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We performed an extensive numerical study of a two-dimensional reaction-diffusion system of the activator-
inhibitor type in which domain patterns can form. We showed that both multidomain and labyrinthine patterns
may form spontaneously as a result of the Turing instability. In the stable homogeneous system with the fast
inhibitor one can excite both localized and extended patterns by applying a localized stimulus. Depending on
the parameters and the excitation level of the system stripes, spots, wriggled stripes, or labyrinthine patterns
form. The labyrinthine patterns may be both connected and disconnected. In the stable homogeneous system
with the slow inhibitor one can excite self-replicating spots, breathing patterns, autowaves, and turbulence. The
parameter regions in which different types of patterns are realized are explained on the basis of the asymptotic
theory of instabilities for patterns with sharp interfaces developed by us in Phys. Rev. E53, 3101~1996!. The
dynamics of the patterns observed in our simulations is very similar to that of the patterns forming in the
ferrocyanide-iodate-sulfite reaction.@S1063-651X~96!14811-X#

PACS number~s!: 05.70.Ln, 82.20.Mj, 47.54.1r

I. INTRODUCTION

Pattern formation and self-organization are among the
most fascinating phenomena in modern science that are ob-
served in physical, chemical, and biological systems of very
different nature~for the books and recent reviews on this
subject see@1–13#, where many references to the original
works can also be found!. As a rule, self-organization is as-
sociated with Turing instability of the homogeneous state in
the nonequilibrium systems and spontaneous formation of
patterns~dissipative structures! in them as the excitation
level of the system~or some other parameter! is varied
@1–8,10,12#. At the same time, when the homogeneous state
of such a system is stable, by applying a sufficiently strong
perturbation one can excite static, pulsating, and traveling
patterns including solitary patterns—autosolitons~AS!
@9,11–14#.

Consider, for example, chemical patterns forming in the
ferrocyanide-iodate-sulfite~FIS! reaction in a gel reactor
@15–17#. In a typical experimental setting a pattern may form
spontaneously as a result of the instability of the homoge-
neous state or can be excited by a short localized external
perturbation of the system. The patterns forming in both
these cases do not have any qualitative differences. They are
essentially the domains of high and low concentrations of
certain substance separated by relatively sharp walls. The
pattern may have sophisticated geometry and in general may
show very complicated spatiotemporal behavior. The proper-
ties of the patterns do not significantly depend on whether
the system is monostable or bistable.

It appears that domain patterns forming in very different
systems may in fact have many common features. This has
recently been noticed in the case of static domain patterns
forming both in equilibrium and nonequilibrium systems,
where a certain set of domain shapes, such as spots, stripes,
multidomain and labyrinthine patterns, and the transitions

between them, has been observed@18#. The same conclusion
can be extended to the dynamic patterns in nonequilibrium
systems. Indeed, traveling, pulsating, self-replicating, and
stochastically oscillating patterns are observed in the systems
as diverse as autocatalytic reactions@8,15–17#, semiconduc-
tor and gas plasma@10–14,19#, or premixed flames@20–22#.
All this suggests that there exists a universality class of the
nonequilibrium systems in which pattern formation and self-
organization scenarios are essentially the same.

Another important question raised by the experiments is
to identify the totality of possible types of patterns and their
behaviors in the systems under consideration, and to under-
stand the requirements the system should meet in order to be
able to produce one type of pattern or the other.

In the present paper we will study a model which is a
typical representative of the pattern-forming systems whose
phenomenology was discussed above. We will show that the
type of patterns that form in this model is determined mainly
by the relationship between the characteristic length and time
scales of the systems and the way the system is excited. We
will also show that by changing only these length and time
scales and choosing an appropriate form for the external
stimulus one can make the system form practically all kinds
of patterns, both static and dynamic, that are observed in the
experiments.

Our paper is organized as follows: in Sec. II we discuss
the physical mechanisms of pattern formation phenomena in
reaction-diffusion systems of the activator-inhibitor type, us-
ing a combustion model as an example, and introduce a
simple model which we study numerically; in Sec. III we
present the results of a systematic numerical study of the
reaction-diffusion model and give qualitative explanations to
the effects seen; in Sec. IV we use the general asymptotic
theory of instabilities developed by us in Ref.@23# to identify
the parameter regions in which one or the other type of pat-
terns is observed and compare these regions with the results
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of the simulations; we also give more substantial quantitative
explanations for the pattern behaviors that are observed bas-
ing on the interfacial dynamics approach; and finally, in Sec.
V we compare our results with various experiments and draw
conclusions.

II. MODEL

The model which describes the phenomenology of pattern
formation in many nonequilibrium systems is a pair of
reaction-diffusion systems of the activator-inhibitor type,

tu

]u

]t
5 l 2Du2q~u,h,A!, ~1!

th

]h

]t
5L2Dh2Q~u,h,A!, ~2!

whereu is the activator,h is the inhibitor,l andL are the
characteristic length scales, andtu andth are the character-
istic time scales of the activator and the inhibitor, respec-
tively, q andQ are certain nonlinear functions, andA is the
bifurcation parameter. Equations~1! and ~2! have been ex-
tensively used to study pattern formation in various nonequi-
librium systems. In particular, they describe electron-hole
and gas plasma, various semiconductor, superconductor, and
gas-discharge structures, systems with uniformly generated
combustion material@10–14#; chemical reactions with auto-
catalysis and cross catalysis@2,6,8#; models of morphogen-
esis and population dynamics in biology@4#. Some systems
with phase transitions, such as diblock copolymer blends and
ferroelectric semiconductors, are also described by equations
which can be reduced to Eqs.~1! and ~2! @24–26#.

Pattern formation in the systems under consideration is
associated with a positive feedback of the activatoru which
results in ‘‘self-production of the activator substance,’’ this
process of self-production is controlled by the inhibitorh
that suppresses the growth of the activator. It is these two
competing processes that give rise to different kinds of pat-
terns in these systems.

The meaning of the variablesu andh can be most easily
understood for the system with uniformly generated combus-
tion material @11,12#. Consider combustion process in the
flow reactor consisting of a chamber placed between the two
porous slabs which are being cooled. The mixture of fuel and
oxidizer is pumped through the narrow reactor region be-
tween the slabs where it is ignited. Phenomenologically, this
system may be described by the equations for the mass dif-
fusion and the heat conductance which include the reaction
terms, averaged over the thickness of the reactor region. If
n is the concentration of the fuel andT is the temperature of
the mixture, these equations have the form:

]n

]t
5DDn1G~n!2R~n,T!, ~3!

cr
]T

]t
5kDT1ER~n,T!2W~T!, ~4!

where G5(n02n)/tn is the rate of the fuel supply,
R(n,T)5an exp(2Ea /T) is the reaction rate,Ea is the acti-

vation energy,E is the reaction heat anda is a coefficient;
W(T)5cr(T2T0)/tT is the heat removed from the mixture,
r is the density,c is the heat capacity of the mixture,T0 is
the temperature of the environment;D andk are the diffu-
sivity and the thermal conductivity, respectively,tn and tT
are time constants, andD is the two-dimensional Laplacian.
In this system the activator is the temperatureT, and the
inhibitor is the concentrationn. Suppose that the system is
initially in the low-temperature state. Now, if a localized
region of the mixture is heated up, the rate of the reaction in
that region will rapidly increase, thus producing more heat
and igniting the neighboring areas. However, this process
cannot go forever, since as the reaction proceeds, the fuel is
being used up, which in turn decreases the rate of the reac-
tion. Thus, a positive feedback is realized with respect to the
temperature and the negative feedback with respect to the
concentration. If we introduce the variablesu5T/Ea ,
h5n/n0, l5AktT /cr, L5ADtn, andA5an0EtT /crEa ,
we will arrive at Eqs.~1! and ~2!.

Pattern formation is most pronounced in chemical and
biological systems@1–6,8,15–17# where the processes of
self-production of matter are responsible for it. However, in
the real situation such systems are extremely complicated.
Nevertheless, it is often possible to reduce the description of
these systems to a pair of reaction-diffusion equations of the
activator-inhibitor type@1–6,8#. A particularly simple model
of this kind is the ‘‘cubic’’ model, which is described by
Eqs.~1! and ~2! with

q5u32u2h, ~5!

Q5u1h2A. ~6!

This model will be studied numerically and analytically in
the subsequent sections.

Kerner and Osipov showed that the properties of the pat-
terns and pattern formation scenarios in the systems de-
scribed by Eqs.~1! and ~2! are chiefly determined by the
parameterse5 l /L and a5tu /th , and the shape of the
nullcline of Eq.~1! for the activator@10–12#. In many cases,
including the cubic model and the model described by Eqs.
~3! and ~4!, this nullcline isN-shaped~see Fig. 1!. In these

FIG. 1. The nullclines of Eqs.~5! and ~6!.
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systems static, pulsating, and traveling patterns may form at
different values of the parameterse anda.

Whena!1 ande*1, that is, when the inhibitor is slower
and shorter-ranged than the activator, only traveling patterns
may exist. In the limite→` ~or, more precisely, forL50)
the properties of such traveling patterns were studied in de-
tail in both one-dimensional and higher-dimensional cases
~see, for example,@2,3,5,8# and references therein!. In the
other limiting casee!1 anda*1, that is, when the inhibitor
is long-range and fast compared to the activator, only static
patterns may form@10–12#. These patterns are essentially the
domains of high and low activator values separated by the
narrow walls~interfaces! whose width is of orderl . Travel-
ing, static, and pulsating domain patterns may form when
both e!1 anda!1.

Let us elucidate the physics of the formation of static,
traveling, and pulsating patterns, including the simplest
patterns—AS~Fig. 2!, using the combustion system de-
scribed by Eqs.~3! and~4!. First of all, it is clear that if both
the characteristic time and length scales of the variation of
the concentrationn are much smaller than the characteristic
scales of the variation of the temperatureT, no patterns will

form. Indeed, if a localized region of the system is ignited,
all the fuel will burn down very fast in that region and the
flame will not be able to propagate, so after a short time after
removing the heat source the flame will extinguish. Different
situation is realized if the diffusivity of the fuel is much
smaller than the thermal diffusivity and the characteristic
time scale of the temperature relaxationtT due to the heat
exchange between the mixture and the porous slabs is much
shorter than the characteristic time scaletn of the concentra-
tion variation determined by the rate of the fuel supply. Then
the conditionsa!1 ande*1 may be satisfied and the pat-
terns in the form of traveling flames may be excited in the
system. The existence of traveling patterns is due to the fact
that because of high heat conductance the region of size of
orderl5AktT /cr around the flame is heated up and ignited.
As a result, the released heat ignites the neighborhood, and
so on. This leads to the formation of a flame front moving
with the speedv. l /tT @Fig. 2~a!#. The fuel after the front
burns down, so the front is followed by the back separated
from the front by the distance of ordervtn@ l . Because of
the external supply the fuel replenishes at the distances of
ordervtn away from the back.

If the diffusivity of the fuel is much larger than the ther-
mal diffusivity of the mixture, the conditione!1 and
a*1 may be satisfied. Then a traveling flame front will stop
since high diffusion of the fuel will result in the decrease of
the fuel concentration ahead of the front and lead to the
formation of the static pattern in the form of a flame cell
@Fig. 2~b!#. The existence of such static pattern is due to the
fact that the flame is maintained by the diffusive influx of the
fuel from the neighborhood, where it is constantly supplied
through the porous slabs. It is clear that when bothe!1 and
a!1, pulsating flames, or more complex dynamic patterns,
may form in the system@Fig. 2~c!#. The cell may first ex-
pand, but as it cools down and the fuel is used up in it, the
front may stop and start traveling back@11,12#.

From the physical considerations above it follows that in
order for patterns to be able to form, eithere or a has to be
small. Kerner and Osipov suggested the classification
scheme for the reaction-diffusion systems of the activator-
inhibitor type based on the relationship between the values of
e and a @9–12#. According to this scheme, a system with
N-shaped nullcline of the equation for the activator is called
an VN system ifa!1 ande*1; KN system ife!1 and
a*1; or KVN systems, if botha!1 and e!1. Accord-
ingly, only traveling waves~autowaves! may form in VN
systems, only static patterns inKN systems, and all kinds of
patterns inKVN systems.

Clearly, the mechanisms of pattern formation in all
reaction-diffusion systems described by Eqs.~1! and ~2! are
essentially the same as those discussed above. For example,
similar processes lead to the formation of static, traveling,
and pulsating patterns in the form of the regions of high
temperature and low concentration of electrons in the photo-
generated electron-hole plasma heated in the process of Au-
ger recombination@11,12,27#. For this reason we may use
the simple ‘‘cubic’’ model described by Eqs.~1! and~2! with
~5! and ~6! in all our numerical simulations. Depending on
a ande, this system will pertain to one of the three classes

FIG. 2. The simplest domain patterns:~a! traveling, ~b! static,
~c! pulsating one-dimensional autosolitons.
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mentioned above. In this paper we will concentrate on the
case when the system under consideration is eitherKN or
KVN system.

III. SCENARIOS OF PATTERN FORMATION:
RESULTS OF THE SIMULATIONS

If we chooseL and th as the units of length and time,
respectively, we will write the equations describing the cubic
model in the form

a
]u

]t
5e2Du2u31u1h, ~7!

]h

]t
5Dh2u2h1A. ~8!

We performed numerical simulations of Eqs.~7! and ~8!
in two dimensions in a wide range of the parameterse, a,
andA. As we mentioned earlier, eithere or a has to be small
in order for patterns to be able to form. The case ofVN
systems was extensively studied by many authors@2,3,5,8#
and will not be studied here. We will concentrate on the case
e!1 and arbitrarya.

The presence of two very different length scales caused
by the smallness of the parametere makes the numerical
simulations of Eqs.~7! and ~8! rather difficult. The simula-
tions were performed on the massively parallel supercom-
puter. An explicit second-order finite difference scheme was
used to discretize the equations. In order to accelerate the
algorithm, different grid spacings were used foru andh. The
boundary conditions were neutral or periodic. The grid spac-
ing was chosen in such a way that a typical front of a pattern
contained about 8–10 points. The decrease of the grid spac-
ing by a factor of 2 resulted in the difference of the distribu-
tions of u andh by a few percent. No noticeable effects on
the dynamics were observed.

Before discussing the results of the simulations, let us
make a few comments about the system of Eqs.~7! and~8!.
First of all, it is easy to see that these equations are invariant
with respect to the transformation

u→2u, h→2h, A→2A, ~9!

so one only needs to study the parameter region where
A,0. The system under consideration is monostable for all
values ofA. The homogeneous stateu5uh andh5hh with

uh52uAu1/3, hh5uAu1/3~12uAu2/3! ~10!

is stable for A,A0521/3A3.20.19, whereA0 is the
value ofA at which uh5u0 and hh5h0, the point on the
nullcline of Eq.~7! at whichqu850 ~see Fig. 1!. It is easy to
see @9–12# that for a,1 the homogeneous state becomes
unstable with respect to the uniform oscillations~Hopf bifur-
cation! with the frequency

v05S 12a

a D 1/2 at A.Av52S 12a

3 D 3/2, ~11!

whereas fore,1 it destabilizes with respect to the fluctua-
tions with the wave vectork5k0 and zero frequency~Turing
bifurcation!,

k05S 12e

e D 1/2 at A.Ac52S 12e

A3 D 3. ~12!

Notice that for e→0 or a→0 we have Ac→A0 or
Av→A0, respectively. Also notice that the homogeneous
state is always stable whene.1 anda.1. It is the consid-
erations of stability of the homogeneous state that actually
lead Kerner and Osipov to divide the system described by
Eqs.~1! and ~2! into VN, KN, andKVN systems@10–12#.
Similar classification of pattern-forming systems of different
nature, including the hydrodynamic systems, was proposed
by Cross and Hohenberg@7#.

Most of our simulations were performed ate50.05, what
can be considered reasonably small. In the first simulations
we studied the Turing instability. The boundary conditions in
these simulations were periodic. The initial condition was
taken in the form of the homogeneous state plus small ran-
dom noise. The system then evolved for a considerably long
time atA520.1 anda50.5 when the homogeneous state is
unstable with respect to Turing instability but stable with
respect to the oscillatory instability. The process of forma-
tion of static Turing pattern is shown in Fig. 3. In the early
stage (t56 and t59 in Fig. 3! the system nucleates some
random distribution of the activator and the inhibitor. At the
intermediate stage (t516) the pattern transforms into a num-
ber of domains with sharp walls, at this point the domains
may have irregular shapes and domain fusion frequently oc-
curs; at the late stage (t551 andt5210) the domains rear-
range so that their shape becomes more regular, and a lot of
smaller domains die through overcrowding. One can see that
in the end the static Turing~multidomain! pattern consists of
many disconnected domains with sharp walls. Most of them
look like slightly distorted circular domains of different
sizes, although some are more stripelike. The pattern is meta-
stable, upon longer runs a small portion of domains may
occasionally disappear or change their geometry, but its
overall appearance remains the same. The interaction be-
tween the neighboring domains appears to be repulsive, so
one should expect an ideal hexagonal pattern of circular do-
mains of certain radius to be the most stable one. This pat-
tern reminds of the ordered cellular flame pattern observed in
the combustion experiments@20# and ordered pattern of cur-
rent filaments in the gas-discharge experiments@19#.

In the next simulation the initial condition is taken the
same, but the parameters now areA520.1 anda50.05, so
that the homogeneous state is unstable both with respect to
the Turing instability and the oscillatory instability. The evo-
lution of the system toward the static labyrinthine pattern in
this case is shown in Fig. 4. The early stage of the formation
of the pattern (t50.6 andt50.9) is the same as in the pre-
vious case, but once the domains form they start to oscillate
~breathe!, so the high activator value domains invade almost
all the space in the time interval fromt51.2 to t52.1, but
then recede, and the process continues. For this value ofa
the pattern finally stabilizes, and eventually a static labyrin-
thine pattern forms. Notice that both the multidomain pattern
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FIG. 3. Formation of static Turing pattern. The distributions of the activator at different times. The parameters used:e50.05,
a50.5, A520.1. The system’s size is 20320.

FIG. 4. Formation of static Turing pattern in an oscillatory system. The distributions of the activator at different times. The parameters
used:e50.05,a50.05,A520.1. The system’s size is 20320.
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which formed att5955 in Fig. 3 and the labyrinthine pattern
which formed att59.2 in Fig. 4 are perfectly good Turing
patterns formed as a result of Turing instability, so there is
no qualitative difference between the two. The form of the
Turing pattern in any particular situation must therefore de-
pend on the history of getting the homogeneous system into
the unstable state. The form of the Turing pattern may also
strongly depend on the small local inhomogeneities always
present in real systems@10–12#. Notice that both the multi-
domain and labyrinthine Turing patterns were observed in
chemical experiments@6,8,17#.

Our simulations show that for sufficiently smalla the
uniform self-oscillations of the homogeneous state will al-
ways set in upon the destabilization of the homogeneous
state even if the system is unstable with respect to the Turing
instability. Specifically, for e50.05 this will happen, if
a,0.02. For larger values ofa the static Turing pattern will
always form, although the oscillations of the pattern may last
a long time.

In the next series of the simulations we investigate the
formation of patterns when the homogeneous state of the
system is stable. In all these simulations the boundary con-
ditions were neutral.

It is well known that whena!1 ande*1 (VN systems!
Eqs.~1! and~2! admit solutions only in the form of traveling
waves ~autowaves! @2,3,5,8,10,12,28,29#, and whene!1
and a*1 (KN systems! they admit only solutions in the
form of static patterns, the simplest of which are AS in the
form of solitary spots and stripes of high or low values of the
activator surrounded by the ‘‘sea’’ of low or high values of
the activator, respectively~‘‘hot’’ and ‘‘cold’’ AS ! @11,12#.
Notice that because of the monostability of the considered
system the radius of a spot or the width of a stripe cannot be
greater than certain value of order one@11,12#. Also note that
because of the symmetry given by Eq.~9!, in the system
under consideration we only need to consider the behavior of
hot patterns.

When the homogeneous state of the systems is stable, the
patterns may be excited by means of sufficiently strong ex-
ternal stimulus@11,12#. According to the general qualitative
theory, the excitation levelA of the system must be greater
than certain threshold valueAb in order for AS to be able to
form @10–12#. It is possible to show that in the limite→0
the value ofAb521 in the considered system.

First we will considerKN systems. Our numerical simu-
lations show that whenA is close toAb , the initial condition
in the form of the homogeneous state plus a hot spot of size
of order severale evolves into an AS in the form of a local-
ized static radially symmetric spot. Fore50.05 this happens
if Ab

(2),A,Ac2
(2) , whereAb

(2).20.72 andAc2
(2).20.55. If

the initial condition is taken in the form of the homogeneous
state plus a hot stripe severale wide, it will evolve into a
static stripe if Ab

(1),A,Ac2
(1) , where Ab

(1).20.74 and
Ac2
(1).20.55 ~the value ofAc2

(1) obtained from the simula-
tions is rather crude since the destabilization of the stripe
may be incredibly slow!.

If the value ofA is increased fromAb
(2) to Ac2

(2) , the radius
of the spot will grow. However, at certain radius correspond-
ing to the value ofA5Ac2

(2) the spot becomes unstable with
respect to the radially nonsymmetric distortions of its walls

@11,12,23,30#. Qualitatively, this means that a ‘‘burning
spot’’ tends to ignite the neighboring regions, but since its
radius is bounded from above, the only way it can grow in
size is by elongation. Precisely this phenomenon was ob-
served in the simulations. ForA,Ac3

(2).20.46 the spot
elongates and transforms into a stripe. IfA.Ac3

(2) , the tips of
the growing stripe become further unstable, leading to the tip
splitting and the formation of a labyrinthine pattern. This
effect is seen in the simulation of Fig. 5, whereA520.4,
which is not much greater thanAc3

(2) . There an almost radi-
ally symmetric spot att50 elongated and transformed into a
dumbbell att563 and then further destabilized into a more
complex shape att598. The process of tip splitting resulted
in a more and more complicated pattern att5162 and
t5292, until the resulting labyrinthine pattern reached the
system boundaries and stopped growing att5985. Similar
structures were also observed in the simulations in Refs.
@31,32# and in chemical reactions@6,8,17#. The labyrinthine
pattern that formed in the end is a collection of stripelike
domains which are all connected. Notice that in this simula-
tion a50.2. However, the smallness of the value ofa does
not affect the simulation results as long asa@e. On the
other hand, this choice ofa significantly accelerates the
simulations.

In the next simulation we tookA520.25, which is fur-
ther away fromAc2

(2) and closer toAc . The initial conditions
were taken in the form of the homogeneous state plus a piece
of a curved stripe. One can see~Fig. 6! that initially
(t522) the tips of the pattern grow faster and start splitting
(t587). One can also see that the stripe itself start to
wriggle, and fingers spring out of the regions with the high-
est curvature (t5118). However, in contrast to the previous
case, some of the portions of the growing labyrinthine pat-
tern detach themselves from the body of the pattern. As the
time passes, more and more portions become detached. In
the end the labyrinthine pattern that fills the whole system at
t5322 consists of five disconnected pieces. Notice the great
similarity between this pattern and the labyrinthine pattern
formed as a result of Turing instability in Fig. 4. Also notice
that the disconnected pattern is more likely to form even for
A not very different fromAc2

(2) , if a is smaller. This is be-
cause at smalla the dynamics of the pattern becomes oscil-
latory and the labyrinthine pattern may form as a result of
self-replication of spots, which will be discussed below.

The same picture can be observed, if the initial conditions
are taken in the form of a twisted stripe running across the
system, ifA is big enough. In general, forA considerably
greater thanAb any localized initial condition will lead to the
formation of the disconnected labyrinthine pattern. However,
if these boundary conditions are used with the values ofA
closer toAb , a wriggled stripe pattern will form in the sys-
tem. This process is related with the fact that a stripe may
become unstable with respect to wriggling of the stripe as a
whole while being stable with respect to fingering when
Ac2
(1),A,Ac1

(1) @11,12,23,30#. For e50.05 the value ofAc1
(1)

obtained from the simulations isAc1
(1).20.32. The evolution

of the stripe atA520.45 is shown in Fig. 7. One can see
that the stripe gets more and more wriggled without fingering
for a long time. Only when the curvature of some portion of
the stripe becomes sufficiently high, a finger springs out

54 4865SCENARIOS OF DOMAIN PATTERN FORMATION INA . . .



(t51418). Notice that fingering also occurs at the points
where the stripe is attached to the boundary. At these points
the curvature of the stripe is high as well.

Up to now we considered the pattern formation in the
stableKN system in which the inhibitor is fast. According to
our simulations, the time scale of the inhibitor variation does
not affect all the results above whena!1 but a@e. In
KVN systems, in which the inhibitor is slow enough, pattern
formation scenarios will be qualitatively different. Figure 8
shows the evolution of the system atA520.4, but
a50.015 with the initial condition in the form of an almost
radially-symmetric spot. In contrast to the simulation of Fig.
5 which was performed for the same value ofA and with the
same initial conditions, instead of transforming into a dumb-
bell the spot splits into two in the course of its evolution
(t53.3). The spots that form split in turn into four
(t55.2). This process of self-replication of spots continues
until the whole system is filled with the multidomain pattern
~not shown in the figure!, which may stabilize or transform
into a synchronously pulsating~breathing! pattern. Notice
that self-replication of spots was observed in the chemical
experiments@16,17# and in the simulations@31#. A similar
phenomenon also seems to occur in the chaotic cellular
flames@22#.

Figure 9 shows the value ofh in the center of the system
in which the synchronously pulsating multidomain pattern
formed as a result of spot self-replication. One can see that
the multidomain pattern forms at relatively short times
(t&5 for the system 10310), and after that the oscillation of
the pattern as a whole starts. Some restructuring of the pat-

tern occurs later on, what results in the changes of the oscil-
lations amplitude and the pattern’s geometry. At times
t*120 the pattern’s oscillations had synchronized and no
changes in the oscillations amplitude nor in the pattern’s
geometry were observed in the longer runs.

The mechanism of self-replication can be seen from Fig.
10, where a single self-replication event is shown in detail.
One can see that self-replication is determined by the two
processes: radially symmetric pulsations of the spot’s radius
and aperiodic growth of the nonsymmetric distortion. At the
beginning the spot expands as a whole (t50.6), but at the
same time the nonsymmetric distortion builds up (t51.4).
Then the spot starts to shrink in the course of the radially-
symmetric pulsations, so the connection between its right
and left portions gets torn att52.1. At t52.6 there are two
spots looking just like the one att50 in the system. Notice
that for smaller values ofA a single self-replication act may
take more than one pulsation period.

When the value ofa is smaller, the process of self-
replication of domains may become stochastic, producing a
kind of turbulence~Fig. 11!. In the simulation of Fig. 11
~a50.01, A520.4! the initial condition in the form of a
small domain initially grows in size, but att51.2 local
breakdown occurs in its center, so that the domain trans-
forms into an annulus. The annulus then splits in turn into
several smaller domains (t55.3) which engage into inces-
sant stochastic motion. Each domain is self-replicating, but
some of the domains formed as a result of this process die as
a result of the collisions with the other domains, what causes
the stochastization. Another source of stochastization is the

FIG. 5. Formation of a connected labyrinthine pattern. The distributions of the activator at different times. The parameters used:
e50.05,a50.2,A520.4. The system’s size is 20320.
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local breakdown which occurs, if the domain size becomes
too big. The number of domains in the system changes ran-
domly with time. Each domain is also moving as a whole.
The interaction between different domains~and the bound-
aries! is repulsive, so the domain fusion is typically avoided.
The turbulent pattern is persistent and does not synchronize
even after long times~Fig. 12!. It is observed only at suffi-
ciently large values ofA. WhenA is relatively small, the
turbulent pattern usually collapses into the homogeneous
state after relatively short times. This kind of turbulence was
observed in the chemical@16,17# and combustion@22# ex-
periments. Notice that the turbulence that is observed in our
simulations is different from the spiral turbulence observed
by Hagberg and Meron@31#. In our simulations we never
saw the nucleation of the spiral vortex pairs.

When the value ofa is even smaller, a localized initial
perturbation transforms into an autowave. In the simulation
of Fig. 13~a!, in which a50.007,A520.3, the domain ex-
pands, and att51.1 it transforms into an annulus which now
remains stable and continues to expand. This results in an
autowave passing through the system and annihilating when
it reaches the boundaries. In this case there is no repulsion
between the autowaves. At these and smallera only auto-
waves form in the system, regardless of the value ofA. If a
random initial condition is taken, spiral turbulence typical of
the excitable autowave media (VN systems! will form at
a!e @Fig. 13~b!#. Here the turbulent pattern consists of a
random arrangement of spiral vortices whose positions are
fixed in space. The spiral waves always annihilate upon col-
lision in this case. This is a well-known phenomenon in the

VN systems~excitable media!, for which L50 @3,5,8#.
Before concluding this section, let us mention two other

simulations. In the first@Fig. 13~c!#, for which a50.02 and
A520.3, a localized initial perturbation results in a few
replicationlike acts, but after that the pattern stabilizes into a
static disconnected labyrinthine pattern. In the second the
value of e50.2 was taken to be not very small~the other
parameters area51, andA520.1), so that the system is
away from the asymptotic regimee→0 @Fig. 13~d!#. One can
see from Fig. 13~d! that the localized initial perturbation
transforms into a disconnected labyrinthine pattern in this
case as well, so, qualitatively, the effects observed in this
section are realized when the value ofe is not very small.

The patterns which were described above are the only
kinds of patterns that were observed in the system under
consideration. No other types of patterns were observed in
the simulations, no matter what initial conditions or the pa-
rametersa, e, andA were used@of course, there are ‘‘cold’’
patterns, but in view of Eq.~9! they are equivalent to the
‘‘hot’’ patterns studied above#. Thus, these patterns consti-
tute the totality of the pattern types of the considered system.

IV. DOMAINS OF EXISTENCE OF DIFFERENT TYPES
OF PATTERNS AND SCENARIOS

OF PATTERN FORMATION

In this section we will analyze the pattern formation sce-
narios observed in the previous section, give quantitative ex-
planation for the parameter regions in which different pat-
terns form, and explain the transformations of one type of

FIG. 6. Formation of a disconnected labyrinthine pattern. The distributions of the activator at different times. The parameters used:
e50.05,a50.2,A520.25. The system’s size is 20320.
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pattern to the other on the basis of the general asymptotic
theory of instabilities for patterns with sharp interfaces de-
veloped by us in Ref.@23#, and on the basis of the interfacial
dynamics approaches developed in Refs.@30,32,33#

Our simulations of the spontaneous formation of Turing
patterns confirm the conclusion of the general qualitative
theory that at the threshold of Turing instability large-
amplitude patterns should form abruptly in the system
@10,12#. According to Eq.~12!, for smalle Turing instability
occurs atA.A0521/3A3.20.19, with respect to the fluc-
tuations with the wave vectork0.e21/2. One can see from
Fig. 3 that at early stages (t516) there are many domains of
small size, so one could naturally assume that at early stages
the domain sizes are determined by the wavelength of the
critical fluctuations, which is of ordere1/2. However, as can
be seen from Fig. 3, at late stages the average size of the
domains becomes greater and in the end all domains have
roughly the same size. This is not surprising since the do-
mains of small size are unstable because of the effect of the
activator repumping@10,12#. Owing to its long-range char-
acter, it is difficult for the inhibitor to react on such varia-
tions of the activator that lead to the expansion of some of
the domains and the simultaneous shrinkage of their neigh-
bors. This can be seen from the estimate of the terms in the
dispersion relation for the fluctuations around the Turing pat-
tern. For simplicity let us consider a hexagonal arrangement
of circular domains of radiusRs with the periodLp . Then
the fluctuation which leads to the activator repumping has
the wave vectork5p/Lp@1 for Lp!1. The term in the
dispersion relation that causes the instability is

l0.2e2/Rs
2 @11,12,23#, whereas the inhibitor reaction term,

which has the stabilizing effect, is of ordereLp @10,12#, and
the values ofLp andRs are of the same order. Therefore,
whenRs is smaller thanRb;e1/3, this fluctuation will grow
and lead to the expansion of every second domain and col-
lapse of the rest, what will result in the increase of the pat-
tern’s period and the radius of the domains. In other words,
the domains will grow by eating their neighbors until their
size and the distance between them becomes of ordere1/3.

On the other hand, the domain radius cannot be greater
thanRc2;e1/3 since at greater radii the domain becomes
unstable with respect to the nonsymmetric deformations and
either splits or elongates. The important thing, however, is
that bothRb andRc2 are much greater than 2p/k0;e1/2 for
small e, so the process of formation of Turing pattern must
always consist of two stages: initial domain forming and
ripening.

Notice that in the presence of small localized inhomoge-
neities the process of formation of Turing pattern may be
qualitatively different@11,12#. A small localized domain may
nucleate at the inhomogeneity, but then as a result of the
transverse instability of its walls, which occurs when the
domain radius becomes of ordere1/3 @23#, it will transform
into a disconnected labyrinthine pattern, ife is not very
small, or start to split and replicate itself until the system is
filled with the domains of size of ordere1/3, if e is very small
@33#. These effects will occur whena@e.

According to Eqs.~11! and ~12!, Turing instability is the
first if a.2e for small e. However, as we see from the

FIG. 7. Formation of a wriggled stripe. The distributions of the activator at different times. The parameters used:e50.05,a50.2,
A520.45. The system’s size is 20320.
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simulations, even for smaller values ofa, that is, when the
homogeneous state of the system is unstable with respect to
both Turing and oscillatory instability, static Turing patterns
may persist up to smaller values ofa. For e50.05 this hap-

pens down toa.0.02. For these values ofa one can see the
competition between the Turing patterns and the uniform
self-oscillations. Fora,0.02 the uniform self-oscillations
win, and Turing patterns do not form. Fora.0.02 the situ-

FIG. 8. Self-replicating spots. The distributions of the activator at different times. The parameters used:e50.05,a50.015, A520.4.
The system’s size is 20320.

FIG. 9. The value ofh in the center of the system as a function of time in the simulation withe50.05,a50.015,A520.3 which resulted
in the pulsating multidomain pattern. The system’s size is 10310.
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ation is reverse. We did not observe the coexistence of Tur-
ing patterns and uniform self-oscillations. It is interesting to
note, however, that the well-formed Turing pattern may be
stable for even smaller values ofa. Also, if there are small
local inhomogeneities in the system witha;e, the system
will nucleate localized domains before reaching the instabil-
ity, as in the case ofa@e, but then the domains will self-
replicate and a multidomain pattern will form in the system.
If the value ofa is smaller, the inhomogeneities will cause
nucleation of guiding centers@11,12#.

Let us now turn to the patterns that are excited in the
system with the stable homogeneous state. Our first observa-
tion is that, as was expected@11,12# and in agreement with
the statements of Fife@34#, any localized initial perturbation
at first relatively quickly transforms into a state in the form
of the domain with sharp walls, which is the closest to the
initial perturbation in shape, and then this domain starts to
evolve considerably slower according to the equations of the
interface dynamics. The characteristic time scale for the do-
main to form is that of the activator, that isa, and the char-
acteristic time scale of the interface motion isa/e @33#, so
one can see that as long ase!1 the latter time is much
longer than the former. In this sense one could think that at
first the initial perturbation evolves into a closest in shape
stationary state, which then grows into a more complicated
stable pattern as a result of the instability of that state. In this
process the early stages of the formation of a complex pat-
tern is determined by the type of the critical fluctuation with
respect to which that stationary state loses its stability.
Therefore, it is important to know the form of possible sta-
tionary states and when they become unstable.

The simplest patterns in the considered system are static
spots and stripes@11,12,30#. They are indeed observed when
A is sufficiently close toAb , when a spotlike or stripelike
initial perturbations are used, respectively. We performed
numerical simulations of the one-dimensional and radially
symmetric versions of Eqs.~7! and~8! and found the depen-
dences of the stripe’s widthLs and the spot’s radiusRs
versusA at e50.05 ~Fig. 14!. From these simulations one
can see that the solution in the form of a single static stripe
exists atAb

(1),A,Ac , whereAb
(1)520.74, whereas the so-

lution in the form of a single static spot exists when
Ab
(2),A,Ad

(2) , whereAb
(2)520.72 andAd

(2)520.24,Ac .
When Ad

(2),A,Ac , the local breakdown occurs in the
spot’s center, so the spot transforms into an annulus. The
thing is that fore!1 the distributions of the activator and the
inhibitor outside the walls of the spot are related via the
equation of local coupling@10–12,23#

q~u,h!50. ~13!

In other words,u andh lie on one of the stable branches of
the nullcline of Eq. ~7!: u,u0 in the cold region and
u.u08 in the hot region~Fig. 1!. As the radius of the hot spot
grows the value ofh in its center gets smaller, so at some
value ofA5Ad

(2),Ac it reachesh08 , the point at which the
dependenceu(h) determined by Eq.~13! becomes singular,
so a sudden downjump from one branch of the nullcline to
the other occurs, resulting in the formation of a new interface
in the spot’s center and the transformation of the spot into an
annulus. Notice that the process of local breakdown in the

FIG. 10. A closeup of a self-replicating spot. Same simulation as in Fig. 8. The region shown is 838.
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center of a spot and the formation of an annulus inN systems
was studied in detail in Refs.@11,12#. Also notice that the
same mechanism is responsible for the local breakdown in
the center of a one-dimensional stripe@11,12#. However, it
does not occur in the particular system we study.

In higher dimensions spots and stripes undergo instabili-
ties leading to the growth of certain deformations of their

walls. Recently we developed a general asymptotic theory of
the instabilities of domain patterns in arbitraryN systems
@23#. We have shown that the instabilities are determined by
the motion and the interaction of the pattern’s walls~inter-
faces!. For sufficiently smalle one could use the formulas
obtained in Ref. @23# and the dependencesLs(A) and
Rs(A) to determine the critical values ofA at which one or

FIG. 11. The onset of turbulence. The distributions of the activator at different times. The parameters used:e50.05,a50.01,A520.4.
The system’s size is 10310.

FIG. 12. The value ofh in the center of the system as a function of time for the simulation of Fig. 11.
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another instability of the spots and stripes occur. The param-
eters that enter those formulas for the considered system are

B54, Z5
2A2
3

, C5
3

2
. ~14!

However, fore50.05 the agreement between the results of
the simulations and the predictions of Ref.@23# is rather
crude~about 50%!. This is due to the fact that in the deriva-
tions of the critical values of the domain sizes, which are
typically of order e1/3, we used them as small parameters.
However, because of the slowe dependence~1/3 power! this
is not a very good assumption fore.0.05.

Nevertheless, there is a way to calculate the critical values
of Ls andRs which agree with the results of the simulations
with the accuracy better than 5%. To do this, we can use the
dispersion relations obtained in Ref.@23# in the zeroth order

of the perturbation theory in the potentialV, but not expand-
ing in Rs , or Ls , respectively, and keeping the value ofC
evaluated atA5Ab . The latter is because the critical fluc-
tuations are localized in the walls of the pattern and this is
the way to take into account some of the potentialV. Having
done this, for the stripe we have the following dispersion
relation:

iav1e2k21l052
eBZ21

2AC1k21 iv

3@16exp~2LsAC1k21 iv!#,

~15!

where the constantsB, C, andZ are defined in Eq.~14!, k is
the wave vector along the stripe,v is the frequency, the

FIG. 13. The distributions of the activator at different times for different processes:~a! formation of an autowave~e50.05,a50.007,
A520.3, the system is 20320); ~b! formation of spiral turbulence (e50.25,a50.02, A520.3, the system is 1003100); ~c! stabilization
of a pattern formed in the process of splitting of spots (e50.05,a50.02, A520.3 the system is 10310); ~d! formation of a complex
pattern outside the asymptotic regime (e50.2,a51.0, A520.15, the system’s size is 40340).
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‘‘ 1’’ sign corresponds to the symmetric, the ‘‘–’’ sign cor-
responds to the antisymmetric deformations of the stripe, and

l052
eB~12e2LsAC!

2ZAC
. ~16!

Similarly, for the spots we will have the following dispersion
relation:

iav1
e2m2

Rs
2 1l0

52eBZ21I m~RsAC1 iv!Km~RsAC1 iv!,

~17!

whereI m andKm are the modified Bessel functions,m is an
integer corresponding to themth surface mode, andl0 in
this case is

l052
e2

Rs
2 2eBZ21I m~RsAC!Km~RsAC!. ~18!

The instabilities occur when Imv,0. These transcendent
equations can be solved forLs andRs , respectively, when
Im v50, for given k or m. Then, using the dependences
shown in Fig. 14, one can find the critical values ofA at
which different types of the instabilities occur.

Let us consider the case of the fast inhibitora@e. Then,
according to Eq.~17!, at A5Ac2

(2)520.56 the spot will be-
come unstable with respect to them52 mode, which corre-
sponds to a dumbbell-shaped deformation. Also, from Eq.
~17! follows that the spot destabilizes with respect to the
m50 mode ifA,Ab

(2)520.72. This is in perfect agreement
with the results of the simulations.

Similarly, according to Eq.~15!, the stripe becomes un-
stable with respect to the antisymmetric fluctuations~wrig-
gling! atA.Ac2

(1)520.61, and with respect to the symmetric
fluctuations~corrugation! atA.Ac1

(1)520.32. The minimum

width of the stripe is determined by the overlap of the fluc-
tuations of the activator, so it is not taken into account in Eq.
~15! @11,12,23#. If we do take it into account, we will obtain
that the stripe is unstable atA,Ab

(1)520.74. So, here the
agreement between the predictions of the theory and the
simulations is excellent as well.

The type of the complex pattern that forms in the late
stages of the destabilization of the simple patterns is deter-
mined by the dynamics of its interface. For the description of
the pattern dynamics in higher-dimensionalN systems Ohta,
Mimura, and Kobayashi developed an approach which al-
lowed them to reduce the equations similar to Eqs.~1! and
~2! to the problem of the interface dynamics in the case of
the slow inhibitor in the limite→0 and analyzed the early
stages of the transverse instability development@30#. Gold-
stein, Muraki, and Petrich derived an equation of the inter-
face dynamics for a simple system of FitzHugh-Nagumo
type in the limit of fast inhibitor and weak activator-inhibitor
coupling and showed that the destabilization of simple pat-
terns lead to the formation of the connected labyrinthine pat-
terns @32#. Muratov derived the general equation of the in-
terface dynamics forN systems described by Eqs.~1! and~2!
and showed that in the limite→0 anda@e only multido-
main patterns must form as a result of the instability and
self-replication of simple patterns@33#. However, because of
the slow dependences of certain parameters one, multido-
main patterns should in fact form only ate&0.01 in the
considered system@33#. Yet the interfacial approach remains
a good approximation for the dynamics of the pattern for
e50.05. In this sense the region 0.01&e!1 can be consid-
ered a ‘‘crossover’’ region between the labyrinthine and the
multidomain patterns. This is the reason why we see both
connected and disconnected labyrinthine patterns in our
simulations. WhenA is not far fromAc2

(2) the transverse in-
stability is not very strong, so connected labyrinthine pat-
terns form~Fig. 5!. Here the stripe shape is more favorable
than the spot shape. As was noticed in the previous section,
when A is close to Ac2

(2) ~in the simulations we used

FIG. 14. The dependences ofLs onA for the one-dimensional AS~a! andRs onA for the radially symmetric AS~b! for e50.05. Results
of the numerical simulations of Eqs.~7! and ~8!.
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A520.50), a spot destabilizes into a single stripe which
does not branch. This may be qualitatively explained by the
following argument. In order for branching to occur, a spot
has to be unstable with respect to them53 mode. According
to Eq. ~17!, this should happen atA.Ac3

(2)520.45. For
Ac2
(2),A,Ac3

(2) the stripe is in turn unstable with respect to
wriggling, so as a result of the instability of a spot for those
values ofA the wriggled stripe~Fig. 7! will eventually form
in the system. This is precisely what we see in our simula-
tions.

When the value ofA gets larger, the transverse instability
gets stronger and the spot shape becomes more favorable.
There we see domain splitting predicted in Ref.@33# and,
therefore, thedisconnectedlabyrinthine pattern, which is the
counterpart of the multidomain pattern in this case. We em-
phasize that this will happen only whene is relatively large;
according to our simulations, indeed, fore<0.01 only mul-
tidomain patterns form in the system.

Another important thing about the complex domain pat-
terns is that the multidomain patterns may coexist with the
labyrinthine patterns. As was shown by Muratov, for the
same values of the parameterse, a, andA, one could excite
both multidomain and labyrinthine patterns by choosing ap-
propriate initial conditions@33#. For example, one could take
the pattern that formed in the end of the simulation of Fig. 3
and use it as an initial condition for the run with the value of
A corresponding to the stable homogeneous state. Then in
the course of the system’s evolution the domains will shrink
and some of them will disappear, but in the end the system
will be filled with the multidomain pattern similar to the one
in Fig. 3 (t5955), rather than with the labyrinthine pattern.

Recently, Hagberg and Meron studied numerically the
formation of labyrinthine patterns in a bistableN system and
explained this effect on the basis of the nontrivial properties
of solitary fronts that form only in bistable systems@35#.
However, according to the experimental observations@17#
and our numerical simulations, labyrinthine patterns may
form both in monostable and bistable systems. In order to
make the system of Eqs.~7! and~8! bistable one needs to add
a coefficientg in front of u on the right-hand side of Eq.~8!.
Then forg51 the system will be monostable, whereas for
smallerg, for example,g50.5, the system is bistable. We
did not see any qualitative difference between the patterns in
these two cases. In the monostable systems the solitary fronts
do not exist at all, so the domains always have finite width at
least in one direction. The properties of such patterns are
different from those of the solitary fronts, and are essentially
determined by the nonlocal interaction of different portions
of the pattern’s interfaces@11,12,23,33#. Besides, in the
bistable systems withg@e and e!1 the solitary fronts are
always unstable with respect to the transverse instability. In-
deed, according to Eq.~15! with B54g, C511 1

2g, and
Ls5`, the front is unstable with respect to the transverse
perturbations with the wave vectork;e21/3. So, in general
one cannot use the properties of the solitary fronts to explain
the formation of complex domain patterns inN systems. No-
tice that according to the similar argument, any pattern
whose characteristic size is much greater thane1/3 is unstable
with respect to the transverse perturbations both in the
monostable and bistable systems.

Let us now consider the case of the slow inhibitora&e.
Since the prevailing shape in the simulations in this case is a
spot, we will look for the instabilities of the circular domain.
We solved Eq.~17! in the casea&e for m50, 1, and 2. We
found qualitative agreement with the results of the general
asymptotic theory for instabilities of domain patterns@23#.

Form50 the instability occurs at RevÞ0. This instabil-
ity leads to the transformation of the static spot into a radi-
ally symmetric pulsating~breathing! spot. Such pulsating
spots were observed in the numerical simulations and the
experiments@10–12,36,37#. The instability occurs when the
radius of a spotRv

min,Rs,Rv
max, whereRv

min andRv
max

are the functions ofa. For e50.05 anda*0.02 the spot is
stable in the whole region of its existence. Fora,0.009 the
spot is unstable for allRs .

The m51 instability leads to the transformation of a
static spot into traveling. According to Eq.~17!, a spot be-
comes unstable with respect to them51 mode when
Rs.RT , whereRT is a function ofa andA. Notice that the
general criterion of such transformations was obtained by
Osipov in Ref.@38#. For the same values ofA the m51
instability always happens at smaller values ofa than the
m50 instability. The instabilities form>2 with RevÞ0
occur at even smaller values ofa, when the spot is already
unstable with respect tom50 andm51 modes.

The results of the analysis of the instabilities of simple
shapes~spots and stripes! and the results of the numerical
simulations can be presented on the diagram~Fig. 15!. This
diagram shows the domains of existence of different types of
patterns in thea-A plane fore50.05 when the homogeneous
state of the system is stable. All the simulations points,
which are marked by roman letters in Fig. 15, were obtained
by using localized initial conditions. The vertical lines in Fig.
15 correspond to the values ofA at which different instabili-
ties of the domain shapes occur, calculated from Eqs.~15!
and~17!. One can see that these lines separate the regions in
which the corresponding types of static patterns are observed
in the simulations. The letter ‘‘s’’ corresponds to the simu-
lations in which the aperiodic relaxation was observed. The
upper dashed line separates the region in which any initial
condition relaxes aperiodically to one of the static patterns
from the region in which the relaxation becomes oscillatory.
As was expected@11,12#, the transition from the aperiodic to
the oscillatory relaxation occurs ata;e. Above the upper
dashed line the form of the patterns is essentially indepen-
dent ofa; depending on the value ofA and the initial con-
dition one can see spots, stripes, wriggled stripes, multido-
main patterns, and labyrinthine patterns~Figs. 3, 5, 6, and
7!. Of course, fore50.05 one should use special initial con-
ditions ~not localized! to excite the multidomain patterns.

Below the upper dashed line but above the upper solid
line the relaxation of the initial excitation of the system re-
sults in the formation of a stable static pattern, although a
few pulsations and spot splittings associated with them may
occur at the beginning@Fig. 13~c!#, so the resulting pattern is
disconnected for all values ofA.Ac2

(2) . The simulations of
this type are marked ‘‘ps’’ in Fig. 15. Notice that in this
parameter region self-replication of spots does not occur, but
the fact that the inhibitor is slow makes the domain splitting
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easier, since the inhibitor lags behind the motion of the in-
terface driven by the transverse instability of the spot@33#.

The upper solid line represents the solution of Eq.~17! for
m50 and shows the instability line for a spot with respect to
pulsations~breathing!. The simulations show that below this
line different dynamic patterns form. WhenA is big enough
anda is just slightly below the upper solid line, spot repli-
cation leading to the formation of static or synchronously
pulsating pattern is observed~Fig. 8!. These simulations are
marked by ‘‘p’’ in Fig. 15. As was already mentioned above,
for e50.05 self-replication does not occur when the inhibitor
is fast. Nevertheless, self-replication does occur in the case
of the slow inhibitor (a&e). In this case the transverse in-
stability, which is the primary cause of the domain splitting

and self-replication@33#, is assisted by the instability which
leads to the radially symmetric pulsations. This is the reason
why spot replication does not occur above the upper solid
line, which is the pulsation instability threshold for a spot.

As can be seen from Fig. 15, the dominant type of dy-
namic patterns fora;e is the turbulence~Fig. 11, the points
marked ‘‘t’’ in Fig. 15!. When the two spots come at dis-
tances less or of order 1 to each other, the inhibitor may not
be able to suppress the growth of one spot due to the shrink-
age of the other~the activator repumping effect! what may
result in the disappearance of one of the spots. However, the
surviving spot may self-replicate in turn and create another
spot. Also, if a spot does not have other spots around, it may
transform into an annulus as a result of the local breakdown

FIG. 15. The domains of existence of different patterns ate50.05. The upper part of the figure shows the regions where the correspond-
ing patterns may exist ata@e. The lower-case letters indicate the long-time behavior of the system at the parameters corresponding to the
position of the letter when the system is locally excited att50: ‘‘s’’ — the system aperiodically relaxes to a static pattern; ‘‘ps’’ — the
system relaxes to a static pattern, but the relaxation has oscillating character, a few splittings may occur at the beginning; ‘‘p’’ — as a result
of self-replications at the beginning a stationary pulsating~breathing! pattern forms in the system; ‘‘c’’ — the initial excitation collapses as
a result of the growing amplitude of pulsations; ‘‘t’’ — turbulence develops in the system; ‘‘a’’ — the initial excitation transforms into an
autowave traveling through the system and disappearing at the boundaries. The upper dashed line shows schematically the region where the
character of pattern’s relaxation changes from aperiodic to oscillating. The upper solid line is the threshold of the instability with respect to
the uniform pulsations for a radially symmetric AS, obtained from Eq.~17!. The lower solid line is the threshold of the instability leading
to the transformation of the radially symmetric AS into traveling, obtained from Eq.~17!. The lower dashed lines show schematically the
borders of the parameter regions where pulsating patterns or turbulence are realized.
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in the spot’s center, and the annulus may then break up into
a number of spots as a result of the transverse instability. It is
these three processes uncorrelated in space that make the
turbulence possible in theKVN systems.

The turbulence is observed at relatively large values of
A. This is not surprising. Since the turbulence is caused by
the self-replication process, it may occur only when the spot
is able to replicate, that is, whenA.Ac2

(2) . For smaller values
of A the spots do not self-replicate, instead they collapse
after a few periods of pulsations~simulations marked ‘‘c’’ in
Fig. 15!. The meaning of the separation between the region
where the turbulence and the synchronously pulsating pat-
terns are realized is less obvious. Qualitatively, the disap-
pearance of some of the domains in the course of the pat-
tern’s dynamics and the local breakdown, the processes that
cause the stochastization, occur easier when the inhibitor is
slower, that is, whena is smaller. Of course, in order to
make a quantitative explanation of this separation, one has to
solve a highly nonlinear free-boundary problem in two di-
mensions.

All the dynamic patterns mentioned above are observed
above the lower solid line, which is the stability margin for a
spot for m51 obtained from Eq.~17!. Below this line a
static spot destabilizes and transforms to traveling. In this
region only autowaves~the simulations marked ‘‘a’’! form
from a localized initial perturbation@Fig. 13~a!#. The auto-
wave patterns that form below the lower solid line are essen-
tially the same for all values ofa ~aside from the time and
length scales of the pattern! and in fact do not differ from the
autowaves forming inVN systems withe*1. This is be-
cause ata!e the diffusive precursor is not able to form in
front of the traveling pattern front@11,12#. Observe that ac-
cording to Fig. 15, no complex static or dynamic patterns
~except autowaves! form in the system at anyA if a&e2.
This fact is in total agreement with the general qualitative
theory @10–12# and with the conclusions of the general as-
ymptotic theory of instabilities@23,38#.

Hagberg and Meron explained self-replication of spots
and formation of turbulence as the consequences of the
parity-breaking bifurcations@nonequilibrium Ising-Bloch
~NIB! front transitions# of the planar fronts in bistableN
systems with the weak activator-inhibitor coupling@35#. Al-
though their approach is useful for the qualitative or heuristic
explanation of the formation of the dynamic patterns dis-
cussed above, it is highly inadequate for making quantitative
predictions in general. Indeed, the process of self-replication
observed in our simulation cannot be viewed as a conse-
quence of local NIB transitions~reversal of the propagation
direction of the portions of the spot’s interface!, since, ac-
cording to our numerical simulations, thewholespot’s inter-
face reverses its propagation velocity in the course of self-
replication~Fig. 10!. Furthermore, as can be seen from Fig.
15, the region of the system’s parameters in which spot self-
replication is realized is determined by the instabilities of the
static spot, and not of the planar front, or the planar stripe,
which is the counterpart of the planar front for the
monostable systems. One can show that according to Eq.
~15!, both the instability of the stripe with respect to pulsa-
tions @the ‘‘1’’ sign in Eq. ~15!# and the instability leading
to the transformation of the static stripe into traveling@the
‘‘–’’ sign in Eq. ~15!# lie considerably lower than both solid

lines in Fig. 15, which correspond to the respective instabili-
ties of the spot. Hagberg and Meron predict domain splitting
and formation of disconnected labyrinthine patterns only
close to the NIB transitions~wherea;e) @35#, and yet do-
main splitting and the formation of disconnected labyrinthine
pattern occurs solely due to the transverse instability far from
the presumed NIB transitions~Fig. 6!. Also, as was already
mentioned, the turbulence that was observed in our simula-
tions is different from the spiral turbulence observed by Hag-
berg and Meron in the bistable system with relatively weak
activator-inhibitor coupling@31,35#. One could think of the
turbulence observed by Hagberg and Meron as intermediate
between the spiral turbulence observed in the excitable auto-
wave media (VN systems! and the turbulence observed by
us in aKVN system. In our simulations the nucleation of
spiral vortex pairs is not allowed by the local breakdown.
The turbulence is produced by the constant self-replication
of spots with the stochastization caused by the disappearance
~annihilation! of some of the domains because of their strong
interaction with the neighbors, and the spontaneous creation
of new interfaces~transformation of a spot into an annulus!
due to the local breakdown, which occurs, if the size of the
domain becomes big enough~Fig. 11!. All this suggests that
in the generalN systems withe!1 strong nonlocal interac-
tion between the different portions of the domain interfaces
and between different domains, high curvature of the domain
interfaces, the time lag between the motion of the interface
and the reaction of the inhibitor, and the process of local
breakdown are crucial and in fact determine the type of the
pattern that will form in the system from a localized stimulus
for the given values of the system’s parameters.

Before concluding this section, let us discuss how the
changes in the values ofe should affect the bifurcation se-
quences and the pattern formation scenarios in the consid-
ered systems. As was already mentioned, the valuee50.05
corresponds to a ‘‘crossover’’ between the asymptotically
small values ofe, and the relatively largee;1. The value of
e50.05 is reasonably small to admit strong separation of the
length scales of the activator and the inhibitor, yet it is not
very small in the asymptotic sense, for which in the consid-
ered model we should havee&0.01. It is clear that if the
value of e is increased, the transverse instabilities will be-
come weaker, so the vertical lines corresponding to the in-
stabilities of a spot in Fig. 15 will move to the greater values
of A. For these values ofe anda@e the stripe shape will
become dominant over the spot shape, so the typical com-
plex pattern forming in the system will be the labyrinthine
pattern which consists of long wriggled stripes, which may
still be disconnected@Fig. 13~d!#. This will also be true for
the Turing patterns forming as a result of the instability of
the homogeneous state. If the value ofa gets smaller, the
turbulent patterns will form. Our simulations show that in
this situation the pattern’s oscillations are less likely to syn-
chronize than in the case of smallere because of the stronger
stochastization due to the local breakdown, so it would be
easier for the turbulent patterns to form. Ife is even greater,
the patterns can no longer be viewed as having sharp inter-
faces, so the entire phenomenology of the pattern formation
will change.

On the other hand, if the value ofe is decreased, the
transverse instability will become stronger, and the dominant
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shape will become the spot shape. In this case all vertical
lines which correspond to the instabilities of a spot in Fig. 15
will move towardA5Ab . In the casea@e only discon-
nected labyrinthine patterns or multidomain patterns will
form as a result of the transverse instability@33#. The char-
acteristic size of such patterns will bee1/3 @23,33#, so at very
smalle any spot will interact with many other spots. Because
of this interaction, fora&e the pulsating patterns will tend
to synchronize more, so the synchronously pulsating multi-
domain patterns should exist in a wider range of the system’s
parameters. Also, as follows from the general asymptotic
theory of instabilities @23#, for extremely small e
(e&1026) the instability of a spot with respect to the fluc-
tuations leading to the formation of a traveling spot will
always occur at larger values ofa than the pulsating insta-
bility, so it is natural to conclude that complex dynamic pat-
terns, such as pulsating multidomain patterns and turbulent
patterns, cannot be excited by a localized stimulus at such
small values ofe.

V. CONCLUSION

In this paper we performed a complete numerical study of
different types of domain patterns in a two-dimensionalN
system and investigated all major scenarios of their forma-
tion. We confirmed the conclusions of Kerner and Osipov
@10–12# that the type of the domain patterns forming in the
N systems is determined mainly by the two basic parameters
of the system:a5tu /th ande5 l /L5ADutu /Dhth. These
parameters are the ratios of the characteristic time and length
scales of the variation of the activator and the inhibitor and
are determined by the local kinetic coefficients: the relax-
ation times and the diffusion coefficientsDu andDh . In real
systems these kinetic coefficients strongly depend on the ex-
citation level of the system and the state of the environment,
the presence of small amounts of impurities or catalysts
which, for example, may change the rates of recombination
of nonequilibrium carriers in semiconductors or the rates of
chemical reactions, and so on. For example, by varying only
the temperature of the semiconductor lattice, one can signifi-
cantly change the critical parameters of the electron-hole
plasma described by Eqs.~3! and ~4! @27#.

We have shown that by changing the values ofe anda
and the control parameterA ~in the physical systems, such as
electron-hole plasma,A is the system’s excitation level!, that
is, in essentially the same system the whole variety of do-
main patterns and pattern formation scenarios is realized.
This general conclusion explains theoretically the results of
recent experiments by Leeet al.on the FIS reaction@15–17#
where they showed that in this chemical system by changing
relatively weakly its chemical composition and the form of
the initial perturbation it is possible to excite all major types
of domain patterns and see various scenarios of their forma-
tion, which are qualitatively the same as those observed in
our simulations.

In KN systems, that is, whene!1 anda@e only static
patterns form. When the homogeneous state of theKN sys-
tem is stable, these patterns can be excited by applying a
sufficiently strong perturbation~hard excitation!. We found
that by changing only the parameterA and the form of the
initial perturbation one can excite localized spots and stripes,

connected~Fig. 5! and disconnected~Fig. 6! labyrinthine
patterns, wriggled stripes~Fig. 7!, and multidomain patterns
~Fig. 3!. All these patterns were found in the chemical ex-
periments@6,8,17#. Ordered multidomain patterns were also
observed in the high-frequency gas-discharge experiments
@19# and in the combustion experiments@20#. We also found
that at the same parameters of theKN system it is possible to
excite a great variety of shapes of the static patterns by
changing only the form of the initial perturbation. In particu-
lar, it is possible to excite the labyrinthine and multidomain
patterns in the system with the same values of the parameters
e, a, andA @33#. This variety of domain shapes is observed
when e is not very small, since for very small values ofe
only disconnected multidomain patterns will form@33#.
However, such small values ofe can hardly be realized in a
typical experimental situation. That is why in our paper we
paid particular attention to the casee50.05.

Static domain patterns inKN systems may also form
spontaneously as a result of Turing instability of the homo-
geneous state. In the ideally homogeneousKN systems these
patterns are as a rule quasiperiodic~Fig. 3! and in general
their period is not the same as the period of the critical fluc-
tuation 2p/k0 @see Eq.~12!#, but is determined by the stabil-
ity of the pattern. In real systems the type of the pattern will
be determined by the small local inhomogeneities. Depend-
ing on the form of the inhomogeneity, and also on the sys-
tem’s parameters, all types of static domain patterns will
form spontaneously inKN systems.

In VN systems, that is, whena!1 anda&e2, only the
uniform relaxation self-oscillations may form spontaneously.
In such systems with the stable homogeneous state various
autowave patterns, including expanding traveling waves
@Fig. 13~a!# and spiral waves, can be excited by an external
perturbation. If the initial conditions are sufficiently random,
the spiral turbulence@Fig. 13~b!# forms in VN systems.
These patterns were discovered by Zaikin and Zhabotinsky
in an oscillatory chemical reaction@39# and have been sub-
sequently studied for more than two decades in a variety of
systems@2,3,5,8#. Notice that the autowave patterns are also
observed in the FIS reaction@17#.

The most diverse picture of pattern formation is observed
in the case ofKVN systems, that is, whene!1 and
e2&a&e. In these systems both the uniform self-oscillations
and the Turing patterns may form spontaneously. In the
KVN systems with the stable homogeneous state it is pos-
sible to excite static, traveling, and pulsating~breathing! pat-
terns. We showed that in these systems the remarkable effect
of self-replication of spots~Figs. 8 and 10! recently discov-
ered in the same FIS reaction@16,17# is realized. Depending
on the system’s parameters, this process may lead to the
formation of static or pulsating multidomain pattern, or to
the formation of turbulence which is qualitatively different
from the spiral turbulence observed inVN systems. This
turbulence consists of random creation and annihilation of
spots. Precisely this kind of turbulence was observed in the
experiments in the very same FIS reaction@17#, and also in
the combustion experiments@22#.

We would like to emphasize that the whole variety of
pattern formation scenarios observed in our numerical simu-
lations and illustrated in Fig. 15 is explained with the re-
markable accuracy by the asymptotic theory of instabilities
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of domain patterns in reaction-diffusion systems@23#. This is
because the scenarios of pattern formation are determined by
the two processes: at first, any initial perturbation quickly
transforms to a state close to some stationary state; then the
evolution of that quasistationary state is determined by its
instabilities and the form of the critical fluctuations with re-
spect to which the instability is realized. Indeed, the station-
ary states correspond to the solutions of Eqs.~1! and~2! with
the right-hand sides equal to zero, so when we use the initial
conditions which are significantly different from any station-
ary state, we in fact make the right-hand sides of Eqs.~1! and
~2! large and, therefore, the time derivatives ofu andh. The
large time derivatives will cause such changes inu and h
which will lead to the transformation of the initial condition
to the state close to some stationary state, in which the time
derivatives ofu andh are small. For example, if a square of
relatively small size is used as the initial condition, it will
first transform to a state close to a spot; if a square of large
size (@L) is used, it will first transform into an annulus as a
result of the local breakdown in the center of the square~this
effect was studied in detail in Refs.@10–12#. If the system is
bistable, the initial condition in the form of a large square
may trigger the wave of switching from one stable homoge-
neous state to the other. The evolution of these states close
the stationary states, and, therefore, the pattern formation
scenarios, will be determined by their stability: a spot may
form from a square of small size if the parameters of the
system are such that it is stable, or an annulus may form
from a square of large size. The radius of the spot, or the
width and size of the annulus will be determined by the
corresponding stable states and will only depend on the pa-
rameters of the system~such ase andA). If the parameters
of the system are such that these states happen to be unstable,
then, depending on the type of the instability, which is de-
termined by the parameterse, a, andA, all kinds of complex
patterns will form.

One of the bright pattern formation scenarios consists of
the transformation of the localized excitations into the pat-
terns that fill the entire system. In certain sense one could
think of this as the self-completion of a pattern from its small

fragment. According to Figs. 3–7, the form of such patterns
depends on both the initial conditions and the integral param-
eters of the system~in our casee, a, and A) which are
determined by the system’s kinetics. It is important that by
changing only these integral parameters it is possible to ex-
cite qualitatively different patterns for the same initial con-
dition. Thus, the systems we consider have a remarkable
property—a kind of associative memory~see also Refs.
@11,12#!: the form of a pattern is determined by the integral
parameters of theideally homogeneous system, and they can
be reconstructed with certain probability from a small frag-
ment ~sufficiently localized initial perturbation!.

Patterns of the same morphology as those in theKN sys-
tem studied by us also form in a variety of the equilibrium
systems, such as garnet ferromagnets, ferroelectric and fer-
rofluid films, Langmuir monolayers, and phase-separating
copolymer blends~for a recent review and the references see
Ref. @18#!. Our simulations suggest that the complex domain
patterns, such as multidomain or labyrinthine patterns, are
driven by the dynamics of their interfaces coupled to the
long-ranged inhibitor field. It is, therefore, natural to expect
qualitatively the same pattern formation scenarios in the
equilibrium systems with the competing repulsive interac-
tions and the strong separation of length scales. In the non-
equilibrium systems the inhibitor does not necessarily react
on the motion of the pattern interfaces instantaneously. The
time lag of the inhibitor makes the existence of complex
dynamic patterns possible in the nonequilibrium systems.

The only kinds of patterns that form in the experiments
with the cellular flames@21# and with the gas-discharge sys-
tem @19# that we did not see in our numerical simulations are
traveling spots and hopping patterns. Recent work of
Krischer and Mikhailov suggested that a sufficiently strong
global coupling, which is absent in our model, might be
needed to see these kinds of patterns@40#.
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