondE andNref is the number of reference points. The
first maxima of the fill factor, corresponding to maximum
spanned attractors in the embedding space, provide proper
delay times. A sufficiently large embedding dimension can
be obtained by the convergency of the qualitative structure of
the fill factor for successively increasing embedding dimen-
sion. A detailed description of this method can be found in
@55–57#.

To define the integral local deformationDdE
(t) one cal-

culates the evolution of successive distances between a ref-
erence point and the center of mass of neighboring points

when time proceeds. In an optimal reconstruction, for which
we require homogeneity of the local flow, points on neigh-
boring trajectories remain neighboring for small evolution
times. The first minima ofDdE

(t), corresponding to a maxi-
mum homogeneity of the local flow, provide proper delay
times; the embedding dimension can be obtained from the
convergency at these minima. For details see@56#.

Figure 26~a! illustrates the fill factor for a state recorded
at Re5384 in 20-vortex flow forG/N50.84. The time series
is taken from the scenario shown in the bifurcation diagram
in Fig. 25~a!. f dE(t) was calculated for embedding dimen-
sionsdE52–10 and delay timest/Ta50–100~Ta is the sam-
pling rate of the digitally recorded time series!. The intervals
between the arrowsA and B indicate proper delay times.
Figure 26~b! shows the calculation of the corresponding in-
tegral local deformation~ILD !. The figure showing the ILD
is plotted in the same interval as the fill factor.DdE

(t) is
normalized byt/Ta , which is often convenient for chaotic
time series@56,58#. The result of this calculation agrees with
the result obtained from the fill factor, i.e., the local flow is
homogeneous when the attractor is maximum spanned. The
figure reveals that there is a widet range for each state
which yields sufficient delay times for the calculation of the
corresponding attractor invariants, again indicated by the in-
terval maked by the arrowsA and B. The time series is
recorded in the beginning of the scenario depicted in Fig.
25~a!. Evaluations of the fill factor and ILD for higher Rey-
nolds numbers are quite similar, so that one can choose the
same optimal embedding parameter for all data sets for the

FIG. 26. Fill factor~a! and averaged integral local deformation
~b! versus delay timet normalized to the sampling rateTa for
embedding dimensionsdE52–12 for a time series recorded at Re
5384 taken from the scenario shown in Fig. 25~a!.
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reconstructions used to characterize the scenario.
To estimate the fractal dimension of the reconstructed

strange attractors in phase space we calculate the correlation
dimensionD2 @59#

C~R!}RD2→D25 lim
R→0

log10@C~R!#

log10~R!
. ~8!

R is the scaling radius andC(R) is the correlation integral,

C~R!'
1

Nref
(
j51

Nref 1

Ndat
(
i51

Ndat

s~R2ixi2xj i !, ~9!

where s is the Heaviside function,Ndat is the number of
points in phase space, andNref53000 is a sufficiently large
number of reference points.

Even in the laminar flow regime the phase dynamics of
the VLF mode leads to a very disproportionate density of the
flow in phase space on the torus surface. Considering the
reconstructed attractor in phase space and the corresponding
Poincare section of the state depicted in the top of Fig. 22,
one sees that the density of points is much higher in the
upper-left quadrant than in the other three quadrants of the
graph showing the Poincare´ section. This is due to the fact
that the VLF oscillation, especially in the smaller cylinders,
is not sinusoidal but shows a ‘‘zigzag’’ structure as depicted
in Figs. 3~a! and 3~b!, for example. While the oscillation
only needs approximately 15 sec to go through the steep
slope of the periodic curve it needs about 9200 sec to go
through the flat slope in Fig. 3~a!, whereas in Fig. 3~b! the
rising lasts about 120 secs. This dynamical behavior, of
course, is reflected in the dynamics in phase space, leading to
an underestimation of the fractal dimension by calculating
the correlation dimensionD2, because during the slow rising
the dynamics in phase space is similar to a limit cycle mov-
ing very slowly. An estimation of the correlation dimension
after Grassberger and Procaccia yields a value of
D251.8560.08 for the state in 14-vortex flow depicted in
the top of Fig. 22, and the calculation of the local slope of
the correlation integral for the chaotic state depicted in the
third row of Fig. 22 shows no convergence, for example.

From this point of view fortunately the structure of the
VLF oscillations changes for increasing cylinder length to a
more sinusoidal oscillation, as shown in the comparison in
Fig. 17 between the 12-, 14-, 16-, 20-, 24-, and 40-vortex
flow. Therefore for vortex numbers larger or equal than 20 it
becomes possible to perform such calculations.

Figure 27 illustrates the results obtained from two experi-
mental attractors. The first time series is recorded below~Re
5395.7!, and the second above~Re5397.4! onset of chaos.
In Fig. 27~a! the double logarithmic plot of the correlation
integral versus radius is shown for Re5395.7, in Fig. 27~c!
for Re5397.4. The radius is given in per cent of the global
attractor extension. Both attractors containNdat5262 144
data points in the resolution of a 14-bit ADC. We chose
Nref53000 reference points for an estimate of the correlation
integral. In the plotsC(R) is drawn for embedding dimen-
sions dE51–12. The dashed lines illustrate the fit of the
slopes yielding the correlation dimensionD2. For Re5395.7
one obtainsD2'2.2160.09; for Re5397.4:D2'2.4660.11.
Obviously one cannot perform the required limitR→0 for

the dimension calculation, because due to noise one finds a
‘‘knee’’ in the double logarithmicC(R) plots at approxi-
matelyR53%. Below that value the trajectories tend to fill
the embedding space in any dimension, leading to a correla-
tion dimensionD25dE . Above this ‘‘knee’’ the fractal ge-
ometry of the strange attractor can be detected. In Figs. 27~b!
and 27~d! the local slopes~i.e., D2! of the correlation inte-
gral, plotted as a function of the scaling radiusR, are de-
picted. Both plots show an interval corresponding to the lin-
ear fit of the slopes in theC(R) plots. For Re5395.7 in an
interval betweenR53 and 7% and for Re5397.4 in an in-
terval betweenR53 and 4%D2 shows sufficient conveg-
ence, yielding the correlation dimensionD2.

The calculated results for the fractal dimension are of
small significance when they are not discussed as a function
of Reynolds number and boundary conditions of the system.
Figure 28 shows that the evolution of the correlation dimen-
sion D2 yields a useful quantitative characterization of the
period-doubling-on-a-torus route recorded in 20-vortex flow
for G516.8 ~G/N50.84!. Figure 28~a! shows this period-
doubling-on-a-torus scenario@also depicted in Fig. 25~a!#
and Fig. 28~b! the corresponding evolution of the correlation
dimension as a function of Reynolds number. From Re'384
to Re'390 one finds a period-1 torus. At Re'390 a period-
doubling bifurcation appears, leading to a period-2 torus, and
at Re'396.8 the transition to chaos occurs. From Re'384 to
Re'390 the estimated correlation dimension isD2'2, as
expected, whereas between Re'390 and Re'396, where the
doubled torus appears, the estimated correlation dimension
takes values betweenD2'2.15 andD252.2. For this state
one also would expect an estimated value ofD2'2, but this
increase of the calculated value is obviously due to the fact
that the trajectories of both tubes of the doubled torus come
very close to each other in some regions in phase space,
following that the value of the correlation integralC(R) is
locally increased in these regions, because the Grassberger-
Procaccia algorithm counts more neighboring points of a

FIG. 27. Double-logarithmic plotted correlation integralsC(R)
~left column! and the corresponding local slopes~right column!
versus scaling radiusR from dE52–12 for Re5395.7@~a! and~b!#
and Re5397.4@~c! and~d!# for two different time series taken from
the scenario shown in Fig. 25~a!.
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given reference pointNref and scaling radiusR compared to
regions in phase space where both tubes of the doubled torus
are sufficiently separated. At ReVLF5396.8 the transition to
chaos occurs going along with a sudden jump in the correla-
tion dimension toD2'2.45. Up to the two periodic windows
at Re'400 and Re'405, where the estimated correlation
dimension is in agreement with the expected values, this
value ofD2 keeps nearly unchanged. After the second peri-
odic window at Re'405 there is a second~sudden! increase
of the correlation dimension toD2'2.55.

VIII. DISCUSSION AND CONCLUSION

We have presented an experimental study of the very-
low-frequency VLF mode, a very slow time-periodic oscil-
lation with azimuthal wave numberm50 in axisymmetric
Taylor-Couette flow. First results of the interaction of VLF-
mode oscillations with different underlying time-periodic
Taylor vortex flow ~WVF! modes concentrating on smaller
aspect ratios—especially the 10-vortex flow–covering the
entire wavelength range of the underlying Taylor vortex flow
had been previously reported in@15,34#.

The measurements presented here cover a parameter
range that reaches from the onset of time-dependence via the
onset of the VLF mode to the transition to chaos in the
wavelength rangel,1.78d ~d is the gap width of the cylin-
der! appearing in flow systems having 10–50 vortices.

The VLF mode qualitatively and quantitatively differs
from all other known time-periodic flows in the Taylor-
Couette system. It always occurs as a secondary or higher
time-dependent instability. It was shown that its occurrence
depends on the strength of the spatial coupling of the oscil-
lations in neighboring vortex pairs of the underlying WVF
modes.

All experimental observations support the conjecture that
there is acausal connection between the appearance of the
VLF modeand the presence of the underlying time-periodic
flow modes. At onset of the VLF mode one observes a

‘‘breakdown’’ of the azimuthal wave coherence of the un-
derlying time-periodic Taylor vortex flow, and we argue that
this shift of the phases of oscillations in neighboring vortices
causes the occurrence of the VLF mode: The interaction of
the VLF mode with the underlying time-periodic flow modes
reveals that the VLF mode iscaused by the strength of cou-
pling of the phases of the underlying time-periodic flow
modes. These modes cause a variation of the wavelength of
the vortices in the flow. But there is still a coupling between
these modes and an axial phase diffusion. Furthermore the
wave speeds of the time-periodic flow modes depend on the
wavelength of the vortices. Due to this a local disturbance of
the wavelength leads to a change in the wave speed. A shift
of the phases between the oscillations of neighbouring vor-
tices occurs. Exceeding the critical threshold for the onset of
the VLF mode, these disturbances prevail the axial phase
diffusion. Following this we stated that these phase differ-
ences are most likely the driving forces for the VLF mode
@15#.

In the present paper we concentrated on a restricted wave-
length range but a variable aspect-ratio range. It was found
that, increasing the Reynolds number, forl,1.78d one
observes—independently of the number of vortices of the
flow system—always the same sequence of states. This is,
first, the transition from Taylor vortex flow~TVF! to the
onset of the small-jet mode via a Hopf bifurcation going
along with a simultaneous breaking of the axial symmetry of
the flow; second, the onset of the VLF mode via a ho-
moclinic bifurcation for smaller cylinders where the under-
lying WVF is still the small-jet mode~therefore we have aT2

torus!; and finally, the transitions to chaos, which were found
to be period-doubling routes onT2 tori.

A model of interacting time-dependent Taylor vortex flow
has been proposed by L’vov, Predtechensky, and Chernykh
@30–32,60#. According to their experiments forh50.63 and
l'2.0d, the first unstable time-dependent mode is the oscil-
lation of the outward boundaries@61#. The theory considers
the oscillations of outward jets in each Taylor vortex pair as
an independent nonlinear object obeying a simple Hopf bi-
furcation to a ‘‘fast’’ limit cycle. There is no more complex-
ity in each vortex pair in this approximation@31,32,62#. The
authors claim that this phenomenological model can be de-
rived from the Navier-Stokes equations in much the same
way as the Ginzburg-Landau equation@31#. This interaction
producesa global amplitude and phase modulation of all the
interacting time-dependent vorticesgoing along with a
breakdown of the azimuthal wave coherence of the time-
dependent outflow jets. The effect can be observed as a split-
ting of the fundamental ‘‘fast’’ frequency in the velocity
power spectrum and a slow modulation of the amplitudes~of
the time-dependent outflow jets!, with a corresponding low
frequency peak in the velocity power spectrum arising with
characteristic time scales of the order of the inverse line
width Dv jet

21 . Thus the authors refer to this effect as a ‘‘slow
modulation’’ of the spatiotemporal envelopes of the oscilla-
tions of the underlying outflow jets. From the theoretical
point of view this slow modulation appears due to fundamen-
tal resonant relations between the nonlinear modes.

There are several analogies between the model of inter-
acting time-dependent Taylor vortex flow, assuming a weak
interaction between the adjacent time-dependent vortices, the

FIG. 28. ~a! Period-doubling-on-a-torus scenario depicted in
Fig. 25~a!. ~b! corresponding evolution of the correlation dimension
as a function of Reynolds number.
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experimental observations of the slow modulation reported
in @31,32#, and the VLF mode presented here. Only some are
pointed out here: First, the transition from Taylor vortex flow
to time-periodic Taylor vortex flow in our experiment takes
place as the onset of the small-jet mode via a Hopf bifurca-
tion, satisfying the main assumption of the model, that the
first unstable time-dependent mode is the oscillation of the
outward boundaries. Second, the onset of the ‘‘slow modu-
lation’’ @31,32# as well as the onset of the VLF mode can be
observed as a splitting of the fundamental ‘‘fast’’ frequency
of the small-jet mode in the velocity power spectrum and a
slow modulation of its amplitude going along with the ap-
pearance of a corresponding low frequency peak in the ve-
locity power spectrum and exhibiting similar characteristic
time scales~compare Fig. 3 in@31# or Fig. 12.3 in@32# and
Fig. 3 in this paper!. Third, the onset of the global phase
modulation in@31,32#, as well as the onset of the VLF mode
@15#, is caused by a breakdown of the azimuthal wave coher-
ence of the underlying instability of the outflow jet.

To conclude, we have presented experimental investiga-
tions of the VLF mode in Taylor-Couette flow covering the
whole wavelength and a wide aspect-ratio range up to flow
systems having 50 vortices. We have proposed a mechanism
for the onset of this mode and have found that—in a wave-
length rangel,1.78d—the flow always shows the same
transition to weak turbulence, i.e., via period-doubling-on-a-
torus. A comparison with investigation by L’vov and co-

workers has shown that the VLF mode may appear also in a
wide radius-ratio range. In a model proposed by these au-
thors, a slow modulation of the underlying oscillations of the
different outflow jets which can be identified with the VLF
mode, also appears as a secondary time-dependent instability
covering the whole parameter range.

We have shown that the interaction of different stationary
and time-dependent modes appearing in the flow system
which can be prepared definable and investigated carefully in
a high-precision experiment can help to give a basis for the
understanding of pattern formation and transition to weak
turbulence in Taylor-Couette flow. Following our argument
the appearance of the VLF mode displays a universal prop-
erty for Taylor-Couette flow.

ACKNOWLEDGMENTS

We thank Tom Mullin for reading the manuscript care-
fully and many productive discussions, Alexei Predtechen-
sky for the translation of Ref.@60# and for a helpful intro-
duction to and a fruitful discussion about the ‘‘theory of
interacting time-dependent Taylor vortex flow.’’ We thank
Axel Sommerfeldt who performed some of the measure-
ments shown in Figs. 13, 15, and 16 and writing the program
for the data recording. Finally we greatfully acknowledge the
financial support by the Deutsche Forschungsgemeinschaft
under Grant No. DFG Pf210/3-2 and Pf210/3-3.

@1# G. I. Taylor, Philos. Trans. R. Soc. London, Ser. A233, 289
~1923!.

@2# T. B. Benjamin, Proc. R. Soc. London A359, 1 ~1978!.
@3# T. Mullin, IMA J. Appl. Math. 46, 19 ~1991!.
@4# T. Mullin, The Nature of Chaos~Oxford University Press, Ox-

ford, 1993!.
@5# M. Golubitzky and I. Stewart, SIAM J. Math. Anal.17, 249

~1986!.
@6# D. Ruelle, Arch. Ration. Mech. Anal.51, 136 ~1973!.
@7# D. Coles, J. Fluid Mech.21, 385 ~1965!.
@8# G. P. King and H. L. Swinney, Phys. Rev. A27, 1240~1983!.
@9# G. P. King, PhD thesis, University of Texas at Austin, 1983

~unpublished!; and ~unpublished!.
@10# G. Pfister, A. Lorenzen, and T. Mullin, Phys. Fluids26, 10

~1983!.
@11# G. Pfister and U. Gerdts, Phys. Lett. A83, 23 ~1981!.
@12# K. Park, Phys. Rev. A29, 3458~1984!.
@13# T. Mullin and T. B. Benjamin, Nature288, 567 ~1980!.
@14# T. Mullin, Phys. Rev. A31, 1216~1985!.
@15# U. Gerdts, J. von Stamm, Th. Buzug, and G. Pfister, Phys.

Rev. E49, 4019~1994!.
@16# A. Davey, R. C. DiPrima, and J. T. Stuart, J. Fluid Mech.31,

17 ~1968!.
@17# C. A. Jones, J. Fluid Mech.102, 249 ~1981!; 157, 135 ~1985!.
@18# P. S. Marcus, J. Fluid Mech.146, 45 ~1984!; 146, 65 ~1984!.
@19# W. S. Edwards, S. R. Beane, and S. Varma, Phys. Fluids A3,

1510 ~1991!.
@20# R. C. DiPrima, P. M. Eagles, and B. S. Ng, Phys. Fluids27,

2403 ~1984!.

@21# K. T. Coughlin and P. S. Marcus, J. Fluid Mech.234, 1 ~1992!;
234, 19 ~1992!.

@22# M. Gorman and H. L. Swinney, J. Fluid Mech.117, 123
~1982!.

@23# L.-H. Zhang and H. L. Swinney, Phys. Rev. A31, 1006
~1985!.

@24# A. Brandsta¨ter, J. Swift, H. L. Swinney, A. Wolf, J. D. Farmer,
E. Jen, and P. J. Crutchfield, Phys. Rev. Lett.51, 1442~1983!.

@25# A. Brandsta¨ter and H. L. Swinney, Phys. Rev. A35, 2207
~1987!.

@26# T. Mullin, K. A. Cliffe, and G. Pfister, Phys. Rev. Lett.58,
2212 ~1987!.

@27# K. T. Coughlin, PhD thesis, Harvard University, 1990~unpub-
lished!.

@28# D. Walgraef, P. Brockmans, and G. Dewel, Phys. Rev. A29,
1514 ~1984!.

@29# H. Fasel and O. Booz, J. Fluid Mech.138, 21 ~1984!.
@30# V. S. L’vov and A. A. Predtechensky, Institute of Automation

and Electrometry, No. 111~Novosibirsk, 1979!.
@31# V. S. L’vov, A. A. Predtechensky, and A. I. Chernykh, Sov.

Phys. JETP53, 562 ~1981!.
@32# V. S. L’vov, A. A. Predtechensky, and A. I. Chernykh, in

Nonlinear Dynamics and Turbulence, edited by G. I. Barenb-
latt, G. Iooss, and D. D. Joseph~Pitman, Boston, 1983!, p. 238.

@33# G. Pfister, U. Gerdts, A. Lorenzen, and K. Scha¨tzel, inPhoton
Correlation Techniques in Fluid Mechanics, edited by O.
Schulz-Dubois, Springer Series in Optical Science Vol. 38
~Springer, New York, 1983!, p. 256.

@34# G. Pfister, U Gerdts, F. Schulz, and G. Geister~unpublished!.

4956 54J. von STAMM, U. GERDTS, TH. BUZUG, AND G. PFISTER



A summary of this paper is given in K. Bu¨hler, J. E. R. Coney,
M. Wimmer, and J. Zierep, Acta Mech.62, 47 ~1986!.

@35# T. Mullin and K. A. Cliffe, in Nonlinear phenomena and
chaos, edited by S. Sarkov~Adam Hilger, Bristol; 1986!.

@36# G. Pfister, H. Schmidt, K. A. Cliffe, and T. Mullin, J. Fluid
Mech.191, 1 ~1988!.

@37# J. von Stamm, Th. Buzug, and G. Pfister, Phys. Lett. A194,
173 ~1994!.

@38# G. P. King, Y. Li, W. Lee, H. L. Swinney, and P. S. Marcus, J.
Fluid Mech.141, 365 ~1984!.

@39# P. Glendinning and C. Sparrow, J. Stat. Phys.35, 645 ~1983!.
@40# T. Mullin and T. J. Price, Nature340, 294 ~1989!.
@41# H. A. Snyder, J. Fluid Mech.35, 273 ~1969!.
@42# M. Basset and J. Hudson, Physica D35, 289 ~1989!.
@43# K. McKell, D. Broomhead, R. Jones, and D. Hurle, Europhys.

Lett. 12, 513 ~1990!.
@44# A. C. Skeldon and T. Mullin, Phys. Lett. A166, 224 ~1992!.
@45# J.-M. Flesselles, V. Croquette, and S. Jucquois, Phys. Rev.

Lett. 72, 2871~1994!.
@46# H. Haucke, Y. Maeno, and J. Wheatly, inLT-17, Proceedings

of the 17th International Conference on Low Temperature
Physics, edited by U. Eckern, A. Schmid, W. Weber, and H.
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