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Fractal dimensions of chaotic saddles of dynamical systems
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A formula, applicable to invertible maps of arbitrary dimensionality, is derived for the information dimen-
sions of the natural measures of a nonattracting chaotic set and of its stable and unstable manifolds. The result
gives these dimensions in terms of the Lyapunov exponents and the decay time of the associated chaotic
transient. As an example, the formula is applied to the physically interesting situation of filtering of data from
chaotic systemq.51063-651X96)11811-0

PACS numbd(s): 05.45+b

I. INTRODUCTION by the consideration of the problem of chaotic scattering, the
case of generaN was treated if9], but was restricted to
Kaplan and Yorkd 1] conjectured a formula relating the consideration of Hamiltonian systems.
fractal dimension of a chaotic attractor of a typida] The purpose of this paper is to present a heuristic deriva-
N-dimensional dynamical system to the Lyapunov exponenttion of a formula for the dimensions of the natural measures
of the attractor. More precisely, the formula gives the infor-of a general invariant set and its stable and unstable mani-
mation dimension of the natural measure on the attrather  folds. In the case where the set is an attractor, the Kaplan-
natural measure is informally defined in Seq. Withough  Yorke formula is recovered. In the case where the set is
the conjecture is still unproved in its most general form,nonattracting, thél=2 results of Refs.7,8] and the general
some relevant rigorous results have been obtained. For tHé-dimensional Hamiltonian results §8] are recovered. The
case of a two-dimensional invertible mag€2), Young[3] present formula also covers situations of typical nonattract-
proved that the information dimension of an ergodic invari-ing sets not covered by previous results, and these previously
ant measurey is untreated cases have relevance to physical situations. We
D(w)=(h;1—h; HH (1) Qiscuss.one such physica}l example in Sec. Il, acausal filter-
1 2 ' ing of signals from chaotic systenj40]. Another example

whereH is the metric entropy ofs andh,=0=h, are the (not discussed herés the convection through a “scattering
. 2 region” of passive tracers by a three-dimensional time-

Lyapunov exponents for the measyre The invariant set in dependent incompressible fluid fldrl].
this case may or may not be an attractor. In the case where

u is the natural measure of an attractor, it is reasonable to

assume thaitl =h (this can be proved for hyperbolic attrac- Il. DIMENSION FORMULAS
torg), and Eq.(1) then agrees with thél=2 version of the . o ) )
Kaplan-Yorke formula. If4] it was shown that the Kaplan- ~ We consider a chaotic invariant ergodic set of an

Yorke formula provides a rigorous upper bound for the di-N-dimensional invertible smooth m4f2]. Imagine that we
mension of a chaotic attractor of ahdimensional magthe ~ €nclose the invariant set by &irdimensional cube and that
question of whether the upper bound is actually attained rewe sprinkle a very large numbex(0) of initial conditions
mains opeh Referencd5] uses a notion of “partial dimen- uniformly throughout the cube. We now iterate each initial
sions” to relate the Lyapunov exponents and entropy of arfondition forward in time. If an initial condition leaves the
invariant measureu (again not necessarily attractingpr ~ cube we regard it as “lost” and no longer follow it. Let
generalN to its dimensionas in (1) for N=2]. Reference n(t), t>0, denote the number of initial conditions that have
[6] proves the Kaplan-Yorke conjecture foi-dimensional ot yet been Iost_at time Then we define the forward ex-
iterated function systemén contrast to a dynamical system, Ponential decay time as
in an iterated function system, at each iterate, the map to be
applied is drawn at random from a prespecified ensemble. 7= lim  lim t~Yn[n(t)/n(0)]. (2)

In addition to attractors, nonattracting invariant sets are t—+o n(0)—o
also of interest in a variety of situations. In particular, non-
attracting invariant sets are responsible for such physical . he | . f th bi . in th
phenomena as fractal basin boundaries, chaotic transientt, W& €xamine the location of the(t) orbit points in the
and chaotic scattering. Thus the dimensions of the naturuPe atlarge positive tim they will be in the close vicinity
measures of these sets and of their stable and unstable maf-the unstable manifold of the invariant set. Thus we define
folds have attracted attention. In the cdge2 Refs.[7,8] a natural measurg , for the unstable ma_nlfold such t_hat the
use heuristic arguments to relate these dimensions to tH8€asures.(C) of a small volumeC within the cube is
Lyapunov exponentk; >0>h, and the characteristic decay
time 7 of the associated chaotic transient. The results of w.(C)= lim lim n.(t,C)/n(t), (3)
Refs.[7,8] correspond tql) with H=h;—(1/7). Motivated t—+® n(0)—o
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wheren, (t,C) is the number of tha(t) orbit points in the
cube at timd that are also ifC. We can also define a natural

measure for the stable manifold by D)
4 (C)=lim lim n_(t,C)/n(t), (4) !

t—+o n(0)—o»

wheren_(t,C) is the number of initial conditions i€ that I-1 I I+1
do not leave the cube before tinhte To define the natural . . _
measure on the invariant set itself, we considerrtti or- FIG. 1. Dy(i) versusi aroundi=1.

bits that do not leave the cube before titnand ask where ) ) ) )
they were located at some intermediate t”’a'e where where there ar§ slab edge dimensions of unit |ength Since
0<é<1 (e.g., we might také=1/2). Lettingno(¢,t,C) de- these are the locations of the initial conditions that have not
note the number of these orbits that arerat time &t, we  left the cube int iterates, we have

define the natural measure on the invariant set as

U
"
1o(C)= lim  lim no(&4,C)In(t), 0<¢<1. (5) N(t)e"p( —jZl hi )t) ~exp—t/7).
t—+oo n(0)—w
Thus
[Note that with this notationn, (t,C)=ny(1t,C) and
n_(t,C)=ny(0t,C).] The natural measure of the invariant H=
set will haveN associated Lyapunov exponents that charac-
terize the stretching or compression of differential volumes
following orbits generated by those initial conditions To obtain the dimensioB, of the natural measure of the
sprinkled in the cube that do not leave for a large number ofinstable manifold, we wish to cover thKt) slabs of dimen-
forward iterates. Let) (for unstabl¢ denote the number of sions given by(7) by small N-dimensional cubes. Let the
positive Lyapunov exponents and &tfor stable denote the edge length of one of these cubes be
number of nonpositive exponents; then- S=N. We label
the exponents as ei=exq—h§i’+)l)t). (10

U
le h}“) —1r. (9)

hiF'=h{2,;=...=h{"'>0=—h{")=-h}") The required number of cubes is

=...=—h{", (6) 1)“ e hit\ [ g-hot e—h
;i p . R <

where we have arranged the exponents in decreasing order,
starting with the largest positive exponent on the left andg;, €,—0 ast— +o, the box-counting definition of di-

ending with the most negative exponent on the right. NOtemension, lim_ oIn[#(e)}In(L/e), where #¢) is the number

i i ionh(+ ) i . . / - .
that in this notationh are all non-negative and that o . cypes in the covering, yields an estimate for the dimen-
smaller values of the subscripfscorrespond to values of gjon[13],

h{*7) closer to zero.
Making the simplifying assumption that the invariant set D, (i)=U+i+[H—(h{+h+ ... +h{7)]/h{;].

N(t).

is hyperbolic, it is appropriate to conceptualize the edges of (11)
the enclosing cube as parallel to directions of stretching and _ _
compression by the Lyapunov exponehts’ and —h{").  Since the covering by; cubes may not be optimal, EGL1)

We also suppose that, by suitable normalizations, we cal$ an upper bound on the dimensidh,<D(i). To obtain

take the cube edges to be of unit length. Iteration of théhe best upper bound, we minimiZ®,(i) over the index

sprinkled points forward in time then results in a distribution (i-e., over the possible edge sizeg. Since the choices of

restricted to slabs within the cube, where these slabs havedge length given by10) appear to be the most natural

dimensions choices, it is reasonable to conjecture that the minimum over

) ) =) i gives the true value oD, (in the attractor case this as-
IX1X---xX1xe M txe ™ 'x...xe st (7)) sumption yields the Kaplan-Yorke conjectur@o find the
minimum of (11), consider the quantitp ,(i+1)—D(i),
and there ardJ slab edge dimensions of unit length. Let

N(t) denote the number of these slabs. For larges write 1

Dy(i+1)=Dy(i)= 1l

N(t)~eHt,
X[(h{+hy )+ +hi ) —H].
where we callH the forward entropy. Mapping thesé(t)
slabs backward iterates, we obtairN(t) slabs of initial  Since h{;)<h{;) [see (6)], the dimension increasesle-
conditions each of dimension, creasekif the term in the square brackets is positirega-
- - ) tive). Thus the minimum occurs at that value iofdenoted
e N txe M atx ... xe M Tx1x...x1, (8 ) such that(see Fig. 1
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hi7+. .- +h{7+h(7)=H=h{"+...+h(7) (12 low-pass filter studied by Badét al.[16]. In that paper, it is
observed that the dynamics reconstructed from a delay-

and the conjecture is coordinate embedding of the filtered sigfial} is that of the

D,=Dy(l) (13) dynamical system that generatpd,} coupled to linear con-

U tracting dynamics for the filtered coordinategiven by the

Proceeding in the same way, we obtain the following resulf€cursion
for the information dimension of the stable manifold:
Zn+1=NeZnt Xnia- (19
Dy())=S+j+[H=(h{"+hy"+ - +h{"))hil],
(14  Thus an additional Lyapunov exponenth,=In\. is intro-
duced to the dynamics by the causal filter and the informa-
Ds=Ds(J), (15 tion dimensionD of the filtered attractor is given by the
Kaplan-Yorke formula, using the Lyapunov exponents of the
original system together with the new exponertt.. Thus,
h(4 - +h{D+h =H=h{"+. .. +h(" . (16) in generald<D=d+1, whered is the information dimen-
sion of the unfiltered attractor.
Since the invariant set lies in both its stable manifold and its For the acausal filte{18) with X , and\ . nonzero, there is
unstable manifold, the invariant set is the intersection ofl0 analog to(19); that is, there is no equation relating
these two manifolds. Assuming this intersection to be geZn+1. Z, and any finite number of thg,}. We can, however,
neric, we have that the dimension of the invariant s¢1#  decomposg{z,} into causal and acausal componefis}
and{v,}, each of which satisfies a recursion such(&9).
Specifically, we writez,=u,+uv,, where

whereJ is defined by

D=D,+Ds—N=(1+J)+| H= >, h§‘>)(h§;>1)—1
i=1

) un:E )\kxn—kv (20)
S CERGIGAeN R (17 =
_As a check, consider_ the cise of the attraftor. In_this case vo= 2 )\';XMK. (21)
r=o and(9) and (16) yield J=U—-1 andDs=S+U=N. k=0
(Formally we could also takd=U and get the same value
for D, thoughh{,"); is undefined. Equation(17) then gives ~ Then
D=D,, which with (9) is just the Kaplan-Yorke formula.
Finally, we note that our definitions of the natural mea- Un+1= Ne(UntXn), (22
sures, Egs(3)—(5), are not the only possible definitiofis5],
but (3)-(5) appear to be the most natural choices and, per- Un+1:)\;l(vn_xn)- (23

haps more importantly, they are the relevant measures for
our considerations in Sec. Ill and for the fluid tracer problemrhys the dynamics reconstructed from the filtered signal

mentioned in Sec. I. {z,} (e.g., by use of delay coordinajeme those of the origi-
nal system generatinfx,} coupled with(22) and(23). The
lll. FILTERING OF DATA FROM CHAQTIC SYSTEMS u andv dynamics are linear and result in Lyapunov expo-

Badii et al. [16] consider the effect of filtering on the NM€NtS—he=InA andh,=In\; ™. Though they dynamics are
dimension measured from a time series generated by a dfXpanding, we know fron21) that{v,,} is bounded and thus
namical system and show how to compute, for an ideal |0W_h§a dynamics of thg f||tereq system co'nfm(f;s itself to the cha-
pass or high-pass filter, the amount by which filtering in__otlc_saddle, Whlc_h is _repellmg in the direction and attract-
creases the dimension of the attractor reconstructed from tHBd in all other directions.
time series. More recentli0,17 there has been interest as 10 @pply the dimension formulél?7) from Sec. Il we
well in the effect of acausal filters. In this section we presenflust also determine the entropy of the filtered dynamics.
an acausal filter for which we can show that the “attractor” W€ show now thati is the same as for the unfiltered dy-
reconstructed from the filtered signal is actually a chaotid?@mics; that is,H is equal to the sum of the positive
saddle for an associated dynamical system. We then apphy@punov exponents of the unfiltered system. The filtered
the formula from the preceding section to compute the diSystém has an additional positive Lyapunov exponent

mension increase due to filtering. hazln)\gl, but since thev dynamics(23) are linear with
Consider a time serigs,} and an associated filtered time expanding eigenvaluk, *, trajectories are repelled from a
series neighborhood of the chaotic saddle with exponential decay

time r=1/h,; thush,—1/7=0 and thev dynamics have no
net effect on the entropy of the system.

We thus make the following conclusions about the dimen-
sion increase due to the filt¢t8). BecauseH is unchanged
where 0<\,,\.<1. In general this filter is acausal; how- by the filter, the effects of the additional Lyapunov expo-
ever, if A ;=0 then we have a discrete version of the causalpents —h, and h, on the dimension formulal?7) can be

o] 0

zn=xn+k2l )\'éxn_k+k21 )\';xn+k, (18
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TABLE I. Dimension increasal. as a function of the causal TABLE Il. Dimension increasel, as a function of the acausal
Lyapunov exponenh,. . Lyapunov exponent, .
he de h da
he=hi}1 0 ha=h{" 0
5§ & h
(=) () — (+) __a
hi;1=hc=maxy’,0) he ) ha=<hy, 1 hC)
h.—6 &
h|(7)>hc>5 1- ;(7) —F
! 1+1 and thus
he _ .
he<o - H—(h{"+---+h{)+h) & he
| +1 d.=1+ ) e =1- -
hita hiia hiia
(29

treated separately. That is, we can write the dimenBioof

the chaotic saddle reconstructed from the filtered time serie¥/€ Summarize these cases in Table I. _
as The dimension increasg, due toh, is much simpler to

i =h{D+...3h(D i
D=d+d,+d,, (24) d_escrlb_e becaudé=hi"’+ .- +h{"’ and the portion of the
dimension formulg17) due to the unstable Lyapunov expo-
. - _ + -
whered is the dimension of the unfiltered attractdg,is the ~ NENts is just=U. If h,= hi” then it (T;‘S no effect on the
increase in the right side @¢17) due to—h., andd, is the ~ dimension formula and,=0. If h,<hy"’ then
increase due th, .

To describe the dimension increaggdue to—h,, let | h{"'+- .- +h{” +hasH<h{"+. .. +h{”; +hy+h{"
be defined as if12) and lets=H— (h{ )+ - .. +h{7)); then (30
0=<6=<h{7) and the portion of the dimension formuia7)

: and thus
for the unfiltered attractor due to the stable Lyapunov expo- . .
nents is g H—(h{"'+---+h{”;+hy)
S a~ + h(+)
I+ = (25) v
hia h(U+)_ha . h, a
If he=h{7), thenh, has no effect on the dimension formula oohy) T g

and d,=0. If h{(z}=h.=maxh{",8), then h, simply re- ) ) _ _
places hl(l)l in the dimension formula and thus Agaln,_wg summarize t.he cases in a tablable .II). Th|s.
d.=sh.—s/hC) I h()=h.=§ (this case is em if r(—?sult is illustrated in Flg. 2, which shpws the information
5°>h(,))° thenHl ! =9 Pty dimensionD as a function oh,, assuming thah, and the
bea system generating the dynamics are held fixed.
h{+...+h{Z)+he=H<h{+...+h{Z)+h.+h{").
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It does not matter whethen, is greater or smaller than
h(Z); either way(26) boundsH between the sum of the
magnitudes of thé smallest stable Lyapunov exponents of
the filtered system and the sum of the 1 smallest of these
magnitudes(Similar considerations apply to the cases dis-
cussed below.Thus

_H—(h(l’)+--~+h|(i)1+hc) S ences.
a IR I
_6+h§’)—hc 5 P
= hf_) _h|(;?|_ 1+d+dC
=1—h°—_,5—i,. (27 e
R
Finally, if h,<4, then o B,
U

hi7+---+h{7'+h=<H<h{"+...+h{"+h.+h{;}
(28 FIG. 2. D versush,.
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