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We performed an extensive numerical study of a two-dimensional reaction-diffusion system of the activator-
inhibitor type in which domain patterns can form. We showed that both multidomain and labyrinthine patterns
may form spontaneously as a result of the Turing instability. In the stable homogeneous system with the fast
inhibitor one can excite both localized and extended patterns by applying a localized stimulus. Depending on
the parameters and the excitation level of the system stripes, spots, wriggled stripes, or labyrinthine patterns
form. The labyrinthine patterns may be both connected and disconnected. In the stable homogeneous system
with the slow inhibitor one can excite self-replicating spots, breathing patterns, autowaves, and turbulence. The
parameter regions in which different types of patterns are realized are explained on the basis of the asymptotic
theory of instabilities for patterns with sharp interfaces developed by us in Phys. B&y3801(1996. The
dynamics of the patterns observed in our simulations is very similar to that of the patterns forming in the
ferrocyanide-iodate-sulfite reactiof81063-651X96)14811-X]

PACS numbeps): 05.70.Ln, 82.20.Mj, 47.54r

I. INTRODUCTION between them, has been obsery&8]. The same conclusion
can be extended to the dynamic patterns in nonequilibrium

Pattern formation and self-organization are among thesystems. Indeed, traveling, pulsating, self-replicating, and
most fascinating phenomena in modern science that are olstochastically oscillating patterns are observed in the systems
served in physical, chemical, and biological systems of venas diverse as autocatalytic reacti¢Bsl5—17, semiconduc-
different nature(for the books and recent reviews on this tor and gas plasmiad0-14,19, or premixed flamef20-22.
subject sed1-13], where many references to the original All this suggests that there exists a universality class of the
works can also be foundAs a rule, self-organization is as- nonequilibrium systems in which pattern formation and self-
sociated with Turing instability of the homogeneous state inorganization scenarios are essentially the same.
the nonequilibrium systems and spontaneous formation of Another important question raised by the experiments is
patterns(dissipative structurgsin them as the excitation to identify the totality of possible types of patterns and their
level of the system(or some other paramejers varied behaviors in the systems under consideration, and to under-
[1-8,10,12. At the same time, when the homogeneous statstand the requirements the system should meet in order to be
of such a system is stable, by applying a sufficiently strongable to produce one type of pattern or the other.
perturbation one can excite static, pulsating, and traveling In the present paper we will study a model which is a
patterns including solitary patterns—autosolitof&S)  typical representative of the pattern-forming systems whose
[9,11-14. phenomenology was discussed above. We will show that the

Consider, for example, chemical patterns forming in thetype of patterns that form in this model is determined mainly
ferrocyanide-iodate-sulfitdFIS) reaction in a gel reactor by the relationship between the characteristic length and time
[15-17. In a typical experimental setting a pattern may formscales of the systems and the way the system is excited. We
spontaneously as a result of the instability of the homogewill also show that by changing only these length and time
neous state or can be excited by a short localized externakales and choosing an appropriate form for the external
perturbation of the system. The patterns forming in bothstimulus one can make the system form practically all kinds
these cases do not have any qualitative differences. They aoé patterns, both static and dynamic, that are observed in the
essentially the domains of high and low concentrations oExperiments.
certain substance separated by relatively sharp walls. The Our paper is organized as follows: in Sec. Il we discuss
pattern may have sophisticated geometry and in general majie physical mechanisms of pattern formation phenomena in
show very complicated spatiotemporal behavior. The properreaction-diffusion systems of the activator-inhibitor type, us-
ties of the patterns do not significantly depend on whethemg a combustion model as an example, and introduce a
the system is monostable or bistable. simple model which we study numerically; in Sec. Il we

It appears that domain patterns forming in very differentpresent the results of a systematic numerical study of the
systems may in fact have many common features. This hagaction-diffusion model and give qualitative explanations to
recently been noticed in the case of static domain patternthe effects seen; in Sec. IV we use the general asymptotic
forming both in equilibrium and nonequilibrium systems, theory of instabilities developed by us in REZ3] to identify
where a certain set of domain shapes, such as spots, stripéise parameter regions in which one or the other type of pat-
multidomain and labyrinthine patterns, and the transitiongerns is observed and compare these regions with the results
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of the simulations; we also give more substantial quantitative : : : :
explanations for the pattern behaviors that are observed bas-
ing on the interfacial dynamics approach; and finally, in Sec.
V we compare our results with various experiments and draw
conclusions. "
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1. MODEL = 0,

The model which describes the phenomenology of pattern Oy N
formation in many nonequilibrium systems is a pair of
reaction-diffusion systems of the activator-inhibitor type, 02 1

90 ,
Tgﬁzleﬁ_q(e,ﬂ,A), (1) -0.4 Mo n

an
TWE=L2A n—Q(6,7,A), (2 0

where @ is the activator,n is the inhibitor,| andL are the FIG. 1. The nuliclines of EqS(5) and (6).

characteristic length scales, angland 7, are the character- vation energyE is the reaction heat and is a coefficient:
istic time scales of the activator and the inhibitor, respec—W(_I_)_C ('?XT )/ 7, is the heat removed from the mixtu’re
tively, g andQ are certain nonlinear functions, adis the —Lp ). 7T ’

bifurcation parameter. Equatiori$) and (2) have been ex- P s the densityc. IS the he"’?‘ capacity of the mixtur@Q IS
tensively used to study pattern formation in various nonequi:[he.ttempde:";]m“'rtf1 of thle en\élrort\_m_teﬁl, and thre the %'ffu'
librium systems. In particular, they describe electron-hole>'V'ty and the thermal conductivity, respec vely, and ¢

and gas plasma, various semiconductor, superconductor, aflf time constants, anfil is the two-dimensional Laplacian.

gas-discharge structures, systems with uniformly generated thiS system the activator is the temperatdreand the

combustion materigl10—14]; chemical reactions with auto- !nhjbitor_ is the concentration. Suppose that t.he system is
catalysis and cross catalydi3,6,8; models of morphogen- |n|t|_ally in the I_ow-ter_nperature state. Now, if a Iocall_zed_
esis and population dynamics in biolofg]. Some systems '€9ion of the mixture is heated up, the rate of the reaction in

with phase transitions, such as diblock copolymer blends an['f1at Feg?‘?“ will rapidly inc_rease, thus producing more heat
: r’?é’d igniting the neighboring areas. However, this process

cannot go forever, since as the reaction proceeds, the fuel is
Deing used up, which in turn decreases the rate of the reac-
tion. Thus, a positive feedback is realized with respect to the

results in “self-production of the activator substance,” this temperatur.e antljf the n_egatgle feeﬂback Wig;ais_??g to the
process of self-production is controlled by the inhibitgr co_ncentratE)n. we "1”0 uce the xarla a
that suppresses the growth of the activator. It is these tw@="/No, I =Vkrr/cp, L=yD7,, andA=angE7r/cpE,,

competing processes that give rise to different kinds of pate Will arrive at Eqs(1) and(2). _ _
terns in these systems. Pattern formation is most pronounced in chemical and

The meaning of the variablesand 7 can be most easily Piclogical systemg1-6,8,15-17 where the processes of

understood for the system with uniformly generated combusSelf-Production of matter are responsible for it. However, in
tion material[11,12. Consider combustion process in the the real S|tuat|.on such syste'ms are extremely compllpated.
flow reactor consisting of a chamber placed between the twd/€vertheless, itis often possible to reduce the description of
porous slabs which are being cooled. The mixture of fuel and€S€ Systems to a pair of reaction-diffusion equations of the
oxidizer is pumped through the narrow reactor region be&ctivator-inhibitor typg1-6,8. A particularly simple model
tween the slabs where it is ignited. Phenomenologically, thi@f this kind is the “cubic” model, which is described by
system may be described by the equations for the mass difds-(1) and(2) with

which can be reduced to Eqgd) and(2) [24-26.
Pattern formation in the systems under consideration i
associated with a positive feedback of the activatavhich

fusion and the heat conductance which include the reaction q=6°— 0 )
terms, averaged over the thickness of the reactor region. If 7
n is the concentration of the fuel afdis the temperature of Q=06+ yp—A. 6)

the mixture, these equations have the form:
This model will be studied numerically and analytically in

&_n: DAN+G(n)—R(n,T) 3) the subsequent sections.

at Y Kerner and Osipov showed that the properties of the pat-
terns and pattern formation scenarios in the systems de-
scribed by Egs(1) and (2) are chiefly determined by the
parameterse=|/L and a=7,/7,, and the shape of the
nulicline of Eq.(1) for the activatof10—12. In many cases,
where G=(ng—n)/7, is the rate of the fuel supply, including the cubic model and the model described by Egs.
R(n,T)=an exp(—E,/T) is the reaction rate;, is the acti-  (3) and (4), this nullcline isN-shaped(see Fig. 1 In these

Cp%ZKAT-i- ER(n,T)—W(T), 4
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form. Indeed, if a localized region of the system is ignited,
i all the fuel will burn down very fast in that region and the
/ flame will not be able to propagate, so after a short time after
n removing the heat source the flame will extinguish. Different
situation is realized if the diffusivity of the fuel is much
smaller than the thermal diffusivity and the characteristic
\ time scale of the temperature relaxatiop due to the heat
exchange between the mixture and the porous slabs is much
shorter than the characteristic time scaleof the concentra-
tion variation determined by the rate of the fuel supply. Then
x the conditionsa<<1 ande=1 may be satisfied and the pat-
n terns in the form of traveling flames may be excited in the
-1 6 system. The existence of traveling patterns is due to the fact
M b) that because of high heat conductance the region of size of
r N orderl =k 71/cp around the flame is heated up and ignited.
As a result, the released heat ignites the neighborhood, and
\ so on. This leads to the formation of a flame front moving
with the speedv=I/71 [Fig. 2@)]. The fuel after the front
V_— burns down, so the front is followed by the back separated
from the front by the distance of orderr,>|. Because of
the external supply the fuel replenishes at the distances of
orderv r, away from the back.

If the diffusivity of the fuel is much larger than the ther-
mal diffusivity of the mixture, the conditione<1l and
a=1 may be satisfied. Then a traveling flame front will stop
since high diffusion of the fuel will result in the decrease of
the fuel concentration ahead of the front and lead to the
formation of the static pattern in the form of a flame cell
[Fig. 2(b)]. The existence of such static pattern is due to the
fact that the flame is maintained by the diffusive influx of the
fuel from the neighborhood, where it is constantly supplied
through the porous slabs. It is clear that when ho#il and
x a<1, pulsating flames, or more complex dynamic patterns,
may form in the systenfiFig. 2(c)]. The cell may first ex-
pand, but as it cools down and the fuel is used up in it, the
front may stop and start traveling bagkl,12.

From the physical considerations above it follows that in
aqrder for patterns to be able to form, eitheor a has to be
small. Kerner and Osipov suggested the classification
Whena<1 ande=1, that is, when the inhibitor is slower scheme for the reaction-diffusion systems of the activator-

and shorter-ranged than the activator, only traveling pattern&hibitor type based on the relationship between the values of
may exist. In the limite—c (or, more precisely, fot =0) € anda [9-12. According to this scheme, a system with
the properties of such traveling patterns were studied in ddN-shaped nulicline of the equation for the activator is called
tail in both one-dimensional and higher-dimensional casedn {IN system ifa<1 ande=1; KN system ife<1 and
(see, for example[2,3,5,9 and references therginin the  a=1; or KON systems, if botha<1 and e<1. Accord-
other limiting casee<1 anda=1, that is, when the inhibitor  ingly, only traveling wavegautowaves may form in QN
is long-range and fast compared to the activator, only statisystems, only static patterns N systems, and all kinds of
patterns may formi10—12. These patterns are essentially the patterns inK (AN systems.
domains of high and low activator values separated by the Clearly, the mechanisms of pattern formation in all
narrow walls(interface$ whose width is of ordet. Travel-  reaction-diffusion systems described by E@s.and (2) are
ing, static, and pulsating domain patterns may form wheressentially the same as those discussed above. For example,
both e<1 anda<1. similar processes lead to the formation of static, traveling,
Let us elucidate the physics of the formation of static,and pulsating patterns in the form of the regions of high
traveling, and pulsating patterns, including the simplestemperature and low concentration of electrons in the photo-
patterns—AS(Fig. 2), using the combustion system de- generated electron-hole plasma heated in the process of Au-
scribed by Egs(3) and(4). First of all, it is clear that if both ger recombinatiori11,12,27. For this reason we may use
the characteristic time and length scales of the variation ofthe simple “cubic” model described by Eg&l) and(2) with
the concentratiom are much smaller than the characteristic (5) and (6) in all our numerical simulations. Depending on
scales of the variation of the temperatdreno patterns will «a ande, this system will pertain to one of the three classes

0,1 ~1

0,n

8

FIG. 2. The simplest domain patterns) traveling, (b) static,
(c) pulsating one-dimensional autosolitons.

systems static, pulsating, and traveling patterns may form
different values of the paramete¢sand .
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mentioned above. In this paper we will concentrate on thevhereas fore<1 it destabilizes with respect to the fluctua-
case when the system under consideration is eiéror  tions with the wave vectdk=k, and zero frequencgTuring

KQN system. bifurcation,
IIl. SCENARIOS OF PATTERN FORMATION: 1—e\ Y2 1-€\°
RESULTS OF THE SIMULATIONS Ko= at A>A.=— —\/5 (12

If we chooseL and 7, as the units of length and time,
respectively, we will write the equations describing the cubicNotice that for e—~0 or a—0 we have A,—A, or
model in the form A,— A, respectively. Also notice that the homogeneous
state is always stable wher>1 anda>1. It is the consid-

a0, 3 erations of stability of the homogeneous state that actually
a—=€ANO—-0°+ 0+ (7) : - :
ot ' lead Kerner and Osipov to divide the system described by
Egs.(1) and(2) into ON, KN, andKQN systemg10-12.
an Similar classification of pattern-forming systems of different
—=An—60—7p+A. 8 nature, including the hydrodynamic systems, was proposed
Jt by Cross and Hohenbefd].

Most of our simulations were performed et 0.05, what

We performed numerical simulations of Eq%) and(8)  can be considered reasonably small. In the first simulations
in two dimensions in a wide range of the parameters:,  we studied the Turing instability. The boundary conditions in
andA. As we mentioned earlier, eitheror a has to be small  these simulations were periodic. The initial condition was
in order for patterns to be able to form. The case(tfl  taken in the form of the homogeneous state plus small ran-
systems was extensively studied by many auth@r8,5,8  dom noise. The system then evolved for a considerably long
and will not be studied here. We will concentrate on the casg¢ime atA= —0.1 ande=0.5 when the homogeneous state is
€<1 and arbitrarya. unstable with respect to Turing instability but stable with

The presence of two very different length scales causegespect to the oscillatory instability. The process of forma-
by the smallness of the parametermakes the numerical tion of static Turing pattern is shown in Fig. 3. In the early
simulations of Eq5(7) and (8) rather difficult. The simula- stage (:6 andt=9 in F|g 3 the system nucleates some
tions were performed on the massively parallel supercomrandom distribution of the activator and the inhibitor. At the
puter. An explicit second-order finite difference scheme wasntermediate stage € 16) the pattern transforms into a num-
used to discretize the equations. In order to accelerate thger of domains with sharp walls, at this point the domains
algorithm, different grid spacings were used éoand». The  may have irregular shapes and domain fusion frequently oc-
boundary conditions were neutral or periodic. The grid spaccurs; at the late stageé 51 andt=210) the domains rear-
ing was chosen in such a way that a typical front of a patteriange so that their shape becomes more regular, and a lot of
contained about 8—10 points. The decrease of the grid spagmaller domains die through overcrowding. One can see that
ing by a factor of 2 resulted in the difference of the distribu-in the end the static Turingmultidomain pattern consists of
tions of ¢ and 77 by a few percent. No noticeable effects on many disconnected domains with sharp walls. Most of them
the dynamics were observed. look like slightly distorted circular domains of different

Before discussing the results of the simulations, let ussizes, although some are more stripelike. The pattern is meta-
make a few comments about the system of E@sand(8).  stable, upon longer runs a small portion of domains may
First of all, it is easy to see that these equations are invariaifccasionally disappear or change their geometry, but its

with respect to the transformation overall appearance remains the same. The interaction be-
tween the neighboring domains appears to be repulsive, so
0——60, n——n A—-—A, 9) one should expect an ideal hexagonal pattern of circular do-

mains of certain radius to be the most stable one. This pat-
so one only needs to study the parameter region whertrn reminds of the ordered cellular flame pattern observed in
A<0. The system under consideration is monostable for afthe combustion experimenf20] and ordered pattern of cur-

values ofA. The homogeneous stafe= 6, and 5= 7, with  rent filaments in the gas-discharge experimg¢me.
In the next simulation the initial condition is taken the

0n=—|AIY3  p.=|A1YA1—|A[%) (10) same, but the parameters now ae—-0.1 andazQ.OS, o)
that the homogeneous state is unstable both with respect to
the Turing instability and the oscillatory instability. The evo-
lution of the system toward the static labyrinthine pattern in
this case is shown in Fig. 4. The early stage of the formation
of the pattern {=0.6 andt=0.9) is the same as in the pre-

Svious case, but once the domains form they start to oscillate
(breathg, so the high activator value domains invade almost
all the space in the time interval frob=1.2 tot=2.1, but
then recede, and the process continues. For this value of
the pattern finally stabilizes, and eventually a static labyrin-
thine pattern forms. Notice that both the multidomain pattern

is stable for A<A,=—1/3/3=-0.19, whereA, is the
value of A at which 6,,= 6, and 5= 7o, the point on the
nulicline of Eq.(7) at whichq,=0 (see Fig. 1 Itis easy to
see[9-12] that for <1 the homogeneous state become
unstable with respect to the uniform oscillatidifopf bifur-
cation with the frequency

1/2 1—a 3/2
at A>A,=—|—5—| . 1D

1-«a
wo=|——
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FIG. 3. Formation of static Turing pattern. The distributions of the activator at different times. The parameters=t6e@b,
a=0.5,A=—0.1. The system'’s size is 2@0.

2%, .. ‘K‘ '.
SRR

FIG. 4. Formation of static Turing pattern in an oscillatory system. The distributions of the activator at different times. The parameters
used:e=0.050=0.05,A=—0.1. The system’s size is 2®0.
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which formed at =955 in Fig. 3 and the labyrinthine pattern [11,12,23,30 Qualitatively, this means that a ‘“burning
which formed att=9.2 in Fig. 4 are perfectly good Turing spot” tends to ignite the neighboring regions, but since its
patterns formed as a result of Turing instability, so there igadius is bounded from above, the only way it can grow in
no qualitative difference between the two. The form of thesize is by elongation. Precisely this phenomenon was ob-
Turing pattern in any particular situation must therefore deserved in the simulations. F0A<A(C§):—O.46 the spot
pend on the history of getting the homogeneous system intglongates and transforms into a stripeAlf A2, the tips of
the unstable state. The form of the Turing pattern may als¢he growing stripe become further unstable, leading to the tip
strongly depend on the small local inhomogeneities alwaysplitting and the formation of a labyrinthine pattern. This
present in real systenj40—12. Notice that both the multi- effect is seen in the simulation of Fig. 5, wheke= — 0.4,
domain and labyrinthine Turing patterns were observed ifyhich is not much greater thah{3). There an almost radi-
chemical experiment5,8,17. ally symmetric spot at=0 elongated and transformed into a
Our simulations show that for sufficiently small the  dumbbell att=63 and then further destabilized into a more
uniform self-oscillations of the homogeneous state will al-complex shape at=98. The process of tip splitting resulted
ways set in upon the destabilization of the homogeneouh a more and more complicated pattern tat162 and
state even if the system is unstable with respect to the Turing=292, until the resulting labyrinthine pattern reached the
instability. Specifically, fore=0.05 this will happen, if system boundaries and stopped growing=a85. Similar
a<0.02. For larger values af the static Turing pattern will  structures were also observed in the simulations in Refs.
always form, although the oscillations of the pattern may las{31,32 and in chemical reactior$,8,17. The labyrinthine
a long time. pattern that formed in the end is a collection of stripelike
In the next series of the simulations we investigate thedomains which are all connected. Notice that in this simula-
formation of patterns when the homogeneous state of th#on «=0.2. However, the smallness of the valuecotioes
system is stable. In all these simulations the boundary comot affect the simulation results as long ase. On the

ditions were neutral. other hand, this choice of: significantly accelerates the
It is well known that wherw<<1 ande=1 (AN system$  simulations.
Egs.(1) and(2) admit solutions only in the form of traveling  In the next simulation we toolA=—0.25, which is fur-

waves (autowaves [2,3,5,8,10,12,28,29 and whene<1l  ther away fromA'3) and closer taA.. The initial conditions
and @=1 (KN systems they admit only solutions in the ere taken in the form of the homogeneous state plus a piece
form of static patterns, the simplest of which are AS in thegf a curved stripe. One can se€ig. 6) that initially
form of solitary spots and stripes of high or low values of the(t=22) the tips of the pattern grow faster and start splitting
activator surrounded by the “sea” of low or high values of (t=87). One can also see that the stripe itself start to
the activator, respectively‘hot” and “cold” AS ) [11,12.  wriggle, and fingers spring out of the regions with the high-
Notice that because of the monostability of the consideregst curvaturet=118). However, in contrast to the previous
system the radius.of a spot or the width of a stripe cannot bggse, some of the portions of the growing labyrinthine pat-
greater than certain value of order drid,12. Also note that  tern detach themselves from the body of the pattern. As the
because of the symmetry given by EE), in the system time passes, more and more portions become detached. In
under consideration we only need to consider the behavior ghe end the labyrinthine pattern that fills the whole system at
hot patterns. _ t=322 consists of five disconnected pieces. Notice the great
When the homogeneous state of the systems is stable, thgnilarity between this pattern and the labyrinthine pattern
patterns may be excited by means of sufficiently strong exformed as a result of Turing instability in Fig. 4. Also notice

ternal stimulug11,12. According to the general qualitative that the disconnected pattern is more likely to form even for
theory, the excitation leveA of the system must be greater o not very different fromA®), if « is smaller. This is be-

. . c2
than certain threshold valuk, in order for AS to be able 10 ¢5,5¢ at small the dynamics of the pattern becomes oscil-
form [10—-17. It is possible to show that in the lim&—0

X ' latory and the labyrinthine pattern may form as a result of
the value ofA,=—1 in the considered system. _ self-replication of spots, which will be discussed below.

First we will considerKN systems. Our numerical simu-  The same picture can be observed, if the initial conditions
lations show that wheA is close toA,, the initial condition  gre taken in the form of a twisted stripe running across the
in the form of the homoggneous statg plus a hot spot of SiZ8ystem, ifA is big enough. In general, foA considerably
of order severak evolves into an AS in the form of a local-  yreater tham,, any localized initial condition will lead to the
ized static radially symmetric spot. Fer=0.05 this happens  formation of the disconnected labyrinthine pattern. However,
if AQY<A<AD), whereAl?)=—0.72 andAY)=~0.55. If  if these boundary conditions are used with the values of
the initial condition is taken in the form of the homogenGOUSC|oser toAb, a Wr|gg|ed Stripe pa‘[tern will form in the sys-
state plus a hot stripe severalwide, it will evolve into a  tem. This process is related with the fact that a stripe may
static stripe if AlV<A<A(), where A{N=—-0.74 and become unstable with respect to wriggling of the stripe as a
A= —0.55 (the value ofAl}) obtained from the simula- whole while being stable with respect to fingering when
tions is rather crude since the destabilization of the stripeA(l)<A<A{}) [11,12,23,3]0 For €=0.05 the value oA
may be incredibly slow obtained from the simulations &})= —0.32. The evolution

If the value ofA is increased fromh{?) to A2, the radius  of the stripe atA=—0.45 is shown in Fig. 7. One can see
of the spot will grow. However, at certain radius correspond-that the stripe gets more and more wriggled without fingering
ing to the value ofAzA(CZZ) the spot becomes unstable with for a long time. Only when the curvature of some portion of
respect to the radially nonsymmetric distortions of its wallsthe stripe becomes sufficiently high, a finger springs out
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FIG. 5. Formation of a connected labyrinthine pattern. The distributions of the activator at different times. The parameters used:

€=0.050¢=0.2, A=—0.4. The system’s size is X®0.

(t=1418). Notice that fingering also occurs at the pointstern occurs later on, what results in the changes of the oscil-
where the stripe is attached to the boundary. At these pointations amplitude and the pattern’s geometry. At times
the curvature of the stripe is high as well. t=120 the pattern’s oscillations had synchronized and no
Up to now we considered the pattern formation in thechanges in the oscillations amplitude nor in the pattern’s
stableKN system in which the inhibitor is fast. According to geometry were observed in the longer runs.
our simulations, the time scale of the inhibitor variation does The mechanism of self-replication can be seen from Fig.
not affect all the results above when<l but a>e€. In 10, where a single self-replication event is shown in detail.
KQN systems, in which the inhibitor is slow enough, patternOne can see that self-replication is determined by the two
formation scenarios will be qualitatively different. Figure 8 processes: radially symmetric pulsations of the spot’s radius
shows the evolution of the system a=-0.4, but and aperiodic growth of the nonsymmetric distortion. At the
a=0.015 with the initial condition in the form of an almost beginning the spot expands as a whadle 0.6), but at the
radially-symmetric spot. In contrast to the simulation of Fig.same time the nonsymmetric distortion builds up-(.4).
5 which was performed for the same valuefofind with the  Then the spot starts to shrink in the course of the radially-
same initial conditions, instead of transforming into a dumb-symmetric pulsations, so the connection between its right
bell the spot splits into two in the course of its evolution and left portions gets torn at=2.1. Att=2.6 there are two
(t=3.3). The spots that form split in turn into four spots looking just like the one &0 in the system. Notice
(t=5.2). This process of self-replication of spots continueghat for smaller values oA a single self-replication act may
until the whole system is filled with the multidomain pattern take more than one pulsation period.
(not shown in the figure which may stabilize or transform When the value ofa is smaller, the process of self-
into a synchronously pulsatingoreathing pattern. Notice replication of domains may become stochastic, producing a
that self-replication of spots was observed in the chemicakind of turbulence(Fig. 11). In the simulation of Fig. 11
experimentg16,17] and in the simulation$31]. A similar  («=0.01, A=-0.4) the initial condition in the form of a
phenomenon also seems to occur in the chaotic cellulasmall domain initially grows in size, but at=1.2 local
flames[22]. breakdown occurs in its center, so that the domain trans-
Figure 9 shows the value of in the center of the system forms into an annulus. The annulus then splits in turn into
in which the synchronously pulsating multidomain patternseveral smaller domaind<£5.3) which engage into inces-
formed as a result of spot self-replication. One can see thaant stochastic motion. Each domain is self-replicating, but
the multidomain pattern forms at relatively short timessome of the domains formed as a result of this process die as
(t=<5 for the system 18 10), and after that the oscillation of a result of the collisions with the other domains, what causes
the pattern as a whole starts. Some restructuring of the pathe stochastization. Another source of stochastization is the
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FIG. 6. Formation of a disconnected labyrinthine pattern. The distributions of the activator at different times. The parameters used:

€=0.050¢=0.2, A=—0.25. The system’s size is 2®0.

local breakdown which occurs, if the domain size become$)N systemgexcitable medig for whichL=0 [3,5,8].
too big. The number of domains in the system changes ran- Before concluding this section, let us mention two other
domly with time. Each domain is also moving as a whole.simulations. In the firsfFig. 13c)], for which «=0.02 and
The interaction between different domaifend the bound- A= —-0.3, a localized initial perturbation results in a few
arieg is repulsive, so the domain fusion is typically avoided. replicationlike acts, but after that the pattern stabilizes into a
The turbulent pattern is persistent and does not synchronizstatic disconnected labyrinthine pattern. In the second the
even after long timegFig. 12. It is observed only at suffi- value of e=0.2 was taken to be not very smdthe other
ciently large values ofA. When A is relatively small, the parameters aree=1, andA=—0.1), so that the system is
turbulent pattern usually collapses into the homogeneouaway from the asymptotic regime— 0 [Fig. 13d)]. One can
state after relatively short times. This kind of turbulence wassee from Fig. 1@&l) that the localized initial perturbation
observed in the chemic4ll6,17] and combustiori22] ex-  transforms into a disconnected labyrinthine pattern in this
periments. Notice that the turbulence that is observed in ougase as well, so, qualitatively, the effects observed in this
simulations is different from the spiral turbulence observedsection are realized when the valueeofs not very small.
by Hagberg and Merofi31]. In our simulations we never The patterns which were described above are the only
saw the nucleation of the spiral vortex pairs. kinds of patterns that were observed in the system under
When the value ofx is even smaller, a localized initial consideration. No other types of patterns were observed in
perturbation transforms into an autowave. In the simulatiorthe simulations, no matter what initial conditions or the pa-
of Fig. 13@a), in which «=0.007,A=—0.3, the domain ex- rametersx, e, andA were usedof course, there are “cold”
pands, and &t=1.1 it transforms into an annulus which now patterns, but in view of Eq(9) they are equivalent to the
remains stable and continues to expand. This results in &thot” patterns studied abovie Thus, these patterns consti-
autowave passing through the system and annihilating whetute the totality of the pattern types of the considered system.
it reaches the boundaries. In this case there is no repulsion
between the autowaves. At these and smallesnly auto-
waves form in the system, regardless of the valuéoff a
random initial condition is taken, spiral turbulence typical of
the excitable autowave medid){N system$ will form at
a<e [Fig. 13b)]. Here the turbulent pattern consists of a In this section we will analyze the pattern formation sce-
random arrangement of spiral vortices whose positions arearios observed in the previous section, give quantitative ex-
fixed in space. The spiral waves always annihilate upon colplanation for the parameter regions in which different pat-
lision in this case. This is a well-known phenomenon in theterns form, and explain the transformations of one type of

IV. DOMAINS OF EXISTENCE OF DIFFERENT TYPES
OF PATTERNS AND SCENARIOS
OF PATTERN FORMATION
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FIG. 7. Formation of a wriggled stripe. The distributions of the activator at different times. The parameters=86i5x=0.2,
A=-0.45. The system’s size is 2®20.

pattern to the other on the basis of the general asymptoti;;oz_EZ/Rg [11,12,23, whereas the inhibitor reaction term,

theory of instabilities for patterns with sharp interfaces deyhich has the stabilizing effect, is of ordet,, [10,12, and
veloped by us in Ref23], and on the basis of the interfacial 1o values of v

; k L, and R are of the same order. Therefore,
dynamics approaches developed in RE2€,32,33 P y

. ) : __whenR, is smaller tharR,,~ %3, this fluctuation will grow
Our simulations of the spontaneous formation of T.urmgand lead to the expansion of every second domain and col-

qapse of the rest, what will result in the increase of the pat-

theory that at the threshold of Turing instability large- ) . ; .
amplitude patterns should form abruptly in the systemtern s period and the radius of the domains. In other words,

[10,12). According to Eq(12), for smalle Turing instability the don;atlrr:s ;\_"” growbby eatinghtheirbneighborsfun]tgﬁil their
occurs atA=A,= — 1/3,/3= —0.19, with respect to the fluc- size and the distance between them becomes o '

tuations with the wave vectd,=e~ 2 One can see from On the other hand, the domain radius cannot be greater

Fig. 3 that at early stages< 16) there are many domains of tan Rep~ €' since at greater radii the domain becomes
small size, so one could naturally assume that at early stag&§'Stable with respect to the nonsymmetric deformations and
the domain sizes are determined by the wavelength of thgither splits or elongates. The important thing, however, is
critical fluctuations, which is of ordesV2. However, as can that bothR,, and R, are much greater thanrzko~ €' for

be seen from Fig. 3, at late stages the average size of tifénall €, so the process of formation of Turing pattern must
domains becomes greater and in the end all domains hayways consist of two stages: initial domain forming and
roughly the same size. This is not surprising since the doripening.

mains of small size are unstable because of the effect of the Notice that in the presence of small localized inhomoge-
activator repumping10,12. Owing to its long-range char- neities the process of formation of Turing pattern may be
acter, it is difficult for the inhibitor to react on such varia- qualitatively differen{11,12. A small localized domain may
tions of the activator that lead to the expansion of some ofiucleate at the inhomogeneity, but then as a result of the
the domains and the simultaneous shrinkage of their neighransverse instability of its walls, which occurs when the
bors. This can be seen from the estimate of the terms in thdomain radius becomes of ordet [23], it will transform
dispersion relation for the fluctuations around the Turing patinto a disconnected labyrinthine pattern, dfis not very
tern. For simplicity let us consider a hexagonal arrangemersmall, or start to split and replicate itself until the system is
of circular domains of radiu®R with the periodZ,. Then filled with the domains of size of order”, if € is very small

the fluctuation which leads to the activator repumping ha$33]. These effects will occur whea> e.

the wave vectok=n/L,>1 for L,<1. The term in the According to Eqs(11) and(12), Turing instability is the
dispersion relation that causes the instability isfirst if «>2e for small e. However, as we see from the
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FIG. 8. Self-replicating spots. The distributions of the activator at different times. The parameterg-t68626x=0.015, A=-0.4.
The system’s size is 2020.

simulations, even for smaller values of that is, when the pens down tax=0.02. For these values af one can see the
homogeneous state of the system is unstable with respect tmmpetition between the Turing patterns and the uniform
both Turing and oscillatory instability, static Turing patterns self-oscillations. Fora<0.02 the uniform self-oscillations
may persist up to smaller values @f For e=0.05 this hap- win, and Turing patterns do not form. Far>0.02 the situ-

030

020

0.10 -

FIG. 9. The value ofy in the center of the system as a function of time in the simulation ¥#t.050=0.015,A=—0.3 which resulted
in the pulsating multidomain pattern. The system’s size i 10.
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FIG. 10. A closeup of a self-replicating spot. Same simulation as in Fig. 8. The region showtBis 8

ation is reverse. We did not observe the coexistence of Tur- The simplest patterns in the considered system are static
ing patterns and uniform self-oscillations. It is interesting tospots and stripelsl1,12,3Q. They are indeed observed when
note, however, that the well-formed Turing pattern may beA is sufficiently close toA,, when a spotlike or stripelike
stable for even smaller values af Also, if there are small initial perturbations are used, respectively. We performed
local inhomogeneities in the system with~ €, the system numerical simulations of the one-dimensional and radially
will nucleate localized domains before reaching the instabilsymmetric versions of Eq$7) and(8) and found the depen-
ity, as in the case o&> ¢, but then the domains will self- dences of the stripe’s widtlfs and the spot’s radiug,
replicate and a multidomain pattern will form in the system.versusA at e=0.05 (Fig. 14. From these simulations one
If the value ofa is smaller, the inhomogeneities will cause can see that the solution in the form of a single static stripe
nucleation of guiding centefd 1,17. exists atAl<A<A., whereA{"'=—0.74, whereas the so-
Let us now turn to the patterns that are excited in thelution in the form of a single static spot exists when
system with the stable homogeneous state. Our first observgﬁ2)<A<A32)1 whereAg2)= ~0.72 andASZ)z —0.24<A..
tion is that, as was expect¢dl1,12 and in agreement with \when AP <A<A_, the local breakdown occurs in the
the statements of Fifg34], any localized initial perturbation  gnqrs center, so the spot transforms into an annulus. The
at first relatively quickly transforms into a state in the form g is that fore<1 the distributions of the activator and the

of the domain with sharp walls, which is the closest to thepipitor outside the walls of the spot are related via the
initial perturbation in shape, and then this domain starts t‘?equation of local couplin§10-12,23

evolve considerably slower according to the equations of the
interface dynamics. The characteristic time scale for the do-
main to form is that of the activator, that ég§ and the char-
acteristic time scale of the interface motiondse [33], so )
one can see that as long a1 the latter time is much In other words,# and # lie on one of the stable branches of
longer than the former. In this sense one could think that athe nulicline of Eq.(7): <6, in the cold region and
first the initial perturbation evolves into a closest in shapef> g in the hot regior(Fig. 1). As the radius of the hot spot
stationary state, which then grows into a more complicate@rows the value ofy in its center gets smaller, so at some
stable pattern as a result of the instability of that state. In thivalue of A= A< A, it reachesz;, the point at which the
process the early stages of the formation of a complex patlependenc®(#) determined by Eq(13) becomes singular,
tern is determined by the type of the critical fluctuation with so a sudden downjump from one branch of the nulicline to
respect to which that stationary state loses its stabilitythe other occurs, resulting in the formation of a new interface
Therefore, it is important to know the form of possible sta-in the spot’s center and the transformation of the spot into an
tionary states and when they become unstable. annulus. Notice that the process of local breakdown in the

q(6,7)=0. (13
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FIG. 11. The onset of turbulence. The distributions of the activator at different times. The parameteks=0588x=0.01,A=—-0.4.
The system'’s size is 2010.

center of a spot and the formation of an annulullisystems  walls. Recently we developed a general asymptotic theory of

was studied in detail in Ref$11,12. Also notice that the the instabilities of domain patterns in arbitraly/ systems

same mechanism is responsible for the local breakdown if23]. We have shown that the instabilities are determined by

the center of a one-dimensional strifgel,12. However, it  the motion and the interaction of the pattern’'s waligter-

does not occur in the particular system we study. faces. For sufficiently smalle one could use the formulas
In higher dimensions spots and stripes undergo instabiliebtained in Ref.[23] and the dependencesi(A) and

ties leading to the growth of certain deformations of theirRs(A) to determine the critical values &f at which one or

n_
03r

0.2 |

0.1

0.0}

-0.1

FIG. 12. The value ofy in the center of the system as a function of time for the simulation of Fig. 11.
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FIG. 13. The distributions of the activator at different times for different procegsaeformation of an autowavée=0.05x=0.007,
A=-0.3, the system is 2020); (b) formation of spiral turbulencee=0.25,4=0.02, A= —0.3, the system is 100100); (c) stabilization
of a pattern formed in the process of splitting of spats-(0.050¢=0.02, A= —0.3 the system is 1010); (d) formation of a complex
pattern outside the asymptotic regime=0.2,a=1.0, A=—0.15, the system’s size is 4310).

another instability of the spots and stripes occur. The paramef the perturbation theory in the potentl) but not expand-
eters that enter those formulas for the considered system airg in R, or Lg, respectively, and keeping the value ©f
evaluated alA=A,. The latter is because the critical fluc-
2.2 3 tuations are localized in the walls of the pattern and this is
B=4, Z=—-, C=3. (14 the way to take into account some of the potentiaHaving
done this, for the stripe we have the following dispersion

However, fore=0.05 the agreement between the results ofelation:

the simulations and the predictions of RER3] is rather

crude(about 50%. This is due to the fact that in the deriva- - eBz 1
tions of the critical values of the domain sizes, which are law+ ek +Ng=— —F——— —
typically of order €3, we used them as small parameters. 2yCHktia

However, because of the slaswdependenc€l/3 powej this X[1=exp— L m)]
is not a very good assumption fer=0.05. S '
Nevertheless, there is a way to calculate the critical values (19

of L5 andR¢ which agree with the results of the simulations
with the accuracy better than 5%. To do this, we can use thehere the constanB, C, andZ are defined in Eq(14), kK is
dispersion relations obtained in R§23] in the zeroth order the wave vector along the stripey is the frequency, the
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FIG. 14. The dependences 6f on A for the one-dimensional A&) andR¢ on A for the radially symmetric A%b) for e=0.05. Results

of the numerical simulations of Eqé7) and (8).

*“ +" sign corresponds to the symmetric, the sign cor-

width of the stripe is determined by the overlap of the fluc-

responds to the antisymmetric deformations of the stripe, antliations of the activator, so it is not taken into account in Eq.

L eB(1—e 0
o 2zJCc

Similarly, for the spots we will have the following dispersion
relation:

(16)

_ e2m? \
law+ —— +
rRZ 70

=—€eBZ M (RVCHiw)Ky(RsVCHim),
(17)

wherel ,, andK,, are the modified Bessel functions, is an
integer corresponding to thath surface mode, and; in
this case is

2
€
No=-— Ez—eBZ‘llm(Rs@Km(Rsﬁ).

S

(18)

The instabilities occur when I <0. These transcendent
equations can be solved fdl, and R, respectively, when

(15) [11,12,23. If we do take it into account, we will obtain
that the stripe is unstable &<A{"Y=—0.74. So, here the
agreement between the predictions of the theory and the
simulations is excellent as well.

The type of the complex pattern that forms in the late
stages of the destabilization of the simple patterns is deter-
mined by the dynamics of its interface. For the description of
the pattern dynamics in higher-dimensiohbakystems Ohta,
Mimura, and Kobayashi developed an approach which al-
lowed them to reduce the equations similar to Ed$.and
(2) to the problem of the interface dynamics in the case of
the slow inhibitor in the limite—0 and analyzed the early
stages of the transverse instability developn|@&®. Gold-
stein, Muraki, and Petrich derived an equation of the inter-
face dynamics for a simple system of FitzHugh-Nagumo
type in the limit of fast inhibitor and weak activator-inhibitor
coupling and showed that the destabilization of simple pat-
terns lead to the formation of the connected labyrinthine pat-
terns[32]. Muratov derived the general equation of the in-
terface dynamics foN systems described by Eq4) and(2)
and showed that in the limié—0 and a> e only multido-
main patterns must form as a result of the instability and

Im =0, for givenk or m. Then, using the dependences self-replication of simple patteri83]. However, because of

shown in Fig. 14, one can find the critical values Afat
which different types of the instabilities occur.

Let us consider the case of the fast inhibitor €. Then,
according to Eq(17), at A=A%)=—0.56 the spot will be-
come unstable with respect to the=2 mode, which corre-

the slow dependences of certain parameters,omultido-
main patterns should in fact form only &<0.01 in the
considered systefi83]. Yet the interfacial approach remains
a good approximation for the dynamics of the pattern for
€=0.05. In this sense the region 08&<1 can be consid-

sponds to a dumbbell-shaped deformation. Also, from Eqered a “crossover” region between the labyrinthine and the
(17) follows that the spot destabilizes with respect to themultidomain patterns. This is the reason why we see both
m=0 mode ifA<A§,2)= —0.72. This is in perfect agreement connected and disconnected labyrinthine patterns in our
with the results of the simulations. simulations. WherA is not far fromA2) the transverse in-
Similarly, according to Eq(15), the stripe becomes un- stability is not very strong, so connected labyrinthine pat-
stable with respect to the antisymmetric fluctuationsig-  terns form(Fig. 5). Here the stripe shape is more favorable
gling) atA>Ag)= —0.61, and with respect to the symmetric than the spot shape. As was noticed in the previous section,

fluctuations(corrugation at A>A%})= —0.32. The minimum when A is close to A% (in the simulations we used
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A=—0.50), a spot destabilizes into a single stripe which Let us now consider the case of the slow inhibitoE e.
does not branch. This may be qualitatively explained by theSince the prevailing shape in the simulations in this case is a
following argument. In order for branching to occur, a spotspot, we will look for the instabilities of the circular domain.
has to be unstable with respect to the- 3 mode. According We solved Eq(17) in the casex<e form=0, 1, and 2. We
to Eq. (17), this should happen aA>Ag§):—o,45, For found qualitative agreement with the results of the general
AQ<A<AQ the stripe is in turn unstable with respect to asymptotic theory for instabilities of domain pattefas].
wriggling, so as a result of the instability of a spot for those Form=0 the instability occurs at Re#0. This instabil-
values ofA the wriggled stripgFig. 7) will eventually form ity leads to the transformation of the static spot into a radi-
in the system. This is precisely what we see in our simula@lly symmetric pulsating(breathing spot. Such pulsating
tions. spots were observed in the numerical simulations and the
When the value oA gets larger, the transverse instability €xperiment§10-12,36,37. The instability occurs when the
gets stronger and the spot shape becomes more favorabl@dius of a spoRy"< R <Ry*", where Rj'" and R
There we see domain splitting predicted in R3] and, are the functions ot. For e=0.05 anda=0.02 the spot is
therefore, thalisconnectedabyrinthine pattern, which is the stable in the whole region of its existence. Fox 0.009 the
counterpart of the multidomain pattern in this case. We emspot is unstable for alRs.

phasize that this will happen only wheris relatively large; The m=1 instability leads to the transformation of a
according to our simulations, indeed, fex0.01 only mul-  static spot into traveling. According to E(L7), a spot be-
tidomain patterns form in the system. comes unstable with respect to thm=1 mode when

Another important thing about the complex domain pat-Rs>7Rt, whereRy is a function ofa andA. Notice that the
terns is that the multidomain patterns may coexist with thegeneral criterion of such transformations was obtained by
labyrinthine patterns. As was shown by Muratov, for theOsipov in Ref.[38]. For the same values & the m=1
same values of the parametetsa, andA, one could excite instability always happens at smaller valuescofthan the
both multidomain and labyrinthine patterns by choosing apm=0 instability. The instabilities form=2 with Rew#0
propriate initial condition$33]. For example, one could take occur at even smaller values af when the spot is already
the pattern that formed in the end of the simulation of Fig. 3unstable with respect tm=0 andm=1 modes.
and use it as an initial condition for the run with the value of =~ The results of the analysis of the instabilities of simple
A corresponding to the stable homogeneous state. Then Bhapes(spots and stripésand the results of the numerical
the course of the sysjtem_’s evolution the domains will shrinksimulations can be presented on the diag(&g. 15. This
and some of them will disappear, but in the end the systergiagram shows the domains of existence of different types of
ywll pe filled with the multldomam pattern sm_ular_ to the one patterns in thex-A plane fore=0.05 when the homogeneous
in Fig. 3 (t=955), rather than with the labyrinthine pattern. gate of the system is stable. All the simulations points,

f Rect:_ently]é IHbag.b?Lg andttMeror_1 stl:;_jiedmgmericallydthewhich are marked by roman letters in Fig. 15, were obtained
ormation of labyrinthine patterns in a bistalfiesystem an . by using localized initial conditions. The vertical lines in Fig.

S5 correspond to the values Afat which different instabili-
ties of the domain shapes occur, calculated from EgS)

and our numerical simulations, labyrinthine patterns ma)fmc_j(ln' One can see that these Ilnes_ separate the regions in
form both in monostable and bistable systems. In order tgvhich the corresponding types of static patterns are observed
make the system of Eq€7) and(8) bistable one needs to add in _the s_|mula_t|ons. The I(_atte_r “s” corresponds to the simu-
a coefficienty in front of 4 on the right-hand side of E8). lations in whlch_ the aperiodic relaxatlpn was opserved.. The
Then for y=1 the system will be monostable, whereas foruppe.r_dashed line separates the region in WhICh any initial
smaller y, for example,y=0.5, the system is bistable. We condition relaxes aperiodically to one of the static patterns
did not see any qualitative difference between the patterns iffom the region in which the relaxation becomes oscillatory.
these two cases. In the monostable systems the solitary fronfs Was expectefil 1,12, the transition from the aperiodic to
do not exist at all, so the domains always have finite width athe oscillatory relaxation occurs at~e€. Above the upper
least in one direction. The properties of such patterns ardashed line the form of the patterns is essentially indepen-
different from those of the solitary fronts, and are essentiallydent of «; depending on the value & and the initial con-
determined by the nonlocal interaction of different portionsdition one can see spots, stripes, wriggled stripes, multido-
of the pattern’s interface$11,12,23,33 Besides, in the main patterns, and labyrinthine patterftsgs. 3, 5, 6, and
bistable systems withy> e and e<1 the solitary fronts are 7). Of course, fore=0.05 one should use special initial con-
always unstable with respect to the transverse instability. Inditions (not localized to excite the multidomain patterns.
deed, according to Eq15) with B=4y, C=1+3y, and Below the upper dashed line but above the upper solid
L =, the front is unstable with respect to the transversdine the relaxation of the initial excitation of the system re-
perturbations with the wave vectér- e 3. So, in general sults in the formation of a stable static pattern, although a
one cannot use the properties of the solitary fronts to explaifew pulsations and spot splittings associated with them may
the formation of complex domain patternshnsystems. No-  occur at the beginninfFig. 13c)], so the resulting pattern is
tice that according to the similar argument, any patterrdisconnected for all values di>A§22). The simulations of
whose characteristic size is much greater tedhis unstable  this type are marked “ps” in Fig. 15. Notice that in this
with respect to the transverse perturbations both in thgarameter region self-replication of spots does not occur, but
monostable and bistable systems. the fact that the inhibitor is slow makes the domain splitting

of solitary fronts that form only in bistable systerfi35].
However, according to the experimental observatiphg



54 SCENARIOS OF DOMAIN PATTERN FORMATION INA . .. 4875

o
g . :
= multidomain patterns
S
g | stable stripes wriggled stripes
004+ &
e stable spots labyrinthine patterns
2 3
e g
B g §| g
0.03 | 4 s 2 | =2
. P =) [}
= s a =
/2]
________ c
s s || e =
- Q
- +~
<
S S LT 4{73
2
0.02 r S
<
5]
80
)
g
S
=
0.01 r / \
c c
¢ ¢ /
a1 autowaves
—"a"/
L N 1 L L L L I L 1 L 1 1 1 1 " 1 1 1 1 " | N L X |
0 » S 98 5 08 o 04 203 @ A
Ap Ay Az Ac2 Ac Aci Ad  Ac

FIG. 15. The domains of existence of different patterns=a0.05. The upper part of the figure shows the regions where the correspond-
ing patterns may exist at>e. The lower-case letters indicate the long-time behavior of the system at the parameters corresponding to the
position of the letter when the system is locally excited-aD: “s” — the system aperiodically relaxes to a static pattern; “ps” — the
system relaxes to a static pattern, but the relaxation has oscillating character, a few splittings may occur at the beginning; “p” — as a result
of self-replications at the beginning a stationary pulsatimgathing pattern forms in the system; “c” — the initial excitation collapses as
a result of the growing amplitude of pulsations; “t” — turbulence develops in the system; “a” — the initial excitation transforms into an
autowave traveling through the system and disappearing at the boundaries. The upper dashed line shows schematically the region where the
character of pattern’s relaxation changes from aperiodic to oscillating. The upper solid line is the threshold of the instability with respect to
the uniform pulsations for a radially symmetric AS, obtained from @4). The lower solid line is the threshold of the instability leading
to the transformation of the radially symmetric AS into traveling, obtained from(Eg. The lower dashed lines show schematically the
borders of the parameter regions where pulsating patterns or turbulence are realized.

easier, since the inhibitor lags behind the motion of the in-and self-replicatiori33], is assisted by the instability which
terface driven by the transverse instability of the (3. leads to the radially symmetric pulsations. This is the reason
The upper solid line represents the solution of @) for ~ why spot replication does not occur above the upper solid
m=0 and shows the instability line for a spot with respect toline, which is the pulsation instability threshold for a spot.
pulsations(breathing. The simulations show that below this  As can be seen from Fig. 15, the dominant type of dy-
line different dynamic patterns form. Wheis big enough  namic patterns for~ € is the turbulencéFig. 11, the points
and « is just slightly below the upper solid line, spot repli- marked “t” in Fig. 15). When the two spots come at dis-
cation leading to the formation of static or synchronouslytances less or of order 1 to each other, the inhibitor may not
pulsating pattern is observélig. 8). These simulations are be able to suppress the growth of one spot due to the shrink-
marked by “p” in Fig. 15. As was already mentioned above, age of the othefthe activator repumping effectvhat may
for e=0.05 self-replication does not occur when the inhibitorresult in the disappearance of one of the spots. However, the
is fast. Nevertheless, self-replication does occur in the cassurviving spot may self-replicate in turn and create another
of the slow inhibitor @=<e¢). In this case the transverse in- spot. Also, if a spot does not have other spots around, it may
stability, which is the primary cause of the domain splitting transform into an annulus as a result of the local breakdown
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in the spot's center, and the annulus may then break up intines in Fig. 15, which correspond to the respective instabili-
a number of spots as a result of the transverse instability. It iSes of the spot. Hagberg and Meron predict domain splitting
these three processes uncorrelated in space that make thied formation of disconnected labyrinthine patterns only
turbulence possible in th€ (AN systems. close to the NIB transitiongwherea~ €) [35], and yet do-
The turbulence is observed at relatively large values ofmain splitting and the formation of disconnected labyrinthine
A. This is not surprising. Since the turbulence is caused byattern occurs solely due to the transverse instability far from
the self-replication process, it may occur only when the spothe presumed NIB transition&ig. 6). Also, as was already
is able to replicate, that is, whei>A'%) . For smaller values mentioned, the turbulence that was observed in our simula-
of A the spots do not self-replicate, instead they collapséions is different from the spiral turbulence observed by Hag-
after a few periods of pulsatiorfsimulations marked “c” in  berg and Meron in the bistable system with relatively weak
Fig. 15. The meaning of the separation between the regiomctivator-inhibitor coupling31,35. One could think of the
where the turbulence and the synchronously pulsating paturbulence observed by Hagberg and Meron as intermediate
terns are realized is less obvious. Qualitatively, the disapbetween the spiral turbulence observed in the excitable auto-
pearance of some of the domains in the course of the pawave media N systems and the turbulence observed by
tern’s dynamics and the local breakdown, the processes th&s in aKQN system. In our simulations the nucleation of
cause the stochastization, occur easier when the inhibitor 8piral vortex pairs is not allowed by the local breakdown.
slower, that is, whenw is smaller. Of course, in order to The turbulence is produced by the constant self-replication
make a quantitative explanation of this separation, one has @f spots with the stochastization caused by the disappearance
solve a highly nonlinear free-boundary problem in two di- (@nnihilation) of some of the domains because of their strong
mensions. interaction with the neighbors, and the spontaneous creation
All the dynamic patterns mentioned above are observe@f new interfacegtransformation of a spot into an annujus
above the lower solid line, which is the stability margin for a due to the local breakdown, which occurs, if the size of the
spot form=1 obtained from Eq(17). Below this line a domain becomes big enoughig. 11). All this suggests that
static spot destabilizes and transforms to traveling. In thign the generaN systems withe<1 strong nonlocal interac-
region only autowavegthe simulations marked “a)’ form  tion between the different portions of the domain interfaces
from a localized initial perturbatiofFig. 13a)]. The auto- and between different domains, high curvature of the domain
wave patterns that form below the lower solid line are esseninterfaces, the time lag between the motion of the interface
tially the same for all values of (aside from the time and and the reaction of the inhibitor, and the process of local
length scales of the pattarand in fact do not differ from the breakdown are crucial and in fact determine the type of the
autowaves forming if)N systems withe=1. This is be- pattern that will form in the system from a localized stimulus
cause ar<<e the diffusive precursor is not able to form in for the given values of the system’s parameters.
front of the traveling pattern frortl1,17. Observe that ac- Before concluding this section, let us discuss how the
cording to Fig. 15, no complex static or dynamic patternschanges in the values ef should affect the bifurcation se-
(except autowavesform in the system at anf if a=<e?. guences and the pattern formation scenarios in the consid-
This fact is in total agreement with the general qualitativeered systems. As was already mentioned, the vat8.05
theory[10—17 and with the conclusions of the general as-corresponds to a “crossover” between the asymptotically
ymptotic theory of instabilitie$23,38. small values ok, and the relatively large~1. The value of
Hagberg and Meron explained self-replication of spotse=0.05 is reasonably small to admit strong separation of the
and formation of turbulence as the consequences of thkength scales of the activator and the inhibitor, yet it is not
parity-breaking bifurcations[nonequilibrium Ising-Bloch  very small in the asymptotic sense, for which in the consid-
(NIB) front transitiong of the planar fronts in bistablél ~ ered model we should hawe<0.01. It is clear that if the
systems with the weak activator-inhibitor couplif@p]. Al-  value of € is increased, the transverse instabilities will be-
though their approach is useful for the qualitative or heuristicome weaker, so the vertical lines corresponding to the in-
explanation of the formation of the dynamic patterns dis-Stabilities of a spot in Fig. 15 will move to the greater values
cussed above, it is highly inadequate for making quantitativef A. For these values of and a> € the stripe shape will
predictions in general. Indeed, the process of self-replicatioecome dominant over the spot shape, so the typical com-
observed in our simulation cannot be viewed as a conseplex pattern forming in the system will be the labyrinthine
quence of local NIB transition&eversal of the propagation pattern which consists of long wriggled stripes, which may
direction of the portions of the spot’s interfacesince, ac-  still be disconnectedFig. 13d)]. This will also be true for
cording to our numerical simulations, tholespot’s inter-  the Turing patterns forming as a result of the instability of
face reverses its propagation velocity in the course of selfthe homogeneous state. If the value wfgets smaller, the
replication(Fig. 10. Furthermore, as can be seen from Fig.turbulent patterns will form. Our simulations show that in
15, the region of the system’s parameters in which spot selfthis situation the pattern’s oscillations are less likely to syn-
replication is realized is determined by the instabilities of thechronize than in the case of smallebecause of the stronger
static spot, and not of the planar front, or the planar stripestochastization due to the local breakdown, so it would be
which is the counterpart of the planar front for the easier for the turbulent patterns to form.elis even greater,
monostable systems. One can show that according to Ethe patterns can no longer be viewed as having sharp inter-
(15), both the instability of the stripe with respect to pulsa-faces, so the entire phenomenology of the pattern formation
tions[the “+" sign in Eg. (15)] and the instability leading will change.
to the transformation of the static stripe into travelitie On the other hand, if the value of is decreased, the
“~"sign in Eq. (15)] lie considerably lower than both solid transverse instability will become stronger, and the dominant
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shape will become the spot shape. In this case all verticatonnected(Fig. 5 and disconnectedFig. 6) labyrinthine
lines which correspond to the instabilities of a spot in Fig. 15patterns, wriggled stripedig. 7), and multidomain patterns
will move toward A=A,. In the casea>e only discon- (Fig. 3). All these patterns were found in the chemical ex-
nected labyrinthine patterns or multidomain patterns willperiments[6,8,17. Ordered multidomain patterns were also
form as a result of the transverse instabili8g]. The char-  observed in the high-frequency gas-discharge experiments
acteristic size of such patterns will & [23,33, so at very  [19] and in the combustion experimeri20]. We also found
small e any spot will interact with many other spots. Becausethat at the same parameters of Kl system it is possible to
of this interaction, fora<e the pulsating patterns will tend excite a great variety of shapes of the static patterns by
to synchronize more, so the synchronously pulsating multichanging only the form of the initial perturbation. In particu-
domain patterns should exist in a wider range of the system'gr, it is possible to excite the labyrinthine and multidomain
parameters. Also, as follows from the general asymptotigatterns in the system with the same values of the parameters
theory of instabilities [23], for extremely small € ¢, o, andA [33]. This variety of domain shapes is observed
(e<107°) the instability of a spot with respect to the fluc- when e is not very small, since for very small values of
tuations leading to the formation of a traveling spot will only disconnected multidomain patterns will forfi33].
always occur at larger values of than the pulsating insta- However, such small values @fcan hardly be realized in a
bility, so it is natural to conclude that complex dynamic pat-typical experimental situation. That is why in our paper we
terns, such as pulsating multidomain patterns and turbulergaid particular attention to the case-0.05.
patterns, cannot be excited by a localized stimulus at such Static domain patterns ilKN systems may also form
small values ofe. spontaneously as a result of Turing instability of the homo-
geneous state. In the ideally homogenedis systems these
V. CONCLUSION patterns are as a rule quasiperioffig. 3) and in general
their period is not the same as the period of the critical fluc-
In this paper we performed a complete numerical study otuation 27/k, [see Eq(12)], but is determined by the stabil-
different types of domain patterns in a two-dimensioNal ity of the pattern. In real systems the type of the pattern will
system and investigated all major scenarios of their formabe determined by the small local inhomogeneities. Depend-
tion. We confirmed the conclusions of Kerner and Osipoving on the form of the inhomogeneity, and also on the sys-
[10-12 that the type of the domain patterns forming in thetem’s parameters, all types of static domain patterns will
N systems is determined mainly by the two basic parameterform spontaneously ilKN systems.
of the systema=r7,/7, ande=1/L=D,7,/D,7,. These In QN systems, that is, whea<1 anda=<e¢?, only the
parameters are the ratios of the characteristic time and lengtimiform relaxation self-oscillations may form spontaneously.
scales of the variation of the activator and the inhibitor andn such systems with the stable homogeneous state various
are determined by the local kinetic coefficients: the relax-autowave patterns, including expanding traveling waves
ation times and the diffusion coefficieridy, andD ,,. Inreal  [Fig. 13a)] and spiral waves, can be excited by an external
systems these kinetic coefficients strongly depend on the exerturbation. If the initial conditions are sufficiently random,
citation level of the system and the state of the environmenthe spiral turbulencdFig. 13b)] forms in QN systems.
the presence of small amounts of impurities or catalyst¥hese patterns were discovered by Zaikin and Zhabotinsky
which, for example, may change the rates of recombinatioiin an oscillatory chemical reactid39] and have been sub-
of nonequilibrium carriers in semiconductors or the rates oksequently studied for more than two decades in a variety of
chemical reactions, and so on. For example, by varying onlgystemq2,3,5,§. Notice that the autowave patterns are also
the temperature of the semiconductor lattice, one can signifebserved in the FIS reactidi7].
cantly change the critical parameters of the electron-hole The most diverse picture of pattern formation is observed
plasma described by Eg&) and (4) [27]. in the case ofKQN systems, that is, wher<1 and
We have shown that by changing the valuessand « e’<a=<e. In these systems both the uniform self-oscillations
and the control paramet@r (in the physical systems, such as and the Turing patterns may form spontaneously. In the
electron-hole plasma is the system’s excitation leyethat ~KQN systems with the stable homogeneous state it is pos-
is, in essentially the same system the whole variety of dosible to excite static, traveling, and pulsatifigeathing pat-
main patterns and pattern formation scenarios is realizederns. We showed that in these systems the remarkable effect
This general conclusion explains theoretically the results obf self-replication of spotg§Figs. 8 and 1Drecently discov-
recent experiments by Lex al.on the FIS reactiohl5-17  ered in the same FIS reactiph6,17] is realized. Depending
where they showed that in this chemical system by changingn the system’s parameters, this process may lead to the
relatively weakly its chemical composition and the form of formation of static or pulsating multidomain pattern, or to
the initial perturbation it is possible to excite all major typesthe formation of turbulence which is qualitatively different
of domain patterns and see various scenarios of their formdrom the spiral turbulence observed &N systems. This
tion, which are qualitatively the same as those observed iturbulence consists of random creation and annihilation of
our simulations. spots. Precisely this kind of turbulence was observed in the
In KN systems, that is, whea<1 anda> € only static  experiments in the very same FIS react[d], and also in
patterns form. When the homogeneous state ofkthesys-  the combustion experimenf&2)].
tem is stable, these patterns can be excited by applying a We would like to emphasize that the whole variety of
sufficiently strong perturbatiothard excitation We found  pattern formation scenarios observed in our numerical simu-
that by changing only the paramet&rand the form of the lations and illustrated in Fig. 15 is explained with the re-
initial perturbation one can excite localized spots and stripegnarkable accuracy by the asymptotic theory of instabilities
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of domain patterns in reaction-diffusion systef@8]. Thisis  fragment. According to Figs. 3—7, the form of such patterns
because the scenarios of pattern formation are determined lsfepends on both the initial conditions and the integral param-
the two processes: at first, any initial perturbation quicklyeters of the systenfin our casee, «, and A) which are
transforms to a state close to some stationary state; then tigi¢termined by the system’s kinetics. It is important that by
evolution of that quasistationary state is determined by it€hanging only these integral parameters it is possible to ex-
instabilities and the form of the critical fluctuations with re- cite qualitatively different patterns for the same initial con-
spect to which the instability is realized. Indeed, the stationdition. Thus, the systems we consider have a remarkable
ary states correspond to the solutions of E@isand(2) with ~ Property—a kind of associative memoifgee also Refs.
the right-hand sides equal to zero, so when we use the initidit1,12): the form of a pattern is determined by the integral
conditions which are significantly different from any station- Parameters of theleally homogeneous systeand they can
ary state, we in fact make the right-hand sides of Etjsand be reconstructed with certain probability from a small frag-

(2) large and, therefore, the time derivativesiodind . The ~ Ment(sufficiently localized initial perturbation
large time derivatives will cause such changesdiand 7 Patterns of the same morphology as those inkhesys-

which will lead to the transformation of the initial condition €M studied by us also form in a variety of the equilibrium
to the state close to some stationary state, in which the timgYSt€ms, such as gamet ferromagnets, ferroelectric and fer-
derivatives of¢ and 7 are small. For example, if a square of 0fluid films, Langmuir monolayers, and phase-separating
relatively small size is used as the initial condition, it will COPolymer blendsfor a recent review and the references see
first transform to a state close to a spot; if a square of larg&ef-[18]). Our simulations suggest that the complex domain
size (L) is used, it will first transform into an annulus as a patterns, such as multidomain or labyrinthine patterns, are

result of the local breakdown in the center of the squis driven by the dynamics of their interfaces coupled to the

effect was studied in detail in Refél0—12. If the system is long-ranged inhibitor field. It is, therefore, natural to expect
bistable, the initial condition in the form of a large squaredudlitatively the same pattern formation scenarios in the

may trigger the wave of switching from one stable homoge_equmbrlum systems with thg competing repulsive interac-
ns and the strong separation of length scales. In the non-

neous state to the other. The evolution of these states cloéié’

the stationary states, and, therefore, the pattern formatioﬁqu”ibrium_SyStemS the inhib_itor does not necessarily react
scenarios, will be determined by their stability: a spot may(?n the motion Of. th? pattern interfaces |_nstantaneously. The
dime lag of the inhibitor makes the existence of complex

system are such that it is stable, or an annulus may forrdyNamic pattems possible in the nonequilibrium systems.
from a square of large size. The radius of the spot, or the IN€ only kinds of patterns that form in the experiments

width and size of the annulus will be determined by theWith the cellular flame$21] and with the gas-discharge sys-

corresponding stable states and will only depend on the pa{-em[l_g] that we did not see _in our numerical simulations are
rameters of the systelisuch ase andA). If the parameters trayelmg spots anq hopping patterns. Repgnt work of
of the system are such that these states happen to be unstats §cher and. M|kha|!ov guggested .that a sufﬂuently strong
then, depending on the type of the instability, which is de-9 obal coupling, Wh'Ch. is absent in our model, might be
termined by the parametees «, andA, all kinds of complex needed to see these kinds of pattel#].

patterns will form.

One of the bright pattern formation scenarios consists of
the transformation of the localized excitations into the pat- One of us(C.B. Murtov) would llike to acknowledge the
terns that fill the entire system. In certain sense one couldomputational support from the Center for Computational
think of this as the self-completion of a pattern from its smallScience at Boston University.
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