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We study the following one-dimensional~1D! two-species reaction-diffusion model: there is a small con-
centration ofB particles with diffusion constantDB in an homogenous background ofW particles with
diffusion constantDW ; two W particles of the majority species either coagulate (W1W→W) or annihilate
(W1W→0) with the respective probabilitiespc5(q22)/(q21) andpa51/(q21); a B particle and aW
particle annihilate (W1B→0) with probability 1. The exponentu(q,l5DB /DW) describing the asymptotic
time decay of the minorityB species concentration can be viewed as a generalization of the exponent of
persistent spins in the zero-temperature Glauber dynamics of the 1Dq-state Potts model starting from a
random initial condition: theW particles represent domain walls, and the exponentu(q,l) characterizes the
time decay of the probability that a diffusive ‘‘spectator’’ does not meet a domain wall up to timet. We extend
the methods introduced by Derrida, Hakim, and Pasquier@Phys. Rev. Lett.75, 751~1995!; J. Stat. Phys.~to be
published!# for the problem of persistent spins, to compute the exponentu(q,l) in perturbation at first order
in (q21) for arbitraryl and at first order inl for arbitraryq. @S1063-651X~96!14711-5#

PACS number~s!: 05.40.1j, 02.50.2r, 82.20.2w

I. INTRODUCTION

The one-dimensional~1D! Ising or Potts model evolving
according to zero-temperature Glauber dynamics@1# from a
random initial condition is one of the simplest systems for
which domain coarsening@2# can be studied in great details.
The possibility of writing closed kinetic equations for the
expectation value of each spin and for the equal-time two-
point correlation functions@1,3,4# can be used to obtain vari-
ous exact results, such as the growth in time of the charac-
teristic length of the coarsening liket1/2, as expected in
general when the order parameter is not conserved. More
recently, it was shown that more refined quantities such as
the fraction of spins which have never flipped up to timet
@5,6#, or the distribution of domain sizes@7# could also be
studied by mapping the problem to an exactly soluble one-
species coagulation model (A1A→A).

The zero-temperature Glauber dynamics of theq-state
Potts model starting from a random initial condition is re-
lated to various reaction-diffusion problems. The simplest
relation deals with the dynamics of domain wallsW ~@8#, and
references therein,@9#!, that diffuse and react whenever they
meet according to

W1W→W coagulation with probabilitypc5S q22

q21D ,
~1.1!

W1W→0 annihilation with probabilitypa5S 1

q21D .
As such, this reaction-diffusion problem has a meaning for
any real value 0<pc<1, that is, for any real valueq>2.
The Ising case (q52) corresponds to a pure annihilation
problem (pc50 andpa51), whereas theq→` limit corre-

sponds to a pure coagulation case (pc51 and pa50). It
turns out that the latter case is much simpler to study than
any finite q case. In particular, in theq5` limit, simple
random walk arguments are sufficient to obtain the distribu-
tion of domain sizes@10,7# and the exponent for persistent
spins @11#, whereas the computation of the corresponding
quantities for any finiteq is much more involved@5–7#. The
relative simplicity of coagulation models (A1A→A), with
possibly the back reaction (A→A1A) or a random input of
A particles, or localized sources ofA particles, is in fact
related to the possibility to write closed kinetic equations for
the ‘‘one-empty-interval probabilities,’’ i.e., the probabilities
that a given interval contains noA particle @12–19,5#. This
approach may be generalized to write closed kinetic equa-
tions for the probabilities to have many disconnected empty
regions@17,5#, but all these many-empty-interval probabili-
ties may in fact be expressed in terms of the one-empty-
interval probabilities alone@5#. This means that all the infor-
mation on the coagulation model is actually contained in
these one-empty-interval probabilities.

The method that has been followed to study the general
q case @8,5–7# has been to relate the zero-temperature
Glauber dynamics of theq-state Potts model to another
reaction-diffusion problem which is a pure coagulation prob-
lem (A1A→A) for any q, in contrast with the reaction-
diffusion model of domain-wallW ~1.1!. A simple way to
implement the zero-temperature Glauber dynamics consists
in updating the spins according to

Si~ t !5Si21~ t2dt! with probability dt, ~1.2!

Si~ t !5Si11~ t2dt! with probability dt, ~1.3!

Si~ t !5Si~ t2dt! with probability ~122dt!. ~1.4!

Tracing back in time the sequence of spins responsible for
the valueSi(t) of spin i at timet therefore defines a random
walk going backwards in time and leading to some spin*Electronic address: monthus@spht.saclay.cea.fr
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Sj (0) of the initial condition. If we are interested in the
valuesSi(t) and Si(t8) of the same spin at two different
times @8,5,6#, we have to consider the corresponding two
random walks starting, respectively, at timet and t8 from
site i and going backwards in time, and study whether they
merge at some point before the initial timet50 in which
caseSi(t)5Si(t8), or whether they do not meet up to time
t, in which caseSi(t)5Si(t8) with probability 1/q due to the
randomness of the initial condition. This is the starting point
for studying the probability that a given spini does not flip
up to timet @6#. The same type of reasoning can be applied
to compare the valuesSi(t) andSj (t) of two different spins
at time t to lead to the distribution of domain sizes@7#. In
this approach, the Glauber dynamics of theq-state Potts
model is thus formulated in terms of random walks going
backwards in time that merge whenever they meet
(A1A→A), and the parameterq only appears through the
property that two different sites of the random initial condi-
tion have the same value with probability 1/q. The problem
has now therefore a mathematical meaning for anyq>1, in
contrast with the initial reaction-diffusion model of domain
wallsW ~1.1! defined forq>2 only. This model can, more-
over, be given a physical meaning for any real valueq>1 if
one considers the Ising case with a random initial condition
presenting a nonzero magnetizationmP@21,11#, in which
each spin has initially the value (1) with probability
p15(11m)/2 and the value (2) with probability
p25(12m)/2 @9,20,21,7#. Indeed the probability that a~1!
spin does not flip up to timet or the distribution of~1!
domain sizes will be given by the corresponding results for
the previousq-state Potts model with the correspondence

1

q
5p15

11m

2
. ~1.5!

This article is devoted to the following generalization of
the problem of the exponent of persistent spins for the zero-
temperature Glauber dynamics of theq-state Potts model.
We consider aB particle that diffuses with a diffusion con-
stantDB5lDW that is different from the diffusion constant
DW of domain walls „lP@0,1`)…, and that disappears
whenever it meets a domain wallW,

B1W→0 with probability 1.

The question is, what is the exponentu(q,l) that describes
the survival probability of theB particle

PB~ t,q,l! }
t→`

t2u~q,l! ~1.6!

as a function ofq>1 andl>0? The exponent is expected to
depend explicitly on the ratiol5DB /DW because of the
interplay between the diffusion ofB and the domain coars-
ening of the kinetic Potts model. From the point of view of
reaction-diffusion models, the problem considered here is
‘‘an impurity problem’’ @22,23#, in which there is a small
concentration ofB particles in an homogeneous background
of W particles, so that one can neglect reactions among im-
purities and the influence of impurities-background reactions
on the background properties. In this language, the problem

of the fraction of persistent spins in the kinetic Potts model
can be reformulated as a ‘‘static impurity problem’’@22#.

What do we know about the exponentu(q,l)? It is clear
from the definition of the model thatu(q,l) is an increasing
function of q at fixedl, and an increasing function ofl at
fixed q. For q51 there is no domain wallsW so that the
exponent vanishes in this limitu(q51,l)50. For a fixed
B particle (l50), the survival probability of theB particle
reduces to the probability that a given spin is not crossed by
any domain wall up to timet, which is also the probability
that a given spin does not flip up to timet, and the exact
expression recently obtained for this exponent reads@5,6#

u~q,l50!52
1

8
1

2

p2arccos
2S 22q

A2q D , ~1.7!

in agreement with previous numerical results@11,24,8#. The
exponentu(q,l) is also known in the particular caseq52
and l51 where theB particle can be considered as a do-
main wallW, and where the dynamics of domain walls re-
duces to a pure annihilation model (W1W→0) @25–27#

u~q52,l51!5
1

2
. ~1.8!

We have not been able to get an exact expression of the
exponentu(q,l) in the general caseq.1 andl.0, but we
have obtained various asymptotic behaviors. The paper is
organized as follows. In Sec. II we recall how to derive the
value of the exponentu(q,l) in the particularly simple case
q5` and arbitraryl @28,22#

u~q5`,l!5
p

2 arccosS l

11l D . ~1.9!

In Sec. III, we extend the approach described in Ref.@5# by
Derrida, Hakim, and Pasquier to obtain the first correction in
e5q21 of the exponent for anyl

u~q511e,l![eS A2l11

p2arccosS l

11l D D 1o~e!.

~1.10!

As previously explained, this exponent characterizes the de-
cay of the probability that aB particle remains in a~1!
domain up to timet for the Glauber dynamics of the Ising
model starting from a random initial condition characterized
by a strong magnetizationm5122e ~1.5!. In Sec. IV, we
generalize the approach developed in Ref.@6# by Derrida,
Hakim, and Pasquier to study the first-order perturbation in
l around the result~1.7!

u~q,l!5u~q,0!1lf~q!1o~l!, ~1.11!

but the expression obtained forf(q) is unfortunately quite
complicated@see Eq.~4.34! below#.
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II. DIRECT STUDY OF THE EXPONENT u„q,l…
FOR q5` AND ARBITRARY l

For q5`, the dynamics of domain walls~1.1! reduces to
a pure coagulation model

W1W→W with probability 1.

The problem of theB-particle survival is therefore reduced
to a three-body problem, since the two nearest domain walls
enclosingB evolve only by diffusion, and cannot disappear
when meeting the next nearest domain walls. Let us intro-
duce the joint probabilityc(x1 ,x,x2 ,t) that theB particle
has not yet disappeared at timet and is at positionx, with the
next domain wall to its left being at positionx1,x and the
next domain wall to its right being at positionx2.x. This
joint probability evolves in time according to the diffusion
equation~where, for simplicity, we have set the diffusion
constant of domain wallsDW equal to 1)

]c

]t
5

]2c

]x1
21

]2c

]x2
2 1l

]2c

]x2
for x1,x,x2 ~2.1!

with the absorbing boundary conditionsc(x,x,x2 ,t)
505c(x1 ,x,x,t). This problem can be easily solved
through a change of coordinates, and the survival probability
of theB particle,

PB~ t,`,l!5E
2`

1`

dxE
2`

x

dx1E
x

1`

dx2c~x1 ,x,x2 ,t !

~2.2!

exhibits the asymptotic behavior~@28,22# and references
therein!

PB~ t,q5`,l! }
t→`

t2 p/2a~l! where a~l![arccosS l

11l D
~2.3!

so that the value of the exponentu(q,l) for q5` and arbi-
trary l reads

u~q5`,l!5
p

2a~l!
. ~2.4!

The angle a(l) decreases froma(l50)5p/2 to
a(l5`)50, so that u(q5`,l) grows from
u(q5`,l50)51 to u(q5`,l5`)5`.

III. EXPONENT u„q511e,l… AT FIRST ORDER IN e
FOR ANY l

In this section, we follow the approach described in Ref.
@5# by Derrida, Hakim, and Pasquier and only mention the
modifications that have to be made for the case we are inter-
ested in here.

A. Equivalence with a coagulation model on a large ring

Finite-size scaling arguments imply that the exponent
u(q,l) also appears in the zero-temperature Glauber dynam-
ics of the q-state Potts model defined on a ring of finite
lengthL. It describes in this case the decay with the sizeL of
the probability for theB particle to survive indefinitely

PB~L,q,l!;PB~ t;L2,q,l!;L22u~q,l!. ~3.1!

As explained in@5#, when the spin values seen by theB
particle are traced back in time, one obtains random walks
going backwards in time~that we will callA particles from
now on!, that merge whenever they meet (A1A→A), and
that connect all the spin values seen by theB particle to
various ancestors belonging to the random initial configura-
tion. The probability form ancestors of the random initial
condition to have the same ‘‘color’’ of theq-state Potts
model is simply (1/q)(m21). As a consequence, the survival
probability may be expressed as@5#

PB~L,q,l!5 (
m51

L
1

qm21 pL~m,l!, ~3.2!

wherepL(m,l) is the probability of findingm particles on a
ring of L sites in the steady state of the following one-species
A-particle coagulation problem: there is a moving ‘‘source’’
~corresponding to theB particle! that is always occupied by
anA particle, and theL21 other sites may be either occu-
pied or empty. During each infinitesimal time stepdt, each
A particle hops with probabilitydt to its right neighbor and
with probability dt to its left neighbor, and does not move
with probability (122dt), in correspondence with the up-
dating rules of theT50 Glauber dynamics~1.4!. If two par-
ticles occupy the same site, they instantaneously coagulate
(A1A→A). Whenever theA particle being on the source
jumps to one of its neighbors, a newA particle is instanta-
neously produced on the source. The additional rules for the
dynamics of the source are the following: during each infini-
tesimal time stepdt, the source hops with probabilityldt to
its right neighbor and with probabilityldt to its left neigh-
bor, and does not move with probability (122ldt). When-
ever the source moves, theA particle that was occupying the
position of the source remains on this site, and a newA
particle is instantaneously created at the new position of the
source.

To compute the expression~3.2! that involves the prob-
abilities pL(m,l) characterizing the steady state of the co-
agulation model, we introduce generalized ‘‘empty-interval
probabilities’’ @12–19,5#. We first define the conditional
probabilities bi , j

$S%(t) (0< i< j<L11) that the segment
$s(t)1 i ,s(t)1 j21% contains noA particle, for a given
source trajectory$S%5$s(t),t>0% representing a particular
realization of the source random walk. They evolve in time
according to
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bi , j
$S%~ t1dt!5bi , j

$S%~ t !1dtds~ t1dt!,s~ t !@bi11,j
$S% ~ t !1bi21,j

$S% ~ t !1bi , j11
$S% ~ t !1bi , j21

$S% ~ t !24bi , j
$S%~ t !#

1dtds~ t1dt!,s~ t !11@bi21,j21
$S% ~ t !2bi , j

$S%~ t !#1dtds~ t1dt!,s~ t !21@bi11,j11
$S% ~ t !2bi , j

$S%~ t !# ~3.3!

and satisfy the obvious boundary conditions

b0,j
$S%~ t !505bi ,L11

$S% ~ t ! and bi ,i
$S%~ t !51. ~3.4!

The average ofbi , j
$S%(t) over the random walk trajectories of the source denoted by

Bi , j~l,t !5^bi , j
$S%~ t !& ~3.5!

evolve in time according to

]

]t
Bi , j~l,t !5Bi11,j~l,t !1Bi21,j~l,t !1Bi , j11~l,t !1Bi , j21~l,t !24Bi , j~l,t !

1l@Bi11,j11~l,t !1Bi21,j21~l,t !22Bi , j~l,t !# ~3.6!

and converge at large time towards stationary probabilitiesBi , j (l) that are solutions of

Bi11,j~l!1Bi21,j~l!1Bi , j11~l!1Bi , j21~l!24Bi , j~l!1l@Bi11,j11~l!1Bi21,j21~l!22Bi , j~l!#50 ~3.7!

together with the boundary conditionsB0,j (l)505Bi ,L11(l) andBi ,i(l)51.
We may also define the conditional probabilitiesbi1 ,i2 ,•••,i2n21 ,i2n

$S% (t) , (0< i 1< i 2<•••< i 2n<L11), that there is noA

particle in any of the segments$s(t)1 i 1 ,s(t)1 i 221%, . . . ,$s(t)1 i 2n21 ,s(t)1 i 2n21% for a given source trajectory
$S%5$s(t),t>0%. These conditional probabilities satisfy evolution equations analogous to~3.3!, with obvious boundary
conditions for coinciding indices. We have, for example,

bi , j ,k,l
$S% ~ t1dt!5bi , j ,k,l

$S% ~ t !1dtds~ t1dt!,s~ t !@bi11,j ,k,l
$S% ~ t !1bi21,j ,k,l

$S% ~ t !1bi , j11,k,l
$S% ~ t !1bi , j21,k,l

$S% ~ t !1bi , j ,k11,l
$S% ~ t !1bi , j ,k21,l

$S% ~ t !

1bi , j ,k,l11
$S% ~ t !1bi , j ,k,l21

$S% ~ t !28bi , j ,k,l
$S% ~ t !#1dtds~ t1dt!,s~ t !11@bi21,j21,k21,l21

$S% ~ t !2bi , j ,k,l
$S% ~ t !#

1dtds~ t1dt!,s~ t !21@bi11,j11,k11,l11
$S% ~ t !2bi , j ,k,l

$S% ~ t !#. ~3.8!

The averageŝbi1 ,i2 , . . . ,i2n21 ,i2n
$S% (t)& over the realizations of the source trajectories converge at large time to stationary

probabilitiesBi1 ,i2 , . . . ,i2n21 ,i2n
(l) satisfying equations generalizing~3.7!, as, for example,

Bi11,j ,k,l~l!1Bi21,j ,k,l~l!1Bi , j11,k,l~l!1Bi , j21,k,l~l!1Bi , j ,k11,l~l!1Bi , j ,k21,l~l!1Bi , j ,k,l11~l!1Bi , j ,k,l21~l!28Bi , j~l!

1l@Bi11,j11,k11,l11~l!1Bi21,j21,k21,l21~l!22Bi , j ,k,l~l!#50. ~3.9!

The generalization of the identity~10! of @5# gives the survival probability of theB particle in terms of the whole hierarchy
of the mean empty-interval probabilitiesBi1 ,i2 , . . . ,i2n21 ,i2n

(l) as

PB~L,q,l!5
1

qL21 F11 (
1< i, j<L

~q21! j2 iBi , j~l!1 (
1< i, j,k, l<L

~q21! j2 i1 l2kBi , j ,k,l~l!1••••G . ~3.10!

The key to solve the coagulation model in the case of a fixed
source@5# ~corresponding to thel50 case here! was the
possibility to write the mean many-empty-interval probabili-
ties Bi1 ,i2 , . . . ,i2n21 ,i2n

(l50) of arbitrary order as Pfaffians

of the mean one-empty-interval probabilitiesBi , j (l50)
alone, as, for example,

Bi , j ,k,l~0!5Bi , j~0!Bk,l~0!1Bi ,l~0!Bj ,k~0!2Bi ,k~0!Bj ,l~0!.
~3.11!

For the case of a moving source, all these Pfaffians rela-
tions still hold for a given realization$S% of the source tra-
jectory. It is, for example, easy to check that

bi , j ,k,l
$S% ~ t !5bi , j

$S%~ t !bk,l
$S%~ t !1bi ,l

$S%~ t !bj ,k
$S%~ t !2bi ,k

$S%~ t !bj ,l
$S%~ t !

~3.12!

since the right hand side and the left hand side evolve in time
according to the same equation~3.8! and satisfy the same
boundary conditions. However, these Pfaffians relations that
hold for a given realization of the source trajectory are no
longer valid for the mean probabilities
Bi1 ,i2 , . . . ,i2n21 ,i2n

(l), because Pfaffians involve products
and the mean of a product is, of course, not equal to the
product of means. In particular, Eq.~3.11! is no longer valid
for lÞ0,
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Bi , j ,k,l~l!ÞBi , j~l!Bk,l~l!1Bi ,l~l!Bj ,k~l!

2Bi ,k~l!Bj ,l~l!. ~3.13!

Equation~3.10!, giving the survival probability of theB par-
ticle in terms of the whole hierarchy of the mean many-
empty-interval probabilitiesBi1 ,i2 , . . . ,i2n21 ,i2n

(l), is there-

fore much more difficult to use forlÞ0.
This is why in the following, we only compute the mean

one-empty-interval probabilitiesBi , j (l) in the limit of a
large systemL→`, and use the following expansion of the
survival probability~3.10! in e5q21

PB~L,q511e,l!511e (
i51

L21

~Bi ,i11~l!21!1o~e2!

~3.14!

to obtain the first order in e of the exponent
u(q511e,l).

B. Mean one-empty-interval probabilitiesBi ,j„l…

for a large systemL˜`

For large L, Bi , j (l) becomes a continuous function
bl(x5 i /L,y5 j /L) which satisfies the continuous version of
~3.7!,

~11l!S ]2b

]x2
1

]2b

]y2 D12l
]2b

]x]y
50, ~3.15!

in the triangle 0<x<y<1 together with the boundary con-
ditionsbl(0,y)505bl(x,1) andbl(x,x)51. To eliminate
the nondiagonal term, we perform the change of coordinates

X5x and Y5
~11l!y2lx

A2l11
. ~3.16!

The problem is now reduced to solving the Laplace equation

]2bl

]X2 1
]2bl

]Y2 50 ~3.17!

in the triangle of verticesO(XO50,YO50), A(XA50,YA

5(11l)/A2l11) and C(XC51,YC51/A(2l11), with
angles OÂC5a[arccos(l/(l11)) and AĈO5CÔA
5g[(p2a)/2 ~see Fig. 1! with the boundary conditions

bl~X,Y!50 on segments OA and AC,
~3.18!

bl~X,Y!51 on segment OC.

A convenient way to solve this problem is to use methods
of complex analysis and conformal transformations. We in-
troduce the function b̃(w) of the complex variable
w5u1 iv

b̃~w!5ImF 1p lnSw21

w D G ~3.19!

where Im denotes the imaginary part. This functionb̃(w)
satisfies the Laplace equation on the upper half-plane
$v>0% and the following boundary conditions on the real
axis $v50%:

b̃„uP~2`,0!,v50…505b̃„uP~1,1`!,v50…

and

b̃„uP~0,1!,v50…51. ~3.20!

We now consider the conformal transformation

Z~w!5KE
0

w

dj
1

uj~12j!un
ei [ ~a/2!1n„p2arg~j!2arg~j21!…]

~3.21!

with the notations

n[n~l!5
1

2 S 11
a~l!

p D
and

K5
G~222n!

G2~12n!cosS a

2 D . ~3.22!

This transformation maps the upper half-plane of the com-
plex planew into the interior of the triangleOAC described
above in the complex planeZ5X1 iY. We have more pre-
cisely ZO5Z(w50), ZC5Z(w51), andZA5Z(w56`).
The functionbl(X,Y) of ~3.17!–~3.18! therefore reads

bl~Z5X1 iY!5b̃@w~Z!#5ImF 1p lnSw~Z!21

w~Z! D G ,
~3.23!

wherew(Z) is the inverse mapping ofZ(w) ~3.22!. Unfor-
tunately, the inverse mappingw(Z) cannot be explicitly
written for arbitraryZ in the triangle. However, approximate
explicit forms may be written locally.

FIG. 1. The functionbl(X,Y) satisfies the Laplace equation
~3.17! in the interior of the triangle of verticesO, A, andC, to-
gether with the boundary conditions~3.18!.
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C. Use ofB1,L„l… to recover u„q5`,l…

The exponentu(q5`,l) ~2.4! may be recovered from
the asymptotic behavior ofB1,L(l) since ~3.2! reduces for
q5` to

PB~L,q5`,l!5pL~1,l! ~3.24!

and the probability of having only exactly one particle on the
ring is simply the probabilityB1,L(l) of having no particle
except on the source. So finally

PB~L,q5`,l!5B1,L~l!.blS x;
1

L
,y;12

1

L D
}L22u~`,l!. ~3.25!

We thus have to consider the functionbl(Z) for Z near the
vertex A of the triangle. In the neighborhood ofZA ,
w(Z5ZA1rei (2 (p/2)1f)) reads approximatively forf
P@0,a# and small enoughr

w~Z5ZA1rei ~2 p/2 1f!! .
r→0

2Fa

p

r

KGp/a

e2 ip f/a

~3.26!

and we get

bl~Z5ZA1rei ~2 p/2 1f!!

.
r→`

ImF2
1

p

1

w~Z5ZA1rei ~2p/2 1f!!G
5
1

p F ar

pKGp/a

sinS p
f

a D . ~3.27!

We finally obtain

PB~L,q5`,l!

.
L→`

blS x;
1

L
,y;12

1

L D
;blS Z;ZA1

1

L
ei ~2 p/2 1f!D}L2 p/a

~3.28!

and so recover again the exponent~2.4!.

D. Exponent u„q511e,l… at first order in e

To obtain the first order ine of the exponent

u~q511e,l![ea~l!1o~e! ~3.29!

we only have to consider theBi ,i11(l) sincea(l) is given
by the leading behavior~3.14!

(
i51

L21

~12Bi ,i11~l!! .
L→`

2a~l!lnL. ~3.30!

We may locally invertZ(w) aroundZB5Z(0) and obtain
w(Z5rei (p/22f)) for fP@0,g# and for small enoughr ,

w~Z5rei ~p/22f!! .
r→0

2F ~12n!
r

KG1/~12n!

e2 i f/~12n!.

~3.31!

We therefore get

bl~Z5rei ~p/2 2f!! .
r→0

ImH 1p lnS F K

~12n!r G
1/~12n!

eif/~12n!D J

5
f

p~12n!
5

arctanSXYD
p~12n!

~3.32!

or more explicitly in terms of the original coordinates
(x,y)

bl~x!1,y!1!.
2

p2a
arctanS x sina

y2x cosa D . ~3.33!

As explained in@5#, this small corner 0<x,y<1 where
bl(x,y) is of the form f l(x/y) with the scaling function

f l~u!5
2

p2a
arctanS u sina

12u cosa D ~3.34!

and the symmetric corner 12y,12x!1, are entirely re-
sponsible of the leading behavior of~3.30!, that is more ex-
plicitly

(
i51

L21

@12Bi ,i11~l!# .
L→`

2LE
1/L
dxF12blS x,x1

1

L D G
~3.35!

.2LE
1/L
dxF12 f lS 12

1

LxD G
.2 f l8~1!lnL. ~3.36!

The correctiona(l) ~3.30! is therefore given by

a~l!5 f l8~1!5
1

~p2a!tanS a

2 D ~3.37!

so that finally

u~q511e,l![eS A2l11

p2arccosS l

11l D D 1o~e!.

~3.38!

IV. EXPONENT u„q,l… AT FIRST ORDER IN l

FOR ANY q

In this section, we follow the approach of reference@6# by
Derrida, Hakim, and Pasquier and only mention the modifi-
cations that have to be made for the present study.
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A. Adaptation of the formalism introduced in †6‡

Let us introduce the survival probabilitypB
$S%(t,q) up to

time t of the B particle for a given trajectory
S5$s(t),t>0% of the B particle. We may also define the
analogRB

$S%(t,q) of this survival probability for the semi-
infinite-chain geometry@6#. The survival probability on the
infinite chain reads then as a generalization of Eq.~10! of @6#

pB
$S%~ t,q!5RB

$1S%~ t,q!RB
$2S%~ t,q! ~4.1!

where the notation$2S% denotes the mirror-trajectory
$2s(t),t>0% of the trajectoryS5$s(t),t>0%. The gener-
alization of Eqs.~29!–~31! of @6# is that the survival prob-
ability RB

$S%(t1 ,t2 ,q) between timest1 and t2 for a given
trajectoryS may be expressed as

RB
$S%~ t1 ,t2 ,q!5Q$S%~ t1 ,t2 ,q!e1/2T

$S%~ t1 ,t2 ,q!, ~4.2!

where, using the notationm[m(q)5(q21)/q2 and denot-
ing by ]1 the derivative with respect to the first variable of
any function of several variables, we have

T$S%~ t1 ,t2 ,q!52 (
n51

`
~22m!n

n E
t1

t2
dt1•••E

t1

t2
dtn

3]1c
$S%~t1 ,t2!]1c

$S%~t2 ,t3!

•••]1c
$S%~tn ,t1! ~4.3!

and

Q$S%~ t1 ,t2 ,q!5A12m c̃ $S%~ t2 ,t2 ,q!

2~q21!A2m c̃ $S%~ t2 ,t2 ,q! ~4.4!

with

c̃ $S%~ t2 ,t2 ,q!5 (
n51

`

~22m!nE
t1

t2
dt1•••E

t1

t2
dtn

3c$S%~ t2 ,t1!]1c
$S%~t1 ,t2!

3]1c
$S%~t2 ,t3!•••]1c

$S%~tn ,t2!.

~4.5!

So the fundamental object needed to computeRB
$S%(t1 ,t2 ,q)

is the probabilityc$S%(t1 ,t2) ~with 0,t1,t2) that, for a
given trajectoryS5$s(t),0<t<t2% of the source, two
Brownian walkers going backwards in time and starting re-
spectively ats(t2) at time u25t2t2 and ats(t1) at time
u15t2t1 do not meet up to timet, with the boundary con-
dition that they are reflected by the reversed-time source tra-
jectory $s(u)5s(t2u),t2t2<u<t% ~see Fig. 2!.

The method of images gives thatc$S%(t1 ,t2) may be writ-
ten as

c$S%~t1 ,t2!5E
s~ t !5s~0!

`

dxE
x

`

dy@g$S%
„x,tus~t1!,t2t1…

3g$S%
„y,tus~t2!,t2t2…2g$S%

„x,tus~t2!,t2t2…

3g$S%
„y,tus~t1!,t2t1…# ~4.6!

in terms of the probability densityg$S%
„x,tus(t),t2t… that,

for a given trajectoryS of the source, a Brownian walker
going backwards in time and starting ats(t)5s(t2t) at
time (t2t) is at sitex at timet, with the boundary condition
that it is reflected by the reversed-time source trajectory
$s(u)5s(t2u)%. More explicitly,g$S%

„x,tus(u),u… satisfies
the diffusion equation

]

]t
g$S%

„x,tus~u!,u…5
]2

]x2
g$S%

„x,tus~u!,u… for x. s ~ t ! .

~4.7!

together with the initial condition

g$S%
„x,tus~u!,u…→

t→u
d@x2s~u!# ~4.8!

FIG. 2. A schematic representation of the
source trajectorys(t) on the left of the figure,
with two random walkers emitted by the source at
t1 andt2 going backwards in time.

4850 54CÉCILE MONTHUS



and the reflection condition atx5s(t) expressed by the con-
servation of probability

d

dtEs~ t !

`

dxg$S%
„x,tus~u!,u…

505
ds~ t !

dt
g$S%

„s~ t !,tus~u!,u…

1
]g$S%

„x,tus~u!,u…

]x U
x5s~ t !

. ~4.9!

Unfortunately, we have not been able to write this prob-
ability densityg$S%

„x,tus(u),u… in an explicit simple way as

a functional of the source trajectory$S%. As a consequence,
the average over the sources trajectories that is needed to
evaluate the exponentu(q,l) through

PB~ t,q,l!5^pB
$S%~ t,q!&5^RB

$1S%~ t,q!RB
2$S%~ t,q!&

}
t→`

t2u~q,l! ~4.10!

seems quite difficult to study.
So from now on, we will restrict ourselves to the evalua-

tion of the B-survival probability at the first order in the
diffusion coefficientl of theB trajectories.

B. Perturbation theory in the diffusion constant l

The probability densityg$S%
„s(t)1z,tus(u),u… may be seen as the continuous limit of a discretized version involving

(N21) intermediate timestn5u1n(t2u)/N (1<n<N21)

g$S%
„s~ t !1z,tus~u!,u…5 limN→`E

0

`

dz1E
0

`

dz2•••E
0

`

dzN21)
n50

N21

g$S%
„s~ tn11!1zn11 ,tn11us~ tn!1zn ,tn… ~4.11!

with the conventionst05u, z050, tN5t, andzN5z. In the limit of a vanishing time intervalDt5tn112tn5(t2u)/N→0, we
may approximate the source trajectory between timestn and tn11 by a line segment of slopean5@s(tn11)2s(tn)#/Dt. The
probability density g$s(u)5s01au%(x,tux0,0) solution of ~4.7!–~4.9! for the particular case of a linear trajectory
s(u)5s01au reads

g$s~u!5s01au%~x,tux0,0!5
1

2Apt
Fe2 ~x2x0!2/~4t !1ea~x02s0!e2 ~x1x022s0!2/~4t !1aE

2`

0

dhea~x02s02h!e2 ~x1x022s02h!2/~4t !G .
~4.12!

So we get

g$S%
„s~ t !1z,tus~u!,u…5 limN→`E

0

`

dz1E
0

`

dz2•••E
0

`

dzN21)
n50

N21

Qan
~zn11 ,zn ,Dt !, ~4.13!

where

Qan
~zn11 ,zn ,Dt ![g$s~u!5s~ tn!1anu%

„s~ tn11!1zn11 ,tn1Dtus~ tn!1zn ,tn… ~4.14!

5
e2 an

2/~4 Dt !2 ~an/2! ~zn112zn!

2Apt Fe2 ~zn112zn!2/~4Dt !1e2 ~zn111zn!2/~4Dt !

1anE
2`

0

dhne
2 ~an/2! hne2 ~zn111zn2hn!2/~4Dt !G . ~4.15!

We then obtain the following expansion up to second order in$s(u)%:

g$S%
„s~ t !1z,tus~ t2t!,t2t…5g0~z,t!1g1

$S%~z,t!1g2
$S%~z,t!1••• ~4.16!

with the term of order 0,

g0~z,t!5
e2 z2/~4t!

Apt
, ~4.17!

the term of order 1 in$s(u)%,

g1
$S%~z,t!52

1

pE0
t

du
s~u!

Au~t2u!

]2

]z2
~e2 z2/~4u!!, ~4.18!

and the average of the term of order 2 in$s(u)%,
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^g2
$S%~z,t!&5lt

]2

]z2 S e2 z2/(4t)

Apt
D . ~4.19!

Note that this last average may be obtained directly from the average^g$S%
„s(t)1z,tus(t2t),t2t…&, which is simple for

arbitraryl ~see Appendix A!. We then obtain the corresponding expansion

c$S%~t1 ,t2!5c0~t1 ,t2!1c1
$S%~t1 ,t2!1c2

$S%~t1 ,t2!1••• ~4.20!

of c$S%(t1 ,t2) defined in~4.6!,

c$S%~t1 ,t2!5E
0

`

dzE
z

`

dz8@g$S%
„s~ t !1z,tus~ t2t1!,t2t1…g

$S%
„s~ t !1z8,tus~ t2t2!,t2t2…

2g$S%
„s~ t !1z,tus~ t2t2!,t2t2…g

$S%
„s~ t !1z8,tus~ t2t1!,t2t1…# ~4.21!

with the term of order 0

c0~t1 ,t2!512
4

p
arctanAt1

t2
, ~4.22!

the term of order 1 in$s(u)%

c1
$S%~t1 ,t2!5

2

p3/2 F E
0

t1
du

s~u!

t21u
A t2

u~t12u!
2E

0

t2
dv

s~v !

t11v
A t1

v~t22v ! G , ~4.23!

and finally the average of the term of order 2 in$s(u)%,

^c2
$S%~t1 ,t2!&5

2l

p2E
0

t1 du

Au~t12u!
E
0

t2 dv

Av~t22v !
min~u,v !

v2u

~v1u!2
. ~4.24!

To compute the first correction inl of the exponent

u~q,l!5u~q,0!1lf~q!1o~l! ~4.25!

we have to study the survival of theB particle between timest1 and t2 ~4.10!–~4.2!

PB~ t1 ,t2 ,q,l!5^Q$1S%~ t1 ,t2 ,q!Q$2S%~ t1 ,t2 ,q!e1/2 [T
$1S%~ t1 ,t2 ,q!1T$2S%~ t1 ,t2 ,q!]& }

t2→`

t2
2u~q,l! . ~4.26!

For 1,q,2, the prefactorQ$S%(t1 ,t2 ,q)Q
$2S%(t1 ,t2 ,q) remains finite in the limitt2→` ~see@6# for the detailed study of the

l50 case!. Using the expansion

1

2
„T$1S%~ t1 ,t2 ,q!1T$2S%~ t1 ,t2 ,q!…5T0~ t1 ,t2 ,q!1

1

2
„T2

$1S%~ t1 ,t2 ,q!1T2
$2S%~ t1 ,t2 ,q!…1••• ~4.27!

we find that the correctionf(q) ~4.25! is given by the lead-
ing behavior of the average

^T2
$1S%~ t1 ,t2 ,q!& .

t2→`

2lf~q!lnS t2t1D . ~4.28!

This average at first order inl of T$1S%(t1 ,t2 ,q) defined in
~4.3! decomposes into two contributions

^T2
$1S%~ t1 ,t2 ,q!&5l„T2~ t1 ,t2 ,q!1T1,1~ t1 ,t2 ,q!…

~4.29!

with

T2~ t1 ,t2 ,q!52 (
n51

`

~22m!nE
t1

t2
dt1•••E

t1

t2
dtn

3
1

l
^]1c2

$S%~t1 ,t2!&

3)
i52

n

]1c0~t i ,t i11! ~4.30!
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and

T1,1~ t1 ,t2 ,q!52 (
n52

`
~22m!n

2 (
l52

n E
t1

t2
dt1•••E

t1

t2
dtn

3
1

l
^]1c1

$S%~t1 ,t2!]1c1
$S%~t l ,t l11!&

3 )
iÞ1,l

]1c0~t i ,t i11! ~4.31!

so that the correctionf(q) in ~4.25! will be obtained through
the asymptotic behavior

T2~ t1 ,t2 ,q!1T1,1~ t1 ,t2 ,q! .
t2→`

2f~q!lnS t2t1D .
~4.32!

The asymptotic behaviors of T2(t1 ,t2 ,q) and
T1(t1 ,t2 ,q) are studied, respectively, in Appendix B and Ap-
pendix C and we only give here the final result forf(q)
obtained in Appendix D in terms of the auxiliary variable

d̂~q!5
2

p
arccosS 22q

A2q D , ~4.33!

which varies in the intervald̂(q51)51/2, d̂, d̂(q5`)
53/2,

f~q!5
cos~pd̂!

p2sin~pd̂!H 113d̂1 d̂CS 14D
1
1

2 F S 142 d̂ D CS 942 d̂ D 2S 141 d̂ D CS 141 d̂ D G J
1

1

p2E
0

1dz

Az HH1~z,d̂ !H2~z,d̂ !12z~12 d̂ !

3F G~22 d̂ !

G~ 3
2 2 d̂ !

H1~z,d̂ !2S d̂2
1

2D
3

G~d̂ !

G~ 1
2 1 d̂ !

H2~z,d̂ !G J , ~4.34!

whereC(x)[ G8(x)/G(x) is the logarithmic derivative of
the gamma function, and where the functionsH1(z,d̂) and
H2(z,d̂) are defined as the series

H1~z,d̂ !5
2 cos~pd̂!

sin~pd̂!
F (
n51

`

z~2n112 d̂ !
G~2n1 3

2 2 d̂ !

G~2n112 d̂ !

2 (
n50

`

z~2n111 d̂ !
G~2n1 3

2 1 d̂ !

G~2n111 d̂ !
G , ~4.35!

H2~z,d̂ !52F (
n51

`

z~2n112 d̂ !
G~2n122 d̂ !

G~2n1 3
2 2 d̂ !

1 (
n50

`

z~2n111 d̂ !
G~2n121 d̂ !

G~2n1 3
2 1 d̂ !

2(
l50

`

z~ l1 1/2!
G~ l1 3

2 !

l ! G . ~4.36!

The functionf(q) is plotted on Fig. 3 in terms of the aux-
iliary variable d̂(q)5(2/p)arccos@(22q)/A2q# in the in-
terval d̂(q51)51/2, d̂, d̂(q5`)53/2.

It is easy to check that

f~q5`!5
2

p
~4.37!

and

f~q511e!5S 2p 2
4

p2D e1o~e!, ~4.38!

which are consistent with the previous results~2.4! and
~3.38! at first order inl.

V. CONCLUSION

We have studied in this paper a two-species reaction-
diffusion system in the limit where the minorityB species
has a very low concentration in comparison with the majority
W species, with the following two particle reactions: two
W particles either coagulate (W1W→W) or annihilate
(W1W→0) with the respective probabilities pc
5(q22)/(q21) andpa51/(q21); a B particle and aW
particle annihilate (W1B→0) with probability 1. We have
seen why the exponentu(q,l5DB /DW) describing the
asymptotic time decay of the minorityB species concentra-
tion could be viewed as a generalization of the exponent of
persistent spins in the zero-temperature Glauber dynamics of
the 1D Potts model starting from a random initial condition.
We have extended the methods introduced by Derrida,
Hakim, and Pasquier for the problem of persistent spins@5,6#

FIG. 3. Plot off(q) as a function ofd̂(q).
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to compute the exponentu(q,l) in perturbation at first order
in (q21) for arbitraryl and at first order inl for arbitrary
q. Let us now briefly outline the problems that have to be
overcome to go beyond the first order perturbation theories
presented here.

In the approach of Sec. III, the survival probability of the
B particle is given in terms of the whole hierarchy of the
mean empty-interval probabilitiesBi1 ,i2 , . . . ,i2n21 ,i2n

(l) of
some one-species coagulation model with a randomly mov-
ing source~3.10!. Here we only computed the mean one-
empty-interval probabilitiesBi , j (l), and we were thus lim-
ited to the first order ine5q21. However, we have seen
that for a given realization of the source trajectory, many-
empty-interval probabilities of arbitrary order could be writ-
ten as Pfaffians of the one-empty-interval probabilities
bi , j

$S%(t) alone~3.12!. One could therefore think of writing the
survival probability of theB particle for a given realization
of the source trajectory as the square root of some determi-
nant, as in formula~11! of Ref. @5#. The remaining problem
then consists in evaluating the average of the square root of
this determinant over the realizations of the source trajecto-
ries.

In the approach of Sec. IV, the fundamental object in-
volved in the expression of the survival probability of the
B particle for a given realization of the source trajectory
~4.1!–~4.6! is the probability densityg$S%

„x,tus(t2t),t2t…
that, for a given trajectoryS of the source, a Brownian
walker going backwards in time and starting ats(t2t) at
time (t2t) is at sitex at timet, with the boundary condition
that it is reflected by the source trajectory$s(u)% ~4.7!–
~4.9!. Here we only computed this probability densityg$S% in
perturbation up to second order in the source trajectory, and
we thus had to restrict ourselves to the first order in the
diffusion coefficientl. However, we have seen that the prob-
ability density g$S%

„x,tus(t2t),t2t… could be written as
some functional of the source trajectory$S% ~4.13!–~4.15!
and one could perhaps hope to put this functional in a suffi-
ciently simple form to be able to evaluate the exponent
u(q,l).
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APPENDIX A: DIRECT EVALUATION
OF Pl„z,t…5Šgˆf ‰„s„T…1z,tzs„0…,0…

‹

The mean probability densityRl(s,x,t) that the source
starting ats050 at timet50 is at positions at time t and
that the random walker emitted by the source at timet50 is

at positionx.s at time t is solution of the diffusion equa-
tion

]

]t
Rl~s,x,t !5S l

]2

]s2 1
]2

]x2DRl~s,x,t ! for x. s

~A1!

together with the initial condition

Rl~s,x,t !→
t→0

d~s!d~x! ~A2!

and the reflection boundary condition atx5s

F ~12l!
]Rl~s,x,t !

]x
22l

]Rl~s,x,t !

]s GU
x5s

50. ~A3!

This boundary condition which may be obtained from the
continuous limit of the discrete-space dynamics ensures that
the partial law for the position of the source is a free Brown-
ian motion of coefficientl as it should

E
s

`

dxRl~s,x,t !5
e2 s2/4lt

2Aplt
~A4!

as can be checked by taking the time derivative of both sides.
The mean probability density Pl(z,t)

5^g$S%
„s(t)1z,tus(0),0…& of the relative coordinate

z5x2s therefore satisfies the diffusion equation

]Pl~z,t !

]t
5

]2Pl~z,t !

]x2
for z.0 ~A5!

together with the initial condition

Pl~z,t !→
t→0

d~z! ~A6!

and the following boundary condition atz50:

]Pl~z,t

]z U
z50

50. ~A7!

So it simply reads

Pl~z,t !5
e2

z2

4~11l!t

Ap~11l!t
, ~A8!

from which we directly recover Eq.~4.19!.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF T2„t1 ,t2 ,q…

To computeT2(t1 ,t2 ,q), we use the notations

c0~t i ,t i11![g0S t i
t i11

D and ^c2
$S%~t1 ,t2!&[lg2S t1

t2
D

~B1!

with ~4.22!,
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g0~z!512
4

p
arctanAz, ~B2!

and ~4.24!,

g2~z!5
2

p2E
0

1 dx

Ax~12x!
E
0

1 dy

Ay~12y!
min~zx,y!

y2zx

~y1zx!2
,

~B3!

and rewrite

T2~ t1 ,t2 ,q!52 (
n51

`

~22m!nE
t1

t2
dt1•••E

t1

t2
dtn

3
1

t2
g28S t1

t2
D)
i52

n
1

t i11
g08S t i

t i11
D ~B4!

52 (
n51

`

~22m!nE
lnt1

lnt2
du1•••E

lnt1

lnt2
dun

3g28~e
u12u2!)

i52

n

g08~e
ui2ui11!. ~B5!

The leading behavior of order (lnt2 /t1) may thus be obtained
as in @6#,

T2~ t1 ,t2 ,q!.2 lnS t2t1D (n51

`

~22m!nE
2`

1`

dv1•••E
2`

1`

dvn

3g28~e
v1!)

i52

n

g08~e
v i !d~v11v21•••vn!.

~B6!

Setting

d~v11v21•••vn!5ev11v21•••vnE
2`

1` dk

2p
eik~v11v21•••vn!

~B7!

we obtain

T2~ t1 ,t2 ,q!.2 lnS t2t1D E2`

1` dk

2p F E
2`

1`

dveikvevg28~e
v!G

3 (
n51

`

~22m!nF E
2`

1`

dweikwewg08~e
w!Gn21

~B8!

.2m lnS t2t1D E2`

1` dk

2p

I 2~k!

112mI 0~k!
, ~B9!

where

I 0~k!5E
2`

1`

dweikwewg08~e
w!52

2

pE2`

1`

dweikw
ew/2

11ew

52
2

cosh~pk!
~B10!

and

I 2~k!5E
2`

1`

dveikvevg28~e
v!52 ikE

2`

1`

dveikvg2~e
v!.

~B11!

Using ~B3!, we get

I 2~k!52 ik
2

p2E
0

1

dx
e2 ik lnx

Ax~12x!
E
0

1

dy
eik lny

Ay~12y!

3E
2`

1`

dweikwmin~ew,1!
12ew

~11ew!2
. ~B12!

The integrals over the variablesx andy give

E
0

1

dx
e2 ik lnx

Ax~12x!
E
0

1

dy
eik lny

Ay~12y!
5p

G~ 1
2 2 ik !

G~12 ik !

G~ 1
2 1 ik !

G~11 ik !

5
p sinh~pk!

k cosh~pk!
~B13!

and the integral over the variablew may be rewritten as

E
2`

1`

dweikwmin~ew,1!
12ew

~11ew!2

522i E
0

`

du sin~ku!
eu21

~eu11!2
~B14!

to obtain

I 2~k!52
4

p
tanh~pk!E

0

`

du sin~ku!
eu21

~eu11!2
.

~B15!

We therefore get

T2~ t1 ,t2 ,q!.
m

p
lnS t2t1D E2`

1`

dk
cosh~pk!

cosh~pk!24m
I 2~k!

~B16!

.2
8m

p2 lnS t2t1D E0`du eu21

~eu11!2
E
0

1`

dk

3sin~ku!
sinh~pk!

cosh~pk!24m
. ~B17!

The integral overk gives ~in the sense of distributions
theory!

E
0

1`

dk sin~ku!
sinh~pk!

cosh~pk!24m
5
cosh~ud!

sinhu

where

d5
1

p
arccos~24m!P~0.5,1! ~B18!

so that

T2~ t1 ,t2 ,q!.2
2m

p2 lnS t2t1D E0`due2 u/2
cosh~ud!

~coshu/2!3
.

~B19!
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APPENDIX C: ASYMPTOTIC BEHAVIOR OF T1„t1 ,t2 ,q…

To computeT1,1(t1 ,t2 ,q), we introduce the notation~4.23!

f S t1
t2
,
ta
tb
,
t2
tb

D[
1

l
^c1

$S%~t1 ,t2!c1
$S%~ta ,tb!& ~C1!

5
8

p3E
0

1 dx

Ax~12x!
E
0

1 dy

Ay~12y!
FAt2tbmin~t1x,tay!

~t21t1x!~tb1tax!
1

At1tamin~t2x,tby!

~t11t2x!~ta1tbx!

2
At1tbmin~t2x,tay!

~t11t2x!~tb1tax!
2

At2tamin~t1x,tby!

~t21t1x!~ta1tbx!
G ~C2!

and rewrite

T1,1~ t1 ,t2 ,q!52 (
n52

`
~22m!n

2 (
l52

n E
t1

t2
dt1•••E

t1

t2
dtn

1

t2t l11
]1]2f S t1

t2
,

t l
t l11

,
t2

t l11
D )
iÞ1,l

1

t i11
g08S t i

t i11
D ~C3!

52 (
n52

`
~22m!n

2 (
l52

n E
lnt1

lnt2
du1•••E

lnt1

lnt2
dun]1]2f ~e

u12u2,eul2ul11,eu22ul11! )
iÞ1,l

g08~e
ui2ui11!. ~C4!

The leading behavior of order (lnt2 /t1) therefore reads

T1,1~ t1 ,t2 ,q!.2 lnS t2t1D (n52

`
~22m!n

2 (
l52

n E
2`

1`

dv1•••E
2`

1`

dvn]1]2f ~e
v1,ev l,ev21•••1v l !)

i52

n

g08~e
v i !d~v11v21•••vn!.

~C5!

Setting

d~v11v21•••vn!5ev11v21•••vnE
2`

1` dk

2p
eik~v11v21•••vn! ~C6!

and

15E
2`

1`

dzd„z2~v21•••1v l !…5E
2`

1`

dzE
2`

1`dp

2p
ei ~p2k![ ~v21•••v l !2z] ~C7!

we obtain

T1,1~ t1 ,t2 ,q!.2 lnS t2t1D E2`

1` dk

2pE2`

1`dp

2p
J~k,p! (

n52

`
~22m!n

2 (
l52

n

@ I 0~k!#n2 l@ I 0~p!# l22 ~C8!

.22m2lnS t2t1D E2`

1` dk

2pE2`

1`dp

2p

J~k,p!

@112mI 0~k!#@112mI 0~p!#
, ~C9!

where

J~k,p!5E
2`

1`

duE
2`

1`

dvE
2`

1`

dzeiku1 ipv1 i ~k2p!zeu1v]1]2f ~e
u,ev,ez!. ~C10!

Since
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f ~eu,ev,ez!5
8

p3E
0

1 dx

Ax~12x!
E
0

1 dy

Ay~12y!
Fez/2min~eux,ev2zy!

~11eux!~11evx!
1

ez/2min~x,e2zy!

~eu/21e2 u/2x!~ev/21e2 v/2y!

2
ez/2min~x,ev2zy!

~eu/21e2 u/2x!~11evx!
2

ez/2min~eux,e2zy!

~11eux!~ev/21e2 v/2y!G ~C11!

it is convenient to begin with the integration over the variablez,

F~eu,ev,k2p![E
2`

1`

dzei ~k2p!zf ~eu,ev,ez!, ~C12!

and to computeJ(k,p) through

J~k,p!52kpE
2`

1`

duE
2`

1`

dveiku1 ipvF~eu,ev,k2p!. ~C13!

Using successively

E
2`

1`

dzei ~k2p!zez/2min~a,be2z!5Aab
ei ~k2p!ln~b/a!

1
4 1~k2p!2

, ~C14!

E
2`

`

du
eivu

aeu/21be2 u/2 5
peiv ln~b/a!

Aabcosh~pv!
~ for a.0 and b.0!, ~C15!

E
0

1

dx
eik lnx

Ax~12x!
5Ap

G~ 1
2 1 ik !

G~11 ik !
, ~C16!

and well known properties of theG function, we finally get

J~k,p!5
8

1
4 1~k2p!2

1

cosh~pk!cosh~pp!
F k

cosh~pk!
sinh~pp!1sinh~pk!

p

cosh~pp!
2kpS G~ 1

2 2 ik !

G~12 ik !

G~ 1
2 2 ip !

G~12 ip !
1c.c.D G

~C17!

so that

T1,1~ t1 ,t2 ,q!.2
m2

2p2 lnS t2t1D E2`

1`

dkE
2`

1`

dp
cosh~pk!

cosh~pk!24m

cosh~pp!

cosh~pp!24m
J~k,p!. ~C18!

It is convenient to decouple the integrations over the variablek andp by setting

1
1
4 1~k2p!2

5E
2`

1`

dxe2 uxu/2ei ~k2p!x ~C19!

in ~C17! to obtain

T1,1~ t1 ,t2 ,q!.24
m2

p2 lnS t2t1D E2`

1`

dxe2 uxu/2E
2`

1`

dkE
2`

1`

dp
eikx

cosh~pk!24m

e2 ipx

cosh~pp!24m
F k

cosh~pk!
sinh~pp!

1sinh~pk!
p

cosh~pp!
2kpS G~ 1

2 2 ik !

G~12 ik !

G~ 1
2 2 ip !

G~12 ip !
1c.c.D G . ~C20!

Using again~B18! and
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E
0

1`

dk sin~kx!
k

cosh~pk!~cosh~pk!24m!
5

1

4m

]

]xE0
1`

dk cos~kx!S 1

cosh~pk!
2

1

cosh~pk!24m D
5

1

4m

]

]xS 1

2coshS x2D
2

sinh~dx!

sin~pd!sinhxD ~C21!

leads to

T1,1~ t1 ,t2 ,q!.8
m

p2 lnS t2t1D F 14E0`dxe2 x/2
cosh~dx!

cosh3
x

2

1
1

sin~pd!
E
0

`

dxe2 x/2S 2d
cosh2~dx!

sinh2x
2
sinh~2dx!coshx

sinh3x D G
216

m2

p2 lnS t2t1D E0`dxe2 x/2h~x!h~2x! ~C22!

with

h~x![2 i E
2`

1`

dk
keikx

cosh~pk!24m

G~ 1
2 2 ik !

G~12 ik !
~C23!

52
2

Apsin~pd!

]

]xE0
`

dz
1

Aez21

sinhd~x1z!

sinh~x1z!
. ~C24!

For x.0, h(x) may be easily expanded as

h~x!5
2

sin~pd! (n50

` Fe2~2n112d!x
G~2n1 3

2 2d!

G~2n112d!
2e2~2n111d!x

G~2n1 3
2 1d!

G~2n111d!
G ~C25!

and may be rewritten in terms of hypergeometric functionsF(a,b,c,z) @29#,

h~x!5
1

sin~pd!
H e2~12d!x

G~ 3
2 2d!

G~12d!
FF~13

2 2d,12d,e2x!1FS1,3
2

2d,12d,2e2xD G
2e2~11d!x

G~ 3
2 1d!

G~11d!
@F~13

2 1d,11d,e2x!1F~1,32 1d,11d,2e2x!#J . ~C26!

The analytic continuation of the hypergeometric functions@29# gives the following expansion forh(2x) in the domain
x.0:

h~2x!5
2

cos~pd!S (
n50

` Fe2~2n112d!x
G~2n122d!

G~2n1 3
2 2d!

1e2~2n111d!x
G~2n121d!

G~2n1 3
2 1d!

G2(
l50

`

e2~ l1 1/2!x
G~ l1 3

2 !

l ! D .
~C27!

APPENDIX D: EXPRESSION OF f„q…

The asymptotic behaviors ofT2(t1 ,t2 ,q) andT1(t1 ,t2 ,q) obtained respectively in Appendix A and Appendix B imply that
f(q) defined in~4.25!–~4.32! is given for 1,q,2 in terms of

d[d~q!5
1

p
arccosS 24

q21

q2 DP~0.5,1! ~D1!

as

f~q!5
2 cos~pd!

p2sin~pd!
E
0

`

dxe2
x
2S 2d

cosh2~dx!

sinh2x
2
sinh~2dx!coshx

sinh3x D1
cos2~pd!

p2 E
0

`

dxe2 x/2h~x!h~2x! ~D2!

where the functionh(x) is given in ~C26! of Appendix B.
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The first integral of the formula~D2! can be computed in terms of the logarithmic derivativeC(x)[G8(x)/G(x) of the
gamma function

E
0

`

dxe2 x/2S 2d
cosh2~dx!

sinh2x
2
sinh~2dx!coshx

sinh3x D5E
0

1

dz
z1/4

~12z!3
@d~12z!~zd1z2d12!1~11z!~zd2z2d!#

5
3

2
d1

d

2
CS 14D1

1

4 F S 142d DCS 142d D2S 141d DCS 141d D G . ~D3!

To obtain the analytical continuation off(q) to the domainq>2, we need to redefined as

d~q!5
1

p
arccosS 24

q21

q2 D→ d̂~q!5
2

p
arccosS 22q

A2q D ~D4!

and to rewrite~D2! in a form valid in the whole domaind̂(q51)51/2, d̂, d̂(q5`)53/2,

f~q!5
cos~pd̂!

p2sin~pd̂!H 113d̂1 d̂CS 14D 1
1

2 F S 142 d̂ D CS 942 d̂ D 2S 141 d̂ D CS 141 d̂ D G J 1
1

p2E
0

1dz

Az HH1~z,d̂ !H2~z,d̂ !

12z~12 d̂ !F G~22 d̂ !

G~ 3
2 2 d̂ !

H1~z,d̂ !2S d̂2
1

2D G~d̂ !

G~ 1
2 1 d̂ !

H2~z,d̂ !G J , ~D5!

where

H1~z,d̂ !5
2 cos~pd̂!

sin~pd̂!
F (
n51

`

z~2n112 d̂ !
G~2n1 3

2 2 d̂ !

G~2n112 d̂ !
2 (

n50

`

z~2n111 d̂ !
G~2n1 3

2 1 d̂ !

G~2n111 d̂ !
G ~D6!

and

H2~z,d̂ !52F (
n51

`

z~2n112 d̂ !
G~2n122 d̂ !

G~2n1 3
2 2 d̂ !

1 (
n50

`

z~2n111 d̂ !
G~2n121 d̂ !

G~2n1 3
2 1 d̂ !

2(
l50

`

z~ l1 1/2!
G~ l1 3

2 !

l ! G . ~D7!
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