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This paper is concerned with the study of one-body dissipation effects in idealized models resembling a
nucleus. In particular, we study the quantum mechanics of a free particle that collides elastically with the
slowly moving walls of a Bunimovich stadium billiard. Our results are twofold. First, we develop a method to
solve in a simple way the quantum mechanical evolution of planar billiards with moving walls. The formalism
is based on thecaling methodE. Vergini and M. Saraceno, Phys. Rev5g 2204(1995] which enables the
resolution of the problem in terms of quantities defined over the boundary of the billiard. The second result is
related to the quantum aspects of dissipation in systems with complex spectra. We conclude that in a slowly
varying evolution the energy is transferred from the boundary to the particle through Landau-Zener transitions.
[S1063-651%96)11211-3

PACS numbd(s): 05.30—d, 05.45+b

INTRODUCTION individual nucleons via transitions at avoided level crossings
near the Fermi surface. These excitations produce the damp-
The way in which energy is transferred from the time-ing of collective motion describing deformation of the
dependent mean field to the individual nucleons is an imporaucleus. In an adiabatic evolution of the collective coordi-
tant ingredient, for instance, in fission procesg&sand in  nates, the nucleus changes its shape relatively slowly, while
large amplitude collective motion at low energies. Becausghe nucleonic levels move up and down in energy. Small
of the Pauli principle it is expected that one body effects, i.e.deformations in the nuclear shape occasionally cause two
loss of energy due to collision of independent individualnucleonic levels to almost cross each other and experience an
nucleons with the mean field, should dominate the dissipaavoided crossing. During the whole process many avoided
tion mechanism. crossings occur with more or less random transitions be-
Several descriptions of these processes involving differeniveen nearest neighbors, in such a way that the system may
approximations are available in the literaty®-6]. These end up in an arbitrary energy state. Within this picture one
theories are perturbative in character and linear in the colleazan imagine a stochastic dynamics in which by simply re-
tive motion. Therefore they are not suited to address the&ersing the temporal evolution one does not recover the ini-
issues related to nonlinear dynamics and the onset of chaogal state. Therefore, the internal degrees of freedom are ex-
On the other hand, the integrable or chaotic nature of theited and the motion of the collective coordinates is thus
motion is of crucial importance to the dissipation mechanisnmdamped.
[7], i.e., the transition from order to chaos provides the pos- More recently Wilkinson, making good use of the prop-
sibility for a variety of nuclear responséfom elastic to  erties of complex spectra, introduced a statistical treatment
elastoplastic to dissipatiye Therefore, detailed studies of of dissipation in finite-sized quantum systems in terms of LZ
simplified models resembling a nucleus may be of interest.transitions in the context of random matrix thedry2].
Planar billiards are perhaps the best systems to model thdowever, a LZ mechanism as the generator of dissipation in
processes described above on, in which the nucleus can Bgstems with complex spectra, has recently been seriously
imagined as a time-dependent container filled with a gas ofjuestioned13]. In their works Bulgac and collaborators sug-
noninteracting point particle§3,8]. Billiard systems have gest that the diffusive process in energy is dominated by
been thoroughly studied in the context of classical and quanmemory effects and that the picture for dissipation through
tum chaog9]. In particular, it has been shown that the quan-LZ transitions is likely to be incorrectsee Sec. Ill for a
tum spectra of generic planar billiards have G@#aussian detailed analysis of these argument®bviously the best
orthogonal ensemblecharacteristics that are observed in theway to elucidate this question is to solve the quantum me-
excited spectra of nucl¢iLQ]. chanical evolution of a generic system, though this is diffi-
In a seminal paper, Hill and Wheelgt1] suggested the cult even for planar billiards with moving walls.
Landau-ZenerLZ) transitions as a mechanism for nuclear The goal of the present article is to present a formulation
dissipation. The mechanism is based on the excitation of th solve the quantum mechanical evolution of planar billiards
with moving boundaries. Using this formulation we study the
time evolution of a specific billiard, the Bunimovich stadium

;Electronic address: majo@df.uba.ar with externally driven walls. We restrict the analysis to
Unite de recherche des Universitee Paris X| et Paris VI asso- slowly varying (adiabati¢ evolutions[14]. The notion of
ciéee au CNRS. slow motion will be quantified in Sec. IV. Our aim is to
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understand whether a LZ mechanism generates the damping To each function,(r,t) we associate the scaling func-
of the slow degree of freedom in a system with complextion ¢ ,(a,r,t)= ¢ ,(ar,t). This family of functions depend-
spectra. ing on the scaling parameter verifies the Helmholtz equa-
The paper outline is as follows. In Sec. | we introduce ation with wave numberak, and satisfies the Dirichlet
one-dimensional formulation in order to solve the quantumcondition over the scaled boundary. Moreover, we require
evolution of planar billiards with moving walls. Section Il is that the mass of the particle in the scaled systems changes as
devoted to the numerical results obtained for the Bunimovichx?m in such a way thatw,, is independent otv. The last
stadium billiard with GOE spectrum characteristics. Usingstatement implies that the time evolution is the sameafbr
these results, we evaluate relevant properties for the dissip@ie scaled systems.
tion process. In Sec. lll we discuss in detail whether a LZ Our approach to solve the Schiinger equation is to ex-
transition mechanism describes the dissipation of the slowand the wave function in terms of the adiabatic basis rep-
degree of freedom or equivalently the diffusion of the fastresented by the scaling functions. After replacing the expan-
ones. Section IV is devoted to final remarks and conclusionssion in Eq. (1.1) we obtain
Before proceeding we want to stress that planar billiards
systems externally driven can also be used to model other - o,
p)r/oblems often en)éountered, for example, in mesoscopic sys—zy a, ()P, (D, (a1, t)=~ EV a,(OP,(1) —=(a.r.b).
tems, atomic clusters, and of course deformable cayitigs (1.3
Therefore, the results presented in this work could also con-
tribute to domains other than nuclear physics. Differentiating this equation with respect toresults in

I. THE METHOD > éy(t)Pv(t)%(a,r,t)

In a recent work Vergini and Saraceno developed a
method to calculate directlgll eigenvalues and eigenfunc- F
tions in a narrow energy range of quite general time inde- = —E a,(HP,(t) “(a,r,t). (1.4
pendent 2-d billiards, by solving a generalized eigenvalue v dJadt
problem in terms of quantities defined over the boundary.

The method is based on the use of scaling that enables us idie remainder of the calculus consists on commuting the
write the boundary norm explicitly as a function of the en-order of the partial derivation on the right-hand sides) of
ergy[1]. The aim of this section is to extend the method of(1.4), multiply the equation by¢, /da(a,r,t) and special-
scaling to solve the Schadinger equation for 2 d billiards  ize the resulting equation in=1. Finally we integrate over
with time-dependent boundary conditions. the boundary of the billiard(t). After this straightforward

Let C(t) be a closed curve defining at tintea two-  calculation, the final equation reads,
dimensional domainD(t). We restrict ourselves to star

shaped domains, this means tha&r-n>0 VreC(t);n is S a Pt 3g b, 94, dl
the outgoing normal t@(t). Consider a particle of mass > v e da da Iy
inside the billiard, then the Schiinger equation reads,
o P t)§ %i(&m)ﬂ (1.5
ALy (1.1) — & OO R e it a1
at 2mt '

whered| is the length element on the boundary. For the sake
¥ satisfies the time-dependent boundary conditionof simplicity we have omitted the argument€ 1r,t) in the
¥ (£,t)=0 where is a point onC(t), and we consider func- last equation. Irf1] it was proved that the integral on the
tions normalized to one on the domain. A standard procedurkeft-hand side(lhs) of the last equation verifies a quasior-
is to expand the solution in terms of the adiabatic basis, thogonality relation, this means

~ 1 I, I, dl (k,—k,)
\Ir(r,t)_% a,(DP (1) B,(r,0). (1.2 2 fﬁcm&—a — E_5W+(kMTkV)0(1). (1.6

P (t)=exp(=iftw,dt') is the contribution of the dynamical Employing this important relation 1.5, we derive the
phase Withw’u:ﬁki(t)/zm_ The adiabatic basis$,} con- standard system of differential equations in the adiabatic ba-
stitutes a complete set of real eigenfunctions of the billiard a!S
each time; that is,¢, satisfies the Helmholtz equation
A.qsﬂ(r,t):—ki(t) ‘f’u.(rzt) with Dirichlet bou_ndary Qondi— éu(t): - a,(D[P,()/P,L()]C,(1) (1.7
tion ¢,(£,t)=0, and it is a continuous function of time. v

We generate from the original domain defineddy) a . o . .
family of systems that depends on a parameterThese with the_qoeﬁlugntsﬁw computed approximately in terms
systems evolve with the curves(t) that are obtained from ©f quantities defined over the boundary,
C(t) through a scaling transformation on the plarear [if

£ is a point onC(t), then{/« is the corresponding point on C (t):iz é % i(‘w”)ﬂ_ (1.9
C.(D)]. mr 2k,u o da dt\ da |ry




4814 M. J. S;ANCHEZ, E. VERGINI, AND D. A. WISNIACKI 54

i a
40 O boundary |

e domain

20 —

& FIG. 2. Desymmetrized Bunimovich stadium billiard. The area
of the billiard is fixed to the value t 7/4. Then the boundary only
10 | depends on one parametefsa/r).

II. NUMERICAL RESULTS

% . . .
o ° b .t W . Using the method presented in Sec. |, we will analyze the
0 @ ol EEEEEEEES BT RS dynamics of a particle of mass inside a Bunimovich sta-

‘ ‘ . ! dium billiard with moving boundaries. A point particle inside
485 490 495 50.0 50.5 the static stadium billiard is a very well known example of a
fully classical chaotic systefii6]. The particle moves freely
on the two-dimensional domain and is perfectly reflected

FIG. 1. Coefficient<,,, (with k,=49.456 279) as a function of from its boundary. The boundary is formed by two semi-
k, computed exactlyEq. (4)] and employing the boundary defini- circles of radius connected by two straight lines of length
tion [Eg. (8)]. The system used is introduced in Sec. Il and thepg. Figure 2 shows a desymmetrized version of the system
calculation corresponds te=0. with area & /4.

To study the dynamics, the parametéesa/r is changed

The exact expression for the coefficients follows fréh®),  with a finite velocity/ in such a way that the total area of
the billiard remains unchanged. We have fixed the area to
avoid a drift in the energy spectrum; this situation is charac-

ad, teristic of nuclear processes where the nucleonic density is

C(t)= fm)@L(r,t)W(r,t)do. (1.9 approximately constant. The drift term represents a revers-

ible change in the energy of the system and can be neglected
in the analysis of an irreversible dissipation procgsg|.

Therefore, the dynamics of the boundary is introduced

through the function/(t).

Figure 3 shows the spectrumlof 2mE/# as a function

In the last equation eadd,,,(t) involves an integration on
the domainD(t). It is also very easy to prove that they are
antisymmetric.

To compute eaclC,,, via Eq. (1.9 the domain of inte-
gration has to be partitioned at leastNi=k? cells, with k 50.0 7
equal to the maximum among the wave numbers of the func-
tions ¢ in the region of integrationk=maxk, k,}. If n is
the dimension of the adiabatic basis restricted to the energy
region where the evolution will take place, one needs to
know n? coefficients. As a consequence, the dimension of 206
the problem of finding the coefficients,,, from Eq. (1.9
turns to be of the order ai>xN at each time.

As a way to check the goodness of the present formula- k
tion we have computed for the specific billiard studied in
Sec. ll, the coefficientsC,,,(t=0) for a fixed u, with

.
v=u+j (j=0,£1,%2,...) calculated exactlyEqg. (1.9)] 492 7 SW

and using Eq(1.8) (see Fig. 1 The correspondance is ex-
tremely good over a great number of levels. The departure
between the two plots begins fpjf{~10, but in this region
the values of the coefficients are very small.

With the present formulation the CPU time necessary to 188 . . - . .
compute the coefficients is considerably reduced in compatri- 099 102 105 108 141 114
son with the time needed in the standard approfet).
(1.9)]. From the preceding remarks, and in order to study the
interaction between neighboring levels in the spectrum, we FIG. 3. Spectrum of the Bunimovich stadium billiard as a func-
will calculate the coefficient<C,, employing the relation tion of /, 1</<1.14. The wave numberk,(/) run between
(1.9. 48.8 and 50. See text for more details.
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of /, 1=/<1.14. We have selected the wave numbers g0

k,(/) between 48.8 and 50 because in this region a large 1€y, i S L= N il
number of energy levels exists in a narrow portion of the 40 B .
spectrum. Although the properties that we are going to A k f Aoj\
evaluate are characteristic of this region of the spectrum o . S /\ = mg P
(k~50), as we will show below, a proper scaling can be 1Cas! 1Co10!
done in order to evaluate them in other energy regions. The 400/ B ]
spectrum exhibits the typical behavior of avoided levels A Jk Lo
crossings that characterizes the energy levels as a function of o VRO T v
a parameter for general systems without constants of motion 34 1Ciom!
[18]. Also, we recognize that some avoided crossings are 4o .
situated on two parallel lines labelé® andL4 (see Fig. 3. A A J D
These lines are associated to bouncing ball states with three op——————rl— : - T
and four low excitations, respectively. These states are 1Cys! Cun!
highly localized in the momenta spaf&9], therefore their 400
interaction with neighboring states is smaller than the inter- . b 0
action between delocalized generic states. o=

Let us analyze the coefficien®,, which determine the 1Cs! Ci213!
guantum mechanical evolution of the systésee Sec.)l 4001
They may be expressed in terms of the deformation param- <y { JL M\
eter/, as they satisfyC,,(t)=/C (/). T S

Figure 4 shows the functionkC,, (/)| for several or! B
pairs of nearest neighboring levels. A well defined structure 4%
of peaks is observed. The peaks appear each time two neigh- L M j g Lom
boring energy levels experience an avoided cros$ings Ten . — .
very easy to follow in Fig 3 a pair of energy levels as a 78 1415
function of the parameter” in order to confirm this asser- 400 J\ﬂ ka&
tion). The height of the peaks diminishes when the ener
gap between Igevels at theﬁ)avoided crossing increases. For??w/is 0 J\ J\ k

. . . . . 1,00 1,12 1,00
reason the peaks corresponding to interaction with bouncing

ball states are one order of magnitude greater than the ge-
neric ones. We label witla, b, andc ... small peaks that FIG. 4. |C,,+1| as a function of/ for several energy first
correspond to not well defined av0|ded crossings or to situneighboring levels. The labels, b, andc ... show small peaks
ations where it is still difficult to decide whether an avoidedthat correspond to avoided crossings whose parameters cannot be
crossing exists by simple inspection of the spect(see also  obtained directly from the spectrum. The peaks that correspond to
Fig. 3. the interaction with bouncing ball states are out of scale and their
For second neighboring levels, we also find some wellmaximum values are shown. The lab&lsB, C, andD show well
defined peaks; they appear essentially when three leveliefined peaks that in the spectrum appears as three levels avoided
come close to each othéhis situation is discussed in Sec. crossing. The labeD shows few cases where there is some overlap
lIl). The heights of theC,, ,(/) peaks are one order of between consecutive avoided crossings.
magnitude smaller than those of the, ,, 1(~). For coeffi-
cients with| . — »|>2, we do not observe any simple struc- Fig. 5 shows the function€,3:5-;()| (j=2,3,4) as a func-
ture; however, the amplitude of these coefficients is indeedion of /. The figure reveals the Lorentzian behavior of the
very small, lower than five in the scale of Fig. 1, in compari-first neighboring levels coefficients, and the lack of a defined
son with the amplitude observed for nearest neighboring costructure in the coefficients (/) for lu—v|>2.
efficients. From the present analysis it is clear that the infor- The previous numerical study would be still more appeal-
mation contained in the coefficients enables a completing if we knew how the spectrum scales to other energy
definition of the avoided crossings and that this informationregions. Weyl's law[20] tells us that the density of states
is not always available in the spectrum. associated to the vertical axis in Fig. 3, scaleskaghe
The peaks between first neighboring levels are very welproblem appears with the horizontal axis because the scaling
fitted by Lorentzian functions, as is expected for a LZ tran-of the density of consecutive avoided crossipgs is un-
sition (the first part of Sec. Ill is devoted to an explanation of known. Working in different energy regions and after an
the expected Lorentzian behavior of the coeffigiefdr al-  exhaustive numerical analysis, we have obtained that
most all peaks with the exception of some small ones. Figurscales ak® with d=1.92+0.1. Figure 6 showg, . as a
5 summarizes the preceding remarks. It shows on the top tHenction ofk for gap sizes less than one quarter of the mean
function |Cy5142)|—Lz(¢), where Lz(/) is a sum of level spacing. In this calculation we have not considered
Lorentzian functions centered on the well defined peaks o&voided crossings with bouncing ball states because their
the coefficientC3;4 /). Each Lorentzian function is defined relative contribution to the density of states decreases as
in Sec. Il by Eq.(3.1). The widths and the position of the k~Y?[21].
centers are’;,; and /,, respectively. The remainder of the  Another important fact to stress is that each peak is very
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T T T T T T Ill. LANDAU-ZENER BEHAVIOR

IC Ol -Lz(¢ . . . L.
so{ 'C1s1{ON-LE) As we mentioned in the Introduction, our aim is to under-

stand whether LZ transitions govern the mechanism of one

30- body dissipation in systems with complex spectra. In the
Am preceding section we have analyzed the coeffici€ntsthat

0 T Y /_\-’\/\-/’.\\ T describe the quantum evolution of a particular system with

604 Cizn(Ol complex spectrum. The analysis revealed that the coeffi-

cients have a simple structure of well defined Lorentzian

30 peaks as the dominant contribution, plus a very small com-

ponent without any defined structufeee Fig. 5 These

0 peaks are concentrated in the first neighboring levels coeffi-
k) 1 1 LI L 1 . . . . . .

IC,5 10(O) cients, which, as we will show below, is a characteristic of

604 LZ transitions. In a few cases well defined peaks appear in
coefficients between second neighboring levels, but these
807 peaks are one order of magnitude smaller than the previous
. : . : ) ) ones. We will discuss this situation below using an idealized
L T three level system.
60 C130 (D We begin this section with a brief review on the theory of
LZ transitions. Consider a two level system that depends on
30 a parameter/, in such a way that for'=/ the energy
levels experience an avoided crossing. ldet(/) be the
e e adiabatic eigenstates afit, — E_ = \y*(/—/)°+4¢€® the
1,00 1,02 1,04 106 108 1,10 1,12 114 energy gap between the associated eigenvalues, yihd
14 € constants. The adiabatic theord@®] tells us that if the

system is initially in the stateb_ and /" changes infinitely

FIG. 5. The top showsCi34{/)[-Lz(/) as a function”.  slowly from /'</, to /=/, the system will remain in the

Lz(/) is a sum of Lorentzian functions centered on the peaks of th%tategb_ . However, if/ changes with a finite velocity the
coefficient|C131()|. Their widths and the position of the centers fina| state will be a linear combination of the basis states.
are /in; and /o, respectively. The remaining part of the figure 7oner derived the probability of an adiabatic transition em-

shows the coefficientiCys15-(/)| for j=2,3,4 as a function of  5ving the diabatic basig23] for a constant velocity of the

4 parameter”. If at time t=—o the system were in the state
¢_ the transition probability at timé=«~ would be P,

well defined; its width(given by /i) is much smaller than  — exp(—2me2/y/%) [24]. Using the adiabatic basis aH9)

the mean distance between consecutive pggks . Only s straightforward to derive

in a few cases a small overlap between consecutive avoided

crossings is observeadee, for example, the peaks labeled by ) Lint

O in Fig. 4). For generic avoided crossings we have obtained Ci- ()= 2[/i2m+(/_/0)2] '

that /;,pa c~0.2; for avoided crossings with bouncing ball

states this product is even smaller as expected. where /;,.=2€/y is the width of the Lorentzian function;

that is, the characteristic time for a LZ process.

It has been suggested in recent literature that it is very
difficult to characterize the interaction between neighboring
levels in spectra like the present one in terms of LZ transi-

T T — tions[13]. The arguments could be summarized as follows:
(i) It is not always possible from the spectrum to localize the
position of the avoided crossings and to determine the pa-
rameters that define the LZ transitions. This assertion is par-
tially true; it is not in the spectrum where all the information
is contained. We have solved this problem employing the
adiabatic basis, in which the position of the avoided crossing
and the interaction lengtH;,, are well defined in terms of
the coefficientsC,,, . (i) The LZ transition probability is
exponentially small when the length of the transition process
— T ———— goes to infinity, but it could be strongly affected for lengths
100 900 of the order of/;,; [25]. This problem could emerge if the
k mean distance between avoided crossingsis of the order
or less than/,; . In the preceding section we have obtained
FIG. 6. Log-log plot of density of avoided crossings. as a 7 intPa.c~0.2 for generic avoided crossingbetween delo-
function of k for gap sizes less than one-quarter of the mean levefalized eigenfunctionsand this value is highly reduced for
spacing.p, . scales a&® with d=1.92+0.1. localized eigenfunctions. In a physical system the eigenfunc-
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have computed numerically the dynamical evolution of this
model obtaining the following result for the transition prob-
ability betweenE, andEg:

Pe, g, ~ 2&XH — TA(/ine//1)0.96] (3.2

for Pe, g,=0.2. That is, although the parameters need to
be renormalized, the factor is very close to 1. As a conclu-

sion, this three levels system may be thought as two inde-
pendent avoided crossings with LZ interactions.

IV. FINAL REMARKS

0 e, The results of this paper attempt to extend the present
understanding of one body dissipation processes. To analyze
the way in which energy is transferred from the time-

FIG. 7. Energy levelsE,, E_, and E, as a function of dependent mean field to the individual nucleons we have
/1/int for the three-levels Hamiltonian analyzed in Sec. Ill. The jodeled the mean field by a slowly time-dependent con-
dotted lines indicatg the asymptotesBEa andE, . The distance tainer. The same approach has been employed by many other
(E+ ~Eg)(0)=2e is also drawn. authors in related nuclear modé®8]. The container is rep-

i L resented by a planar billiard with externally driven moving
tions present some degree of localization because the assogjz 15 To solve the quantum mechanical evolution of these

ated classical phase space is not fully chaotic. Therefore, w; mplified systems, we have derived a one-dimensional for-

d? n(i)r: eane;:trrcT:]orrefl?rt]lons k:f?t\i/veen contshec:Jtlvte avor|de ulation. This approach gives us the possibility to study the
crossings. erms ot the coe Cerﬁs‘#fl’ € 1ast asser o\ olution of highly excited states and reduces the CPU time
tion means that each individual peak is very well defined. . )

involved in the calculations. We have devoted part of the

(i) One often encounters a situation where three levels o
come close to each other and by simple inspection one Ca@{ork to answer a fundamental question; whether a Landau-

think in a three level crossingsee, for example, pointa, ener excitation mechanism governs the irrevelrsible. trans-
B, C, andD in Fig. 3. In order to understand this process we POrt of energy from the driven wall to the particles in an
will analyze a three level system which mimics such a cir-adiabatic evolution. We have analyzed a parameter depen-
cumstance. Consider a one parameter dependent Hamiltonid§nt billiard system with GOE character spectrum, conclud-

defined in the diabatic basis by the following matrix: ing that in an adiabatic evolution of the external parameter,
the dissipation is dominated by LZ transitions at the avoided
/1 1 0 crossings. Thediabatic limitis attained in the limit of an
1 in

infinitely slow evolution. On the other hand, adiabatic evo-
€ 1 0 1 lution refers to slowly varying evolutiorid4]. Of course, the
0 1 /1 notion of slow motion needs to be clarified. For example, we
have excluded in our analysis the structure shown by the
with e the perturbation and'’j,,; the characteristic transition functionC3;,,(/") in Fig. 5 because its height is very small;
length. This Hamiltonian can be diagonalized analytically foralthough the area under it is comparable to the area under
each time. The upper and lower eigenenergies are repr@ny peak observed in Fig. 4. However, becaGsg (/) is
sented by hyperbola&. = +e\(///;,)%+2, as in the LZ multiplied in the differential equatiofl.7) by an oscillatory
process, and the middle energyEg=0 for all times(see function with periodT~%pg (pg is the density of energy
Fig. 7). Obviously, for a diabatic evolution, if the system levels, its effective contribution is canceled if the time re-
were in the upper state at///;,>1, there is a high prob- quired by the collective motion to sweep the structure
ability ~1 that the system decays to the stite at ///; teou~pal/ is larger tharf.

>1. In other words, the presence Bt affects enormously  '1pe apove adiabaticity condition is satisfied by systems
the t_ra}:nsnm;n dp,mbab"'éY lé))ettyve£+l e;.nd thHowtivetr, We,t_ where quantum effects are very important, such as nuclei.
are Interested In an adiabatic evolution where the transi IorI‘-Iowever, as the wave number increases, the collective ve-

probab|||3/ to E‘. turnf] toh be Emal_"z' In such a S|tuat|ondwe locity needs to be reduced drastically. Taking the semiclas-
want to determine whether the LZ parameters Br and  gje) jimit 40, k— s, with (k#)2/2m=E = const, it results

Ey, that is €. —Ey)/2 at/=0 (we denote itA) and/j,,, P B 4 i
adequately describe the transition probability between thestl!.;?""t-r_o(k ) andtcou—(.)(k. 17). Th.erefo.ret, for any f"
two states. This point is not obvious at all. For example, thehite value of/, the evolution is alwaysliabaticin the semi-
distance E. —E,) is largely affected by the presence of classical limit. In other terms, a semiclassical theory of dis-

E_ andA # ¢, contrary to the case of a two level system. Wesipation requires a scaling of. To our knowledge, this
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