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Exponents appearing in heterogeneous reaction-diffusion models in one dimension
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We study the following one-dimensionélD) two-species reaction-diffusion model: there is a small con-
centration ofB particles with diffusion constanDg in an homogenous background @f particles with
diffusion constanDyy; two W particles of the majority species either coagulaté{(W— W) or annihilate
(W+W—0) with the respective probabilitigs,=(q—2)/(q—1) andp,=1/(q—1); a B particle and aw
particle annihilate W+ B—0) with probability 1. The exponer@(q,A=Dg/Dyy) describing the asymptotic
time decay of the minorityB species concentration can be viewed as a generalization of the exponent of
persistent spins in the zero-temperature Glauber dynamics of thg-dfate Potts model starting from a
random initial condition: th&V particles represent domain walls, and the exporgqgt\) characterizes the
time decay of the probability that a diffusive “spectator” does not meet a domain wall up td tivle extend
the methods introduced by Derrida, Hakim, and Pasd#ibys. Rev. Lett75, 751(1995; J. Stat. Physto be
published] for the problem of persistent spins, to compute the exposém\) in perturbation at first order
in (q—1) for arbitrary\ and at first order in\ for arbitraryq. [S1063-651X%96)14711-§

PACS numbd(s): 05.40:+j, 02.50—r, 82.20—w

I. INTRODUCTION sponds to a pure coagulation case.€1 andp,=0). It
turns out that the latter case is much simpler to study than
The one-dimensiondllD) Ising or Potts model evolving any finite g case. In particular, in thg=o0 limit, simple
according to zero-temperature Glauber dynaridsfrom a  random walk arguments are sufficient to obtain the distribu-
random initial condition is one of the simplest systems fortion of domain size$10,7] and the exponent for persistent
which domain coarsenin®] can be studied in great details. spins[11], whereas the computation of the corresponding
The possibility of writing closed kinetic equations for the quantities for any finite) is much more involved5-7]. The
expectation value of each spin and for the equal-time tworelative simplicity of coagulation modelAd+A—A), with
point correlation function§l,3,4] can be used to obtain vari- possibly the back reactio’A(— A+ A) or a random input of
ous exact results, such as the growth in time of the chara® particles, or localized sources @&f particles, is in fact
teristic length of the coarsening like"?, as expected in related to the possibility to write closed kinetic equations for
general when the order parameter is not conserved. Morthe “one-empty-interval probabilities,” i.e., the probabilities
recently, it was shown that more refined quantities such athat a given interval contains n& particle[12-19,5. This
the fraction of spins which have never flipped up to tilne approach may be generalized to write closed kinetic equa-
[5,6], or the distribution of domain sizgd¥] could also be tions for the probabilities to have many disconnected empty
studied by mapping the problem to an exactly soluble oneregions[17,5], but all these many-empty-interval probabili-
species coagulation modeh ¢+ A—A). ties may in fact be expressed in terms of the one-empty-
The zero-temperature Glauber dynamics of thstate interval probabilities alongs]. This means that all the infor-
Potts model starting from a random initial condition is re- mation on the coagulation model is actually contained in
lated to various reaction-diffusion problems. The simplesthese one-empty-interval probabilities.

relation deals with the dynamics of domain wals([8], and The method that has been followed to study the general
references therein9]), that diffuse and react whenever they q case [8,5—-7 has been to relate the zero-temperature
meet according to Glauber dynamics of the-state Potts model to another

reaction-diffusion problem which is a pure coagulation prob-

lem (A+A—A) for any g, in contrast with the reaction-

diffusion model of domain-walW (1.1). A simple way to

(1.1  implement the zero-temperature Glauber dynamics consists
in updating the spins according to

-2
W+W—W coagulation with probabilityp.= (g_—l) ,

1
W+W—0 annihilation with probabilityp,= qT

1) Si(t)=S_1(t—dt) with probability dt, (1.2
As such, this reaction-diffusion problem has a meaning for S(t)=S . 1(t—dt) with probability dt, 1.3
any real value &p.<1, that is, for any real valug=2.
The Ising case d=2) corresponds to a pure annihilation S(t)=S(t—dt) with probability (1—2dt). (1.4

problem (p.=0 andp,=1), whereas theg—c limit corre-
Tracing back in time the sequence of spins responsible for
the valueS;(t) of spini at timet therefore defines a random
“Electronic address: monthus@spht.saclay.cea.fr walk going backwards in time and leading to some spin
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Sj(0) of the initial condition. If we are interested in the of the fraction of persistent spins in the kinetic Potts model

values S(t) and S(t’) of the same spin at two different can be reformulated as a “static impurity problerf22].

times [8,5,6, we have to consider the corresponding two What do we know about the exponefi(tg,\)? It is clear

random walks starting, respectively, at timeandt’ from  from the definition of the model thai(qg,\) is an increasing

sitei and going backwards in time, and study whether theyfunction of g at fixed\, and an increasing function aof at

merge at some point before the initial tinhe0 in which  fixed g. For g=1 there is no domain wall8V so that the

caseS;(t)=S(t"), or whether they do not meet up to time exponent vanishes in this lim#(g=1\)=0. For a fixed

t, in which cases;(t) = S;(t’) with probability 1/4q due tothe B particle . =0), the survival probability of th® particle

randomness of the initial condition. This is the starting pointreduces to the probability that a given spin is not crossed by

for studying the probability that a given spindoes not flip any domain wall up to time, which is also the probability

up to timet [6]. The same type of reasoning can be appliedthat a given spin does not flip up to tinte and the exact

to compare the value§i(t) andS;(t) of two different spins  expression recently obtained for this exponent re&ds

at timet to lead to the distribution of domain siz€8]. In

this approach, the Glauber dynamics of thestate Potts 1 2 2—q

model is thus formulated in terms of random walks going (g =0)=— §+ —Zarccoé(—), 1.7

backwards in time that merge whenever they meet & \/Eq

(A+A—A), and the parametay only appears through the

property that two different sites of the random initial condi- in agreement with previous numerical resuyttd,24,8. The

tion have the same value with probabilityql /The problem  €Xxponenté(q,\) is also known in the particular casp=2

has now therefore a mathematical meaning for aay_]_, in and =1 where theB particle can be considered as a do-

contrast with the initial reaction-diffusion model of domain main wall W, and where the dynamics of domain walls re-

walls W (1.1) defined forq=2 only. This model can, more- duces to a pure annihilation modeN(+ W— 0) [25-27

over, be given a physical meaning for any real vajeel if

one considers the Ising case with a random initial condition

presenting a nonzero magnetizatiore [ —1,+ 1], in which

each spin has initially the value+) with probability

p+=(1+m)/2 and the value {) with probability \ve have not been able to get an exact expression of the

p-=(1-m)/2[9,20,21,7. Indeed the probability that@)  exponents(q,)) in the general casg>1 and\>0, but we

spin does not flip up to time or the distribution of(+)  have obtained various asymptotic behaviors. The paper is

domain sizes will be given by the corresponding results folprganized as follows. In Sec. Il we recall how to derive the

the previousy-state Potts model with the correspondence  vajue of the exponeni(g,\) in the particularly simple case
g=cc and arbitraryx [28,22

0(q=2,)\=1)=; (1.9

1 _1+m

6(q=2,\)= - (1.9
This article is devoted to the following generalization of 2 arcco%—)
the problem of the exponent of persistent spins for the zero- 1+A

temperature Glauber dynamics of thiestate Potts model.
We consider & particle that diffuses with a diffusion con- In Sec. lll, we extend the approach described in Rgfby
stantDg=\D,y that is different from the diffusion constant Derrida, Hakim, and Pasquier to obtain the first correction in
Dy of domain walls (\ e[0,+%)), and that disappears €=0—1 of the exponent for any
whenever it meets a domain wal,

V2N +1

B+W—0 with probability 1. 6(q=1+e€N)=¢ N +o(e).
w—arcco%m)

The question is, what is the exponef(tg,\) that describes

the survival probability of thd3 particle (119

(1.6 As previously explained, this exponent characterizes the de-

' cay of the probability that & particle remains in g+)
domain up to time for the Glauber dynamics of the Ising

as a function ofj=1 and\ =07? The exponent is expected to model starting from a ra_mdom initial condition characterized

depend explicitly on the ratio.=Dg/Dy, because of the bY @ strong magnetizatiom=1-2¢ (1.5). In Sec. IV, we

interplay between the diffusion & and the domain coars- 9eneralize the approach developed in Réf. by Derrida,

ening of the kinetic Potts model. From the point of view of Hakim, and Pasquier to study the first-order perturbation in

reaction-diffusion models, the problem considered here i@ around the resuit1.7)

“an impurity problem” [22,23, in which there is a small

concentration oB particles in an homogeneous background 6(g,\)=6(q,0)+Aé(q)+0(N), (1.1

of W particles, so that one can neglect reactions among im-

purities and the influence of impurities-background reactiondut the expression obtained f@r(q) is unfortunately quite

on the background properties. In this language, the problemomplicated see Eq.(4.34) below.

Pg(t,g,\) ot~ 44N

t—o
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Il. DIRECT STUDY OF THE EXPONENT 8(q,\) A. Equivalence with a coagulation model on a large ring

FOR g= AND ARBITRARY A Finite-size scaling arguments imply that the exponent

0(q,\) also appears in the zero-temperature Glauber dynam-
ics of the g-state Potts model defined on a ring of finite
lengthL. It describes in this case the decay with the $izef

the probability for theB particle to survive indefinitely

For g=, the dynamics of domain walld.1) reduces to
a pure coagulation model

W+W—W  with probability 1.

Pa(L,G.N)~Pg(t~L%,q,\)~L~2%@N (3.1
The problem of theB-particle survival is therefore reduced
to a three-body problem, since the two nearest domain walls
enclosingB _evolve only by diffusion, ar_1d cannot disappearAS explained in[5], when the spin values seen by tBe
when meeting the next nearest domain walls. Let us introparicle are traced back in time, one obtains random walks
duce the jomt prObab'“tW(),(l’X'XZ,’t) that _theB pgrhcle going backwards in timé¢that we will call A particles from
has not yet disappeared at tifnand is at positiorx, with the now on, that merge whenever they medtA—A), and
next domain wall to its left being at position <x and the that connect all the spin values seen by Bigarticle to

next domaln_ .Wa” to its r.'ght being at positiog=>X. .Th's. various ancestors belonging to the random initial configura-
joint probability evolves in time according to the diffusion . i Y
tion. The probability form ancestors of the random initial

equation(where, for simplicity, we have set the diffusion .
d ( plcty condition to have the same ‘“color” of theg-state Potts

constant of domain wallB,y equal to 1
w ed ) model is simply (1¢)(™ 1. As a consequence, the survival
probability may be expressed 5|

R N

- _(9_xf+a_x§+)\ﬁ for x;<x<x, (2.1
L
1
with the absorbing boundary conditiong/(x,x,X5,t) PB(L,q,)\)=E —=1 PL(M,N\), (3.2
=0=(X1,X,X,t). This problem can be easily solved m=1q

through a change of coordinates, and the survival probability

of the B particle,
wherep, (m,\) is the probability of findingn particles on a

. § . ring of L sites in the steady state of the following one-species
PB(LOC-)\)ZJ dxf XmJ’ A% th(X1,X, Xz, t) A-particle coagulation problem: there is a moving “source”
—o —o X (corresponding to th& particlg that is always occupied by
(2.2 anA particle, and thd.—1 other sites may be either occu-
pied or empty. During each infinitesimal time stép each
exhibits the asymptotic behaviaf28,22 and references A particle hops with probabilityt to its right neighbor and
therein) with probability dt to its left neighbor, and does not move
with probability (1—2dt), in correspondence with the up-
Y dating rules of théf =0 Glauber dynamicgl.4). If two par-
Pg(t,g=%,)) o t~ ™2e¢M)  where a(?\)EafCW%m) ticles occupy the same site, they instantaneously coagulate
(A+A—A). Whenever theA particle being on the source
23 jumps to one of its neighbors, a nefwparticle is instanta-
neously produced on the source. The additional rules for the
dynamics of the source are the following: during each infini-
tesimal time steglt, the source hops with probabilitydt to
its right neighbor and with probabilitjdt to its left neigh-
bor, and does not move with probability {22\ dt). When-
0(q=2=,N) = TO\) (2.4 ever the source moves, tieparticle that was occupying the
position of the source remains on this site, and a mew
The angle @(\) decreases froma(A=0)=m/2 to particle is instantaneously created at the new position of the
a(A=»)=0, so that 6(q=x,\) grows from SOUrce. _ _
0(q=,A=0)=1 to A(g=o0,\ =) =0. To compute the expressia@.2) that involves the prob-
abilities p_ (m,\) characterizing the steady state of the co-
agulation model, we introduce generalized “empty-interval
probabilities” [12-19,9. We first define the conditional
probabilities b{§(t) (0<i<j<L+1) that the segment
In this section, we follow the approach described in Ref{s(t)+i,s(t)+j—1} contains noA particle, for a given
[5] by Derrida, Hakim, and Pasquier and only mention thesource trajectoryS}={s(7),7=0} representing a particular
modifications that have to be made for the case we are interealization of the source random walk. They evolve in time
ested in here. according to

t—soo

so that the value of the exponefitq,\) for q= and arbi-
trary A reads

Ill. EXPONENT 6(q=1+¢€,\) AT FIRST ORDER IN €
FOR ANY A
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biT(t+dt) =bfF (1) + dtSg s an s b1 (D +DIT (O +D{F, 1 (0 +Dbf 1 () —4ablT(1)]
+ dtSg e g, 50+ 2001 V1 -1 (0 = DIT O]+ dtSycr-an, s -2l bf 2D =BT ()] (33
and satisfy the obvious boundary conditions
bi()=0=b{{, (1) and biF(t)=1. (3.4)
The average obﬁ}(t) over the random walk trajectories of the source denoted by
Bi,j (A1) =(bf (1)) 35

evolve in time according to

EBi,j(K,t):Bwl,j()\,t)ﬂLBi—l,j()\,t)JrBi,j+1()\,t)+Bi,j—l(h,t)—45i,j()\,t)

FABis 11N +Bi 11 (M) —=2B; (A, 1)] (3.9
and converge at large time towards stationary probabilBigg\) that are solutions of
Bit1j(N)+Bi—1j(N)+Bij1(N)+Bi j-1(N)—4B; j(N) +A[Bj 1)+ 1(N) +Bj_1;-1(N)—2B; j(N)]=0 (3.7

together with the boundary conditiof ;(\) =0=B;, L+1()\) andB; j(A\)=1.
We may also define the cond|t|onal probablhtia;@ L 2n(t) (0<i <i,<---<i,,<L+1), that there is n&A

particle in any of the segmentss(t)+i,s(t)+i,— 1} {s(t)+|2n 1,S(t)+i,n—1} for a given source trajectory
{S8}={s(7),7=0}. These conditional probabilities satisfy evolution equations analogoy8.3y with obvious boundary
conditions for coinciding indices. We have, for example,

b{S}k|(t+dt) bi{ (D) +dtds 4 ar) s(t)[bi{f}l,j,k,l(t)"'b{S}l kl(t)"_bﬁ}-t—lkl(t)"'b{S} 1k|(t)+b. I k+1|(t)+b{ }k 1(t)
+b{1k|+1(t)+bi{f}k| 1(t)—8b'{5}k|(t)]+dt5s(t+dt) s(t)+l[b| 1j-1k-11-1(— b|]k|(t)]
+ dts(t+d),s(t) - 1[b|+11+1k+1|+1(t) b.,k|(t)]- (3.9

The average:éb{s} i -2n(t)) over the realizations of the source trajectories converge at large time to stationary

I I2 ,I2n71,l
probabilitiesB; (M) satisfying equations generalizint.7), as, for example,

i1si2s - dion—1:i2n
Bit1j it M) +Bi—1j kN +Bi j41x1(N)+Bi jo1x (M) +Bi j ks 1)(N) +Bij -1y (M) +Bijki+2(N) +Bj j k- 1(N) —8Bj j(N)
FABisgjrik+1i+1(N)+Bizgj_1x-15-1(N) = 2B; j 1(M)]=0. (3.9

The generalization of the identitit0) of [5] gives the survival probability of thB particle in terms of the whole hierarchy

of the mean empty-interval probablhtl& iy I2rH,iZn()\) as
1 o o
Pe(L,aN)=—=g|1+ 2 (@-D7Bj(M+ X (@D 0+ (3.10
q 1<i<j<L ' 1<i<j<k<I<L o

The key to solve the coagulation model in the case of a fixed b{S} (D)= b{S}(t)b{S}(t)+ b{S}(t)b{S}(t) b{S}(t)b{S}(t)
source[5] (corresponding to tha =0 case herewas the (3.12
possibility to write the mean many-empty-interval probabili-

ties B; Lis, ,ianl,iZn(A=0) of arbitrary order as Pfaffians

of the mean one-empty-interval probabilitie®; j(A =0)
alone, as, for example,

since the right hand side and the left hand side evolve in time
according to the same equati¢®.8) and satisfy the same
boundary conditions. However, these Pfaffians relations that
hold for a given realization of the source trajectory are no
longer valid for the mean probabilities
Bili,. .. iy g, (M), Decause Pfaffians involve products

For the case of a moving source, all these Pfaffians relaand the mean of a product is, of course, not equal to the
tions still hold for a given realizatiofiS} of the source tra- product of means. In particular, E@.11) is no longer valid
jectory. It is, for example, easy to check that for A #0,

Bij k1(0)=B; ;j(0)By,(0)+B; (0)B; «(0) —B; «(0)B; ;(0).
(3.11
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Bi i k(M) #B;i j(N)By (M) +Bi (M) Bj k(M)

Y
=B «(M)Bj i (N). (3.13
A
Equation(3.10), giving the survival probability of th8 par-
ticle in terms of the whole hierarchy of the mean many- % c
empty-interval probabilities3; ; . ;i . i (N), is there- v

fore much more difficult to use fax#0.

This is why in the following, we only compute the mean
one-empty-interval probabilitie®; ;(\) in the limit of a ¥
large systenl.— o, and use the following expansion of the
survival probability(3.10 in e=q—1

o X
L-1
Pe(L,g=1+€e,N)=1+ EE (Bi'i+1()\)—l)+0(62) FIG. 1. The functiong,(X,Y) satisfies the Laplace equation
=1 (3.17 in the interior of the triangle of vertice®, A, andC, to-
(3.14 gether with the boundary conditior3.18).

to obtain the first order ine of the exponent where Im denotes the imaginary part. This funct";é('w)

0(a=1+eN). satisfies the Laplace equation on the upper half-plane
{v=0} and the following boundary conditions on the real
B. Mean one-empty-interval probabilities B; ;(\) axis {v=0}:
for a large systemL —x _ _
For large L, B;;(\) becomes a continuous function Bue(=2,0,0=0)=0=pUe(1,+2),v=0)

Br(x=i/L,y=j/L) which satisfies the continuous version of

(3_7) and

2B 9B 7B Bue(0,1),0=0)=1. (3.20
(1+)N) W+a_3/2 &xay_o‘ (3.15

We now consider the conformal transformation

in the triangle B=x<y=<1 together with the boundary con-

ditions 8, (0y) =0=B,(x,1) andB,\(x,x)=1. To eliminate Z(W):Kfwdg;vei[wzwV(w—argé)—argg—lm
the nondiagonal term, we perform the change of coordinates o |&(1-¢) 321
X=x and Y= w (3.1  With the notations
V2a+1
_ B 1 a(N)

The problem is now reduced to solving the Laplace equation v=v(h)= 2 1+ T

By 3By and

X2 + N =0 (3.17

'(2-2v)

: . . Kse ——F. (3.22
in the triangle of verticeD(Xo=0,Yg=0), A(Xp=0,Y4 '2(1— v)co @
=(1+\)/y2x+1) and C(Xc=1Yc=1/(2x+1), with 2

angles OAC=a=arccosi/(A+1)) and ACO=COA
= y=(7— a)/2 (see Fig. 1 with the boundary conditions  This transformation maps the upper half-plane of the com-
plex planew into the interior of the triangl® AC described
B(X,Y)=0 on segments OA and AC, above in the complex plané=X+iY. We have more pre-
(3.18 cisely Zo=2Z(w=0), Zc=2Z(w=1), andZ,=Z(w= £ ).
The functiong, (X,Y) of (3.17—(3.18 therefore reads
A convenient way to solve this problem is to use methods  8,(Z=X+iY)=B[w(Z)]=Im i|n(vﬂ)
of complex analysis and conformal transformations. We in- w(Z)

troduce the functionﬁ(w) of the complex variable
w=u-+iv

Br(X,Y)=1 onsegment OC.

wherew(Z) is the inverse mapping df(w) (3.22. Unfor-

tunately, the inverse mapping(Z) cannot be explicitly
iln(w_ 1” (3.19 written for arbitraryZ in the triangle. However, approximate
T

Alw)=Im explicit forms may be written locally.




54 EXPONENTS APPEARING IN HETEROGENEOUS ...

C. Use ofBy (N) to recover @(q==,\)
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We may locally invertZ(w) aroundZg=2Z(0) and obtain

The exponentd(q=,\) (2.4) may be recovered from w(z=re!(™279) for ¢ <[0,y] and for small enough,

the asymptotic behavior d8;, (\) since(3.2) reduces for
g=c to

’PB(LIq:OO!)\):pL(l’)\) (324)

and the probability of having only exactly one particle on theWe therefore get

ring is simply the probability,, (\) of having no particle
except on the source. So finally

Pg(L,q=2,N)=By (N\)=8),

11
AT L

o 72000, (3.25

We thus have to consider the functigy(Z) for Z near the
vertex A of the triangle. In the neighborhood df,,

W(Z=Zp+r1e'" (72)*9))  reads approximatively for¢

€[0,a] and small enough

arﬂ'/a

= + (—m2+¢)y ~ | _ —im dla
W(Z=Zp+re )Ho —K e
(3.26
and we get
Br(Z=Zp+re!(" ™2+ )
| 1 1
M T E W(Z=Zarre 2T )
1[ ar]™e b
=l 7K sin T (3.27

We finally obtain

Pg(L,g=,N)
1 1 1
L:wﬁ)\ X~ E'yN L

1.
~ﬁx(z~zA+ re W’2+¢>)oc|_ e

(3.28
and so recover again the expon¢di).
D. Exponent #(q=1+¢€,\) at first order in €
To obtain the first order i of the exponent
0(g=1+¢€,N)=€a(\)+o0(e) (3.29

we only have to consider thg, ;. ;(\) sincea(\) is given
by the leading behavio(3.14)

L-1
. (1-B;ji+1(N)) = 2a(N)InL.

L—oo

(3.30

1/(1-v)
w(Z=re!("2" ") = —{(1—1/)— CR
r—0 K

(3.30)
. 1 K M=
— |(7r/2—(;b) ~ _ |¢/(l—v)
Priz=re )Ho'm[w'”( <1—v>r} e )]
X
~ ¢ _arcta V ia
S w(l-v)  w(1l-v) (332

or more explicitly in terms of the original coordinates
(x,y)

X Sina
y—X cosw

2
Brx<ly<l)=_— aarctar6 ) . (3.33

As explained in 5], this small corner &x<y<1 where
By (x,y) is of the formf, (x/y) with the scaling function

2 u sina
W)= At T cose

and the symmetric corner-ly<l1—x<1, are entirely re-
sponsible of the leading behavior (8.30), that is more ex-

plicitly

L-1

(3.39

1
> [1-Biira(N)] = ZLJ dx 1= By| X, X+ =
=5 ’ Lo JIL L
(3.3
ZLJ dxj1—f,| 1 1)
B 1/L XN _R
=2f,(1)InL. (3.39
The correctioma(\) (3.30 is therefore given by
a(\)=11(1)= - (3.3
(w—a)tar(E
so that finally
V2N+1
0(g=1+¢eN)=e€ X +o0(e).
W—arCCO%m)
(3.39

IV. EXPONENT 6(q,\) AT FIRST ORDER IN A
FOR ANY q

In this section, we follow the approach of referef6gby

Derrida, Hakim, and Pasquier and only mention the modifi-

cations that have to be made for the present study.
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physical time
T

s(t,)

A. Adaptation of the formalism introduced in [6]

Let us introduce the survival probabiliyt'(t,q) up to
time t of the B particle for a given trajectory
S={s(7),7=0} of the B particle. We may also define the
analogREY(t,q) of this survival probability for the semi-
infinite-chain geometry6]. The survival probability on the
infinite chain reads then as a generalization of @q) of [6]

p5(t,a) =R (t,q)RE ¥ (t,q) (4.0

where the notation{—S} denotes the mirror-trajectory
{—s(7),7=0} of the trajectoryS={s(7),7=0}. The gener-
alization of Eqs.(29)—(31) of [6] is that the survival prob-
ability RE¥(t;,t,,q) between times; andt, for a given
trajectoryS may be expressed as

R{BS}(tl !tZ lq) = Q{S}(tl !t2 !q)elIZT{S}(tl'tz ’q)r (42)

where, using the notatiop=(q)=(q—1)/q? and denot-

ing by d, the derivative with respect to the first variable of

any function of several variables, we have

oo

—2u)" [t t
T (ty,t,,q)=— (z2n) fszl"'szTn
n=1 n ty ty

X 91C19 (71, 75) 9161 ( 7y, 73)

9,07y 1) 4.3
and
Q¥¥(ty,t5,9)=V1— ut ¥(t,,t5,q)
—(q=D)V-uC ¥ty t,0) (4.9

with

CECILE MONTHUS

reversed time . .
FIG. 2. A schematic representation of the

source trajectorys(7) on the left of the figure,
with two random walkers emitted by the source at
7, and 7, going backwards in time.

u=t- 1

o ) .
E{S}(tz,tz,q)=2 (_ZM)nf ZdTl"'fszn
n=1 ty ty

x ¢t (ty,m) 93¢t (7y, )
X &10{5}( T2, 7'3) R (91C{s}( Th ,tz) .
(4.9

So the fundamental object needed to comp%@%(tl,tz,q)
is the probabilityc!¥(7;,7,) (with 0<r;<r,) that, for a
given trajectory S={s(7),0<r<r7,} of the source, two
Brownian walkers going backwards in time and starting re-
spectively ats(7,) at timeu,=t— 71, and ats(r;) at time
u;=t— 7, do not meet up to time, with the boundary con-
dition that they are reflected by the reversed-time source tra-
jectory{o(u)=s(t—u),t— r,<u<t} (see Fig. 2

The method of images gives thet’(r;, 7,) may be writ-
ten as

C{S}(leTz):J

a(t)=s(0)

)

x| a9 tls(ry - 7
X

X g9y, t|s(72),t— 72)— g9 (X, t[S(72) , t— 72)
x g'(y,tls(ry),t= )] (4.6

in terms of the probability densitg'¥(x,t|s(7),t— 1) that,
for a given trajectoryS of the source, a Brownian walker
going backwards in time and starting str)=o(t—7) at
time (t— 7) is at sitex at timet, with the boundary condition
that it is reflected by the reversed-time source trajectory
{o(u)=s(t—u)}. More explicitly, g'¥(x,t|o(u),u) satisfies
the diffusion equation

(92

%g{S}(X,tlo(U),U)=—9{3}(x,t|a(U),U)

g for x> o (t) .

4.7
together with the initial condition

9", t|o(u),u) — S x—o(u)]

t—u

4.9
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and the reflection condition at= o(t) expressed by the con-  a functional of the source trajectofis}. As a consequence,

servation of probability the average over the sources trajectories that is needed to

d (= evaluate the exponer(q,\) through

af dxg ¥ (x,t|o(u),u)
a(t) _

Ps(t,a,0) =(pE(t,0))=(R I (t,a)Rs (t, )

Si(a(t),t|o(u),u) oo g oaN) (4.10

t—oo

do(t)
R
+c9g]‘{5}(x,t|o-(u),u) 0
IX X:U(t)' (4.9 seems quite difficult to study.
So from now on, we will restrict ourselves to the evalua-
Unfortunately, we have not been able to write this prob-tion of the B-survival probability at the first order in the
ability densityg!¥(x,t|o(u),u) in an explicit simple way as diffusion coefficient\ of the B trajectories.

B. Perturbation theory in the diffusion constant A
The probability densit;g{S}(a(t)+z,t|o-(u),u) may be seen as the continuous limit of a discretized version involving
(N—1) intermediate times,=u+n(t—u)/N (1=<nsN-1)
N—1
9o (t) +z,t|o(u), U)—“mNﬁnf dzlj dz,-- f dzy- 1H 9o (the) + Zns 1 taralo(ty) + 20 ,t)) (410

with the convention$y=u, z,=0, ty=t, andzy=z. In the limit of a vanishing time intervalt=t,,,;—t,=(t—u)/N—0, we
may approximate the source trajectory between tithemndt,, ; by a line segment of slopg,=[o(t,; 1) —o(t,)]/At. The
probability density glo(W=c0"au(x t|x,,0) solution of (4.7—(4.9 for the particular case of a linear trajectory
o(u)=oy+au reads

0
g{rr(u):(r0+au}(x,t|xo,0)_ e (x—x0)2/(4t)+ea(x0—(ro)e— (x+x0—2(r0)2/(4t)+af dnea(xo—rro— Mg~ (x+Xg= 200~ 7)2i(4t) _

at — o
(4.12
So we get
N—1
g% () +z,t|o(u), u)_nmef dzlf dz-- f dzy- 1H Qa, (Zn+1.2n,Al), (4.13
where
Qa, (Zn+1,20, A =gl =7 & (g (ty 1) + 20, ta+ At o (tn) + 2 t0) (4.14
o~ A/(4A0~ (ay/2) (Zn11-2p) , ,
_ e~ (Znr1-20)?(400) | o= (Zq41+27)/(4A1)
2wt
0
+anf_ dzye” (@2 g~ (Zns 1+ 20— m)?/(400) | (4.15
We then obtain the following expansion up to second ord€s{m)}:
99t +ztlo(t—7),t-D=go(z, D+t (2,7 + g5z ) + - - (4.16
with the term of order 0,
e 22/(47)
9o(z,7)= ——, (4.1
0 NTT
the term of order 1 if{s(u)},
s(u 92
{%zﬂ———f -~ 5 (e 1), (4.18
u(t—u) z°

and the average of the term of order 2{in(u)},
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(g5 r>>=m(9—2<eﬁ) (4.19
! 02\ w7 | -

Note that this last average may be obtained directly from the avdlgiﬁk{a(t)Jrz,tlo(t—r),t— 7)), which is simple for
arbitrary\ (see Appendix A We then obtain the corresponding expansion

!Ny, mo) =co( 1y, m0) + iy, ) + 7y, 1) + - - (4.20

of c!(r,,7,) defined in(4.6),

C{S}(leTz):f dzf JdZ,[Q{S}(U(t)“‘Z,tl‘T(t_Tl)yt_7'1)9{8}(0'(t)+2',t|0'(t_7'2),t_7'2)
0 z

=g o(t) +z,t|o(t— 1), t— )g N o (t) + 2/, t| o (t— 1) ,t— 71)] (4.22)

4 T
Co(71,70)=1— —arctan\/; (4.22
2
the term of order 1 iqs(u)}

2 e s(u) / s(v) [ m
{Sh
CY (e, 72)= w32 [f 7-2+u u) J Tl-l-v v(7o—0) }' (4.23

and finally the average of the term of order 2{s{u)},

with the term of order 0

(71,7 = | in(u,v) —— (4.24
(1, 7m))=— min(u,v) ———. .
1 \/U(Tl u)Jo \/U(TZ v) (v+u)?
To compute the first correction ik of the exponent
6(d,\)=6(q,0)+ X ¢(q)+0(N) (4.25

we have to study the survival of tHe particle between timet, andt, (4.10—-(4.2)

Pa(ty t5,0.0) =(QU I(t1,t2,0) Q1 Ity tp, q)et/? T w2 T ttzaly o g oan), (4.26

t2—o

For 1<q<2, the prefacto!%(t,,t,,q) Q"% (t;,t,,q) remains finite in the limit,— o (see[6] for the detailed study of the
A =0 case. Using the expansion

1 1
STt t,0) + TE It t,0)=To(ty, t2.0) +§(T{2+S}(t1 o, 0)+ Th Sty th,0))+ - - (4.27

we find that the correctiowb(q) (4.29 is given by the lead- with
ing behavior of the average

to
o) = p@n() 68 mna=- 3 o[ [
1

t2~>oc

This average at first order ik of T{"5!(t;,t,,q) defined in % 1. s
. I e —(d,C ,
(4.3 decomposes into two contributions )\< 1657(71,72))

<T{2+S}(t1atzaQ)>=)\(Tz(tlatzaQ)+71,1(t1at2:Q)) X T 91¢o(7i,7i41) (4.30
4.29 =



and

©

Tty t,q)=— >

n=2

n

(—2u)"
2

ty
d7,
ty

tz
dTl. ..
ty

2

=2

1
Xx<310{18}( 71,72)31C80( 7, 7141))
X I1 a1co(mi\7i40) (4.3)
i#=1)
so that the correctiogh(q) in (4.25 will be obtained through

the asymptotic behavior
t;
ty)’

(4.32

Tp(ty,t5,0) + Ty 4(ty,t5,0) = —@(q)In

to—»

The asymptotic behaviors of 7,(t;,t,,q) and
7.(t1,t,,q) are studied, respectively, in Appendix B and Ap-
pendix C and we only give here the final result fo(q)
obtained in Appendix D in terms of the auxiliary variable

2

- 2—q
6(Q)= ;arcco

) 4.3
ﬁq> (433

which varies in the intervaIAé(q=1)=1/2<3<3(q=oo)

=3/2,
__cotmd) 1435+ o0 !
atl w2sin( 7w 8) 4
11/1 -« 9 . 1 - -
S i A el e el R e
1 ridz - . .
= = (1-3)
+W2fo\/2[H+(z,6)H(z,5)+22
r(2-9) a1
F(%—A H+(215)_( _E)
L@, (2,9) (4.34
— % " (z , .
F(%+6)

where ¥(x)=T"(x)/I'(x) is the logarithmic derivative of
the gamma function, and where the functidts(z,6) and
H_(z,6) are defined as the series

[

H. (z A5):2 cog 7o) (2n+173)1"(2n+ 3 ~3)
+(2, sin(wd) |[n=1 r(2n+1-9)

[

5 T(@n+ 3 +8)

_ 2 Z(2n+1+4
=0 r(2n+1+96)

, (4.39
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0.1
0.6 0.8 1.2 1.4
e
- 8(9)
FIG. 3. Plot of¢(q) as a function ofAﬁ(q).
. - . T(2n+2-6
H_(z,6)=2| X, pemea-y L(ENT270) - )
A1 r2n+ 2 -9
LS eneaiy L(2nT2+0)
n=0 ren+ 2+96)
i 3
-3 z<l+1/2>_r(_|: 2) (4.36
=0 '

The function¢(q) is plotted on Fig. 3 in terms of the aux-
iliary variable 5(q)=§2/q)arcco$(2—q)/\/iq] in the in-
terval 5(q=1)=1/2< < 6(q=») = 3/2.

It is easy to check that

_ _2
¢(Q—0°)—; (4.3
and
B _(2 4
d(q=1+¢€)= P e+0(e), (4.38

which are consistent with the previous resu(&4) and
(3.39 at first order in\.

V. CONCLUSION

We have studied in this paper a two-species reaction-
diffusion system in the limit where the minorif$ species
has a very low concentration in comparison with the majority
W species, with the following two particle reactions: two
W particles either coagulateW+W—W) or annihilate
(W+W—0) with the respective probabilities p,
=(q—2)/(g—1) andp,=1/(q—1); aB particle and aw
particle annihilate W+ B—0) with probability 1. We have
seen why the exponené(g,A=Dg/Dy,) describing the
asymptotic time decay of the minori§ species concentra-
tion could be viewed as a generalization of the exponent of
persistent spins in the zero-temperature Glauber dynamics of
the 1D Potts model starting from a random initial condition.
We have extended the methods introduced by Derrida,
Hakim, and Pasquier for the problem of persistent sfir@
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to compute the expone(qg,\) in perturbation at first order at positionx> ¢ at timet is solution of the diffusion equa-
in (q—1) for arbitrary\ and at first order ir\ for arbitrary  tion

g. Let us now briefly outline the problems that have to be

overcome to go beyond the first order perturbation theories ¢ ? 5
presented here. FROXD=| Aot =

(9X2 R)\((T,X,t) fOI’ X> o

In the approach of Sec. Ill, the survival probability of the (A1)
B particle is given in terms of the whole hierarchy of the
mean empty-interval probabilitie; i, . ;, i, (A) of together with the initial condition
some one-species coagulation model with a randomly mov-
ing source(3.10. Here we only computed the mean one- Ry(o,x,1) — 8(a) 8(x) (A2)
empty-interval probabilities; ;(\), and we were thus lim- 0
ited to the f|rst order |ne_=q—1. However, we have seen and the reflection boundary conditionyat o
that for a given realization of the source trajectory, many-
empty-interval probabilities of arbitrary order could be writ-
ten as Pfaffians of the one-empty-interval probabilities [(1—)\)
bi(t) alone(3.12. One could therefore think of writing the
survival probability of theB particle for a given realization . . . .
of the source trajectory as the square root of some determi-"iS_boundary condition which may be obtained from the

nant, as in formulal1) of Ref. [5]. The remaining problem continuous limit of the discrete-space dynamics ensures that
then consists in evaluating the average of the square root §f€ partial law for the position of the source is a free Brown-
this determinant over the realizations of the source trajecto®" motion of coefficiend as it should
ries.

In the approach of Sec. IV, the fundamental object in- °°d R =
volved in the expression of the survival probability of the - XR(ox,t)= 2 Jmnt
B particle for a given realization of the source trajectory

(4.)—(4.6) is the probability densitg!¥(x,t|o(t—17),t— 7)  ascan be checked by taking the time derivative of both sides.
that, for a given trajectoryS of the source, a Brownian The mean probability density P, (zt)

walker going backwards in time and startingat—7) at = (g{S(g(t) +2,t|¢(0),0)) of the relative coordinate

time (t—7) is at sitex at timet, with the boundary condition z—y_  therefore satisfies the diffusion equation

that it is reflected by the source trajectofy(u)} (4.7)—

(4.9). Here we only computed this probability densify® in IP\(zt) 3PPy (21)
= 2

IR\ (o, X,t IR, (o, X,t
N )_2)\ N )

X e =0. (A3)

X=0o

e o2lant

(A4)

perturbation up to second order in the source trajectory, and It ax for z>0 (A5)
we thus had to restrict ourselves to the first order in the
d|ffL_JS|on CO(?ffICI%f}W\. However, we have seen that_ the prob- together with the initial condition
ability density g**(x,t|o(t—7),t—7) could be written as
some functional of the source traject_oW} (4.'13)—('4.15) . Py(z,t) — 8(2) (A6)
and one could perhaps hope to put this functional in a suffi- t-0
ciently simple form to be able to evaluate the exponent
6(q,\). and the following boundary condition at=0:
IP\(z,t
ACKNOWLEDGMENTS . =0. (A7)
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critical reading of the manuscript. APPENDIX B: ASYMPTOTIC BEHAVIOR OF 7,(t,t5,q)

To compute7,(t,,t5,q), we use the notations

APPENDIX A: DIRECT EVALUATION

.
OF Py(z,t)=(glN (M +2llo(0.0) Co(7i 1Ti+1)Ego(_7_ '
i+1

-
and <C{28}(7'1,7'2)>E>\92(T_;)

The mean probability densitR, (o,X,t) that the source (B1)

starting atoy=0 at timet=0 is at positions at timet and
that the random walker emitted by the source at tim® is  with (4.22),



E
4
Jo(z)=1— ;arctan/f, (B2)
and(4.24),
@=2 [ | Y mingzxy) L2,
Z = el
BT ) Wi do iy yrzn)
(B3)
and rewrite
ty t,
To(ty,t2,9)= Z (—2u)" t dTl"’ft dr,
- ) .

1 [7m\ 1 :
x—gé(—l)H gé(L) (B4)

T2 T2)i=2 Ti+1 Ti+1

Inty

du,

e T |

nty Inty

n
x%(e”r“ail]zgé(e“i*“m). (BS5)

The leading behavior of order {it;) may thus be obtained
as in[6],

tz ” n + o0 + o0
To(ty,t2,9)=—In 5 n21(—2;/,) f_ dUl"'f_ dv,,

n

Xgé(e”l)i[[z 94(e") (v1+va+ - - -vp).

(B6)
Setting
+edk .
5(Ul+1)2+...Un):ev1+v2+...vnf Ze"‘(”1+vz+---vn)
(B7)
we obtain
to +oo dk o o
To(ty,t5,q)=—1In 6 ,ﬁmﬁ fﬁx dve'*ve’g,(e’)
= o ) n—-1
x> (—ZM)”f dwek"e"g)(e")
n=1 —
(B8)
wedk (k)
2K In(tl) fﬂc 2w 1+2ulo(k)’ (B9)
where
te 2 [+ w/2
= KW AW~ (AW — iow
Io(k)—Jlmdwé e"go(e")= 7Jimdwe' 5o
N - B10
~ coshmk) (B10)

and
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+ o . + oo .
I2(k)=J due'kvevgg(ev):—ikf dvekvg,(ev).

(B12)
Using (B3), we get
2 (1 e-ikinx g elk Iny
I,(k =—ik—f dx f
R N I N v ey
+oo —aW
JKW rai w
xf_w dwe“Ymin(e '1)—(1+e‘”)2' (B12)

The integrals over the variablesandy give

f ik Inx f eik Iny r(%—ik) [(3 +ik)
‘lx(l X ‘/y(l y F(l—lk) F(1+|k)
oo sinh( k)
~ k cosK k)
(B13)
and the integral over the variable may be rewritten as
e J KWt W 1-e"
J’iw dwé min(e ,l)m
=—2i fo du sm(ku)(equ—l)z (814)
to obtain
=2 o [ du sin(ku) =
I5( )——;tanf(w )fo u sin( U)W
(B15)
We therefore get
mo[to) [t cosh k)
Tz(tl,tz,Q)—;'n(a) fﬁmdkmb(k)
(B16)
8M| ts J“d e'— +wdk
B PN PR U VL I
ik sinh( k) B1
X sin( U)m (B17)

The integral overk gives (in the sense of distributions
theory)

sinh( k) _
cosimk)—4u

coshud)
sinhu

+ oo
f dk sin(ku)
0
where

o= %arcco$—4,u) €(0.5,) (B18)

so that

2u (ta| (= _,, cosiud)
?'”(G) fo due " eostuia)®
(B19)

%(tlitZ!q): -
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APPENDIX C: ASYMPTOTIC BEHAVIOR OF T;(t4,t,,q)
To compute7 4(t4,t5,q), we introduce the notatio.23

f(n Ta T2

1
=" (1S {St
TZ’Tb’Tb) )\(Cl (71,72)CY (72, Tp))

NToTpMIN( 71X, 73Y) V7 7aMIn( X, TpY)

(Tt T X)(Tp+ 7aX)  (71+ ToX)(Ta+ TpX)

8 (1 dx J’l dy
7o x(1-x)Jo Jy(1-y)

VTLTeMIN( 72X, TaY)  VT2TaMIN( 71X, TpY)

B (11+ 7X)(Tp+ TaX) B (1ot 7X) (T3t TpX)

and rewrite

]

(— 2#)” t2
Tia(t1,t5,9)= -> f f dr,
=2 Jy ty

n=2

T T T2
6102f<—

1 1
T2 Til+1 Ti+1

1—[ 1 ,< T; )
i#1) Ti+1go Ti+1

2 )n Int2 Int2
2 3, f dug--- | “dupdid,f(ets 2 el s etz b [ gg(et i),
n=2 I=2 JI i#1)

ntq Inty

T2T1+1

The leading behavior of order ¢hit;) therefore reads

(CY

(C2

(C3)

(C4

2 n n
Tty t2,0)=—1In (t )2 2 EJ do,-- f dvgd1d,f (1,672 T [ gg(e") 8oy +vpt - vy).
1=2

1/ n=2

Setting
+eodk
S(vitvot-- .vn):evﬁszr---vnf Eelk(vl+v2+~--vn)
and
4o
1=j dzé6(z—(va+---+uv)))= f dzf el (P=K[(va+--v)-2]
we obtain
t,\ (+>dk [+=dp Z(—2u)" & . L,
Tttute=—n 2| [ o5 [ Pakm S, TS oo oo
) +eodk (+=dp J(Kk,p)
=—2u In —f — ’
w27 ) — 2 [1+2ulo(K)][1+2ulo(p)]
where

oo +o +o . . .
J(k,p)=f duf va dzdkutipvritk=pzgutvy 5 f(e¥ ev,e?).

Since

(CH

(C6)

(C7)

(C8)

(C9

(C10
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"o 1 dx 1 dy [e?’min(e“x,e’ %) e”?min(x,e"?y)
f(e",e",e)=— J’ f ooy T Al o W2y a2 o 072
o x(1—x)Joy(1—y)| (1+e™x)(1+e"x)  (e¥“+e " x)(e”“+e "%y)
e”?min(x,e’ ~%y) e”?min(e'x,e"%y) o1t
- (ew2+97 u/ZX)(1+evX) - (1+euX)(eU/2+87 U/Zy) ( )
it is convenient to begin with the integration over the variahle
+o0 )
F(eYe’ k— p)Ef dze® Pzf(el ev e?), (C12
and to computel(k,p) through
+ o —+ oo . .
J(k,p)z—kpf duf dvekUtPUE (el e k—p). (C13
Using successively
|(k p)In(b/a)
f dzdkPze?2min(a,be” Z)—\/a_lo—z, (C14)
z +(k=p)
s elwu T iwln(b/a)
du —7 = for a>0 and b>0), C1
f_w aeu/2+ be u/2 \/%COSI’(W&)) ( ) ( 5)
f |k Inx 1"( + |k) 16
,lx(l X 1+|k) ( )
and well known properties of thE function, we finally get
1 kK _ p T'(3 —ik) T(3 —ip) )
J(k,p)= 14 (k—p)? coshik)coshi 7p) cosr(q-rk)‘)mr(Wp)Jrsmr(Wk) cosm-rp)_ P I'(i-ik) Ir'(1—ip)
(C17)
so that
T, . f dk f gp_ o _coshmp) c18
1,1(t1,t2'Q)— 2 5 2n tl COSI’(’ITk)—4/,L COSh:’]Tp)—4,bL ( :p) ( )
It is convenient to decouple the integrations over the variatdedp by setting
1 +oo _
—:f dxe |X|/2el(k*P)X (Clg)
it(k=p)? J-=
in (C17) to obtain
N ikx e~ ipx k
— A x|/2 "
Tty t2,0)= In j dxe f dkf dpcosr(wk)—4,ucosr(wp)—4,u cosr(wk)dnm-rp)
. p I'(z—ik) ['(z —ip)
+Smr(77k)cosr(7rp)_kp(F(l—ik) T(1=ip) +c.c (C20

Using again(B18) and
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+oo . k 1
Jo dksm(kx)cosl(wk)(cosr(rrk)—4,u) 4,u axJ dkcos(kx)(cosr(wk)_cosi(wk)—4,u
19 1 sinh( 6x) co1
T Ap ox y(x) ~ sin(wd)sintx (€2
2cosh =
2
leads to
coshox) cost(6x)  sinh(26x)coskhk
x/2 — X/2 _
falttz,0)= 87'”( ) j dx x © Sln(wé)f dx ( 20 Sinix sinkx
cosh =
2
2 t2 0
—16”—2|n(—)f dxe 2h(x)h(—x) (C22
ar tl 0
with
N kekx I'(3—ik)
h(x)z_'ﬁx K oS k) — 4 T(1=iK) (€23
B 2 d fmd sinhd(x+2z) (24
Jasin(w) oxJo X Jer—1 sinf(x+2)
For x>0, h(x) may be easily expanded as
2 rn+ 2-9) ren+ 249
— —(2n+1-96)x _ a—(2n+1+6)x
h(x) sin(ﬁ)n% {e r(2n+1-96) °© T(2n+1+0) (€25
and may be rewritten in terms of hypergeometric functibfa,b,c,z) [29],
h(x)= “a-ax LT 13-51-6+F| 10— 5,1-6,—
(0= Sinmo) | © IEDIE eNtF 13
—(1+ 9 G+ )[F(13 +8,1+ 8, +F(1:+481+68,—e %] (C26)
I'i+o) ' ' 2 ' ' '

The analytic continuation of the hypergeometric functi¢@8] gives the following expansion foh(—x) in the domain
x>0:

L@N12-0) | niripu [(@N4240) |

i —(2n+1 )X F(I+%) )
008(775) =0 r2n+ -9 ren+ :+96)

e—(|+ 1/2)x
I=0

h(—=x)=

(C27)

APPENDIX D: EXPRESSION OF ¢(q)

The asymptotic behaviors @(t4,t,,q) and7;(t;,t,,q) obtained respectively in Appendix A and Appendix B imply that
¢(q) defined in(4.25-(4.32 is given for 1<g<2 in terms of

555(q)=%arcco%—4qq_2 >e(o.5,3 (D1)
as
2 cog o) x[  cos(8x) sinh(28x)coshkx| cof(wd) (=
d(q)= ?W:(S) dxe‘i( St Ir(sin}‘f”x )+ il fo dxe” ¥2h(x)h(—x) (D2)

where the functiorh(x) is given in(C26) of Appendix B.
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The first integral of the formuléaD2) can be computed in terms of the logarithmic derivatWwéx)=I"'(x)/T"(x) of the
gamma function

* cost(8x)  sinh(28x)coshx
dxe” X’2(25
)

1 S1/4
) = f dz(l—z)g,[é(l—z)(z‘9+ 27 %4+2)+(1+2)(2°-279)]
o =

sinkfx sinkPx
3 6 (1 1//1 1 1 1
=50+ 5V 7|+ 7|79 \If(z—é -7+ \I’(Z+5 . (D3
To obtain the analytical continuation @f(q) to the domaing=2, we need to redefiné as
8(Q)= iarcco{ —4%) —>A5(q) = Earcco{ 2—_q> (D4)
™ g ™ V2q

and to rewrite(D2) in a form valid in the whole domai%(q=l)= 1/2< 6< AB(q:oc)=3/2,

o@=2279 L anezw 2 2 (25 (23] - [2a)w[ 245 v [ @
= —|+=|| == ——8|—| = — — | —= Z, _(z,
V= sin(7d) 42|\ 4 4 4 e A
[r-5 [~ 1\ T(3 ~
+22179 (—A)H+(z,5)— o—= (—)AH,(Z,é) , (D5)
NERD) 2|T(3 +0)
where
. . +3-5 2 . +343
H+(z,5)—2 f:os{wé) (2n+1_5)1“(2n 5—0) - (2n+1+5)1“(2n 5 +0) 06
in(7wd) |n=1 I'i2n+1-4) n=o I'(2n+1+6)
and
. - . T(@2n+2-3) & - T(2n+2+8) & I+ %)
H (z,8)=2 2 en+1-o 22 % Sentive 22 2T S+ 27| (D7)
=1 r'(2n+3%-45) -0 r@2n+%+6) =0 I!
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