
Comparison of methods for the calculation of superparamagnetic relaxation times

W. T. Coffey1,* and D. S. F. Crothers2
1Department of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland

2Department of Applied Mathematics and Theoretical Physics, The Queen’s University of Belfast,
Belfast BT7 1NN, Northern Ireland, United Kingdom

~Received 21 June 1996!

A general expression for the correlation time of the decay of the magnetization of an assembly of single-
domain noninteracting ferromagnetic particles is given in terms of the inverse of the Fokker-Planck operator.
The results of Moro and Nordio@G. Moro and P. L. Nordio, Mol. Phys.56, 255 ~1985!#, given in the context
of dielectric relaxation, are recovered when the Fokker-Planck operator is axially symmetric. Their result is a
particular example of Szabo’s calculation of the correlation times of the autocorrelation functions of the
Legendre polynomials by means of a generalization of the theory of first-passage times@A. Szabo, J. Chem.
Phys.72, 4620~1980!#. Likewise, the results of Garanin, Ischenko, and Panina„D. A. Garanin, V. V. Ischenko,
and L. V. Panina, Teor. Mat. Fiz.82, 242 ~1990! @Theor. Math. Phys.82, 169 ~1990!#… for the integral
relaxation time, i.e., the area under the curve of the normalized decay of the magnetization, are regained in the
axially symmetric case where it is possible to integrate the Fokker-Planck equation directly. It is shown by
manipulation of Kummer’s functions that the exact integral expression for the correlation time for simple
uniaxial anisotropy derived by Coffeyet al. @W. T. Coffey, D. S. F. Crothers, Yu. P. Kalmykov, E. S.
Massawe, and J. T. Waldron. Phys. Rev. E49, 1869~1994!# by representing the Fokker-Planck equation as a
differential-recurrence relation is identical to the integral relaxation time originally derived by Garaninet al.by
direct integration of the Fokker-Planck equation.@S1063-651X~96!08811-3#

PACS number~s!: 05.40.1j, 76.20.1q

I. INTRODUCTION

A single-domain ferromagnetic particle with uniaxial an-
isotropy is characterized by an internal magnetic potential
that has two stable stationary points with a potential barrier
between them. If the particle is sufficiently fine, the direction
of the magnetization may undergo a rotation due to thermal
agitation, surmounting the barrier, as first described by Ne´el
@1#.

The calculation of the relaxation behavior of an assembly
of such particles is usually accomplished@1–3# by assuming
that the relaxation of the magnetization is dominated
by a single relaxation mode, namely, that associated with
the time of reversal of the magnetization over the energy
barrier between two stable orientational states. This means
that in the set of eigenvalues$lk% and corresponding ampli-
tudes $Ak% of the Sturm-Liouville equation~to which
the Fokker-Planck equation underlying the process may be
converted!, l1!lk , k>2, andA1@Ak since then the decay
functions Ak exp~2lt/tN!, k>2, are small compared to
A1 exp~2l1t/tN!, except in the very early stages of an ap-
proach to equilibrium. The diffusional relaxation timetN is
defined as@2#,

tN5
v

2hkT F 1g2 1h2Ms
2G , ~1!

whereg is the gyromagnetic ratio,Ms is the saturation mag-
netization,k is the Bolzmann constant,T is the absolute

temperature,v is the volume of the particle, andh is the
phenomenological damping constant from Gilbert’s equa-
tion, namely@2#,

Ṁ5gMx@Htot2hṀ #. ~2!

In Eq. ~2! M denotes the magnetization and

Htot5hr2]V/]M , ~3!

wherehr is the random white-noise field arising from ther-
mal agitation andV is the barrier potential including that of
the internal crystalline anisotropy and the applied external
field H.

In view of the above considerations the early studies
@2–4# of the relaxation process were confined to the calcula-
tion of the smallest nonvanishing eigenvalue of the Sturm-
Liouville equation making the assumption that the process is
dominated by a single relaxation mode with the time con-
stant

t.
tN
l1

. ~4!

Recently, Garanin, Ischenko, and Panina@5# and earlier
Moro and Nordio@6# ~in the context of the analogous prob-
lem in chemical physics! have introduced the concept of the
‘‘integral relaxation time,’’ which in the present context is
proportional to the area under the curve that describes the
relaxation of the magnetization after an abrupt change of a
magnetic field that had been applied along the anisotropy
axis. Furthermore, in linear response~that is, for an infini-
tesimal change in the magnetic field! they were able@5# to
obtain a general expression for the integral relaxation time of
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a single-domain ferromagnetic particle for all values of the
barrier height parameter. Here the integral relaxation time is
identical to the correlation time of linear-response theory
since the decay of the magnetization is now proportional to
the magnetization autocorrelation function@7#. This formu-
lation has been used extensively by Coffeyet al. @7#. Ac-
cording to Garanin, Ischenko, and Panina@5# and Coffey
et al. @7,8#, the integral relaxation time presents a more ac-
curate picture of the relaxation process rather than the ap-
proximation @2# of a ‘‘long-lived’’ @5# exponential decay
mode that underlies Eq.~4! as the contribution of all the
decay modes are included in the integral relaxation time.
This is of particular importance in the problem of the re-
sponse following an infinitesimal change in a strong bias
field applied along the anisotropy axis where, as discovered
in Ref. @8# at a value of the bias field far less than the critical
value required to maintain the two-well structure of the po-
tential, there is an abrupt departure of the decay time of the
longest-lived~Néel! mode from the correlation time. Another
advantage of the integral relaxation time is that it is possible
to obtain exact analytic solutions for it in a number of prob-
lems @7,9,10#. Indeed, this property has very recently al-
lowed Garanin@11# to give a physical explanation of the
constant magnetic-field effect described in Ref.@8#.

The analysis given by Garanin, Ischenko, and Panina@5#
and Moro and Nordio@6# was carried out by converting the
Fokker-Planck equation underlying the problem to a Sturm-
Liouville equation by using in the case of Ref.@6# the
Laplace transform and linear-response theory and in Ref.@5#
assuming a solution where the time variation of the bias field
is expivt and confirming the response to small impressed
fields. The solution of the resulting Sturm-Liouville equation
in the zero-frequency limit then yields the integral relaxation
time. In the special case of an applied field parallel to the
anisotropy axis so that the problem is axially symmetric, a
first integral of the Sturm-Liouville equation may be imme-
diately written down so that the complete solution is easily
given by quadratures@12#, so yielding anexactexpression
~in integral form! for the correlation time.

A different approach to the problem has been made in the
series of papers by Coffey and co-workers@7–10#. Instead of
representing the solution~of the Fokker-Planck equation! as
a Sturm-Liouville problem, they have used a Floquet ap-
proach@12,13# whereby the solution is expanded in a Fourier
series, in the manner often used for the solution of Hill’s
equation@12–14#. Thus the calculation of the decay of the
magnetization invariably reduces to the solution of a set of
differential-recurrence relations. On taking the Laplace trans-
form this set may be solved numerically using the standard
methods of linear algebra. In a few special cases@7,9,10# we
cite in particular@7# the simple uniaxial potential of the crys-
talline anisotropy~after a weak collinear dc field has been
removed!:

vV~q!5Kv~12z2!5Kv sin2q, ~5!

whereK is the anisotropy constant andq is the polar angle
specifying the direction of the magnetization; the set of al-
gebraic recurrence relations~which now reduce to a three-
term one! may be solved analytically in the zero-frequency
limit so that the correlation time may be calculated. In par-

ticular for the potential of Eq.~5!, the correlation time may
@7# be expressed as a sum of the products of Kummer func-
tions @15#, which in turn may be expressed in integral form
@Eqs.~40! and ~54! of Ref. @7##.

It is not immediately obvious that the Sturm-Liouville ap-
proach of Garanin, Ischenko, and Panina@5# and Moro and
Nordio @6# will yield the same results as the Floquet ap-
proach favored by Coffey and co-workers@7–10#. It is the
purpose of this paper to show that the results of both ap-
proaches are identical, taking as an example the simple po-
tential of Eq.~5! for which exact results from both methods
of attack on the problem are available. In addition, we shall
highlight the advantages and drawbacks associated with both
methods of solution. It is first necessary to summarize the
general calculation of the integral relaxation time.

II. CALCULATION OF THE INTEGRAL
RELAXATION TIME

In general, the Fokker-Planck equation for the probability
densityW(q,w,t) of orientations of the magnetization vec-
tor M on the unit sphere is@2# ~w is the azimuthal angle!

2tN
]W

]t
5L2W1

b

sinq

]

]q S sinq ]V

]q
W2

1

a

]V

]f
WD

1
b

sinq

]

]f S 1

sinq

]V

]f
W1

1

a

]V

]q
WD , ~6!

whereb5v/kT, a5hgMs is a dimensionless damping pa-
rameter,V~q,f! is the Gibbs free-energy density, andL2

denotes the angular part of the Laplacian

L25
1

sinq

]

]q S sinq ]

]q D1
1

sin2q

]2

]f2 .

Equation~6! has the generic form

]W

]t
5LW, ~7!

whereL denotes the Fokker-Planck operator in Eq.~6!. The
potential energyvV~q,w! arises from the crystalline anisot-
ropy potential and the action of an external uniform magnetic
field H characterized by the external field parameter

j5v
MsH

kT
. ~8!

If we now suppose thatj is decreased abruptly by a small
amountj1 such thatj1!1 so that the ensuing response is
linear in j1, the solution of Eq.~7! at any time after the
perturbation has been made will be of the form@16,17#

Wt5W~0!1W~1!1W~2!1•••, ~9!

whereW~0! is the new equilibrium distribution~attained after
the relaxation from the former equilibrium distributionW0,
which had prevailed up to the timet50 before the abrupt
change in the field!,W(1) is the portion of the response linear
in j1, W

~2! that quadratic inj1, and so on. Since

LW~0!50, ~10!
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we shall have

]W~1!

]t
5LW~1!. ~11!

The formal solution of Eq.~11! is

W~1!5~expLt !W0
~1!, ~12!

whereW0
~1! denotes the value ofW~1! at t50 that is beforej1

has been removed. Hence the time-dependent orientational
distribution function is, in linear response,

Wt5W~0!1~expLt !W0
~1! . ~13!

The ratio of potential energy to thermal energy is, for
uniaxial anisotropy,

vV
kT

52s~u•n!22j~u•h!, ~14!

where

s5
Kv
kT

~15!

is the barrier height parameter,u, h, andn are unit vectors in
the direction ofM , the field axisH, and the anisotropy axis
is denoted byn. If we alterj by the small amountj1 in order
to apply the perturbation we have

W0[W0~q,w,o!5
e2bV@11j1~u•h!#

*Ve
2bV@11j1~u•h!#dV

, ~16!

wheredV denotes the element of solid angle, i.e.,

dV5sinq dq df.

Thus, ignoring termsO~j1
2!, we have the linear approxima-

tion

W0[W~q,f,o!5W~0!~q,f!$11j1@~u•h!2^u•h&0#%,

~17!
where the symbol̂ &0 denotes the equilibrium ensemble av-
erage overW~0!. Thus Eq. ~13! becomes the zero on the
angular brackets indicating that the average is to be per-
formed in the absence of the perturbationj1,

Wt5W~0!~q,f!1j1~expLt !W
~0!~q,f!@~u•h!2^u•h&0#.

~18!
The mean change in the magnetic moment in the direction of
h following the perturbation is then

^Dm&j1~ t !5Ms@^u•h&2^u•h&0#j1

5j1MsE
V

~u•h2^u•h&0!e
LtW~0!

3~u•h2^u•h&0!dV

5j1MsŠ~u•h2^u•h&0!~0!~u•h2^u•h&0!~ t !‹0

5
H1

kT
^Dm~0!•Dm~ t !&0

5
H1

kT
@^m~0!•m~ t !&02^m&0

2#5
H1

kT
bm~ t !, ~19!

and we have noted that^m&05^m(0)&05^m(`)&0 . Thus the
time-dependent magnetic moment due to the small change in
the external field has been expressed in terms of theequilib-
rium correlation function bm(t). The integral relaxation time
T is @5# the area under the slope of the normalized decay
function so that

T5
*0

`^Dm&j1
~ t !dt

^Dm&j1
~0!

. ~20!

Equation~20! may be written in terms of the zero-frequency
limit of its Laplace transform as

T5 lim
s→0

H E
0

` ^Dm&j1
~ t !e2stdt

^Dm&j1
~0! J

5 lim
s→0

^Dm̃&j1
~s!

^Dm&j~0!
5

^Dm̃&j1
~0!

^Dm&j1
~0!

. ~21!

Equation~21! is a general expression and does not rely on
the assumption of linear responseper se. It may be related,
however, to the response in the presence of an alternating
field only when linearity of the response is assumed, in
which case Eq.~21! may be related to the magnetization
correlation functionbm(t) by means of Eq.~19! as follows.
We haveL denoting the Laplace transformation

T5 lim
s→0
LH ^m~0!•m~ t !&02^m&0

2

^m2&02^m&0
2 J 5

b̃m~0!

bm~0!
5 c̃m~0!,

~22!

or in view of Eq.~19!

T5 lim
s→0

H *V~u•h2^u•h&0!~s2L !21W~0!@u•h2^u•h&0#dV

*V@~u•h!2^u•h&0#
2dV J ~23!

5E
V

@~u•h!2^u•h&0#~2L !21W~0!@u•h2^u•h&0#
Š@u•h2^u•h&0#

2
‹0

dV . ~24!
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The formal solution forT, Eq. ~24!, although derived by
referring to the uniaxial potential of Eq.~14!, is a general
formula that appliesregardlessof the precise form of the
potentialyV~q,f! as long as the perturbationj1 is applied
parallel to the field axis. The task of calculating the integral
relaxation time from Eq.~24! always reduces to the determi-
nation of

~2L !21
e2bV

Z
@u•h2^u•h&0#, ~25!

where the partition function is

Z5E
21

11

e2bV~z!dz.

Analytic solutions of this problem may be determined in
only a few specialized cases, in particular those where a first
integral @5,6# may be determined when the problem is
couched in Sturm-Liouville form or when the zero-frequency
limit of the continued-fraction solution@4# in the Floquet
representation@7,9# may be recognized as a known function.

III. INTEGRABLE CASES OF EQ. „25…

Equation~25! and soT may be calculated exactly for the
case of axial symmetry. Here Eq.~6!, with z5cosq, be-
comes

2tN
]W

]t
~z,t !5

]

]z F ~12z2!S ]W~z,t !

]z
1bV8~z!W~z,t ! D G ,

~26!

and taking the Laplace transform

2tN@sW̃~z,s!2W~z,0!#

5
]

]z F ~12z2!S ]W̃~z,s!

]z
1bV8~z!W̃~z,s! D G

~27!

and in the limit s→0, using the final value theorem of
Laplace transformation,

2tN@W~z,`!2W~z,0!#

5
]

]z F ~12z2!S ]W̃~z,0!

]z
1bV8~z!W̃~z,0! D G .

~28!

The unknown functionsW on the left-hand side may now be
determined explicitly, allowing us to integrate Eq.~28!. We
have

2tN@W~z,`!2W~z,0!#

52tNFe2bV

Z
2
e2bV@11j1z#

Z@11j1^z&0#
G

522j1tN
e2bV

Z
@z2^z&0#1O~j1

2!; ~29!

thus Eq.~28! becomes in the linear approximation inj1 ~all
sub- and superscripts are dropped fromW as the meaning of
W is now obvious!

22tNj1
e2bV

Z
@z2^z&0#5

d

dz F ~12z2!S dW̃dz 1bV8~z!W̃D G
52tNLW̃~z,0!. ~30!

The particular integral of Eq.~30!, and so Eq.~25!, is best
calculated by introducing the variable

F~z!5ebV~z!W̃~z,0!, ~31!

so that Eq.~30! now becomes

22tNj1
e2bV

Z
@z2^z&0#5

d

dz F ~12z2!e2bV
dF~z!

dz G ,
~32!

which, mindful of the interval of the solution being@21,1#
becomes

~12z2!e2bV
dF~z!

dz
1c15

22tNj1
Z E

21

z

e2bV~z1!

3@z12^z1&0#dz1 ,

with, since the probability current must vanish on the bound-
aries,

c15~12z2!e2bV
dF~z!

dz U
z521

50.

Note that this condition also implies thatF8(z) is finite on
the boundaries, that is, at the poles of the sphere. Thus

dF~z!

dz
52

2tNj1
12z2

ebV~z!

Z E
21

z

e2bV~z1!@z12^z1&0#dz1 ,

~33!

and so integrating once more

F~z!522tNj1E
21

z dz2
~12z2

2!

ebV

Z E
21

z2
e2bV~z1!

3@z12^z1&0#dz11c2 , ~34!

where

c25F~z!uz521 . ~35!

Thus the formal expression~25! reduces in this instance to

ebV~z!

2tNj1
F~z!5 2e2bV~z!E

21

z dz2
~12z2

2!

ebV

Z E
21

z2
e2bV~z1!

3@z12^z1&0#dz11
c2
j1

e2bV~z! ~36!

and so the exact integral relaxation time~correlation time! is
from Eq. ~24!
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T

2tN
5

2*21
11dz e2bV~z!@z2^z&0#*21

z dz2
~12z2

2!

ebV

Z
*

21
z2 e2bV~z1!@z12^z1&0#dz1

Š@z2^z&0#
2
‹0

~37!

since the second term in Eq.~36! vanishes in the integral in
Eq. ~37!. We further note on integration by parts, that Eq.
~37! may be written as

T

2tN
5E

21

11

dz

12z2
ebV~z!

Z
$*21

z e2bV~z1!@z12^z1&0#dz1%
2

^z2&02^z&0
2 .

~38!

Equation~38! is the exact solution for the integral relaxation
time for the axially symmetric Fokker-Planck operator of Eq.
~26!. It was essentially derived in the chemical physics con-
text using a different formulation by Moro and Nordio@6#
and was later rederived in the context of magnetic relaxation
by Garanin, Ischenko, and Panina@5#, who approached the
problem by calculating the response due to a weak alternat-
ing field. We shall now evaluate Eq.~38! for the particular
case of a weak dc field reduced to zero at timet50 so that
@8#

bV~q!5s sin2q5s~12z2! ~39!

and we shall prove that the solution yielded by Eq.~38! is
identical in all respects to the integral form of the solution
found by summing the series of products of Kummer@15#
functions yielded by the continued-fraction solution in Cof-
fey et al. @7#.

IV. COMPARISON OF THE INTEGRAL RELAXATION
TIME AND KUMMER FUNCTION SOLUTIONS

In order to evaluateT using Eq.~38! for the potential of
Eq. ~39! and to show that it is identical to Eq.~55! of Coffey
et al. @7#, namely, @M (a,b,z) denotes Kummer’s function
@15#; the subscripti denotes the longitudinal correlation
time#,

Ti

tN
5M S 1, 52 ,s D2

3ess22

4M ~ 3
2 ,

5
2 ,s!

E
0

p/2

du
A11cosu

cosu

3F12 ~es cosu1e2s cosu!122
3

2 S es cosu2e2s cosu

s cosu D G .
~40!

We note that Eq.~38! reduces for the potential of Eq.~39! to

T

2tN
5E

21

11 dz

12z2
es~12z2!

Z

1

4s2

@12e2s~12z2!#2

^z2&0

5E
21

11 dz

12z2
e2s~12z2!

Z

1

4s2

@12es~12z2!#2

^z2&0
,

~41!

that is,

T

2tN
5

1

4s2

^~12z2!21@12es~12z2!#2&0
^z2&0

~42!

or

T

tN
5
3es

s2

*0
1 dz

12z2
$cosh@s~z221!#21%

M ~ 3
2 ,

5
2 ,s!

, ~43!

where we have noted that@15#

E
0

1

esz2dz5M ~ 1
2 ,

3
2 ;s!52Zes, ~44!

and since the partition functionZ5* 21
1 es(z221)dz,

dM~a,b,z!

dz
5
a

b
M ~a11,b11,z!. ~45!

We shall now demonstrate that Eqs.~40! and ~43! are iden-
tical. Our task is to prove that~taking a common denomina-
tor!

4s2M ~1, 5
2 ,s!M ~ 3

2 ,
5
2 ,s!23esE

0

p/2

du

3H A11cosu

cosu Fcosh~s cosu!

23
sinh~s cosu!

s cosu
12G J

512esE
0

1 dz

12z2
$cosh@s~12z2!#21%. ~46!

We first remark that the leading term on the left-hand side
may be written in integral form as follows. We have

M ~1,52 ,s!M ~ 3
2 ,

5
2 ,s!5esM ~1,52 ,s!M ~1,52 ,2s!. ~47!

Also @7#, I v(x) is the modified Bessel function of the first
kind,
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M ~1,52 ,s!M ~1,52 ,2s!

5
@G~ 5

2 !#2s23/2

G~1!G~ 3
2 !

E
2`

`

dt et/2secht I 3/2~s secht !

52~ 3
2 !2 12Aps23/2E

0

`

secht I 3/2~s secht !cosh
t

2
dt

52 9
4Aps23/2E

0

p/2

du
dt

du
sinu I 3/2~s sinu!cosh

t

2
,

~48!

where secht5sinu.
Whence we have

M ~1,52 ,s!M ~1,52 ,2s!

5
9

4s2 E
0

p/2

duH A11sinu

sinu

3Fcosh~s sinu!2
sinh~s sinu!

s sinu G J . ~49!

On substituting Eq.~49! into Eq. ~46! and using Eq.~47! we
find after some algebra that the left-hand side of Eq.~46! is
~cancelling the common factores on both sides!

9E
0

p/2

du
A11sinu

sinu Fcosh~s sinu!2
sinh~s sinu!

s sinu G
23E

0

p/2

du
A11cosu

cosu

3Fcosh~s cosu!23
sinh~s cosu!

s cosu
12G ,

which duly reduces to

6E
0

p/2

du
A11cosu

cosu
@cosh~s cosu!21#. ~50!

On writing ~12x2!5cosu, Eq. ~50! becomes

12E
0

1 dx

12x2
$cosh@s~12x2!#21%, ~51!

so proving that Eqs.~40! and ~43! are identical.

V. CONCLUSIONS

In this paper we have given a general expression, viz., Eq.
~24!, for the integral relaxation timeT based on linear-
response theory so that the integral relaxation time is identi-
cal to the correlation time of the autocorrelation function of
the change in the magnetization. The result agrees in all re-

spects with those of Garanin, Ischenko, and Punina@5# and
Moro and Nordio@6#. T may be evaluated explicitly when
the inverse of the Fokker-Planck operatorL may be evalu-
ated. In practice, it appears that this may be accomplished
analytically only for problems with axial symmetry when the
Sturm-Liouville equation may be integrated exactly, leading
to Eq.~38!, which now constitutes the general solution of the
problem.

We have evaluated Eq.~38! for the simple uniaxial poten-
tial of the crystalline anisotropy and we have demonstrated
that the result is identical to the~Floquet! method based on
differential-recurrence relations of Coffeyet al. @7#. The
Sturm-Liouville method has the great merit, in the uniaxial
case, that it is relatively simple to calculateT without the
complicated mathematical manipulations associated with the
calculation ofT from the differential-recurrence relations of
Coffeyet al. @7#. In addition, it is possible to exactly evaluate
T analytically for a small change in a strong dc bias field
applied along the anisotropy axis. An important consequence
of this is that by evaluating the integral for values of the
parameter

h5
j

2s

in the range 0.1–0.2, Garanin@11# has been able to give a
clear physical explanation of the numerical results of Coffey
et al. @8#. He has accomplished this by demonstrating that in
the above range ofh the relaxation switches from being
dominated by the behavior of the smallest nonvanishing ei-
genvalue, i.e., the Kramers escape rate@7#, to being domi-
nated by the behavior in the wells of the potential. Such an
effect appears to be a general feature of relaxation in a
bistable potential in the presence of a uniform field. Explicit
evaluation ofT from the five-term differential-recurrence re-
lation associated with the problem would be very difficult
due to the task of identifying the set of hypergeometric func-
tions associated with the solution of these recurrence rela-
tions in the zero-frequency limit. Thus the Sturm-Liouville
equation constitutes a powerful method of finding analytic
solutions in the case of axial symmetry. A drawback of this
method, however, is that if it is generally very difficult to
evaluate the complex susceptibilityx~v! and to extend the
solution forT to nonaxially symmetric problems as in both
cases, it is impossible to integrate the equations by quadra-
tures in the manner that leads to Eq.~38!. The method based
on the solution of differential-recurrence relations used by
Coffey et al. @7–10# has the advantage that the solution for
x~v! may often be obtained exactly either in continued frac-
tion @18# or matrix continued-fraction form and in cases
where this is not feasible@19#, as in many nonaxially sym-
metric problems, by computerized matrix inversion. Accu-
rate solution of nonaxially symmetric problems is of particu-
lar importance in the constant magnetic-field effect
considered by Coffeyet al. @8# and Garanin@11# because
application of the bias field at an oblique angle will in gen-
eral cause this effect to manifest itself at smaller-h values
than those when the field is collinear with the anisotropy
axis.

We finally remark that our formula@Eq. ~38!# for the cor-
relation time may also be derived using the method of Szabo
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@20# for the calculation of correlation times of autocorrela-
tion functions of the Legendre polynomials, which is based
on a generalization of the theory of first-passage times
@21,22#. Furthermore, an equation similar to Eq.~38! but
confined to one-dimensional translational Brownian motion
has been given by Risken@22#.
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