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We introduce a simple nonequilibrium version of the Ising model, exhibiting an order-disorder phase tran-
sition. It corresponds to the competition of two different kinetic processes: one of them ordering the system and
the other one disordering {temperatures zero and infinity, respectiyel®wing to the simplicity of the model,
it is possible to define @aseudotemperature Tharacterizing the system. By usifigwe elucidate a striking
point recently arisen in the literature, namely, how does the critical region of nonequilibrium systems compare
to that of their equilibrium counterparts. Extensive numerical simulations are presented, and the conclusion is
made that the model belongs in the equilibrium Ising model universality class confirming a well known
conjecture[S1063-651X96)12911-1

PACS numbg(s): 05.40:+j, 64.60.Cn, 64.60.Ht

I. INTRODUCTION individual, equilibriumlike, transition rates. If only one of the
elementary processes was active, then the stationary solution

The Ising model played a central role in the developmento the corresponding master equation would be an equilib-
of the theory of equilibrium phase transitioflg. Despite the  rium one with an associated Ising Hamiltonian and a tem-
fact that it is defined in a very simple way, it captures theperatureT;. The same is true for all the single dynamics,
essential properties of a ubiquitous phase transition, namelwith the only difference being that for each of them the sta-
that occurring in one component systems with up-down symtionary solution is given, by definition, by a different tem-
metry and no extra symmetries or conservation laws. Extenperature valueT;#T,#T3# -+ [5]. The stationary states
sions of the model to deal with time dependent propertiesassociated with this kind of model do not satisfy, in general,
such as the Kawasaki spin-exchange model for systems wittletailed balancewith respect with any short range effective
magnetization conservatiof?], and the Glauber spin-flip  Hamiltonian, and therefore correspond to nonequilibrium
model for systems without extra conservation Ig8% re-  situations. A number of studies and reviews of this sort of
sulted as paradigmatic as their static counterpart. These dynodel can be found in Ref§6—8].

namical Ising models are defined by stochastic master equa- In this paper we focus on models with competing spin-flip

tions, in which the transition rates are such that thedynamics at different temperatur6sSH from those studies

associated stationary probability distribution is given by thein [8—10], that is, we will not consider here processes involv-
exponential of minus the Ising Hamiltonian divided by aing spin exchanges.

given temperature and properly normalized, i.e., the well These CSF models, from their equilibrium counterparts,

known equilibrium distribution. In this way, these models may exhibit an order-disorder phase transition. This nonequi-

depict the relaxation to equilibrium. librium transition is what we focus our attention on. There
The possibility of getting exact solutions fde=1 and/or  are two different issues that require some attention. The first
d=2 [3,4] makes these models an appropriate workbench tguestion is whether these models belong in the same univer-
study basic properties of systems exhibiting a phase transgality class as the equilibrium Ising model, or if their non-
tion. equilibrium nature changes the critical behavior. Grinstein,
The following natural extension of the Ising model con- Jayaprakash, and H&1] argued some time ago that, in fact,
sists of modifying it somehow in order to study far from nonequilibrium models with up-down symmetry and no extra
equilibrium phase transitions. conservation law belong in the Ising universality class. Their
This objective can be fulfilled in different ways. One of argument is based on the observation that the dynamical
them, the only one we consider here, is based on the considking fixed point is stable under the renormalization group
eration of a system in which different microscopic processe$RG) flow, with respect to the introduction of new terms that
compete with each other. That is, each of the individual propreserve the symmetitgven though these may not be deriv-
cesses by itself drives the system to a different stationargble from an equilibrium Hamiltonian That is, the terms
state, but the competition between them gives rise to what iresponsible for the nonequilibrium nature of these models
called in the literatur@lynamical frustration are irrelevant under RG transformations. So far this expecta-
The way to implement this idea in an Ising-like model is tion has been confirmed numerically for models with com-
by considering a master equation with competing dynamicspeting temperatures3,10,13.

i.e., the transition rates are given by a linear superposition of The second interesting point has arisen in a recent paper
[9], in which it was shown numerically that the asymptotic
region for scaling in CSF models seems to be much wider

*Electronic address: jjalonso@pmmh.espci.fr than its analog in the equilibrium models. A satisfactory ex-
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FIG. 2. The magnetization for the Ising modél), and the
nonequilibrium model ©) for L= 128, as a function of the distance
to the critical pointe. The dashed line corresponds to the Onsager
solution. Inset: magnetization vs enerdyseudoenergyfor the
Ising model () and the two-temperatures modé€b). For a fixed
magnetization, the energy is larger in the nonequilibrium case.

FIG. 1. The normalized fourth order cumulant is plotted for
different system sizes as a functionf O are forL =128, for
L=64, ¢ for L=32, and+ for L=16. The intersection point
corresponds to the criticaseudotemperaturd he best estimate is
Teir=2.042£0.006.

planation for that fact is still lacking.
In order to shed some light on the issues of the critical W(s—>s")=p+(1—p)®< > Sysﬁ) (2.2
behavior of the model and especially the scaling region size, y
we introduce the a simple nonequilibrium Ising model with
competing dynamics, i.e., a model with only two different where the sum is extended to all the nearest neighboxs of
spin-flip mechanisms operating at zero and infinite temperaand ®(0)=1. This correspond to the competition of two
ture, respectively. The stationary states of this model interMetropolis processdd.3]. If p=1 all the possible transitions
polate between perfect order and complete disorder as @ccur with the same probabilify, corresponding to a kinetic
function of a parameter that weighs the probability of each oflsing model at infinite temperatufganishing magnetization
the two mechanisms to occur; i.e., when the zero temperatuffer the stationary stajeOn the other hand, ip=0 the en-
mechanism probability is large enough the system is orderedrgetically favorable and indifferent transitions occur with
while when the infinite temperature is dominating the systenprobability 1, and the energetically unfavorable processes
is disordered. Consequently, a critical point corresponding tare forbidden. This correspond to a kinetic Ising model at
the order-disorder transition is expected to separate both reero temperaturémagnetizationm=*1 in the stationary
gions in the phase diagram. statg. For pe]0,1], the system is no longer a relaxational
We present some analytical arguments, as well as exterequilibrium model.
sive Monte CarldMC) simulations, paying special attention
to the crit_ical be_havior, _the cluster_ size distribution, and the_”L NONEXISTENCE OF AN EEFECTIVE HAMILTONIAN
asymptotic scaling region extension as compared to their
equilibrium counterparts. The idea of effective Hamiltonians was introduced by
Owing to the model simplicity we are able to introduce aGarrido and Marrq14] some years ago. Since then it has
pseudotemperaturénat simplifies greatly the problem and proven to be a useful tool. Under a set of specified circum-
allows us to clarify the previously mentioned issue. stances it can be shown that certain nonequilibrium models
with competing dynamics can be mapped onto equilibrium
models with effective parameters. Next, we try to find an
effective Hamiltonian for our model. For that purpose we
Let us consider a-dimensional square lattide, and de- assume that an effective kinetic equilibrium Ising model with
fine a spin variabls,= +1 at each sitx. The master equa- Metropolis dynamics exist. The transition rates can then be
tion ruling the evolution of the probabiliti(s,t) of havinga  written as
configurations={s,,xe L} at a given timet is

Il. MODEL DEFINITION

dP(s,t)
ot

W(S—>s")=min(1,ex;:< TiE sysﬁ)). (3.0
eff y

=D [W(S*—=35)P(s5t) —w(s—SI)P(st)],

(2.1))  In order to determind o we have to consider the different
values ofs, and its nearest neighbors. Notice that only the
wheres* coincides withs except for the spin at position,  energetically unfavorable transitions dependTgq (for the
which is flipped. The transition rates are specified by rest we have just 1). There are two different kinds of increas-
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FIG 3 P|0t Ofm8 VS € fOI‘ L= 128 O are fOI’ the nonequi”b' F|G 4. Log_|og p|ot Ofm LB/V VS EL]'/V for the nonequilibrium

rium case andl for the Ising model. The linear behavior around case and for different system sizege use the same symbols as in
the critical point implies thag=1/8. In the inset, f/A)® vs e for Fig. 1). Data collapse is observed for=1 and3=1/8.

both the equilibrium and the nonequilibrium cageis the thermo-

dynamic amplitude. and 2<10° MC steps with data collected every 200 MC
steps. We have performed similar simulations for the two-
dimensional Ising model in order to compare our results with
the equilibrium case. An accurate estimate of the critical
value ofp, i.e.,p., is important for reliable determination of
critical exponents. We get it from a finite size analysis of the

ing energy processes: those in which the fayrnearest
neighbors(nn) are equal tos,, and those for which only
three NN are equal te,. For these, equating Eq&.2) and

(3.1, we have

@) 4 normalized fourth-order cumulant of the stationary distribu-
Tet =~ ini=p) (32 tion, defined a$16,17
and (m*),
U=1- 577, 4.1
. 8 L 3< m2>2L ( )
Teit =~ In(1—p)’ (33 wherem is the magnetizatiom= 1/N(Z,s,) and(), stands

. . . . for the average over configurations for the system &ize
respectively. This means that all the possible stochastic pr(l-JL has the useful property of growing with the system size

cesses can be represented by an effective equilibrium trangj; the ordered phase, and decreasing in the disordered one.

tion rate, but the effect_|ve parameters depend upon .the I('ne)wing to that property, one may determine the critical point
of process under consideration. Therefore the effective tem Fig. 1 Our best estimate ip,=0.853+0.001, which
. [of . - L) 1

g;gt‘ij\:g (ﬁgr?qci)ltotr)weiaﬂezgzgnm ?h?i-mgu;ev;ﬁy '?r?gré?grr: ":’hn sing the pseudotemperature introduced in the previous sec-
9 y ) ’ ion, corresponds td .;=2.042+0.006. From now on we

mode_l cannot be mapped into a klr’!et.IC Ising model .W'thexpress the results in terms of
effective parameters. Nevertheless, it is useful to define a

pseudotemperature FT'{ [15]. Notice that at the critical = T Teiit
point the inequalityT {' < Tonsage< T has to hold. The in- T Tt
ability to find an effective Hamiltonian leaves us with the

0n|y poss|b|||ty of using mean f|e|d type Of approximations In Wh|Ch fOllOWS we Compute three diffel’ent Critical ex-

or numerical schemes to get insight into the system behavioPonentss, v, andy associated to the magnetization, correla-
tion length, and susceptibility, respectivély8]; other expo-

nents can be calculated from them using well known scaling
relations[1].

In this section we present the results of intensive MC In Fig. 2 we present data for the magnetization as a func-
simulations we have performed. We concentrate on the ddion of € for L=128. Data for the equilibrium Ising model
termination of the critical point, critical exponents, and somesimulation are presented too. In Fig. 3 we piat versuse
gualitative properties of the critical region. We have studiedfor both the equilibrium and the nonequilibrium cases; from
the model on a two-dimensional square lattibes L XL, the linear behavior below the critical point we conclude that
and considered different system sizds=16,32,64, and m=Ae'8 therefore 3=1/8 as in the equilibrium Ising
128, providing enough data to perform a finite size scalingnodel. Note, however, that the thermodynamic amplitudes,
analysis. We take data after letting the systems evolve long/hich are nonuniversal, are different. Using this exponent
enough (typically between 19 and 3<10° MC steps per value and the scaling lam~ e?f(eL"), wheref is a uni-
particlg, so it is guaranteed that it has reached its stationaryersal function angB and v are defined in the standard way
state. The stationary regime involves typically betweef 10[17], we can adjustr so that we have the same function

. 4.2

IV. MONTE CARLO SIMULATION
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FIG. 5. Log-log plot ofyL ~”'” vs eL'" for the nonequilibrium
case and for different system siz@ege use the same symbols asin  FIG. 6. Log-log plot ofP(l) defined as the average number of
Fig. 1). Data collapse is observed for=1 andy=7/4. the clusters of a given siZe for different system sizes. The upper

(lower) curve corresponds to the nonequilibridequilibrium) situ-

f(eL'™) for the different system sizes. Using the fact thatation. The lower curve is displaced three units in the vertical direc-
near the critical poine~L ™" | it is possible to conclude tion for a better data visualization. In the upper cun;
thatmL?'” has to be a universal function ef.*” indepen- €=0.0.0036; 0, €=0.0109; ¢, €=0.0181; A, €=0.0254; x,
dent ofL. In Fig. 4 the collapse of the curves for different €=0.0398; +, €=0.0579. In the lower on&, ¢=0.0071; 0],
system sizes is shown wher=1, i.e., the equilibrium value. €=0.0129; ¢, €=0.0173; A, €=0.0217; X, ¢=0.0428; +,

Analogously, in Fig. 5, based on the scaling relation5=0'0525' In both cases the best f'lt glVﬁ§2.054. In;et: linear
X~eyg(eL1’V), wherey is the magnetic susceptibilitthat plot of P(I)/loéz Fpr small cluster sizes there is a difference be-
is, the derivative of the magnetization with respect}oand tween the equilibrium and the nonequilibrium curves.
y its associated critical exponefit7,18, we observe data A few remarks follow. The first one foP(l) is that the
collapse fory=7/4. o N scaled curves for different values pfnear the critical point

Using scaling relations the remaining critical exponents,qjjapse within good agreement. The second one is that in
can be computed, and the conclusion is made that the systej |og-log plot we have the same slope for both the equilib-
belongs in the two-dimensional Ising model universality j,m and the nonequilibrium cases, the best estimate being
class confirming once again the conjecturg id]. 7=2.054. This shows, once again, that both are in the same

In order to further explore analogies and differences beyniyersality class. The last remark is that for very small clus-

tween the equilibrium and nonequilibrium problems, we deg g i e sizes = 1) there is a clear difference between the
termine numerically the asymptotic behavior of the C|USterequi|ibrium and nonequilibrium curves: in the nonequilib-
distribution around the critical point. Following the ideas (i ;m case the number of clusters with one particle is larger
originally proposed by Fisher19] and later developed by han expectedsee inset in Fig. 6 This has a simple expla-
Cambier and Nauenbefg@O] we compute the following two ation in terms of thepseudotemperaturthat we previously
magnltudes:l_:’(l) and (1) deflr_1ed as the total_ number of introduced. As in the nonequilibrium modé‘lgf):ZT(e‘f‘f) itis
clusters of sizé taken from a given number of mdependentmore likely to flip a spin completely surrounded by aligned

conflgurattlotr;]s and Ehe ”f‘ea’? Valllj.e ofdthe su_rface.d.He?e spins than one with only three aligned neighbors. Conse-
represents the number of spins aligned In a given direc 'O'E'{ ently, it is more likely to have fluctuations in the clusters

that have at least another nearest neighbor aligned spin, terior than in the borders. This increases the number of one

S is the number of NN broken bonds associated with thE‘spin clusters. For larger cluster this effect is much smaller,
qu_mdary (.)f the cluster averaged for each valué. dh the and for1=5, is unobservable; in particular the asymptotic
critical region we have thd20] behavior, for large clusters, is unaffected by this effect. In
P()~1""g(el”) 4.3 Fig. 7 we show two different configurations: for the Ising

model and the two-temperatures model. In both cases, the

magnetization is chosen to be the same, but it is clear that
S(h)~17h(el?), (4.9 one spin cluster is favored in the nonequilibrium case. The

effect of this can also be observed in some physical magni-
whereg and h are universal functions and, o, andy are  tudes. For example, in Fig. &Gee insetwe represent the
critical exponents. These exponents have been computed faragnetization as a function of the ener@y pseudoenergy
the equilibrium Ising model by Cambier and Nauenhe@j, in the nonequilibrium cage defined as e=
giving 7~2.05,0~0.68, andy~0.44, respectively. In Fig. 6 —(2N)*1E(X'y)sxsy where §,y) are nearest neighbors pairs.
we show the results of our numerical simulations Rif); For a fixed magnetization, the energy is larger in the non-
values are obtained from 5000 independent configurations iequilibrium model, corresponding to the fact that there are
the stationary state. more isolated one-spin clusters.

and
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A
=
FIG. 7. (a) A configuration with magnetizatiom~0.67 for the
two-temperatures model. Black dots represent up s@msA con- 2 A . \ N
figuration for the equilibrium Ising model with the same value of 35 4.0 4.5 5.0 5.5 6.0
the magnetization. The number of one-particle clusters is larger in Inl

the nonequilibrium model.

. . FIG. 8. Log-log plot ofS(l) defined as the average surface of
In Fig. 8 we show the results for the numerical measure the clusters of sizé for 20<I <300 for different system sizeghe

S(I). The scaling now is better than in Fig. 6. The exponentsympois are the same as in Fig. he lower(uppej curve corre-

IS again t_he same as in equilibrium. In the inset we represenfyond to the equilibriuntnonequilibrium model. The nonequilib-

the functionF(x) defined by rium curve is displaced two units in the vertical direction. In both
n cases the best fit gives~0.68. Inset: scaling functiofr in the

nonequilibrium case. See text for further explanations.
F(enY)Eelfylzl 1"P(1,€). (4.5)

that permits a more suitable comparison with equilibrium

We observe curve collapse for=2.054+0.004 and results. But, even representing all the physical magnitudes in

y=0.44+0.01, which, again, coincide with the equilibrium terms ofe, there is still a significantly larger scaling region

values within the accuracy limits. for the nonequilibrium model as can be observed in Fig. 3.
This could suggest that for a given fixed magnetization the
V. CRITICAL REGION SIZE correlation length is larger for the nonequilibrium case, so it

is somehow nearer to the critical point. In order to avoid

In this section we address the problem of the critical recompletely any effect associated with tleedefinition, we
gion size. It was argued if9] that the two-temperatures have plotted the correlation length versus magnetization for
Ising model has a much broader region in which the criticaboth the equilibrium and the nonequilibrium cases. There is a
scaling holds than the equilibrium Ising modske, for ex-  very good agreement between the two curves showing that in
ample, Fig. 1) in [9]]. In particular the scaling region for fact there is no fundamental physical difference between the
the magnetization is one order of magnitude larger than itequilibrium and nonequilibrium cases. Only the thermody-
equilibrium counterpart. The question arose as to what theamic amplitudeA, which is not a universal quantity, is dif-
essential physical difference between the equilibrium anderent in both cases. To further corroborate this conclusion,
nonequilibrium Ising models is. we have replottedr/A)® versuse. In that new plot, it is

In what follows, we present evidence that, in fact, there ischecked that the scaling regions are essentially indistinguish-
no essential difference and find a simple explanation for theble in both caseésee Fig. 3, ins¢tconfirming that the ap-
divergences observed [B]. parent difference in the critical region sizes is due to the

First of all, let us revisit Fig. 3. It seems that the linear different definition of the relative distance to the critical
approximation around the critical point is valid for a wider point, .
interval than it is in equilibrium. Imagine now that we rep-
resentm® as a function ofe,=(p—pc)/pc in analogy to

what is done if9]. As can be easily shown VI. CONCLUSIONS

We have introduced a simple nonequilibrium extension of
the Ising model. We show that it cannot be represented by an
effective equilibrium Hamiltonian, therefore the standard
equilibrium techniques are not available to study the model.
that is, there is a factor larger than 6, betweeand e, . Nevertheless, it is possible to definepaeudotemperature
Therefore, expressing the results in termsepfresults in a  which allows us to make a more suitable comparison of the
broadening of the critical region by a factor of about 6. Thismodel with the equilibrium Ising model than those per-
factor gets rid of the huge difference between critical do-formed in previous papers. In particular, it is shown that the
mains observed if9]. model belongs in the Ising universality class, and that there

The introduction of thgpseudotemperaturdor our par- is no essential physical difference giving rise to a much
ticularly simple model, allows us to define anparameter broader critical region as was recently proposed.

_ T_Tcrit% P—Pecrit  Perit _ €p
T(:rit Perit Perit— 1 6.092..°

€ (5.1



54 SIMPLE NONEQUILIBRIUM EXTENSION OF THE ... 4843

ACKNOWLEDGMENTS for a critical reading of the manuscript. This work has been

partially supported by NATO through a grant to M.A.M, and

We are grateful to P. L. Garrido, J. Marro, and G. Grin-by DGICYT through Grant No. PB91-0709. J.J.A. is grateful
stein for helpful comments, and D. Maréz and Yuhai Tu for a postdoctoral grant from DGICYTSpain.

[1] H.E. Stanley,Introduction to Phase Transitions and Critical competing temperatures can exhibit phase transitions belong-
PhenomengOxford Science, Oxford, 1987 ing in different universality classes than the Ising one. In par-
[2] K. Kawasaki,Phase Transitions and Critical Phenomereal- ticular, Menyhard showefN. Menyhard, J. Phys. &7, 6139
ited by C. Domb and M. S. GreetAcademic, New York, (1994)] that in some limit these models can experience a phase
1972, Vol. 2. transition into an absorbing state, which yields in a universality
[3] R. J. Glauber, J. Math. Phy4, 294 (1963. class first observed in P. Grassberger, F. Krause, and von der
[4] L. Onsager, Phys. Re®5, 117 (1944. Twer, J. Phys. Al7, L105 (1984. See also I. Jensen, Phys.

[5] Similar models can be defined in which parameters other than  Rev. E50, 3623(1994).
the temperature are varied, see, for examj@leand references [13] N. Metropolis, W. Rosenbluth, M.M. Rosenbluth, A.H. Teller,
therein. and E. Teller, J. Chem. Phy21, 1087(1953.

[6] J. Marro and R. Dickmarion-equilibrium Phase Transitions [14] P.L. Garrido and J. Marro, Phys. Rev. Led2, 1929(1989.
and Critical Phenomen#&Cambridge University Press, Cam- [15] In the same way we could choose a different linear combina-

bridge, 1996. tion of T(Y and T to define the pseudotemperature. These
[7] M.J. de Oliveira, J.F.F. Mendes, and M.A. Santos, J. Phys. A possible changes in the definition do not affect to the further
26, 2317(1993. conclusions.
[8] P. Tamayo, F.J. Alexander, and R. Gupta, Phys. Re80E [16] K. Binder, Z. Phys. B43, 119(1981).
3474(1994. [17] Finite Size Scaling and Numerical Simulation of Statistical
[9] J.J. Alonso, A.l. Lpez-Lacomba, and J. Marro, Phys. Rev. E Systemsedited by V. PrivmanWorld Scientific, Singapore,
52, 6006(1995. 1990.

[10] P.L. Garrido, J.R. Linares, J. Marro, and M.A. Mam in [18] That is,m~ €?, é~¢~ 7, and y~ €”, wherem is the magneti-
Complexity and Nonequilibrium Steady Statémiversidad zation, ¢ the correlation length, angt the magnetic suscepti-
Complutense de Madrid, Madrid, 1995 bility.

[11] G. Grinstein, C. Jayaprakash, and Yu He, Phys. Rev. bBtt. [19] M.E. Fisher, Physic$N.Y.) 3, 255(1967.

2527(1985. [20] J.L. Cambier and M. Nauenberg, Phys. Rev.3E 8071

[12] It is worth mentioning here that these Ising-like models with (1986.



