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Collision properties of one-dimensional granular particles with internal degrees of freedom
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Starting from a microscopic model of interacting elastic rods, we derive an effective dissipative dynamics
for the translational motion, where the internal degrees of freedom, i.e., the vibrations of the rods, are repre-
sented by a thermalized bath. Focusing on two-particle collisions, we calculate the coefficient of restitution
€ as a function of the relative length of the colliding rods, the center of mass velocity, and the degree of
excitation of the internal vibrations. In generaljs a stochastic quantity; its distribution is interpreted as the
transition probability for the Markovian jump process, which describes the loss of translational energy in
successive two-particle collisionsS1063-651X96)12111-5

PACS numbds): 05.20-y, 05.40:+j, 46.30.My

I. INTRODUCTION ties of granular particles. A summary of our results has pre-
viously been published in Ref8]. We emphasize that our
Inelastic collisions of particles with internal degrees of approach focuses on granular materials in the “grain inertia”
freedom are abundant in nature. Examples are moleculgegime[9], where the dynamics is dominated by inelastic
with vibrational and rotational states or elastic bodies, whictcollisions. Typical examples are fluidized surfaces, rapid
allow for elastic and plastic deformations. In all these pro-granular flow, and the condensation of a granular gat&e
cesses energy of translation is lost to internal degrees of fregnainly refer to the latter in the followingAt this stage we
dom. For oscillations, like elastic waves or molecular vibra-have not incorporated frictional forces. Phenomena such as
tions, one would expect that the transfer of energy is at leastize aggregation and arching, for which static and dynamic
partially reversible, whereas the energy is irreversibly losfriction become relevant‘quasistatic” regime, are there-
for the translational motion, if defects are generated. There ifore beyond the scope of the present analysis.
a wide range of particle sizes involved: a few atoms in a We start from a one-dimensional model of elastic rods.
molecule, clusters of about 4@nolecules in a soot or dust Colliding rods interact via a short-range repulsive potential.
particle, up to truly macroscopic grains, like sand or gravelUpon collision, kinetic energy of translation is lost to the
In recent years inelastic collisions have found renewednternal vibrations. Equipartition among the vibrational
interest in the context of granular materials. Numerical andnodes is found to be fast as compared to the relaxation of
theoretical approaches to the dynamics of granular materiaf§anslational motion. Hence for a discussion of the cooling
are usually based on phenomenological equations of motioproperties of the granular gas we model the internal oscilla-
for the center of mass velocities of the grains. This phenomtors by a bath temperatufigs and study in detail how energy
enological ansatz has revealed surprisingly rich behavior ofs transferred from the translational to the internal degrees of
granular material with many fascinating features, such a§eedom. We focus on the coefficient of restitution for inelas-
surface fluidization, granular condensation, size aggregatioic two-particle collisions, expressed in terms of the param-
arching—to mention just a few. Despite a lot of activity in eters of the microscopic model. The principal results are as
this field, very little effort has been put into a systematicfollows.
derivation of the phenomenological equations from a micro- (1) In the deterministic limit Tg=0) we find
scopic theory. Instead a variety of phenomenological models=min(y,1/y) with v the ratio of lengths of the two collid-
is used, each with its particular strength and its limitationsing rods. This result is in agreement with the phenomeno-
For example, molecular-dynamics simulatididg have the logical wave theory. We calculate corrections due to the fi-
difficulty that ad hocassumptions about microscopic inter- hite range of the potential. For a potential of small but finite
action laws have to be made. An inadequate choice of theange the coefficient of restitution is found to depend on the
interaction parameters can lef#] to spurious effects in the initial relative velocity, withe—1 as the velocity goes to
simulations. Other simulation techniques adopt the concepzero.
of the coefficient of restitution that determines the energy (2) In the general case, whefg#0, the coefficient of
loss during collisions of granular particles. Event-drivenrestitution is a stochastic quantity, whose distribution we cal-
(ED) simulationg 3—6] have shown that model systems with culate numerically. Its variance depends on the ratidgfo
a fixed coefficient of restitution evolve into clustered statesthe energy of translation and on the length ratiéwith the
where a hydrodynamic description ceases to be correct: Fufffuctuations going to zero foy—1).
damental assumptions of hydrodynamics concerning the va- We use a Hamiltonian approach to describe the loss of
lidity of molecular chaos and local equilibrium are violated energy of translation by excitation of internal degrees of
[7]. The frequency of collisions diverges, so that the algofreedom. Implicit in such a Hamiltonian model is, of course,
rithm breaks down. overall energy conservation. The final state after many colli-
In this paper we aim at anicroscopic derivatiorof the  sions is trivial: It is characterized by equipartition among all
effective dissipative dynamics of the center-of-mass velocidegrees of freedom, so that the velocity of translation is typi-
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cally of O(1/Nyod, WhereN,,,q4 denotes the number of in- u;(s;,t) is expanded in normal modes with wave number
ternal degrees of freedom per particle. We focus here on thig ,=7v/l; (v=1,2,...) andfrequencyw; ,=ck; ,:

cooling properties, i.e., the relaxation of a typical initial ve- .

locity of translation of O(1) to its final value of Y ” .

O(1/Ny0d- One could possibly extend our approach to in- ui(si 't):ﬁgo {(-1)"1qi? *“(t)sm(ki’ 2v+15i)

clude dissipation of internal vibrations due to nonlinear in-

teractions or by transfer to still other degrees of freedom. +(—1)"q®"(t)cod ki 2,5)}- (4
This would give rise to a decay of the internal excitations,

which in the simplest case we may assume to be characteFhe amplitudes in this expansion are denotedyj(t) and
ized by a single time scaleyjss. As long as the duration of the requirement of no uniform displacement implies
collisions is small compared tey;s, the stochastic differen- g{®(t)=0.

tial equation to be derived in Sec. IV should be valid. If In one space dimension rods experience longitudinal col-
furthermore the frequency of collisionsg,,,, becomes very lisions only. We model these by a short-range repulsive po-
large or even diverge@nelastic collapsgone ultimately en- tential V(Fij) depending on the momentary end-to-end dis-
ters a regime such thatdys< v, . Then we would expect tance between the colliding rodsandi +1,

the relaxation of internal vibrations to be irrelevant.

Our approach is conceptually related to work on a gener-
alized Langevin equation for a heavy patrticle, coupled to a
bath of oscillator§10-12. Energy dissipation is modeled by
the excitation of oscillators in both cases. There are imporwith
tant differences, however. To derive a Langevin equation
one usually assumes Rilinear coupling between patrticle R..=R..—R— gt (6)
coordinate and bath variables. Furthermore, the frequency A 2
spectrum of the oscillators and the distribution of coupling o ] ]
constants can be adjustitl, 17, such that a linear damping ©One possibility is an exponential potential(r)=Be™“",
force emerges. In our model the frequency spectrum is dawhich includes the hard_—core limit f(zr_—>0<>. The interaction
termined by the geometry of the particles. The coupling be®nly depends on the displacement fields at the ends of the
tween center-of-mass coordinates and internal modes is di€0ds and hence simplifies, if the expansi@n is used. The
tated by physical interactions: The interparticle potentiaftotal Hamiltonian of our model is then given by
depends on the end-to-end distance between the rods and D (v Y
coEpIes translational to internal coordinates. Hence there is H=Hpar{Pi” A"+ Hue{ Pi}+ Hind R 01}

Fi+1,i(t):Ri+1,i('[)+ui+1( - Il%lt) _Ui(%,t), 5

no freedom in the choice of properties of the bath. The re- N o ()2 (1) N p2
sulting stochastic equation for the translational coordinate is => > |p'—+miw-2 q,_} +>
highly nonlinear and has complex correlations of the fluctu- i=10=1  2mM, b2 i=12m,
ating force. N-1
+ [— . .
IIl. MODEL = BeXp{ a<R'“"
We consider a one-dimensional systemNoklastic rods

of homogeneous densify. Each rod is characterized by its +v22 [a = (1) g | (7)

lengthl;, its center of mass coordina®(t), and its internal
coordinatess; e[ —1;/2,1;/2] , such that in theundeformed

. ) i -
state the positiom;(s; .t) of a mass element is given by HereP; andp;” denote the conjugate momenta for the cen

ter of mass and the amplitude of vibration, respectively. The
ri(s;,)=Ri(t)+s;. 1) constantB is arbitrary. It can be absorbed by rescaling time
t'=tyB and frequencies’ = w//B.
The deformation of the rod is described by the displacement
field Ui(Si ,t), such that in theleformedstate the pOSition of IIl. NUMERICAL RESULTS
a mass element is
In this paper we analyze in detail the predictions of our
ri(si,t)=Ri(t) +s;+ui(s;,t). (20 model for two-particle interactions. We determine the
i , i asymptotic states for an inelastic collision: the change in
We - require that there be no uniform displacement,gfative velocity as a function of the degree of vibrational
J7 pui(s,)ds=0, which is instead accounted for by a excitation. In a planned subsequent paper we shall extend the
translation of the center of mass. The elastic energy of @nalysis to the entire many-body problem assuming that two-
deformed rod is treated in harmonic approximation particle collisions are the dominant interactiamghich is a
reasonable approximation for a wide range of particle densi-
u\? ties).
ds/ |- 3 We now consider two rods with reduced massthat are
placed on a circular ring of circumferente The ring has to
Here the elastic modulus is denoted Byit determines the be sufficiently largel. > 2/«, so that the rods are effectively
sound velocity according t6*=E/p. The displacement field decoupled for the maximal relative distancé2. We focus

F2
pu|+E

1 112
Hpatn({Ui(s)})= EEi fﬁ szs
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FIG. 1. Time evolution of the relative kinetic energy for a two- numbers of modes. As in Fig. 3=0.6173 andaV/y!/c=4000.

particle system with length ratioy=1,/1,=0.6173, aVy)l/C  The dashed line corresponds to the equilibrium value (Eg). for
=4000, andN,,ges 75. The dashed line is the equilibrium value Niod= 75.

resulting from equipartition of energy. The inset displays a cutout
from the corresponding spectrum of modal energies: After a tran-

sient time of 500 collisions the relative energie&” have been The distribution ofEy., over the vibrational modes is
averaged over another 4000 collisions. Gray and black bars corréhown in the inset of Fig. 1. Equipartition implies that the
spond to particles 1 and 2, respectively. relative modal energies(”) = E(")/Ey . are, on the average,

equal to 1/A 4. It is well fulfilled, provided y is suffi-
on the cooling process, i.e., the transfer of translational eneiently irrational. An essential point is to understand the time
ergy to the internal vibrations. Hence we perform the follow-scale, which is relevant for the equipartition of the internal
ing experiment repeatedly: The system is started with a colthodes. A measure for the degree of equipartition, which has
oscillator bathg("(t=0)=p{"(t=0)=0. The two rods are been achieved after a tinte is the generalized entropy of
placed maximally far aparR, ;=L/2 and given relative ve- information[15,16
locity Rzylz—v(l). Subsequently Hamilton's equations of
motion are solved with a Bulirsch Stogt3] algorithm. The ) N
system undergoes a neverending cascade of inelastic colli- he —E i"d e
sions, thereby transferring the energy from the translational == Wi I
to the vibrational modes. Of particular interest is the hard-
core limit «—<. In the following, time is counted as the

number of collisions that have occurred, and hence is no,gy definition.h=0 att=0. whereas reaches its maximum

S|mApIy relafed tﬁ real t|rr}e.h q fth ational en.max= N2Nmogiff w)=1/2N0q4for all i andv. To compare
typl'ca rea'z‘f"“or.‘ oft € decay o the trans atlon'a en'systems of different size, it is more convenient to introduce

ergy E;, is shown in Fig. 1. It is seen to relax to a statlonary,[he normalized spectral entropyy=1—h/h, ... If all

state, which is characterized by equipartition among altwi(V)] are random variables, identically distributed accord-

,Eja'\,:i’g‘;]ds ;)Emgtri:usnént;t;emségtrllonary state we observe flucmg to Boltzmann statistics, then is expected to fluctuate
tr

around a meapl7,1§

(10

mVG)
Estat: E — ) 8
tr < tr> 2(2Nmod+ 1) ( ) 0.423 (11)
which goes to zero abl,,,q—. The energy of the whole 7 IN(2Nmod

system,Eq1= E, + Eparn IS conserved14], so that we ob-
serve a microcanonical equilibrium state and the fluctuations
in E,, can be interpreted as canonical fluctuations of a subln Fig. 2 we show the decay of for severalN,q4. It takes
system, coupled to the bath of oscillators. Hence the fluctuaenly approximately five collisions to establish modal equi-
tions inE,, are determined by the Boltzmann distribution  partition and this time scale does not depend significantly on
the number of modes.
staE, )= iex _ i ©) Based on these results, we distinguish between three time
p tr Etsrtat Etsrtat . reg|mes:
(1) On the shortest time scales equipartition is achieved

The relaxation time ofE;, is essentially independent of among the vibrational states.
Nmogd, but does depend ow=1,/l,, the ratio of the two (2) For intermediate time scales the translational energy
lengths. Fory=0.6173 it takes about 60 collisions f&;, to  decays to its stationary value in the presence of a bath of
relax to its stationary value. thermalized oscillators.
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bath of oscillatorgSec. VJ and that its fluctuations are de-
termined by the strength of the internal vibratiq®&ec. V).

IV. EFFECTIVE STOCHASTIC EQUATION

1 For a single collision of two particles one can integrate
out the vibrational degrees of freedom and thereby derive an
b exact equation of motion for the relative velocity. For that
purpose it is more convenient to consider a linear arrange-
ment, so that the two particles move apart after collision. Our
starting points are the equations of motion

C.(k)/C,(0)

Mhz,lzaBeXF{_a Ro1t V22 (q(1v)+q(2v)))],

L

q 1
0 2 4 6 8 10 12 14 16 18 20 (14
k

-0.2 L ;

FIG. 3. The correlation function of the coefficient of restitution qi(V): - wiz,VQi(V)+

C.(k) in the stationary state for the same system as in Fig. 1. The
data were obtained by averaging over 4000 collisions. Apparentlywhere we have made use of a trivial canonical transforma-
successive collision events are only weakly correlated. tion (g ,p™)((—1)**1g™ (- 1)**1p™). The equa-

I I I 1 | "

(3) For the longest time scales a stationary state iéions have to be supplemented with initial conditions. We

reached. This state is characterized by complete equipartitiocf'00s€ Rz 1(0)=R¢>1/a and R;,(0)=-V and leave
and hence a very small val@(1/N,,,o of the translational d{"’(0) andp{”’(0) unspecified for the moment.
velocity. There are two important length scales in our model: The
It is the intermediatetime regime that we are interested lengths of the rods, which we take to be differeht<tl5)
in. For this time window we can hope to achieve a simplifiedbut comparable, and the range of the potential. For the
description in terms of the center-of-mass coordinate onlyfirst it is convenient to introduce an effective length scale
modeling the internal oscillators as a thermalized bath. Such=2l4l,/(l;+1,) and the ratioy=1,/l,. We are interested
a coarse grained model is particularly useful if the stochastiéh the hard-core limita— =, so thatal>1. The effective
forces of the bath are correlated over time scales muckength of the rods sets the time scaley,=1/c for the dura-
shorter than the typical time scale for translational motion. Irtion of an inelastic collisiorisee Sec.Y. In the following we
that case, a Markov approximation for the stochastic dynamshall work with dimensionless time=t/ry. In these units it
ics of the particle is justified. The typical time scale for trans-takes a time I'y=(2l,/c)(c/l)=1+y [I',=(2l,/c)
lational motion is the duration of a collisiof, , which will X (c/l)=1+1/vy] for a signal to travel back and forth on rod
be shown to be given by~ 2I;/c. If the states of the bath 1 (2). Another time scale is;=1/(aV), which is the colli-
before and after collision were correlated, one would expecsion time for the corresponding elastic collision. The latter
to see correlations among consecutive collisions on théas to go to zero in the hard-core limit, so that we shall
coarse grained level. To analyze these correlations we comways assume= 7o/ 7, =aVI/c>1.

sider the statistics of the coefficient of restitutiep, , de- The equation of motion for the oscillators can be inte-
fined for thejth collision as grated with help of the elastic Green functitsee Appendix
A). The resulting equation for the velocity increase
Vii+1
H= \(/]+ 2, (12 I . .
gl W(7T) = [Rz(1)~Rz4(0)] (15

HereV;, is the absolute value of the center-of-mass velocity
before thejth collision. The correlation function of in the IS given by
stationary state q
- 1 rxg11X E’W( T)=eXp{ kT— aRy—W(7)
€ e —— Eiy— (€ €(i —(€

N K=o/, (eh— () (€jriy—(€))

2 )
(13 —igl nzl W(r—n[)+Q(7) . (16

has been determined as an average over many collisions. A

typical realization is plotted in Fig. 3. One observes a rapidl he exponential dependence of the acceleration is, of course,
decrease of (k); even fork=1 correlations are very small. due to the exponential potential, which we have chosen to
Apparently the nonlinear coupling in E() is very effective  represent a hard-core potential. The memory terms
to destroy any correlations in the internal modes. We shalW(7—nl’;) are present because the elastic vibrations do not
come back to discuss the statisticseoin more detail, once decay in the Hamiltonian model that we are using. Hence an
we have shown that is a deterministic quantity for a cold applied forcd R, ;in Eq.(14)] is felt forever. The function
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2|0

( M (0)cog 27 rvIT;)

Q(T)=\/§a§;,

p{"(0)

+ . Sin(Z’ITTV/Fi)) (17)

accounts for the contribution to the displacements that stems

from the initial excitation of the oscillator system. Note that
(d/dr)W(7=0)~0, i.e., the particles do not interact at
7=0, because initially they are far apastRy>1.

In Sec. Ill we have seen that the oscillators quickly relax

to a thermalized state with equipartition among the oscilla-
tors. This result suggests that for the subsequent cooling pro-

(9{”(0))=(p{"(0))= 0 (18)

(@002 =([p{"(0)/(Mw; ,) 12 =Te/(Mw?,).

Under these assumptiond(7) is a Gaussian random vari-
able with zero mean and covariance

)=(Q(7)Q(7 +))

_U[_z

2

T -
T 7—&% 6(7—nl)

(19

a2|2 TB

2Etr.

2

WTB: K
Here E, = (u/2)V? is the initial translational energy. This
rather complex variance is due to the fact tk¥tr) is the
superposition of two random processes: The firspresent-
ing thermalized vibrations of rod) is periodic withI"; and
the secondrepresenting thermalized vibrations of rogig
periodic withI',. Co(7) is a periodic function for rational
v and a quasiperiodic function for irrational. A typical
correlation is shown in Fig. 4. It consists of pieces of pa-
rabola, joined such that the function is continuous.

The coefficient of restitution is defined as

e=1im|Ry1(t)/Ry4(0)| = lim W(7)/k— 1.

t—o

(20

T—®

W(7) is expected to be dD(«) and inspection of the cova-
rianceCq(7) shows that the nois@(7) is of the same order
of magnitude.

V. DETERMINISTIC LIMIT

NETTE ZIPPELIUS

0.75

0.5

025

Co(ICq(0)

0.0

-0.25

-0.5
cess we can model the internal degrees of freedom by a bath 0 o
of temperatureTg=Epan/(2Nmod). Then {q{”(0)} and

{p{"(0)} are independent, canonically-distributed random

variables with

FIG. 4. The correlation functiol€q(7) of the noise process
Q(7) with length ratioy=0.6173. For rationaly the function is
periodic, for irrationaly it is quasiperiodic.

Hamiltonian model with heavily damped vibrations, such
that between collisions the vibrational energy relaxes to
Zero)

The deterministic equation can be solved analytically in
the limit of a hard-core interactiork(—). The solution is
nontrivial due to the memory terms: To construct the solu-
tion at time 7 requires knowledge oW/(r) at all previous
times. Starting at—=0, with W(7)=0 for 7<0, one solves
for W(7) in a small time interval, such that the memory
terms vanish. This solution is then fed into the memory terms
of the next time interval, etc. The details of the solution are
given in Appendix B. We neglect contributions, which are
exponentially small inc and find

exd k(7— Ttree) ]

+
1 ktexd «k(7—2— Tieo) ]

W(r)= for y=1

(21

1
1+ ;eXF[K(T_Fl_ Tiree) ]

W(r)= 1+eT1n

1+ ;eXF[K(T_FZ_ Tiree) ]

for 0.5=y<1. (22

Here 7,..=Ry/(V7p) is the typical time the particles need
to collide, starting with initial separatioR, and initial ve-
locity —V.

The coefficient of restitution follows from Eq§21,22

1 for y=1

= IN[ «(I',—T 23
¢ y+M for 0.5<y<1. @3

K

Some insight into the equation of motion can be gainedn the hard-core limik is given byy=1,/1,, the ratio of the

from the deterministic limifTz=0. This implies that no vi-
brations are excited before collision and corresponds to th
initial condition in the numerical solution of Sec. ll(The
deterministic limit may also be relevant for a non-

lengths of the two rods. For rods of equal length there is no
translational energy dissipation at all. Our approximate solu-
tion for large « is actually remarkably good down te~5.
The approximate analytical solution is comparedetoas
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FIG. 5. Th ffici ¢ _ ¢ . fth FIG. 7. Two typical stochastic trajectories oi(r) for
. 5. The coefficient of restitution as a function of the param-TB/Etr:1 and two different values of. As in Fig. 6,y=0.6 and

eter k= aVI/c in the deterministic limit. Fory=0.6, we compare

the approximate solution, E23), with the resultstriangles of a " L.
numerical integration of Eq.16).
_V, T )
obtained from a numerical integration of the equation of mo- ~ V2i(7)={ ~VFT(7=70)V for ro<7<7o+I'y
tion, in Fig. 5. Deviations can be seen fer-0, where the W, Totli=7.
correcte approaches 1 and the approximate solution for large (24)

« obviously fails.

It is only the parametek that controls the solution and
hence the coefficient of restitution. For a perfect hard-cor
one has to requirel —o and hence<— . If, on the other
hand the range of the potentialeland the length scale of
the rods are chosen such that is large but fixed, then
variations ink are due to variations iv. Hence for fixed E™ 102r;, r,
“microscopic” parameters 4,l,c), we interprete(x) as a E. - 775“12( VI |- (25
velocity-dependent coefficient of restitution. Presumably this tr '
velocity dependence is not universal, in the sense that it dg4ence all the energy lost for the translational motion is trans-

pends on the interparticle potential. ferred to the longer rod, whered&”’=0. One can easily
The time evolution ofW(7) is shown in Fig. 6 for two  ack thatEVE(ZV)=(1— y)E,,, as required by energy con-
values ofx. In the hard-core limit the relative velocity is ggryation.

given by These results are in complete agreement with the wave
theory of impac{19], which analyzes the collision problem
in terms of stress waves propagating through the rods. To our
knowledge, a derivation in the framework of classical me-
20 chanics(with correction terms for finitex) has not been
given before.

The time of interaction is equal 19,, the time that an elastic
wave needs to travel back and forth on the shorter rod. The
Sraction of kinetic energy that has been transferred to internal
vibrations is (- y?)E,, . It is distributed over the oscillator
modes according to

VI. STOCHASTIC COEFFICIENT OF RESTITUTION

For Tg#0 we have integrated Eq16) numerically for
various realizations of the noise process. The first step is to
generate random initial conditiom$” (0) andp{*’(0) with a
standard procedure. The Fourier series in @#d) have to be
truncated after a finite number of terms,{,,~ 250 turns out
to be a reasonable compromise for computation time and

~-- k=35 accuracy. The initial separation of the centers of mass has to
— k=100 be chosen sufficiently large compared to the noise,
0 1 2 3 4 5 6 aRy>+/(Q%(0)) , so that initially the two particles move

freely. Subsequently the differential equation is integrated

FIG. 6. The velocity increas#/(7) in the deterministic limit. ~ With a Bulirsch Stoer routine.
The plot displays the approximate solution Eg2) for y=0.6, Two typical trajectoriesV(r) are shown in Fig. 7. In the
Tiree= 1, and two different values of. In the limit k—, W(7) is  hard-core limit (=100) we observe a random sequence of
piecewise lineafcf. Eq. (24)]. rapid changes d#V(7) due to the ongoing oscillations of the



4834 GOTZ GIESE AND AN

ends of the rods, while for a softer potentiad=£5) these

changes are smoothened. The first contact of the particles

may happen earlieflaten than 7;,.., because the ends vi-
brate towardgaway fron) each other.

Analytically, some insight into the properties of E3.6)
can be gained in the limik—c°. In this case the equation
can be solved20] formally by means of a saddle-point ap-
proximation, yielding

- W(r)
lim = max0,f(7)},

K—®

f(T):maXr’e[O,T][ i

|

Q(7')

K

+ (26)

NETTE ZIPPELIUS

T
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K
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0alf .,/—""'/
”’ //_./”
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02r —— 7=0.617285
---- 4=0.217285

0.5 1.5 2.0

1.0
Ty/ By

FIG. 8. The mean valuée) (triangles and the standard devia-
tion Ae (circles as functions ofTg/E;, in the hard-core limit
(k=250). We consider two different length ratigs For each data
point 2500 realizations of the stochastic differential equatib)

Due to the memory terms this solution still requires a piece-have been integrated.

wise construction ofV(7), analogous to that performed in
Appendix B for the deterministic limit. Again, it is the

memory terms that end the collision process, since the re-

maining terms in the brackets are — on the average — in
creasing with time. Fory#1 the duration of the collision
Teon and the asymptotic valug/(7— ) are random vari-

VII. MESOSCOPIC DYNAMICS: INTERPRETATION
OF p(e?) AS A TRANSITION PROBABILITY

In this section we interpret the results of the preceding
sections as a stochastic dynamics on a mesoscopic level: The
time evolution ofE;, upon successive collisiortsf. Sec. Il))

ables, whose distribution we have not been able to calculatlg described as a Markov process ap(drz) is interpreted as

analytically.

For y=1, Q(7) is periodic with periodl'=2 and the
situation is totally different: Foeveryrealization ofQ we
find from Egs.(20) and(26) thate=1 andr.,,;=1", which is
precisely the deterministic result. In other words, the asymp
totic dynamics of two colliding rods afquallength does not

depend on whether initially internal vibrations are excited or

not.

To calculate the statistics of the coefficient of restitution
in the casey#1, we have determined the asymptotics of
W(7) numerically and averaged over several thousand rea
izations of the noise. Generally, the distributioneadepends
on Tg/E;, v, and k. It turns out that the hard-core limit
[Eqg. (26)] is well represented by values &f>50, in the
sense that the statistics become independenk af this
range of parameters. All numerical results were obtained fo
this regime.

In Fig. 8 we plot the average and the standard deviation of

e as a function ofTz/E,, for two values ofy. The fluctua-
tions of e increase withT 5 /E,, as expected. The variance is
larger, the larger the difference in lengths of the two rods

limit. In general the distribution o is non-Gaussian, so that
it is not sufficient to consider the two lowest moments. In-
stead, the full information about the statistics eofs con-
tained in the density)g” /TB(€2) (which is also the relevant

guantity for energy transfer, cf. belgwshown in Fig. 9 to-
gether with the distribution function Dg” ,TB(ez)

=f§2p(x)dx. As mentioned before, the distribution broadens
for increasingTg. In the deterministic limit the distri-
bution converges to a step-functidd(e?)=0(e*— y?),
corresponding to a & function for the density
pl(e?)=8(e*— 7).

i.e., the more inelastic the collisions are in the deterministic

the transition probability between two “statesg; and
E/, . The basic ingredients of the mesoscopic dynamics are
the Markov assumption for the stochastic process and the
fast achievement of equipartition among the internal modes.
" In detail, we proceed as follows. Led by the numerical
solution of the full dynamicgSec. Il) we regard the time
evolution of E;, as a stochastic process in discrete time
(1,2,...,n)

(27)

| Etr(l)—>Etr(2)—>"‘—>Etr(n)

1.0

0.8
r

v 06
=)
NA

X o4
o

0.2

FIG. 9. The probability densitp(e?) (dotted ling and its inte-
gral, the distribution functio® (€?) (full line), for different energy
and length ratios:(a) Ei /Tpan=10, y=0.6173,(b) E /Tpawn
=1, y=0.6173, andc) E;, /Tpan=1, y=0.2173.(d) displays the
distribution function for y=0.6173 in the deterministic limit
k—oo. Data were obtained from 8000 realizationsW{7) with
x=100.
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with each time step representing one collision. We assume 10
that this stochastic process is a Markov process, because sub- 0o
sequent collisions are approximately independsee Fig. ’
3). The Markov assumption implies that the noise, which 08
models the effect of the internal oscillators, is chosen inde- 07 )
pendently after each collision. =06
Changes in the bath temperature are not independent, but ‘}b
determined by energy conservation; S 03
Q04 Y.
2 4
Et+1=€)Etr) (28) 03f
02
Togon=Tog+ o g 01
1H)— 'B j) - :
B(j+ Mt 2Nmod tr(j) o
0.0 05 1.0 1.5 2.0 25 3.0 35 4.0
The transition probability from a statg, before collision to E/Ts
a stateE/, = €°E;, after collision is then determined by the
probability densitypg[r /TB(EZ) according to FIG. 10. Result of a simulation of the Markov proceg3) in

the stationary state with fixedl§. The transition densities
pTg(EtrHE{r) were simulated by numerical integration of Ef6)
Pro(Bu—E) =g PE imry(€)le-gpe, (29 with y=0.6. The distribution functiord(e?) (full line) is calcu-
i lated from 10 000 simulation steps and compared with the Boltz-
The stationary state of the Markov process is known: aftefnann distributior{dashed line, cf. E30)].
cooling, the system of two particles, each equipped with an
internal bath, evolves into a stationary state with a Boltz-steps in the Markov process is shown in Fig. 10. As ex-

mann distribution forE, , pected, the distribution approximates a Boltzmann statistics
rather well. The statistics fqu(e®) that we have obtained so
p3iay 1 Eur far is not sufficient to test detailed balance numerically, how-
Pro (By)= 0 exp — 7o (30
B ever.
. Detailed balance is not enough to uniquely specify a tran-
with the bath temperature sition probability. As for the dynamics of Ising spins, one
may construct many different transition probabilities, which
TO= Etot (31) all satisfy detailed balance and hence relax to the same sta-
B 2Npogt1 tionary state. In particular, Glauber’s choi@l] would cor-
S . respond to
This implies for the transition rates of the Markov process
pEYE) = | dE'pro(E ~E)pYED. (32 2y Ettgf — 2B
P9 0 Te o PE o€ )_T—eX 1) (35

Here we neglect changes in the bath temperature, which are
of O(1/Npoq as compared t@(1) changes ifE,,. A more  However, this expression has the wrong deterministic limit
stringent constraint on the transition probabilities is the re-
guirement of detailed balance, i.e., equal probability currents
between two microstates;, andE,, iMe,, /r,—=PE. 7 (€2)=8(€?). (36)
Pr3(Eu—Ef)Pys (Ev) = Prg(Eq—Ex)Pyg (Ef).
(33) Collisions, where the internal vibrations are not excited,
would be completely inelastic. It is an open question whether
This implies for the transition probability density ef detailed balance, together with the right deterministic limit,
unigquely specifies the transition probabilities.

pE /To(e ) Also we want to stress the following point: In contrast to
_ZeXF{T(l € )) (34  most Monte Carlo simulations we are not interested in the

1 stationary state, which is trivial, but rather in the cooling

X ’Ey /TB( € ) dynamics. At present it is not clear at all how sensitive the

cooling dynamics is with respect to variations in the transi-
We have checked the above considerations by a numericéibn probabilities. However, our approach allows for a sys-
simulation of the Markov process. To simulate the transitiontematic investigation of this point. For that purpose it would
probabilities, which are not known analytically, we producebe helpful to have a simple analytical expression for the tran-
a randome? by solving the stochastic differential equation sition probabilities. Detailed balance and the deterministic
for the momentary value d&,;, and a fixed equilibrium tem- limit may serve as guidelines in the search of such approxi-
peratureTy. The distribution ofE, /T3 based on 10 000 mations.
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VIIl. OUTLOOK and define the scaled center of mass distaxde)

The stochastic dynamics of Sec. VIl is easily generalized: @Rz(7l/c) and the total displacement

to a dilute gas of many granular particles, each characterized

by its center-of-mass position and velocity and by the tem- Iy | |
perature of its own bath. As long as the rods do not interact, U(7)= auz( —o —7’) - aul(
they move freely and integration of the equations of motion ¢

is trivial. In particular, one can calculate the time of the next (A3)

collision, as is done in event-driven simulations. The colli-|t \ve denote derivatives with respect toby primes and set
sion event is then treated statistically, as discussed in Seg,q arbitrary constarB = wc?/(a?1?), the translational equa-
VII: For the colliding pair the kinetic energy and the tem- 4o of motion reads ’

peratures are updated with a randomly chogénwhose

distribution is given byp(e?). This part of the dynamics

resembles a Monte Carlo procedupée?) being interpreted Z'(r)=e 2tV (A4)
as the transition probability between two states. An interest-

ing open question is whether this algorithm is able to avoidvhere

the inelastic collapse, which is observed in event-driven al-

gorithms. In this context dissipation of the internal vibrations 5 g

may become important. In the simplest model dissipation can d 1 (27v "

be taken into account by a time-dependent bath temperature, U(T):El fo ?SEV: ;sm( T, (T_S))Z (8)+Q(7).
as discussed in the Introduction. Work along these lines is in (A5)
progress.

One may also try to extend our analysis to higher dimenHereQ(7) corresponds to displacements that result from the
sional objects like disks or spheres. Frequently a quasistatiaitial conditions[cf. Eq. (17)]. We now use the identities
potential due to Hertz is used for two colliding spheres.
However, in a real collision the quasistatic approximation is
not expected to hold. For the above example of two colliding 1.« 1 . N
rods, the dynamic theory yields results that are completely ;Zﬁ ﬁs'r‘(ZW”X):E_XJrZ«l 6(x—n) for x=0
different from the static approximation. The latter implies (AB)
that the repulsive force depends linearly on the relative dis-
tance of the two rods. The dynamic theory, which is based ofig(x) denotes the step functipand 1I'; + 1/T',=1 and get
the propagation of elastic waves inside the rods, predicts after integration by parts
constant force during collision.

%)

U(7)=Z'(7)—Z'(0)+Z'(0)7—2Z(7)+Z(0)
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After inserting Eq.(A7) into Eq.(A4), Z"(7) becomes inde-

APPENDIX A: DERIVATION OF THE STOCHASTIC pendent ofZ and we obtain thdirst-order differential equa-
EQUATION (16) tion (16) for the velocity increase
Starting from the equations of motidi4) we integrate W(r)=Z'(71)—2'(0) (A8)
the internal coordinates by means of the Green function for ,
harmonic oscillators: [note thatZ(0)=aRy andZ’(0)= — «].

u(t sinw, (t—t’) APPENDIX B: DETERMINISTIC SOLUTION
I, o
"(t)= \/z—m_ fodt' —w Ro(t")
|

i,v

In the following we consider Eq(16) in the limit

(v) 0) Q(7)=0:

+qi(”)(O)coswi,VtJrr:T—_sinint. (A1)

| Wiy

2 o
_ . _ _ W'<T>=exp[K(r—rnee)—wm—E > W<r—nri)}
Next we introduce a dimensionless time variabie ct/| i=1n=1

such that mass ratios are given by the corresponding wave (B1)

ropagation times
propag W(7)=0 for r=<0.

We confine ourselves to the case €5%<1, i.e,

m;
;_ri (A2) I'1<TI',=<2I'; and look for an approximate solution of Eq.
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(B1) that is correct up to terms of ordete™ “%),5>0. As a
first step, the solution ofB1) without memory terms is

1
W(7)~In[1+ ;eawf,ee)} (B2)

Apparently, this solution decays exponentially fast for

7<Tfree @nNd grows — essentially linearly inand « — for

T>THee. ThiS means that all memory terms that are ob-

tained from Eq.(B2) at timessmallerthan 7,¢. can be ne-
glected. ConsequentlyB2) is a consistent solution dB1)
in the entire time intervdlO< 7< 14,¢c+ 11— 8], Wwhereé is
small and positive. In the interval] 7s,ee— 6: Tfree

COLLISION PROPERTIES OF ONE-DIMENSIONAL . ..
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1+r \|'™
W(T) — 4 «I'y - + -D
e 1+e In(1+eDr O(e™ "),
1(Tfree= 9)
(B4)
whereD=«(I',—T"4) and
1
r(s)= ;ek(sfrfffree). (B5)

Neglecting the lower boundary term in E@4) we obtain
Eq. (22). For 7<teet+I'; this solution differs from Eq.

+2I';— 6] only two memory terms need to be considered,(B2) only by exponentially small terms. Hence it is an ap-

each evaluated with the help of E®2), so that we have to
solve the equation

exp[K( T— Tiree) — W( 7')}

1
1+ —eK(T*FZ* Tfree)
K

W'(7)=

1+ _eK(T*I‘l*Tfree)
K

(B3)

with initial condition W( 74,..— 6)~0. This equation can be
solved by elementary integration, yielding

proximate solution of Eq.(B1) in the entire range
7<71eet 2I'1. [If y<0.5 one has to replade, in Eq. (22)
by 2I';, whereas for the derivation of ER1) only a single
memory term has to be considergd.

In order to prove that Eq22) also gives the correct be-
havior in the limit7— oo one still has to show tha/’ ~0 for
T=Teet 211, i.€., that there is no relevant contribution to
W(7) from other memory terms. Again, this can be done
[18] by feeding the solution into the right-hand side of Eq.
(B1).
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