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Symmetry breaking and period doubling on a torus in the VLF regime in Taylor-Couette flow
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We present an extensive experimental study of the very-low-frequériclf) mode, a very slow time-
periodic oscillation with azimuthal wave number=0 in axisymmetric Taylor-Couette flow. The VLF mode
appears as a secondary or higher time-dependent instability in the entire wavelength range for flow systems
with radius ratio 0.5. We focus on measurements which cover a parameter range that reaches from the onset of
time dependence to the transition to chaos in the wavelength rerde7&l (d is the gap width of the
cylinden appearing in flow systems having 10-50 vortices. It was found that, increasing the Reynolds number,
one observes—independently of the number of vortices of the flow system—always the same “sequence” of
states. This is, first, the transition from Taylor vortex flow to the onset of the time-periodic small-jet mode via
a Hopf bifurcation going along with a simultaneous breaking of the axial symmetry of the flow, second, the
onset of the VLF mode via a homoclinic bifurcation for smaller cylinders where the underlying wavy Taylor
vortex flow is still the small-jet modéherefore we have EG torus; and finally, the transitions to chaos, which
were found to occur as period-doubling routes Bhtori. Additionally a quantitative description of this
transition to chaos is given, calculating the correlation dimension on the basis of a proper reconstructed phase
space. A model of interacting time-dependent Taylor vortex flow is discussed and compared to the appearance
of VLF-mode oscillations in the flow.S1063-651X%96)08410-3

PACS numbeps): 47.20-k, 05.45+b

I. INTRODUCTION around Taylor vortex flow are autonomous @handt, so
generically any mode which breaks these symmetries will
The Taylor-Couette flow reported here consists of a vishave the mathematical form of a rotating wave. In this time-
cous fluid between two concentric cylinders with the innerdependent flow regime, which is referred tovesvy Taylor
one rotating, while the outer cylinder and end plates are heldortex flow(WVF), the motion becomes time independent
at rest. When the Reynolds number Re is very small, the flomwhen observed in a corotating frarffe. Transitions to WVF
appears to be a circular shear flow, ttieular Couette flow  have been observed experimentally by Coles in his seminal
(CCP). The end plates cause only small perturbations on thigpaper[7], and different aspects of WVF by King and Swin-
flow when the cylinder is long enough, but they have a cruney [8], King [9], Pfisteret al. [10,11 and Park[12]. The
cial effect on the bifurcations obtained for the infinite cylin- sensitive dependence of the critical Reynolds number of the
der model. However, when Re is increased to a quasicriticéirst Hopf bifurcation on the number of cells in a given cyl-
range near Rgg, the flow becomes centrifugally unstable inder length was investigated by Mullin and Benjarhir8]
and changes to a regular cellular vortex structure in whickand Mullin [14] first and later studied in detail by Gerdts
ring vortices alternating in flow direction enclose the axis ofet al.[15]. Numerical studies have been performed by Davey
rotation. The flow remains stationary and the vortex structuret al. [16], Joneq 17], Marcus[18], Edwardset al.[19] and
is axisymmetric and periodic in the axial direction with DiPrima et al. [20], for example. Depending on the geo-
wavelength\. This flow is calledTaylor vortex flom(TVF) metrical boundary conditions there can exist different wavy
after Taylor[1], who first described it experimentally and Taylor vortex flows, amongst them the ‘“classical” Wavy
theoretically. In an experiment one has a system with finiteamode[15,17]. To exclude misunderstandings concerning the
ends, following that the transition to TVF takes place as dabeling of the “Wavy mode” and the “wavy Taylor vortex
disconnected pitchfork bifurcation where the vortices growflow” we often refer to the latter as “time-periodi¢Taylor
in smoothly from the ends. This boundary-induced effectvortex) flow.”
causes a disconnection by a factor of approximately 2.5, i.e., At larger Reynolds numbers the azimuthally traveling
the ratio of the critical Reynolds numbers of the anomalousvave can bifurcate to a doubly periodic flow regime, which
and the normal TVF model2—-4], only the latter we con- is temporally periodic when viewed from the frame rotating
sider here. at the wave speed of the underlying time-periodic flow
Increasing the inner cylinder’s angular velocidy, which  mode. This transition may again be accompanied by a
is proportional to the Reynolds number, the flow undergoes ahange in the azimuthal symmet[21] and the appearing
series of transitiongthe “main sequence)’ which are char- doubly periodic flow is callednodulated wavy vortex flow
acterized by changes in the symmetry group that leaves th@¢MWVF). Such flows have been investigated experimentally
flow invariant [5]. The Navier-Stokes equations linearized by Gorman and SwinneyGS mode [22] and Zhang and
Swinney(ZS mode [23], occurring as preturbulent flow re-
gimes[24,25, by King and Swinney(KS mode [8] occur-
*Electronic address: pfister@ang-physik.uni-kiel.de ring as a result of the competition of at least two WVF
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modes for dominance. Mulliet al.[26] found that, decreas- The VLF mode, together with the small-jet mode, exhibits
ing the Reynolds number, the interaction between geriod-doubling routes on tori to chaos which are investi-
symmetry-breaking bifurcation and a fold point gives rise togated in the sixth section. Before the results are discussed in
subcritical Hopf bifurcation points to a tilt wav@n axially ~ the final section, a quantitative characterization of this tran-
localized azimuthally traveling wave with azimuthal wave sition to chaos is presented in Sec. VII.

numberm=1) and the onset of a modulation of this tilt
wave. Additionally they experimentally and numerically dis-
covered aim=0 mode which is then modulated at a second-

ary Hopf bifurcation by aimm=1 mode. The flow of interest is bounded by two high-precision
In an extensive numerical study of MWVF, Coughlin and coaxial cylinders. The rotating inner cylinder of the Taylor-
Marcus have performed numerical simulations of the stabilCouette experiment is machined from stainless steel having a
ity of GS and ZS modes, showing that several branches dfadius ofr;=12.5 mm. The stationary outer cylinder is made
quasiperiodic solutions exist, and not all of them occur asf optical polished glass with a radius of=25.0 mm, giv-
direct bifurcations from rotating waves as the main sequencgg a radius ratio ofy=0.5. The accuracy of the radii is
suggestd21]. Furthermore the modulated flows studied in petter than 0.01 mm over the entire length of 640 mm. We
[8] and[26] and the appearance of the axisymmetric VLF measured an eccentricity of the cylinders &3£0.005 mm
mode as a secondary time-dependent fl&s] show that the  and the power spectrum of the local velocity distribution is
main sequence does not seem to display a universal behavigbticeable by the absence 8f at any location in the fluid.
in Taylor-Couette flow where the outer cylinder is held at  The top and bottom plates are at rest. The length of the
rest. In fact, it is doubtful that the work of Golubitzky and gap can be varied continuously by moving the metal collar
Stewart[5] is directly relevant to flows where the outer cyl- which provides the top surface of the flow domain. The as-
inder is at rest, because, first, in this case modulation OCCUTﬁect ratiol’=L/d used as a geometric control parameter is
at a value of Re several times larger than the critical valugjefined as the ratio of gap lengthto gap widthd=r,—r; .
for the time-periodic flow; second, Golubitzky and Stewartas a working fluid we use silicon oil with different viscosi-
looked at transitions in counterrotating cylindgjisst near a  ties » depending on the flow situation. The Reynolds number
fixed ratio of the outer to inner cylinder rotation frequencyis then defined as Re(Q;r;d)/v. The temperature of the
for which six eigenmodes of CCF become unstable at thejuid is held constant to within 0.01 K by circulating thermo-
same inner cylinder rotation frequenf®7]; and, third, the statically controlled oil through a surrounding square box. A
flows with radius ration<0.77 show qualitatively different phase locked loogPLL) circuit controls the speed of the
behavior compared to the flows with radius ratio0.79, i.e,  inner cylinder with an accuracy of better than one part in
for narrow gaps, the transition to WVF takes place at a low10~4 in the short term and better than one part in 1 the

value of Re near 1.2 Rgr, for wide gaps the onset of the |ong-term average. The uncertainty of the absolute value of
waves is delayed to much higher Reynolds numbershe Reynolds number is smaller than 1%.

[12,17,28,29 Considering these facts we conclude that the The local Ve|ocity is measured by a rea|-fringe laser-
main sequence, which is defined as the sequence of statespoppler velocimetefLDV) and recorded by a PLL-analogue
tracker. After filtering by an analog Bessel filter of fourth
order, the velocity signal is fed into an analog-to-digital con-
verter (ADC) with a 14-bit resolution and then into a com-
%uter where the data processing is performed. For more de-
é[ails of the experimental setup sg28.

Il. EXPERIMENTAL SETUP

CCF—TVF—WVF—MWVF—chaos,

is just useful as a schematic guide to the transitions in th
system.

Here we are going to display an experimental study of
different main sequence to chaos in Taylor-Couette flow,
which is valid for wide parameter ranges and thus may dis- Il. MEASUREMENT TECHNIQUE

play a “general” behavior in this flow, at least for flow ) ) )
systems with radius ratig=0.5. This is the sequence Presenting our experimental results we use different nota-

tions for the plots of the VLF-mode oscillations. The VLF
CCF—~TVF—WVF—VLF—chaos. mode has an azimuthal wave number=0. This was con-

firmed by simultaneous measurements of the velocity in the
In the concluding section we also discuss this sequence dfme-dependent regime at different azimuthal angles having
states in the context of a model of interacting time-dependerthe same axial position. Therefore it can be understood as a
Taylor vortex flow developed by L'vov and Predtechenskyvery slow time-dependent shift of the whole bulk of time-
[30-32. In Sec. Il we present the experimental setup of ourperiodic Taylor vortices with decaying shift amplitudes to-
flow system; in Sec. Ill, the measurement technique is diswards the ends. To make this clear and to represent the sym-
cussed, which is necessary due to the different notations weetry properties of the flowin Sec. \} we used thdocal
use as a measure when the VLF mode appears. In the fourtixial displacementAz of the Taylor vortices instead of the
section previous results on the VLF mode are presented taxial velocity component,(t) as a measure in the corre-
set our current results in context. In the next section a comsponding figures.
plete scenario in the 10-vortex flow fér=8 is presented to Indeed these two measures can be used identically and
reveal the complexity of VLF mode. After that the symmetry can be derived experimentally from each other by recording
breaking in large aspect ratio systems is investigated fronthe axial velocity profile and determining the local gradient
I'=8 up toI'=42 (i.e.,, 10-50 vortices This leads to the Az/Av, from this measurement. To detect the axial displace-
characterization of the bifurcation towards the VLF mode.ment of the vortices in most cases the best location for the
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FIG. 1. (a) Taylor cylinder with schematically plotted flow field /N
of a 12-vortex flow,(b) blowup of the flow field of two vortices in
the middle of the cylinder(c) the corresponding axial velocity — FiG, 2. Stability diagram for the onset of primary and higher
component, recorded 3 mm from the inner cylinfleroken line in  time-dependent modes in the 10-vortex flow in a Taylor-Couette
(b)], and(d) blowup of the local axial velocity component. system with=0.5. The dotted section marks the stationary 10-
vortex flow.

LDV measurement volume is the middle of the cylinder (
=L/2) in axial direction and a distance p&£2 mm tor =3
mm from the inner cylinder in radial direction. We demon-
strate this in Figs. ®—1(d). In Fig. 1(a) a Taylor cylinder
with a schematically drawn 12-vortex flow and in Figblla  , hint to a universal significance of it.

blowup of the flow field of the two vortices in the middle is  The VLE mode appears in the entire range where the un-
depicted. Figure () shows the corresponding velocity pro- yerjying Taylor vortices are stable, as shown in Fig. 2 for the
file of the stationary flow field close to the onset of time 14 _vortex flow. The onset of the VLF mode is marked with
dependence. It was recorded by moving the measuremegig thick lines including the triangles whereas all other mea-
volume continuously in axial direction with a distance of greq stability lines in this diagram are marked with circles.
r=3 mm from the inner cylinder. The axial trail of the LDV~ gtaring with stationary Taylor vorticelotted section in
measurement volume in the flow is marked with the brokery;g 5 "the lines denote the transitions to the time-periodic
vertl_cal I_|ne in Fig. 1b). Because the ve_Iocny prc_)flle is Im— Taylor vortex regime when the Reynolds number is in-
ear in this position£=L/2) the changes in the axial velocity ¢reased. In the experiments one observes physically different

Av, are directly proportional to the axial displacemé&zof o _beriodi ; ;
! " : periodic Taylor vortex flow$WVF). The special physi-
the vortex systeniFig. 1(d)]. Additionally to the oscillatory type of these rotating waves depends on geometrical

displacement caused by th_e VLF mode, the u_nderlylng VOrpoundary conditiongcompare to Fig. 1 and Table I [i15]).
tex system can show an axial symmetry breaking. Thereforey, the feft-hand side the stability line for the onset of the
when considering the symmetry properties of the flow sySymgijet mode is located, an oscillation of the outward flow
tem one has to determine the mean valuépf This yields \ypile the inward flow remains stationary. Adjacent outward
the averaged axial displacemefiz as a measure for the fiows oscillate in antiphase. On the right-hand side the sta-
axial symmetry of the flow. bility lines for the wavy mode, an axial oscillation of the
entire vortex, and in midrange for the antijet mode, an oscil-
lation having its main amplitude in the inward flgd5].

All experimental observations support the conjecture that

In previous papergl5,34] we presented first results of the there is a causal connection between the appearance of the
interaction of VLF-mode oscillations with different underly- VLF mode and the presence of the underlying time-periodic
ing WVF modes. To set our work in context, we present aflow modes. The shift of the phases of oscillations in neigh-
brief review of these experimental findings. boring vortices causes the occurrence of the VLF mode

The previous experimental investigations concentrated owhich appears in the entire measudédange. The interac-
smaller cylinders—especially the 10-vortex flow—coveringtion of the VLF mode with the underlying time-periodic flow
the entire wavelength range of the underlying Taylor vortexmodes reveals that the VLF mode is caused by the strength
flow. The VLF mode qualitatively and quantitatively differs of coupling of the phases of the underlying time-periodic
from all other known time-periodic flows in the Taylor cyl- flow modes. These modes cause a variation of the wave-
inder. In our experiments it always occurs as a secondary dength of the vortices in the flow. So there is a coupling
higher time-dependent instability, whereby, it was shownbetween these modes and an axial phase diffusion. Further-
that its occurrence depends on the strength of the spatiahore the wave speeds of the time-periodic flow modes de-
coupling of the oscillations of the underlying WVF modes. pend on the wavelength of the vortices. Due to this a local
The fact, that the VLF mode appears in the entire wavelengtlisturbance of the wavelength leads to a change in the wave

range as a secondary or higher time-dependent instability
and that for increasing Reynolds numbers the flow in the
VLF regime shows transitions to chaotic behavior, could be

IV. VLF MODE
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\ \1 \’ ‘v' 1 W g* N=0.80. The axial displacemeniz is recorded versus the Rey-
01 '. — | : ' nolds number which is scanned from -R800 to Re=500 with
0 200 400 0 100 200 300 A Re/At=0.025 §1. The small-jet oscillations are averaged out to
tis} tis) make the VLF-mode oscillations visible. The amplitude of the VLF

mode can be depicted from the scan, while the oscillation gives
FIG. 3. Six different VLF oscillations recorded in the 10-vortex only a qualitative impression of the frequency due to the measure-
flow atI'=8 (I''N=0.80. (a) for Re=356.4,(b) for Re=365.4,(c) ment procedure.

for Re=405.0, (d) for Re=454.3, (¢) for Re=479.0 and(f) for o S )
Re=612.4. Note the different time scales. are asymmetric in axial directiofbreaking theZ2 symme-

try). For all time-series depicted in the figure the local axial
speed. A shift of the phases between the oscillations offiSPlacementiz of the vortex pattern was recorded versus
neighboring vortices occurs. These phase differences afémet. Note the different, extremely long time scales. Due to
most likely the driving forces for the VLF mode. symmetry arguments—neglecting imperfections due to the
The VLF mode shows various features and different de£XPerimental setup—there always have to be VLF oscilla-
pendence of amplitudd and frequencyw, - on Reynolds tiONS opposite in sign ol z. This is shown in the bifurcation
number Re, depending on the underlying time-dependerffiagram in Fig. 4 for the 10-vortex flow fdr=8, where the
flows. In one example it occurs with an frequency starting?*ial displacemenAz is recorded versus the Reynolds num-
from wy =0 and a finite amplitudé\#0 when the under- Per which is scanned quasistatically from +&00 to Re
lying flow is a WVF, and on the other hand with an fre- =500 with A Re/At=0.025 s*. The location of the LDV
quency having a finite valuey, #0 and an amplitude in- Méasurement was again placed in the midplane of the appa-
creasing with a square-root law from the valwe=0  ratus near the inner cylindee€L/2). Thus it is suitable to

corresponding to a Hopf bifurcation which was observegcharacterize deviations from the symmetric state whieze
only when the underlying flow is a MWVEL5,35. =0. The vertical line in Fig. 2 marks the measurement route

of the bifurcation diagram shown in Fig. 4. The plots of the
bifurcation diagram in Fig. 4 and the time series in Fig. 3 are
V. SYMMETRY BREAKING filtered with a low-pass Bessel filter of fourth order having a
To demonstrate, first, the large variety of VLF-mode os-cutoff frequency at 0.1 Hz to make the structure of the VLF
cillations, and second, the fact that the VLF mode not onlyoscillation visible.
appears in the entire wave-number rarige shown for the Considering the'lo—vortex flow dt=8 one observes the
10-vortex flow in Fig. 2 but also in wide Reynolds-number ©Onset of the small-jet mode at Re-296.3 and the onset of
ranges, and thus influences the dynamics of the flow systeff€ VLF mode at Rg =356.4. A delay of the critical Rey-
in wide parameter ranges, we first of all give a view to aholds n_umbgrs in Fig. 4 is due to the quasistatic recording.
complete scenario for increasing Reynolds number, wherea&$ depicted in Fig. 5, where the frequency of the VLF mode
in the second part of this section, we focus on the symmetr{s Plotted versus Reynolds number, the frequency of the VLF
breaking which appears simultaneously with the onset of th@Scillation goes to zero at onseharked with triangles\ in
first ime-dependent flow, the small-jet mode. This symmetrythis figure. Figure 3a) shows this oscillation slightly above
breaking leads to the onset of the VLF mode via a hotS onset with an frequency of approximately, =0.1 mHz

moclinic bifurcation for smaller aspect ratios, which is corresponding to a period of about 2.5 h. The vortex system
shown in the last part of this section. needs almost the whole period to elongate into one end po-

sition while the elongation back to the opposite end position
needs only about 15 sec.
Whereas the frequency goes to zero at onset of the VLF
Figures 3a)—3(f), showing six different VLF oscillations mode at Rg g, the amplitudeA and axial asymmetrz
for I'=8 which are all recorded a&=L/2 in axial direction, exhibit finite values as apparent from Figgbpand 5c). If
reveals that some of the appearing VLF-mode oscillationshe Reynolds number is changed to values slightly below or

A. Complete scenario in the 10-vortex flow forl'=8
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nential decay of the temporary shift towards zero in opposite
to the observations in WVFL1].

Increasing the Reynolds number the frequensy
grows rapidly{Fig. 5@] whereas amplitudd,, ¢ [Fig. 5(b)]
and asymmetnAz [Fig. 5(c)] show a slight fall off. A time
series is shown in Fig.(B). Comparing Figs. @& and 3b)
one realizes that the steep slope of the oscillation is nearly
unaffected by a change in Reynolds number whereas, in-
creasing the Reynolds number, the flat slope of the oscilla-
tion curve becomes more and more steep. In Fi@ e
system needs about 9200 sec to reach the maximum shift
whereas in Fig. @) the periodonly lasts about 120 sec.

The VLF oscillations exhibiting values afz which are
opposite in sign are marked with the symb®lsn the Fig.
5(a)-5(c). For I'=8 this branch can be reached by a sudden
jump in Reynolds number only. This is also apparent from
Fig. 4 where the branch with positivéz is disconnected.
The frequencies of this state are approximately by a factor of
2 smaller whereas amplitud8,, r [Fig. 5b)] and axial
asymmetryAz [Fig. 5(c)] exhibit only little deviations from
the values of the VLF flow appearing on the other branch. At
Re=395 the flow state with positivAz ends and the system
jumps into the state with negativkz [Fig. 4]. This reveals
that the experimental apparatus has a small asymmetry
which causes that one of the asymmetric branches is pre-
ferred. This has often been observed near bifurcation points
(where the coercion forces are very smahd thus one
branch is decoupledi36]. This apparative asymmetry can
assume only very small extension, otherwise only one branch
or even no VLF mode would be observable.

After the frequencyw,, g of the VLF mode passes a maxi-
mum at Re=390 it shows a strong decay for higher Reynolds
numbers. At Re404 a minimum is reached and one ob-
serves a sudden change in the structure of the VLF oscilla-
tion. A comparison of Figs. (8) with 3(c) reveals that the
size of the amplitude becomes approximately twice as large
as before[see Fig. B), marked with circlesO] and the
asymmetry goes to zero, i.e., the flow becomes symmetric
again[Fig. 5(c)]. This is also illustrated by the development
of the VLF oscillation in the bifurcation diagram in Fig. 4.
The transition between the symmetric and the asymmetric
state exhibits a small hysteresis in Reynolds number. The
branches are disconnected by an imperfection in the appara-
tus. But even assuming a perfect symmetry the VLF mode
would not remain symmetric for decreasing Reynolds num-
bers and the symmetric branch does not coexist with both
axially asymmetric branches, because it has to be an unstable
solution of saddle-node type between,Re=356.4 and Re
=404. This is discussed in Sec. V C.

A further increase in the Reynolds number leads to a
growth of the value of the frequenay,, ¢ of the VLF mode,

FIG. 5. (a) Frequencywy,  and(b) amplitudeAy, ¢ of the VLF- ~ Whereas its amplitude shows a slight de¢&jgs. $a) and
mode oscillations plotted versus Reynolds number recorded in th&(b), symbolsO], the flow remains symmetric in axial direc-
10-vortex flow forl' =8 (T/N=0.80), (c) axial asymmetnAz of the  tion [Fig. 5(c)]. At Re=~430 the VLF oscillation becomes
10-vortex flow forl'=8 (I/N=0.80) plotted versus Reynolds num- irregular in time and amplitudgmarked with the hatched
ber. sections in Figs. @) and(b)], i.e. the flow becomes weakly

turbulent. Furthermore this chaotic flow is characterized by
above the onset of the VLF mode, no buildup or dying of thesudden jumps in phase of the VLF oscillatidfig. 3(b)]; the
oscillation is observable. The oscillation appears with conflow still remains symmetric in axial directiofFig. 5(c)].
stant frequenc,,  and amplitudeA and disappears imme- Before the VLF mode disappears at-R482 caused by the
diately for Reynolds numbers RéRe, r showing an expo- onset of the large-jet mode which shows a strong coupling of
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the phases of neighbouring outward flojib,37), the ir-  branches and the symmetric one coexist showing no VLF
regularities in frequency and amplitude pass a maximumoscillation.
Fig. 3(e) reveals that after exceeding this maximum the cha- Comparing the bifurcation diagrams of the scenarios in
otic flow shows a qualitative change. The irregularities inFig. 4, wherel/N=0.80, and in Fig. 6 inf15], where the
frequency and amplitude in the VLF oscillations have be-bifurcation diagram in 10-vortex flow fod’/N=0.84 is
come small. When the system exceeds the critical value shown, it is noticed that the flow in the smaller cylinder—
Re=482 the amplitude of the VLF mode shows the form of slightly above the onset of the VLF mode—becomes sym-
a damped oscillation going towards zero. The Reynoldsmetric again, whereas it remains axially asymmetric as long
number range between Rd82 and R=568.9 is dominated as the VLF mode is apparent, in larger aspect ratios. One
by the appearance of the large-jet mode which, together witbbserves that in smaller cylinders—up to the 8-vortex
the small-jet mode, exhibits frequency locking which is in flow—the system exhibits no axial symmetry breaking si-
contradiction to previous theoretical consideratiBg]. multaneously with the onset of the small-jet mode or prior to
As apparent from Figs.(8)—5(c) the VLF mode shows a the onset of the VLF mode oscillation. In flow systems hav-
second onset at Re568.9 exhibiting a quite different depen- ing more than 10 vortices there is always found an axial
dence of amplitudé and frequencyw,, r on Reynolds num- symmetry breaking going along with the onset of the small-
ber Re in this case. Other than at its first onset at8&6.4  jet mode(compare to the next sectipand the flow always
where it occurs with an frequency starting fras, =0 and  remains axially asymmetric as long as the VLF mode is ap-
a finite amplitudeA+0, it here appears with an frequency parent. The dynamical behavior in 10-vortex flow is differ-
having a finite valuew, ¢#0 and an amplitude increasing ent. Here both, the axially symmetric as well as the axially
with a square-root law from the value=0 corresponding to asymmetric states, depending on the wavelength of the Tay-
a Hopf bifurcation at second onset. The underlying flowlor vortices, occur in the limit of accuracy of the experiment.
modes are a time-periodic Taylor vortex flow in the first and
a modulated wavy vortex flow in the second cpkg|, where B. Symmetry breaking in large aspect ratios

the frequency of the VLF oscillation is approximately by a To study the axial symmetry breaking we concentrate on

factor 10 larger than in the first case Figab The flow still ¢ analysis of the flow states in larger cylindéxs=10) in
remains axially symmetrifAz=0, Fig. 5c)]. the wavelength range TZN=\<1.78 where one
A further smooth increase of the Reynolds number leadgbserves—independently of the numibenf the vortices of
to a transition to 8-vortex flow at Reb88.7. Increasing the the flow system—always the sarsequence of stateppear-
Reynolds number by a sudden change te=B@0 the flow ing with increasing Reynolds number. This is, first, the tran-
assumes two axially asymmetric statesarked with crosses sition from stationary TVF to the time-dependent small-jet
(+) in Figs. 5a)-5(c)]. As in the lower Reynolds-number mode via a Hopf bifurcation going along with a simultaneous
range there are two corresponding asymmetric VLF-flowbreaking of the axial symmetry of the flow; second, the onset
modes having opposite sign iz. The branch exhibiting of the VLF mode via a homoclinic bifurcation for smaller
positive Az is preferred. This is again caused by the imper-cylinders where the underlylng WVF is still the small-jet
fection of the apparatus, but due to the coercion forces whichnode (therefore we have @ torug and finally, the transi-
are much larger compared to those in the lower Reynoldstion to chaosicompare to Fig. 6 in15] and to Fig. 4.
number range, this asymmetry hardly influences the frequen- Due to the fact that the underlying WVF of the VLF mode
cies and amplitudes of both asymmetric branches. is always the small-jet mode the VLF-flow states appearing
Figure 3f) reveals that the axially asymmetric VLF in different aspect-ratio systems can be compared to each
modes exhibits two superimposing oscillations. One ob-other and so this fact makes it possible to discover the de-
serves a “high frequency(wy ¢, =120 mH2 and a “slow pendence of this scenario on the geometrical boundary con-

frequency” componentw,, . =10 mH2. Both components ditions, i.e., for increasing cylinder length. Such a compari-
of the VLF oscillation shov; an onset with amplitude=0 son of flow states is not possible far>1.78l, because n
L P this wavelength range different WVF modes appear as first
and a f|n'|te value of frequencyowfl, owr,#0 at Re time-dependent instabilities showing different interactions
=580.8[Figs. a) and §b) marked with crosseét)]. with the underlying Taylor-vortex structure and the appear-
For Reynolds numbers R€80.8 the symmetric VLF  ing VLF mode(compare to Fig. 1 ifi15], examples for such
mode also exhibits the slow frequency componeat e,  different VLF modes are given in Fig. 3 [i15]).
=10 mH32, but due to the fact that this branch becomes It is remarkable that, simultaneously with the onset of the
unstable against a transition to 8-vortex flow for lower Rey-small-jet mode at the critical Reynolds numbergRethe
nolds numbers, the amplitude of this oscillation remainsflow undergoes an axial symmetry breaking, i.e., #@#
small. symmetry of the system is broken. This was measured for the
The axially asymmetric VLF modes remain stable to-10-, 12-, 14-, 16-, 20-, 24-, 30-, 36-, 40-, 42-, 46-, and 50-
wards larger Reynolds numbers than the symmetric flowortex flow, and within an accuracy af0.2 Reynolds num-
state, exhibiting a transition to 8-vortex flow at R@15.3. bers the symmetry breaking was observed to appear simulta-
Towards smaller Reynolds numbers the asymmetriceously with the onset of the time-dependent small-jet mode.
branches show a transition to the symmetric flow at ReThus the flow bifurcates at Beowards two branches which
=532.4[Fig. 5c)]. Due to the fact that the VLF oscillations are symmetric to each other relative to the midplane of the
disappear at Re580.8, there exists a Reynolds-numbercylinder. Figure 6 shows the profiles of the small-jet ampli-
range from Re532.4 to Re=580.8 where both asymmetric tude of both branches for the 30-vortex flow for different
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FIG. 6. Axial profiles of the small-jet amplitude of both 0 % 50 L(;?n) 100125 7
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at I'/N=0.84, plotted versus axial position. The profile for Re 05 - o o N=16
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profiles for Re=361.7 [marked with filled(®) circles], Re
=370.3[marked with operO) circleg, Re=377.2[marked

with squareg[)] and Re=383.2[marked with crosseé&t)] FIG. 7. AmplitudeA of the VLF oscillation appearing in the
are plotted versus axial position, respectively. The axial pol0- 12- 14-, and 16-vortex flow dN=0.84 plotted versus the
sition is given as the distance from the bottom plate in mmXial position recorded just above the threshold.

Dimensionless units of the axial position can be obtained by

dividing it by the gap width, which is with 12.5 mm the same hate axis of each of the seven diagrams are plotted in the
for all experiments. The broken lines—giving the SaMe scale, respectively. .

envelope—are just to guide the eyes. The figure reveals that Due_ to the axial symmetry breaking at_gﬁene expects

for increasing Reynolds number the asymmetry of the flownat this symmetry breaking also appears in the symmetry of

system grows, i.e., the initially bell-shaped amplitude profile

[filled (@) circleg of the small-jet mode becomes more and . v T

more asymmetric and the amplitude is growing towards the = 23 ] . ° e 4

cylinder ends for both branches, respectively. Increasing the< o1+ ° Ceceee, i

Reynolds number further, the VLF mode appears on both **7 M . - * °189

branches at a critical Reynolds number,Re(compare also L{mm}

to Fig. 6 in[15]). 05 A - T N
Figures 7 and 8 show the amplitudeof the VLF oscil- Eoad .’ . |

lation appearing in the 10-, 12-, 14-, 16-, 18-, 20-, and 30- < 01 4° Tte. 1

vortex flow, plotted versus the axial position. In each case o 0 % B 150 : 710

the amplitude profile for only one branch is depicted. The L(mm)

measurements have been performed for Reynolds numbers 0 4 ' T N " N-30

slightly above the critical Reynolds numbers for the onsetof & o, 4 , =° ° ° . | i

the VLF oscillation. To ensure a comparison of the different < o1+ ° Te ., 1

flow states, all VLF amplitudes were measured in cylinders ~ *° 0 o 10 :;0 0 s

having the same aspect rafido vortex numbeN ratio, i.e., Limm)

I'/N was adjusted to 0.84. Thus the average wavelength of

the flow is the same for all cylinders. The abscissa and ordi-  FIG. 8. The same as Fig. 7 for the 18-, 20-, and 30-vortex.
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FIG. 9. Top: Profile of the VLF amplitude of both branchese
is marked with oper{O), the other with filled(®) circleg for the
20-vortex flow at Reynolds number R883.2 and af'/N=0.84,
plotted versus axial position. Middle: Corresponding distribution of
the wavelengtha/d (neglecting the wavelengths of the end-vortex
pairs and recorded slightly below the onset of the VLF mades
Bottom: Corresponding profiles of the amplitude of the underlying
small-jet modegalso recorded slightly below the onset of the VLF
mode plotted versus axial position.

FIG. 10. The same as Fig. 9 for the 30-vortex flow.

the cylinder ends. The reason for this behavior becomes un-
derstandable by analyzing the next figures comparing the
amplitude profiles of the VLF mode, the underlying small-jet
mode and the corresponding distribution of axial wave-
lengths of the Taylor vortex structure.

In the top of Figs. 9, 10, and 11 the profiles of the VLF
amplitudeA,, ¢ of both branche$one is marked with open
the VLF oscillations. This is in fact the case. While the VLF- (O), the other with filled(®) circleg| for the 20-, 30-, and
amplitude profile in the 10-vortex flow breaks tB@ sym-  40-vortex flow at Reynolds number R&83.2 are plotted
metry only very weakly, the amplitude profiles depicted inversus axial position, respectively. In the middle, the corre-
Figs. 7 and 8 reveal a much stronger symmetry breaking fosponding distribution of the wavelength&l (neglecting the
longer cylinders beginning with the 12-vortex flow. All VLF end-vortex pairs and recorded slightly below the onset of the
oscillations (including the 10-vortex flowexhibit a maxi- VLF modes, and in the bottom of Figs. 9, 10, and 11, the
mum in amplitude at a cylinder length of approximately corresponding profiles of the amplitude of the underlying
L~50 mm. Furthermore, in the VLF-amplitude profile for small-jet modes, which are also plotted versus axial position,
the 12- to the 20-vortex flow one observes a strong decay dare depicted. The plots of the amplitude of the VLF, the
the amplitude at a length of approximately=80 mm. This  small-jet mode and the underlying wavelengths, which be-
decay separates the VLF-amplitude profile for the 12- to thdong to the same branch are marked with ogen and filled
20-vortex flow into a part with larger amplitude which, apart (®) circles, respectively. The broken lines are again plotted
from the height of the amplitude, shows always the saméo guide the eyes. In each of Figs. 9—11 in the middle and in
structure, and a “tail” towards larger cylinder lengths. For the bottom one error bar is depicted which indicates the
larger aspect ratios this separated structure passes intonsximum error of the single measurement.
smooth amplitude profile as shown in Fig. 8 for the 30- These figures reveal that the VLF mode appears in those
vortex flow. One result is very significant: The longer theregions of the cylinder, where the amplitude of the small-jet
cylinder, the more the VLF oscillations are localized towardsmode is small, which is due to the shift of the wavelengths of
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FIG. 13. Critical Reynolds numbers for the onset of the small-

jet, the VLF mode and the transition to the chaotic flow, plotted for
successively increased cylinders from 10 to 50 vorticed'/at
=0.84. For every flow with constant vortex numbéithree critical
Reynolds numbers are depicted: The smalless;Rer the onset of
the small-jet modémarked with square1)], in the middle for the
onset of the VLF oscillations, Re: [marked with crosse$+)],
and the largest for the transitions to chdmsarked with filled
circles (@)].

the 8- to the 20-vortex flow the amplitudes were measured at
Reynolds numbers slightly above the onset of the VLF

the underlying Taylor vorticeécaused by the axial symme- modes, for the largeflonge) cylinders at a Reynolds num-
try breaking at onset of the small-jet modee., it appears in  ber Re=380.6. The figure reveals a significant maximum at
regions of the cylinder; where, due to the small amplitude ofvortex numberN=12 and an apparently convergence for
the small-jet mode, the coupling of neighboring small-jet os-longer cylinder to a value oA ~0.20 mm.
cillations is small. This is in agreement with the results we Figure 13 shows the corresponding critical Reynolds
reported in a previous papét5] for the onset of the VLF numbers for the onset of these flow modes, again for succes-
mode. After that, one observes the onset of the VLF mode igively increased cylinders from the 10- to the 50-vortex flow.
the amplitudes of neighboring oscillations in the underlyingFor every flow with constant vortex numbhirthree critical
time-periodic flow modes are coupled weakly. Reynolds numbers are depicted. The smallest; Re the
Figure 12 shows the evolution of the maximum height ofonset of the small-jet modenarked with square@l)], in the
the amplitudeA,  of the VLF oscillations for successively middle the critical Reynolds number for the onset of the VLF
increased cylinder lengths from the 8- to the 50-vortex flow.oscillations, Rg ¢ [marked with crosseét)], and the larg-
Again for these measuremedt®\ was adjusted to 0.84. For est for the transitions to chadsnarked with filled circles
(@)]. Obviously, the Reynolds-number ranges where the dif-
ferent flow states are stable, shrink for increasing cylinder
lengths. Though the ranges become very narrow for large
aspect ratios, they do not disappear, but showing a conver-
gence to apparently constant Reynolds numbers.

0.7 A i .
0.6 <

0.5 - 3 4

’é Wave speeds in the small-jet and in the VLF flow regime

Ty %4 b, . i Additionally we have investigated the dependence of the

< 034 Fyy 5 1 azimuthal and axial wave speed of the small-jet and the VLF
02 - : Py 3 mode as a function of aspect ratio, respectively. Measure-
Tl EEERE ments of the frequency of wave speeds of traveling azi-
0.1 B

muthal waves in WVF and in MWVF in concentric cylinder

0.0

T

20

T T T T
30

N

40

50

systems with the inner cylinder rotating and the outer cylin-
der held at rest have been reported by C¢@sand King
et al. [38]. King and co-workers have performed measure-

ments on the dependence of the azimuthal wave spgeufs
FIG. 12. Maximum height of the amplitude,, - of the VLF  the classical Wavy modevhich they report on as WVFand
oscillations for successively increased cylinders from 8 to 50 vorti-S, of the second traveling wave in MWVF on aspect ratio
ces. For all measuremenf$N was adjusted to an amount of 0.84. (we use the labeling for the wave speeds of the WVF and the
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I=s oo+a—SJ 1
0.505 o ] SsfI')=Ssf*) T 1)

AyLF

0.500 ° T SuLr(I') = Syp(*) — T @

S’SJ

0.695 Mo 7 which are marked with the dashed curves in the Figs. 14 and
R0, 15. The results of the least-squares fits of the datsy{d)
0.490 - ~Onpm o, 4 andsy, ¢(I') are given in Table I. The measurement errors are
within the circles representing the data in the Figs. 14 and
0 " 2 2 40 15. A comparison of the Figs. 2 and 3[i&8] with the Figs.
r 14 and 15 presented here, reveals that the WVF modes, that
are the Wavy mode investigated by Kiagal. and the small-
FIG. 14. Dependence of the azimuthal wave sperg®f the  J€t mode investigated by us, show the same qualitative and
small-jet mode on aspect ratio for an average axial wavelexigth quantitative behavior of azimuthal wave speed on aspect ra-
=1.68 (I/N=0.84 recorded at Reynolds number R871 versus tio (up to the values of the constants; see Tahlevhereas it
aspect ratid". The dashed curve gives the least-squares fit to Eqis different for the wave spees, of the second traveling
). wave in the MWVF and the normalized frequensy ¢ of
the VLF mode. Since the dependencesgion I' was found
MWVF introduced by Coughlin and Marcu2l]). Their to be very weak'too weak to determine any functional de-
data suggestedladependence o, that can be described by pendence from the dat38], the dependence af, ( yields
functions that depend onIl/Depicting the Figs. 14 and 15, a quite good fit to Eq(2). This behavior also underlines the
where the dependence of the azimuthal wave spggaf the  different properties of the doubly periodic axisymmetric
small-jet mode and the frequency of the VLF mode normal-VLF flow compared to the doubly periodic azimuthally trav-
ized to the inner cylinder rotation frequensy, ¢ are plotted eling MWVF.
versus aspect ratio, allependence of these data on aspect
][atio also becomes obvious. Thus we fitted the data to the, Characterization of the bifurcation towards the VLF mode
unctions

The local behavior of systems near homoclinic orbits to
stationary points of saddle-focus type has been investigated

T L T T o numerically by Glendinning and Sparroy89]. In their
0.009 o_-o-'°"°— . analysis they obtained explicit results how a periodic orbit

o approaches homoclinicity as the control parameter is varied
. around the value at which they had homoclinicity. Summa-
0007 7° } rizing their results they found in one major case that, as the
/ parametef decreases to zero, the period of the orbit through
0005 / i the fixed point increases to infinify39]. They moreover de-
/ duce the equation

S
VLF
(o}
‘o
Yo
A

0.003 - - (period o= —(In w) (3

0 10 2 30 40 for the period of the single orbit ag tends to zero. An
r experimental verification was given by Mullin and Price

FIG. 15. Frequencies of the VLF-mode oscillatiogig nor- [40), for gxample. . -
. ) i : . The bifurcation diagram in Fig. 4 suggests such a behav-
malized to the inner cylinder rotation speed versus aspect ratio for

an average axial wavelengttid=1.68 (T/N=0.84, recorded at 'O" since the periods of the VLF oscillations become larger
Reynolds number Re383 for N>28 and slightly b,elow the tran- and larger, reducing the Reynolds number towards the criti-

sition to chaos foN<28. The dashed curve gives the Ieast-square§al value for t_he onset_ of the VLF mode. Th_is behavior yvas
fit to Eq. (2). also reported in a previous pageompare to Figs. 4 and 6 in

TABLE I. Values of the fit parameter for the aspect-ratio dependence of the wave speeds of the small-jet
and the normalized frequency of the VLF modeis the number of data points.

Fit to (1)

Re Ad n Sy () asg &

371 1.68 22 0.486 0.143 7.3%a0°7
Fit to (2)

Re A/d n SuLF () ayLF &

383 1.68 15 0.011 0.064 1.0820°8

3 or flow systems having more than 28 vortices.
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- < N 14-,(c) in 16-, (d) in 20-, (e) in 24-, and(e) in 42-vortex flow after
100 . . 4 a small jump in Reynolds number froex—0.006 toe=+0.006
°e ‘| over the critical value for the onséf/N=0.84). The scaling in the
axial velocityv, is different, thus one cannot compare the ampli-
0 0 . . tude heights of the different flow states due to these measurements.
-9 -1 -5
inte) logarithmic plot in Fig. 16b) and in Fig. 16c) a linear fit

only very close to the critical Reynolds number makes sense.
FIG. 16. Periodr of different VLF-mode oscillationga) for the ~ This behavior continues with increasing cylinder length until
10-, (b) for the 14-, and(c) for the 20-vortex flow recorded at the homoclinic behavior disappears.
I'/N=0.84, plotted versus the natural logarithm of the reduced Rey- From the measurements it is not possible to state whether
nolds numbek. the homoclinic bifurcation at onset of the VLF mode disap-
pears in 20-, 22-, etc., or at 30-vortex flow, because the
[15]). Applying Glendinning’s and Sparrow’s model to the change to a different behavior is not sharp. The analysis of
Taylor-Couette flow the system undergoes a homoclinic bithe experimental results only reveals that from the plots in
furcation at onset of the VLF-mode oscillations, which areFig. 16 it becomes convincing that the transition is ho-
homoclinic to the symmetric solution which becomes un-moclinic up to 20-vortex flow.
stable at Rg;, corresponding to a solution of saddle-focus To analyze the bifurcation to the VLF mode additionally,
type. we compare the buildup of this time-dependent mode after a
Figure 16 shows the plot of the periddof different VLF ~ small sudden jump above the critical Reynolds number in
modes versus the natural logarithm of the reduced Reynoldsmall and large aspect-ratio systems. Hence Fig. 17 shows
number this buildup of the VLF oscillations in 14+ig. 17a)] up to
the 42-vortex flow[Fig. 17f)], all recorded for a flow with
_ Re—Rey ¢ 4  T/N=0.84. The small jump in Reynolds number above the
®” TRayr @ critical value is marked with an arrow in the figures. They

reveal the quite different behavior of the small and large
for the 10-[Fig. 16@)], the 14-[Fig. 16b)], and the 20- aspect ratio systems.

vortex flow [Fig. 16(c)] at [/N=0.84. R, is again the Though we find a continuous increase in frequency with
critical Reynolds number for the onset of the VLF mode. Theincreasing values df, indicating that we deal with the same
figure reveals that the smaller the aspect ratio of the flow, th8ow mode, Fig. 15, the behavior at onset changes qualita-
better Eq.(3) is satisfied. While the linear fit in Fig. & is  tively: The transition to VLF mode at small as a sudden
quite satisfactory, the curve of the plot of the period versusonset to full amplitude—identified as homoclinic behavior—
reduced Reynolds number becomes slightly nonlinear in thevhile for largeI" the buildup of the amplitude displays a
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dynamic behavior one would expect for a Hopf-type bifur- 0
cation[11]. (a)
Furthermore, the VLF oscillations in 12-, 14-, and 16-
vortex flow have a zigzag structure whereas it is apparently
sinusoidal in the larger flow systems. This behavior has an-

other consequence, which we focus on in Sec. VII.

power {dB)

VI. PERIOD DOUBLING ON A TORUS

Until now we have presented an experimental study of an I LI )
additional “main sequence” to chaos in Taylor-Couette 0 0.0 0.08 012
flow, which is valid for wide wave-number and aspect-ratio f (Hz}
ranges in Taylor-Couette floywith radius ratio»=0.5) and
we thus stated that it may display a “general” behavior in
this flow system. After analyzing the onset of time depen-
dence and the transition to the VLF regime in 10- to 50-
vortex flow, we now concentrate on the transition to chaos. It
is amazing that, again, the flow exhibits the same scenario as
a transition to chaos in a wide parameter range, i.e., from 10-
to 50-vortex flow (and for A<<1.78&) the flow shows a
period-doubling-on-a-Torus route to chaos. Such scenarios
have been measured in 8-, 10-, 14-, 18-, 20-, 24-, 30-, and
34-vortex flow. Detailed measurements in 40- or even in
50-vortex flow are hard to perform, because transients be-
come very long; in fact the relaxation time of the system 0 0.04 008 012
grows with L? [41], i.e., in our system for the onset of the £ (Hz)
first period doubling up to approximately 70 h in 50-vortex
flow. In these system@l0—S0 vorticesonly the first period FIG. 18. Axial velocity power spectra of a period-doubling-on-
doubling of the VLF oscillation was measured to confirm 4.7orus scenario in 20-vortex flow slightly below the transition to
that the transition to chaos is the same in all considered flowhaos of a doubly periodic flow consisting of small-jet and VLF
systems, so we conject that the transition to chaos are alsfode at aspect ratib=16.8(I/N=0.84). Only the doublings of the
determined by period-doubling-on-a-Torus routes as meavyLF mode in the spectrum are depicte@ The velocity power
sured in the smaller aspect-ratio systems. spectrum of a period-2 torus at Reynolds numbe=B&9.3;(b) a

Experimental evidence for period-doubling-on-a-Torusperiod-4 torus at Re392.7.
has been reported, for example, in the following systems: In

an electrochemical reactigd2], convecting molten gallium ych faster small-jet mode appears at approximately
bounded by a rectangular bg43], a double pendulurd4], . ~2 2 Hz in the power spectra and thus, depicting the
and in an annular array of Raleigh-B&d convection pattern \nole spectra, the period-doubling peaks of the VLF mode
[45]. Another experimenft46] was reported i45]. The en-  \ould lie too close to be observable. The power spectra were
tire scenario had only been observed by Skeldon and Mulligg|culated from time series having 1048 576 data points
[44] and by Flessellest al.[45]. Theoretical investigations (apart from the time series recorded for Fig. 19, which has
have been made by Skeldon and Mulli#4], Franceschini  only 262 144 data points, reflected in the worse resolution of

[47], Kaneko[48], and Amdo et al. [49]. Skeldon and the’ power-spectrum plpt Figure 18 shows the velocity
Mullin, in addition to their experimental investigations, stud-

ied numerically the equations of motion of a parametrically

excited double pendulum which they derived from the La- 0
grangian, Franceschini found Torus-doubling bifurcations in
a truncated mode expansion of the Navier-Stokes equation,
Kaneko has published a numerical study of Torus-doubling
cascades in coupled maps, and Arde et al. studied nu-
merically a periodically forced normal form known to ex-
hibit a period-doubling cascade.

The onset of the Torus doubling occurs with the appear-
ance of the subharmoniey, /2 of the lowest frequency
wy_ e in the velocity power spectrum. This is shown in Figs.
18-21, where eight different axial velocity power spectra of 0 0.04 008 012
a period-doubling-on-a-Torus scenario in 20-vortex flow at f (Hz)
the transition to chaos of a doubly periodic flow consisting of
small-jet and VLF mode at aspect rafie=16.8 (I'/N=0.84) FIG. 19. The same as Fig. 18 for a flow at the transition point to
are depicted, for example. Only the doublings of the VLFchaos at Re393.1. Here the period-4 and the period-8 peaks are
mode in the spectrum are shown, because the peak of thiisturbed.

power (dB)

power (dB)
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FIG. 20. The same as Fig. 18 f@) a chaotic flow at Re394.9
where the period-4 peaks are disappeared (@h@ chaotic at Re 0 ! T T T T T (c)l
=395.1 where the period-2 peaks are split. X i
power spectra of a period-2 torus at Reynolds number Re -0} ; i
=389.3[Fig. 18a)] and a period-4 torus at Re892.7 (b). &.;
In Fig. 19 at Re=393.1 the appearance of additional - 8 4
period-4 and period-8 peaks in the power spectrum can be § ]
seen. The period-4 and period-8 peaks are split. Such split- g -&40 1 Hiy 10 1
tings of the subharmonics has been found experimentally by . ‘ |
Pfister[50], who explained this feature by a coupling of dif- | ‘ \ ‘
ferent time-periodic flow modes present in a very small - 60 . {8

2-vortex Taylor-Couette system corresponding to theoretical
investigations by Hornef51] who studied the effect of a
periodic perturbation on a nonlinear dynamic system under-
going a sequence of period doublings, numeri_cally. Horner FIG. 21. The same as Fig. 18 féa) a period-11 window at
"’?SS“med f[hat the degrees of freedom responsple for the pﬁé:394.4,(b) a period-6 window at Re395.0, andc) a period-5

riod doubling are coupled to a weak external periodic perturs . 1ow at Re=395.3.

bation of unknown origin or to other oscillating internal de-

grees of freedom which are observed otherwise in therior to the first onset of chaos. After passing the critical
system. Applying this model to the doubly periodic flow Reynolds number the flow undergoes an inverse cascade,
consisting of small-jet and VLF mode, the VLF mode is whereby the subharmonics disappear after splitting. This is
responsible for the period doublings and is coupled weaklyshown in Figs. 2() and 2@b) where first[Fig. 20a)] the

to the underlying small-jet mode, which corresponds to theperiod-4 and period-8 peaks disappeared and then the
weak external periodic perturbation. To demonstrate such period-2 peaks are splifFig. 20b)]. Figures 21a)—(c)
dynamical behavior Horner has studied a one-dimensionahows three examples of periodic windov&,a “period-11

map exhibiting a period-doubling sequence which hewindow” at Re=394.4, (b) a “period-6 window” at Re
coupled to a periodic function and found splittings of the =395.0, andc) a “period-5 window” at Re=395.3. Due to
subharmonics in the corresponding power spectra. Additionthe intensities of the subharmonic peaks we identify the state
ally he found that the periodic perturbation destroys higheiin Fig. 21(b) as a period-6 window and not as a doubled
bifurcations. This is in accordance with our experimental obperiod-3 window. According to the simple model of the one-
servations where we never found higher subharmonics thagimensional logistic equation the period-11 window should
those corresponding to a period-8 in the doubling cascadappear for higher Reynolds numbers than the period-6 and

0 004 0.08 012
f (Hz)
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FIG. 22. A period-doubling-on-a-torus scenario in 14-vortex g1 23 Bifurcation cascades of period-doubling-on-a-torus

flow at aspect ratid'=11.76(I'/N=0.84. Left column: Projections  gcenarios to the chaotic regime for three different flow systems. The
of three-_dlmensmna! reconstructions of the attractors in phasgnqerlying small-jet mode was filtered and only the successive ex-
space. Right column: The corresponding Poinc#etions as indi-  {ama of the axial velocity component are plotted while the Rey-

cated by the line in the third quadrant in the left figures. From the, 45 number is ramped quasistatically A bifurcation diagram of

top to the bottom the simple torus, consisting of small-jet and VLFio 14-vortex flow forl'=11.76 (I/N=0.84), where the Reynolds
mode, at Re-410, the doubled torus at R&18, a chaotic attractor |, nber was increased quasistaticallyl withiARe/At=1.63

at Re=422, and an attractor recorded in a period-3 window at Re><10’4 g1 (b) the bifurcation diagram of the 20-vortex flow for

=423. I'=16.8 (I'N=0.84), the Reynolds number was increased quasis-
period-5 windows, but one should not overestimate thigatically within ARe/At=3.26<10"" s™*, and(c) shows a bifurca-
model. Further analysis of period doubling routes to chaos i diagram of the 24-vortex flow fof =20.16(I/N=0.84. The
a very small annulus having two vortices have shown tha S);?:tld_sl G&Jlmotﬁrs_lwas increased  quasistatically  within
this simple model is not suitable to describe the dynamics o ' '
the period doublings to chaos even in such a small system
where the dynamics is expected to be simpler than in largeFrom the top to the bottom the torus, consisting of small-jet
aspect ratio$52,53. and VLF mode, at Re410, the doubled torus at R&18, a
Another example is given in Fig. 22 where a period- chaotic attractor at Re422, and an attractor recorded from a
doubling-on-a-torus scenario in 14-vortex flow at aspect ratidime series recorded in a period-3 window at=R3.
I'=11.76 (I''N=0.84 is shown by exhibiting the two- In Fig. 23@)—-23(c) bifurcation cascades to the chaotic
dimensional projections of the reconstructions of the attracregime are shown for three different flow systems. Here the
tors in phase space in the left column and the correspondingnderlying small-jet mode was filtered and only the succes-
Poincaresections of these attractors in the right column.sive extrema of the axial velocity componentwere plotted
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while the Reynolds number was ramped quasistatically
within ARe/At~3x10 % s L. Figure 23a) shows a bifurca-
tion diagram of a period-doubling-on-a-torus scenario in the
14-vortex flow forI'=11.76 (I''/N=0.84). The figure reveals
period doublings up to period-4 and a periodic period-3 win-
dow in the chaotic regime. Obviously the bifurcation from
period-1 to period-2 is chaotic, which is a characteristic for
the smaller flow systems from 10 up to 16 vortices. In Fig.
23(b) the bifurcation diagram of a period-doubling-on-a-
torus scenario in the 20-vortex flow fbr=16.8 (I''N=0.84)

is depicted. Prior to the onset of chaos at396.8 the flow
exhibits a doubling cascade up to period-2. Two periodic
windows with period-2 at Re400 and with period-3 at Re
=405 are visible. Figure Z8) finally shows a bifurcation
diagram of a period-doubling-on-a-torus scenario in the 24-

v, (arb. units )

vortex flow for I'=20.16 (I''N=0.84). This flow shows a ’é
doubling cascade up to period-4 before it becomes chaotic 5 2|
and a wide period-3 window in the chaotic regime at Re 5 |
~393. The figures reveal that, first, the Reynolds-number s o

ranges of the doubling sequences become more and more
narrow for increasing cylinder length, which was expected
from Fig. 13 where one observes that the Reynolds-number
ranges of occurrence of the different flow states shrink for
increasing cylinder lengths, and secondly, the doublings be-
come more and more “perfect” though they are more and
more difficult to record, because the the length of the tran-
sients grows quadratically with cylinder length. Due to this FIG. 24. Two bifurcation diagrams of period-doubling-on-a-
fact it becomes nearly impossible to record such doublingorus scenarios in the 14-vortex flow recorded for slightly different
sequences for even longer cylinders. aspect ratios. Only successive extrema of the axial velocity compo-

Figure 24a) and 24b) shows two bifurcation diagrams of nentv, are plotted while the Reynolds number is ramped quasis-
the period-doubling-on-a-torus scenario in a flow with thetatically. For these recordings the Reynolds number was increased
same vortex numbeX, hereN=14, but for slightly different ~quasistatically within ARe/At=1.63<10* s™%. The diagram
aspect ratios to demonstrate the strong dependence of t§BOWN in(a) was recorded dt=146.9 mm(I'/N=0.8394, in (b) at
bifurcation sequences on the geometrical boundary condk=147-2 mm(I/N=0.8411.
tions. For these recordings the Reynolds number was in-
creased quasistatically withinRe/At~3x10 4 s 1. From
Fig. 24a) to Fig. 24b) the cylinder length was increased
from L=146.9 mm toL=147.2 mm, respectively. This
yields aspect ratio§'=11.752 (I'’'N=0.8399 for the flow
shown in Fig. 24a) and I'=11.776 (I'/'N=0.8411 for the
flow shown in Fig. 24b). While the period-2 range is rela-
tive robust against this small changes in cylinder length, the
period-4 sequences and the periodic windows in the chaotic
regime are very sensitive to the change of the boundary con-
ditions, which is expected for chaotic flows.

To demonstrate the measured structure of the periodic ,
windows, in Fig. 2%a) the doubling sequence which was L B R
formerly depicted in Fig. 2®) is shown with extensions of
the regime around the two visible periodic windows. Figure
25(b) reveals a doubling from period 2 to period 4 and in the
second periodic window a doubling from period 3 to period
6 becomes visible. These doublings are not observable in 399.5 4005
Fig. 25a), which is due to the velocithARe/At with which Re 1050 4055 406

; . . . ) 6.0
the time series are recorded. While the extended plots are Re
recorded withilMARe/At=3.12x10"° s ! the bifurcation dia-

gr?m in Fig. 253? was recorde;d withidRe/At=3.26x10"* FIG. 25. The doubling sequence which was formerly depicted in
s 7, i.e., approximately ten times faster than for the extenfig. 23b) is shown with extensions of the regime around the
sions of the periodic windows. This demonstrates the senstwo visible periodic windows. (b) reveals a doubling from
tivity of the recordings on the ramping rate and on the tranperiod-2 to period-4 and ifc) a doubling from period-3 to period-6
sients which increase strongly with increasing cylinderbecomes visible. The extended plots are recorded within

length. This also explains why the period doubling in theARe/At=3.12x10"°s™1,

v, (arb. units)

V,, (arb. units)
=

Vy, (arb. units)
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structure of the VLF-mode oscillations cannot be observed in
the bifurcation diagram in Fig. 4.

VII. QUANTITATIVE CHARACTERIZATION
OF THE TRANSITION TO CHAOS

Many methods are available to characterize time series
measured on nonlinear dynamical systems. So one can cal-
culate power spectra using methods like fast-Fourier-
transform (FFT) algorithms as shown in the last section
(Figs. 18—-2). But these methods based on linear system
theory are limited giving a quantitative characterization of
the transition to chaos, estimating the critical Reynolds num-
ber for such a transition or comparing different chaotic time
series. ‘ ‘

More detailed results to characterize the transition to 0004 T " " ] T
chaos can be obtained with powerful methods developed
within the theory of nonlinear systems. These mathematical
methods, which are state of art, cannot be described in detalil
here. So we restrict the mathematical review to a brief sum-
mary of the methods we actually applied here. To classify
the time series

va(te)}, sefl,...Nga— (de—1)7/T,}, )

wheredg is the embedding dimensioMy, the number of
sampled data points; the delay time, and , the sampling
time, one first reconstructs the phase spaceather embed-
ding spacg of the nonlinear dynamical system. We used
Takens’ delay time coordinat¢§4], where a vector in the
embedding space is given by

)_()(ts) =(vts), v (ts+ 7),... v, (ts+ 7(dg—1))).  (6) . . . .
when time proceeds. In an optimal reconstruction, for which
For convenience we shall write, instead ofx(t,). we require homogeneity of the local flow, points on neigh-
To find optimal embedding parameters, i.e., the propeboring trajectories remain neighboring for small evolution
delay timer and a sufficiently large embedding dimensiontimes. The first minima oA 4_(7), corresponding to a maxi-
de, one has to calculate the fill factdg_(7) (a measure of mum homogeneity of the local flow, provide proper delay
the utilization of the embedding space in any embeddingimes; the embedding dimension can be obtained from the

dimension or the integral local deformatiofy_(7) (a mea- ~ convergency at these minima. For details F&.
sure of the homogeneity of the local flaw Figure 26a) illustrates the fill factor for a state recorded

fde(”

0.003

0.002

[AdE(t)Ta]/r

0.001

FIG. 26. Fill factor(a) and averaged integral local deformation
(b) versus delay timer normalized to the sampling raf€, for
embedding dimensiondg=2-12 for a time series recorded at Re
=384 taken from the scenario shown in Fig(&5

The f|” faCtOI‘ |S deflned by at Re:384 |n 20-V0rteX ﬂOW fOfF/N:084 The t|me Se_l’ieS
is taken from the scenario shown in the bifurcation diagram
1 EI’:IE;.VdEk( 7) |n' Fig. 25a). de(r) was cf';llculated for embeleng dimen-
fa.(7):=10G10 NS T vy ) (7)  sionsdg=2-10 and delay timegT,=0-100(T, is the sam-
ref < de> pling rate of the digitally recorded time serie$he intervals

. . between the arrow# and B indicate proper delay times.
where Vg (7) is the volume of thekth parallelepiped de- g e 26h) shows the calculation of the corresponding in-
fined by (dg+1) corner points which are arbitrarily distrib- tegral local deformatiolLD). The figure showing the ILD
uted on the attractoVy,) is a normalization by the mini- is plotted in the same interval as the fill factdry (7) is

mum enclosing box of the attractor in each embeddinthormalized by#T,, which is often convenient for chaotic
dimensiondg andN s is the number of reference points. The time serieg56,58. The result of this calculation agrees with
first maxima of the fill factor, corresponding to maximum the result obtained from the fill factor, i.e., the local flow is
spanned attractors in the embedding space, provide propgbmogeneous when the attractor is maximum spanned. The
delay times. A sufficiently large embedding dimension carfigure reveals that there is a widerange for each state
be obtained by the convergency of the qualitative structure ofyhich yields sufficient delay times for the calculation of the
the fill factor for successively increasing embedding dimencorresponding attractor invariants, again indicated by the in-
sion. A detailed description of this method can be found interval maked by the arrow& and B. The time series is
[55-57. recorded in the beginning of the scenario depicted in Fig.
To define the integral local deformatiaky_(7) one cal-  25(a). Evaluations of the fill factor and ILD for higher Rey-
culates the evolution of successive distances between a refolds numbers are quite similar, so that one can choose the
erence point and the center of mass of neighboring pointsame optimal embedding parameter for all data sets for the
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reconstructions used to characterize the scenario. ]
To estimate the fractal dimension of the reconstructed

strange attractors in phase space we calculate the correlation

dimensionD, [59] "

. logid C(R)] -
od D2_) = = - - 10
C(R)«RP2—D, FL'TO G (8) N

(b)

Alog,o [CL(RI]
Alog,yiR)

Alogqy [C(R)]/Alogm(R)

R is the scaling radius an@(R) is the correlation integral,

Nref Ndat 107! g
CR~1— 2 §_ 2 o(R=Ixi=x.  (© .
ref j=1 Ndati=1 =W s
. o . . < 0" _ Blog [C1RI] s
where o is the Heaviside functionNy,; is the number of . T BlogglR) 2!
. . . .. 10 g
points in phase space, aiNj;~=3000 is a sufficiently large . =
number of reference points. R " o ° " 100
Even in the laminar flow regime the phase dynamics of R(%) R{%)

the VLF mode leads to a very disproportionate density of the

reconstructed attractor in phase space and the correspondifift column and the corresponding local slopésght column

Poincare section of the state depicted in the top of Fig. 22Versus scaling radiug from dg=2-12 for Re=395.7[(a) and (b)]

one sees that the density of points is much higher in th&nd Re=397.4[(c) and(d)_] for two different time series taken from

upper-left quadrant than in the other three quadrants of thi® Scenario shown in Fig. 5.

graph showing the Poincasection. This is due to the fact

that the VLF oscillation, especially in the smaller cylinders, the dimension calculation, because due to noise one finds a

is not sinusoidal but shows a “zigzag” structure as depicted‘knee” in the double logarithmicC(R) plots at approxi-

in Figs. 3a) and 3b), for example. While the oscillation matelyR=3%. Below that value the trajectories tend to fill

only needs approximately 15 sec to go through the steethe embedding space in any dimension, leading to a correla-

slope of the periodic curve it needs about 9200 sec to gtion dimensionD,=dg. Above this “knee” the fractal ge-

through the flat slope in Fig.(8), whereas in Fig. @) the  ometry of the strange attractor can be detected. In Figb) 27

rising lasts about 120 secs. This dynamical behavior, ofind 27d) the local slopegi.e., D,) of the correlation inte-

course, is reflected in the dynamics in phase space, leading gal, plotted as a function of the scaling radids are de-

an underestimation of the fractal dimension by calculatingpicted. Both plots show an interval corresponding to the lin-

the correlation dimensioB,, because during the slow rising ear fit of the slopes in th€(R) plots. For Re=395.7 in an

the dynamics in phase space is similar to a limit cycle mov-interval betweerR=3 and 7% and for Re397.4 in an in-

ing very slowly. An estimation of the correlation dimension terval betweerR=3 and 4%D, shows sufficient conveg-

after Grassberger and Procaccia yields a value oénce, yielding the correlation dimensiary.

D,=1.85+0.08 for the state in 14-vortex flow depicted in  The calculated results for the fractal dimension are of

the top of Fig. 22, and the calculation of the local slope ofsmall significance when they are not discussed as a function

the correlation integral for the chaotic state depicted in theof Reynolds number and boundary conditions of the system.

third row of Fig. 22 shows no convergence, for example. Figure 28 shows that the evolution of the correlation dimen-
From this point of view fortunately the structure of the sion D, yields a useful quantitative characterization of the

VLF oscillations changes for increasing cylinder length to aperiod-doubling-on-a-torus route recorded in 20-vortex flow

more sinusoidal oscillation, as shown in the comparison irfor I'=16.8 (I'N=0.84). Figure 28a) shows this period-

Fig. 17 between the 12-, 14-, 16-, 20-, 24-, and 40-vortexdoubling-on-a-torus scenari@lso depicted in Fig. 28)]

flow. Therefore for vortex numbers larger or equal than 20 itand Fig. 28b) the corresponding evolution of the correlation

becomes possible to perform such calculations. dimension as a function of Reynolds number. From=R84
Figure 27 illustrates the results obtained from two experito Re=~390 one finds a period-1 torus. At R890 a period-

mental attractors. The first time series is recorded béRev  doubling bifurcation appears, leading to a period-2 torus, and

=395.7), and the second aboy&e=397.4 onset of chaos. at Re=396.8 the transition to chaos occurs. From~384 to

In Fig. 27@) the double logarithmic plot of the correlation Re~390 the estimated correlation dimensionDs~2, as

integral versus radius is shown for R895.7, in Fig. 27c) expected, whereas between~+390 and Re-396, where the

for Re=397.4. The radius is given in per cent of the globaldoubled torus appears, the estimated correlation dimension

attractor extension. Both attractors contdily,=262 144 takes values betweel,~2.15 andD,=2.2. For this state

data points in the resolution of a 14-bit ADC. We choseone also would expect an estimated valudgf=2, but this

N,s=3000 reference points for an estimate of the correlatiorincrease of the calculated value is obviously due to the fact

integral. In the plot€C(R) is drawn for embedding dimen- that the trajectories of both tubes of the doubled torus come

sionsdg=1-12. The dashed lines illustrate the fit of the very close to each other in some regions in phase space,

slopes yielding the correlation dimensib. For Re=395.7  following that the value of the correlation integr@(R) is

one obtaind ,~2.21+0.09; for Re=397.4:D,~2.46+0.11.  locally increased in these regions, because the Grassberger-

Obviously one cannot perform the required lirfiit-0 for ~ Procaccia algorithm counts more neighboring points of a
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“breakdown” of the azimuthal wave coherence of the un-
derlying time-periodic Taylor vortex flow, and we argue that
this shift of the phases of oscillations in neighboring vortices
causes the occurrence of the VLF mode: The interaction of
the VLF mode with the underlying time-periodic flow modes
reveals that the VLF mode aused by the strength of cou-
pling of the phases of the underlying time-periodic flow
modes These modes cause a variation of the wavelength of
the vortices in the flow. But there is still a coupling between
these modes and an axial phase diffusion. Furthermore the

v ( arb. units )

3.0F ' ' ]

25

2.0

wave speeds of the time-periodic flow modes depend on the
wavelength of the vortices. Due to this a local disturbance of
the wavelength leads to a change in the wave speed. A shift
of the phases between the oscillations of neighbouring vor-

tices occurs. Exceeding the critical threshold for the onset of
the VLF mode, these disturbances prevail the axial phase
diffusion. Following this we stated that these phase differ-
ences are most likely the driving forces for the VLF mode
[15].

FIG. 28. (a) Period-doubling-on-a-torus scenario depicted in In the present paper we concentrated on a restricted wave-

Fig. 25@a). (b) corresponding evolution of the correlation dimension Iength_ range.but a variable aspect-ratio range. It was found
as a function of Reynolds number. that, increasing the Reynolds number, f91.781 one

observes—independently of the number of vortices of the

given reference poirlil,,; and scaling radiuR compared to  flow system—always the same sequence of states. This s,
regions in phase space where both tubes of the doubled torfjst, the transition from Taylor vortex flowTVF) to the
are sufficiently separated. At Rg=396.8 the transition to 0onset of the small-jet mode via a Hopf bifurcation going
chaos occurs going along with a sudden jump in the correla@long with a simultaneous breaking of the axial symmetry of
tion dimension td,~2.45. Up to the two periodic windows the flow; second, the onset of the VLF mode via a ho-
at Re~400 and Re-405, where the estimated correlation moclinic bifurcation for smaller cylinders where the under-
dimension is in agreement with the expected values, thi&/ing WVF is still the small-jet modétherefore we have &
value of D, keeps nearly unchanged. After the second periforus; an(_:I finally, t_he transitions to chaos, which were found
odic window at Re-405 there is a secorigudden increase {0 be period-doubling routes oFf tori.
of the correlation dimension tD,~2.55. A model of interacting time-dependent Taylor vortex flow
has been proposed by L'vov, Predtechensky, and Chernykh
[30-32,6Q. According to their experiments fayj=0.63 and
N~2.0d, the first unstable time-dependent mode is the oscil-
We have presented an experimental study of the verykation of the outward boundarig¢§1]. The theory considers
low-frequency VLF mode, a very slow time-periodic oscil- the oscillations of outward jets in each Taylor vortex pair as
lation with azimuthal wave numben=0 in axisymmetric an independent nonlinear object obeying a simple Hopf bi-
Taylor-Couette flow. First results of the interaction of VLF- furcation to a “fast” limit cycle. There is no more complex-
mode oscillations with different underlying time-periodic ity in each vortex pair in this approximatid1,32,63. The
Taylor vortex flow(WVF) modes concentrating on smaller authors claim that this phenomenological model can be de-
aspect ratios—especially the 10-vortex flow—covering theived from the Navier-Stokes equations in much the same
entire wavelength range of the underlying Taylor vortex flowway as the Ginzburg-Landau equati81]. This interaction
had been previously reported fih5,34]. producesa global amplitude and phase modulation of all the
The measurements presented here cover a parametateracting time-dependent vorticegoing along with a
range that reaches from the onset of time-dependence via tieeakdown of the azimuthal wave coherence of the time-
onset of the VLF mode to the transition to chaos in thedependent outflow jets. The effect can be observed as a split-
wavelength ranga<1.7& (d is the gap width of the cylin- ting of the fundamental “fast” frequency in the velocity
den appearing in flow systems having 10-50 vortices. power spectrum and a slow modulation of the amplitu@és
The VLF mode qualitatively and quantitatively differs the time-dependent outflow jefswith a corresponding low
from all other known time-periodic flows in the Taylor- frequency peak in the velocity power spectrum arising with
Couette system. It always occurs as a secondary or higheharacteristic time scales of the order of the inverse line
time-dependent instability. It was shown that its occurrencevidth ij;tl. Thus the authors refer to this effect as a “slow
depends on the strength of the spatial coupling of the oscilmodulation” of the spatiotemporal envelopes of the oscilla-
lations in neighboring vortex pairs of the underlying WVF tions of the underlying outflow jets. From the theoretical
modes. point of view this slow modulation appears due to fundamen-
All experimental observations support the conjecture thatal resonant relations between the nonlinear modes.
there is acausal connection between the appearance of the There are several analogies between the model of inter-
VLF modeand the presence of the underlying time-periodicacting time-dependent Taylor vortex flow, assuming a weak
flow modes. At onset of the VLF mode one observes anteraction between the adjacent time-dependent vortices, the

1.5, \ 1 ' 1 7
385 395 405

VIIl. DISCUSSION AND CONCLUSION
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experimental observations of the slow modulation reportedvorkers has shown that the VLF mode may appear also in a
in [31,32, and the VLF mode presented here. Only some aravide radius-ratio range. In a model proposed by these au-
pointed out here: First, the transition from Taylor vortex flow thors, a slow modulation of the underlying oscillations of the
to time-periodic Taylor vortex flow in our experiment takes different outflow jets which can be identified with the VLF
place as the onset of the small-jet mode via a Hopf bifurcamode, also appears as a secondary time-dependent instability
tion, satisfying the main assumption of the model, that thecovering the whole parameter range.
first unstable time-dependent mode is the oscillation of the We have shown that the interaction of different stationary
outward boundaries. Second, the onset of the “slow moduand time-dependent modes appearing in the flow system
lation” [31,32 as well as the onset of the VLF mode can bewhich can be prepared definable and investigated carefully in
observed as a splitting of the fundamental “fast” frequencya high-precision experiment can help to give a basis for the
of the small-jet mode in the velocity power spectrum and aunderstanding of pattern formation and transition to weak
slow modulation of its amplitude going along with the ap- turbulence in Taylor-Couette flow. Following our argument
pearance of a corresponding low frequency peak in the vethe appearance of the VLF mode displays a universal prop-
locity power spectrum and exhibiting similar characteristicerty for Taylor-Couette flow.
time scaleqcompare Fig. 3 if31] or Fig. 12.3 in[32] and
Fig. 3 in this paper Third, the onset of the global phase
modulation in[31,32, as well as the onset of the VLF mode
[15], is caused by a breakdown of the azimuthal wave coher- We thank Tom Mullin for reading the manuscript care-
ence of the underlying instability of the outflow jet. fully and many productive discussions, Alexei Predtechen-
To conclude, we have presented experimental investigasky for the translation of Ref.60] and for a helpful intro-
tions of the VLF mode in Taylor-Couette flow covering the duction to and a fruitful discussion about the “theory of
whole wavelength and a wide aspect-ratio range up to flovinteracting time-dependent Taylor vortex flow.” We thank
systems having 50 vortices. We have proposed a mechanisAxel Sommerfeldt who performed some of the measure-
for the onset of this mode and have found that—in a wavements shown in Figs. 13, 15, and 16 and writing the program
length rangen<1.78—the flow always shows the same for the data recording. Finally we greatfully acknowledge the
transition to weak turbulence, i.e., via period-doubling-on-afinancial support by the Deutsche Forschungsgemeinschaft
torus. A comparison with investigation by L'vov and co- under Grant No. DFG Pf210/3-2 and Pf210/3-3.
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