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We derive the diffusion process generated by a correlated dichotomous fluctuating varsadteng from
a Liouville-like equation by means of a projection procedure. This approach makes it possible to derive all
statistical properties of the diffusion process from the correlation function of the dichotomous fluctuating
variable ®(t). Of special interest is that the distribution of the times of sojourn in the two states of the
fluctuating process is proportional d@d)y(t)/dtz. Furthermore, in the special case whérgt) has an inverse
power law, with the indey3 ranging from 0 to 1, thus making it nonintegrable, we show analytically that the
statistics of the diffusing variable approximate in the long-time limit thetable Ley distributions. The
departure of the diffusion process of dynamical origin from the ideal condition of flwy Btatistics is
established by means of a simple analytical expression. We note, first of all, that the characteristic function of
a genuine [ey process should be an exponential in time. We evaluate the correction to this exponential and
show it to be expressed by a harmonic time oscillation modulated by the correlation fuigign Since the
characteristic function can be given a spectroscopic significance, we also discuss the relevance of our results
within this context[S1063-651X96)08611-4

PACS numbe(s): 02.50.Ey, 05.40k]

I. INTRODUCTION work of continuous-time random walk€TRW'’s) to derive
the Levy stable process. This latter technique has also been
The basis of our understanding of statistical physics is thelirectly applied to the case where the dynamical system is
phenomenological theory of Brownian moti¢t] and the the standard mafpl2]. The final strategy that has been de-
chaotic behavior of nonintegrable Hamiltonian systd@ls  veloped uses a master equation, independently of whether or
The statistics in Brownian motion arises from the coupling ofnot the system is Hamiltonial3]. However, regardless of
the system of interest to the environmd#8i, resulting in  the strategy, no one has yet succeeded in deriving the
erratic variations in the velocity of the diffusing particle. In a-stable Lay processes using a totally dynamical aprroach.
the Hamiltonian case, however, the random fluctuations arAs an example of totally dynamical approach to diffusion we
an intrinsic property of the nonlinear system dynanjiglsIf  have in mind the works of Refg14—16 and the more recent
a dynamical system such as a standard map is fully chaoti@pproach of Bianuccét al. [6]. These authorf6] derived a
meaning that all the Kolmogorov-Arnold-Moser tori have Fokker-Planck equation, namely, both the diffusion and the
become globally unstable and disintegrated, producing a chdriction term from a microscopic Liouville equation with no
otic sea in phase space, then the average energy of the sydatistical assumptions.
tem increases linearly in time and the system is as diffusive It is not only in the development of the foundations of
as the Brownian particle. This relation between statistics andtatistical physics that one sees an interest inyLstable
dynamics has been known for nearly two decddgdsbut it  processes, but also in the foundations of relativistic quantum
is only recently that the connection has been systematicallynechanics. Garbaczewski7] maintains that determining
exploited to provide a dynamical basis for statistical physicsthe dynamical origins of Ly processes may be of the same
Bianucciet al.[6] have shown that statistical physics can beimportance to relativistic quantum mechanics that the dy-
a consequence of the existence of chaotic solutions to lowaamical derivation of Brownian motion using path integrals
dimensional nonlinear dynamical equations thereby blendingad to nonrelativistic quantum mechanics. A relevant ex-
the above two points of view. ample of the latter case is given by Bgd8], who adopted
Concurrently, explaining the phenomenon of anomaloughe deterministic derivation of Brownian motion as a pos-
diffusion in which the mean square amplitude of a processible way of generalizing the nonrelativistic version of quan-
increases in time a2t with H+ 1/2 has attracted the atten- tum mechanics.
tion of a number of investigators. The description of such It is not only transport that is affected by e processes
processes using nondiffusivé\estatistics has been popular through anomalous diffusion, but relaxation processes as
among a number of researchgrs-9]. This has led to studies well. For example, the Maxwell-Zener standard constitutive
to make the proper connection betweenvyestable pro- equations relating stress to strain have been generalized to
cesses and certain dynamical systems. One strategy is to ufsactional order differential equations in timgl9,20Q.
the fact that chaotic orbits stick to the cantori at the phasé&lockle and Nonnenmachg21] pointed out some relations
space boundary between stable islands and the chaotic seaghfractional differential equations to CTRW'’s of trapping
weakly chaotic systemg$10]. Another strategy, adroitly type leading to the identification of the fractional order pa-
implemented by Zumofen and Klaftgtl], uses the frame- rameter with the index of the inverse power-law waiting-
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time distribution function and the g index. The complex function because it is formally the Fourier transform of the

susceptibility for the relaxation process can be related to therobability density for the variable

Fourier transform of the characteristic function, which if the

relaxation is exponential yields a relaxation time that is a A _ CiKXD [ - )

power of the inverse wave number. The algebraic power of <Ux<t)>_f e TPOGax; 0

the wave number is just the iz index. » ) ) )
More generally the characteristic function is more closelynOWever, the probability density(x;t), is, by assumption,

tied to experimentally observable quantities than is the probf0t Gaussian. We are particularly interested in the cases
ability density. This brings us to our final example and thewhere the statistics are i stable. In Sec. Il we develop the

application developed in this paper, which is magnetic reso€Xact equation of evqlution for a dichotomous process h{;\v-
nance in the presence of a long-range correlated process. VR correlated fluctuations. In Sec. Il we study the case with
focus our attention on a dynamical process that in the long?© time-scale separation and we show that the resulting
time region becomes equivalent to arstable L@y process. anomalous diffusion coincides, within a given approxima-

The Hamiltonian of interest is _tiop, with ana.—stable Lery process. Ir_1 Sec.lV the character-
istic function is shown to separate into two pieces: one the
H= WO+ QoY+ Hg, (1)  standard exponential form in time for awneprocess and the

other a harmonically modulated inverse power law in time.
wherey is a bath variable whose dynamics are generated bgome details of the numerical method used are discussed in
the HamiltonianHg. This model is ubiquitous in physics the Appendix.
and its applications range from magnetic resond@e§ ex-
citon transport in solid§23] in the two-state version studied Il. AN EXACT EQUATION FOR DIFFUSION RESULTING
by Kenkre and co-workerf24] to macroscopic manifesta- FROM A DICHOTOMOUS FLUCTUATING VARIABLE
tions of quantum mechanicg25]. The usual assumption
made in each of these applications is that the openatisr
the sum of the displacements of the harmonic oscillators i
the bath, so as to result, in the appropriate limit, in a classic
stochastic variable having Gaussian statistics. Here we e
plore the consequences of modifying this approach in such
way that the statistics of the variabjeare non-Gaussian. X(0=y(1) )

In the particular case when the natural frequeagyin (1) '

is set to zero the average time evolutionagfis given by From a formal point of view it is convenient to adopt the
Liouville-like picture

. 2ig (t.
(ax(t))=<T exp(;i—gfoy(tr)dt')>, 2 Ip(x.y.R:)
a

We have seen that the motion of tkecomponent of the
[gipole is equal to the characteristic function of the diffusion
roces. Let us therefore focus our attention on the unper-
urbed diffusion process. This is described by the equation of
gmtion

p(XY,R;1), €)

J -
( — y& +I
whereT denotes the time ordering of the following exponen-
tial time integration and the displacement operator in thavhereR denotes the set of additional variables necessary to

interaction representation is given by define the dynamics of. In the special case where we adopt
. . a nonlinear map as a dynamical generd®y3], we can
y(t)y=eHVige=HUA (3)  obtain to some extent an erratic behavior jowithout in-

troducing additional variables. However, we want to keep
If we now make the assumption that the displacemenbyr treatment at a level as general as possible. Thus we adopt
operator can be replaced by a corresponding classical vafihe general notation of9). We make only the simplifying
able, we can define the new variable assumption thay is a dichotomous variable,

t —
x(t)zf y(t)dt’, (4) y==W. (10
° From a formal point of view we can imagine the classical
so that the averagé?) takes the form of a characteristic Variabley as a sort of operator characterized by the two

function eigenstate$+) and|—),
(oe(1))y=(e V), (5) yl=)==W=). (12)
where the Fourier transform variable is given by We do not set any bias, namely, we want to give the same
statistical weight to the two states. Thus we assume the equi-
29 librium state to be given by
k=—. (6)
h 1
=—(|+)+|-)).
Thus we see that the average time evolution of xheom- [Po) \/§(| >+ (12

ponent of the dipole operator corresponds to the characteris- A
tic function of the unperturbed process of diffusion of the Formally this means that the applicationyoto the equilib-
dynamical variablex(t). Equation(5) is the characteristic rium state results in the “excited” state defined by
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Y| Po) which coincides with the prescription that one one would
lp1)= : (13)  obtain from(19). This is not surprising since boit19) and
W
(20) are exact results.

In general, for a complete description of the dynamical pro-

cess one has to consider more than two states. We write lll. THE LE VY PROCESS
AS A TIME ASYMPTOTIC LIMIT
(yy(t))=(polye"'y|po)=W*ps|e""|p;). (14 Let us define now the normalized correlation function
Due to the dichotomous nature of the variapleve have {yy(t))
Dy (t)=—F—7— (21
) (y%)
I't _ —At
e = e , 15 . . . .
(pale™lp) ;o (pel ) (ulprje™ (9 and assume that this function decays to zero without oscilla-

. tions making them negative. In this condition, it makes sense
where the|u)’s are eigenstates of the operafgrwith ein-  to define the “microscopic” time scale
genvalueA ,, distinct from |po), which is the eigenstate .
with vanishing ei_ge_nvalu(a:he equilibrium st_at}e Note thgt TEJ ®(t)dt’, (22)
|w=0)=]|pg). Within the framework of this quantumlike 0

formalism, it is convenient to define o ) ) o o
If this time scale exists and is a nonzero finite constant, it is

O'M(X’t):<M|p(X,y,R;t)>, (16) straightforward to show, using the central limit theorem, that
the diffusion process fax taking place at times much larger
with ©=0,1,2 .. .. We ardnterpreting the distributiop of  thans becomes indistinguishable from an ordinary Brownian
(16) as a sort of ket vectdp). By multiplying (9) on the left  diffusion.
by the statesu) we get The simplest possible way to extend the analysis beyond
this ordinary condition, and so using the exact equati®)
9 i 9 to address nontrivial problems, is to assume
—op(x;t)=—W a,—o,(Xxt),
GO0 ="WZ 8,7 0,0 .
; q)y(t) = _(A17B+t) ,t>01 (23)
— )= — x _ .
P a,(X1) Waj, 7% 70 Ao, (X1), (17) with
with u=1,2, ..., anda,=(u|y|po)- 0<pB<1. (24
By solving the second equation and replacing the solution ] )
into the former equation, we get Note that the form chosen for the correlation function makes
it possible to fulfill the normalization condition
) t 92
. ) — \\/2 2 ra—A (=t . d.(0)=1. 25
o= S, [a [ dve Loy, 0) 9
(18 This condition(24) corresponds to a similar condition al-

_ _ready examined in previous pap€@,13]. However, the
From now on we shall focus on the reduced density matrix,gnerty concerned the waiting-time distribution in one of
oo(x;t) and for the sake of simplicity we shall omit the {he o states of the variabig |+) and|—), rather than the
subscript 0. Usind14) and (15 we can rewrite(18) in the  cqrrelation function. The conditiof4) corresponds to ex-
form tremely extended sojourn times in these states. For this rea-
5 son, we think that an extremely good approximation to apply

J t J -
EU(X;'{)=J’Odt’(yy(t—t’))wa(x;t). (199 @19is

1
In conclusion, in the dichotomous case we can express the oxt=t)=3 ,wdx S(WE —[x=x"])o(x",1). (26)
time evolution of the probability distribution by means of an

exact equatior(19). This is a sort of generalization of the For timest’ such that/t’|<(t), where(t) is the mean so-

results obtained by Horstemke and Lefe{28] in the spe- journ time in one of the two state€26) is an exact property.

cial case of an exponential correlation function. The relation(26) becomes an approximation only for times
Notice that if we integrate the equation of motié8), larger than(t). We shall return to the discussion @) in

under the assumption of stationarity, namely, that the correSec. V.

lation function (y(t;)y(t,)) depends only orjt;—t,|, we By inserting(26) into (19) we obtain, with no approxima-

find tion,

_’|

d 2 _ ! i i 2 J _l 1= dx’ ’
PTA% (t)>—2fodt (yy(t=t")+(x%(0)), (20 FoU=5 | dXW|—g—]e(x.), (2D



where the functionV (t) is defined by means of

9% (yy(t))

V()= 27

(28)

What is the physical meaning &f (t)? Let us consider the
function

P(t)

p()=—=~ M (29
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b 27B(B+1)AW - 39)
[m(B+1)
Sin T)F(ﬂ‘i‘Z)

Note that atB=1, as it must be, the decay rate becomes
proportional toW?, which can be identified with the mean
quadratic value of the “velocity"y. Throughout the whole
anomalous diffusion regime<0B<1 the dacay rate depends
on a fractional value of the “temperature.” It is interesting
to notice that(20) together with(23) leads to the asymptotic

This is a distribution of times. If we evaluate the mean valug®roperty:

(t) averaging on this distribution we get

All’B
ty=— 30
(=" (30
and ¢(t) fits the normalization condition
f dty(t)=1. (3D)
0

lim (x?(t)) =Kt2",

t—oo

(39
with

H=1-

B
> (40)

On the basis of this property one would be led to expect that
the following rescaling will take place:

To assess the nature of this time distribution we use the

relation established by Geisel and co-worki23],

1 0
q)y(t) = EJI (t

connecting the correlation functich, (t) to the distribution

"= y(t)dt, (32

of the sojourn times in the statés-) and|—), #4(t). By
differentiating(32) twice we establish that
)= Al 33
s( )=W (33
and thus reach the conclusion
P(t)=ths(1). (34
Note that using28) and(23), we can rewritg27) as
J B(B+ 1)Af dy W Ba(x' t)
g oxb=""73 (ATRW+ [x—x'[)P72"
(39

This result(35) establishes a direct connection with thesie

processes. Seshadri and WE38] have established that a
centrosymmetric [y stable process, namely, a diffusion

process with a distribution, the Fourier transfofcharacter-
istic function of which is given by

o(k,t)=e oK (36)
obeys the integro-differential equation
i b ! F 1 J d o(x.1)
EU(X t)= —sm (1+a) x' W
(37)

1 X
o(x)=5F| 5|, to=, (41
with
S5=H. (42)

However, the theoretical results of this section indicate
that the resulting diffusion process is of\yekind. Conse-
quently, the correct rescaling is given B41) with

1

=1 (43
The numerical results of Figs. 1 and 2 fully support this
prediction. Note that the curves of Fig. 1 are plotted with
respect to the variablé=x/t’, with 6=1/(8+ 1), namely,

by assuming the rescalin@3) to be true, whereas Fig. 2
refers to é=x/t°, with 6=H, thus implying the rescaling
(42) to hold. By inspection of these figures we see that the
rescaling(42) is ruled out, whereas the rescalit¥p) results

in satisfactory agreement with the numerical results.

IV. TIME EVOLUTION
OF THE CHARACTERISTIC FUNCTION

A characteristic function is defined as

C(t)=(e"), (44)
where( ) denotes the ensemble average. Thus the complex
exponential must be averaged on the stationary distribution
of the process, which is different fror86). In fact, the
a-stable Ley process defined by36) does not take into
account the fact that the distribution must be truncated,
namely, the distribution must be equal to zero %6t — Wt
andx>W?. In Fig. 1 we see the result of a numerical simu-

Making the plausible assumption that the short-range regiotation of the mode(8) and(10). We see that the distributions

|x—x'|~AYPW does not contribute to the long-time \ne
process(35) becomes identical to a’\g process with

are identical to what is predicted bi6) in the interval
—Wit<x<WHt, but there are no tails outside this interval.
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001 . . . which can be proved to be proportional to the correlation
function of the variabley. In fact, the first expansion of the
Lévy distribution tails iso(x,t)<t/|x|?*?2, so that(45) result

in A(t)=xt~A. One can also think about the height of the
peaks as the probability of finding a laminar regioamely,

a region with ally=W or y=—W) that is larger thart.
Using the same arguments leading28) [27], it is possible

to prove that this is just the correlation function, namely,

0.001

(&)

A(t)=D(1). (46)

Now we can evaluaté¢44) by partitioning the integral in
three pieces. We can write the total characteristic function as

C(t)=J1dxéan(x,t)+¥ :dxékx[5(x+Wt)

10-6 s L l <
100 1000 10000
{ = dx et

+OX—WH]=2 | —5p, (47)
wt X

FIG. 1. Rescaled probability distributions for different times.

The solid line refers tot=10000, the long-dashed line to \yhere the truncated My process in the tails is substituted
t=1000, the short-dashed linete-500, the dotted line =200,  py the pallistic peaks. In the asymptotic regime the last mem-
the Iong-dash—.dot.ted .Ilne te= 100, and.the short-.das'h—d.otted line par of the right-hand side of47) is negligible. The first
t;’htezoigéjgﬁei's;;sgt'lf‘:e:]of;iglggoagg%tir‘g:t'g/d( LI?TBS scale. ember is just the Fourier transform of(x,t), which is

' given by (36), and the second member just gives

A(t)coskt). Thus, for the characteristic functidd(t) we

These are substituted by ballistic peaksxat =Wt. The can write
heigth of these peaks can be evaluated by considering them
as the accumulation of the particles that would be in the tails C(t)=e’b‘k‘at+<by(t)cos( kt); (48)
if there was no ballistic limitation due ). One may think ) ) ) . .
that asymptotically the peaks will vanish, but from the res-notice that this form is not valid for short times. For
caled distributions of Fig. 1 we see that the ratio betweeri<<A'”, however, the peaks that are responsible for the sec-
their height and the height of the principal peakxatO is ond term on the rhs of47) are the most important contribu-

actually an increasing function of time. Asymptotically the tion andC(t) = coskt). _
peak height is In Figs. 3a—3(d) we see the numerical results for the

characteristic functions for different choices of the model
parameters. We notice that in all cases the first regime is well
—Wt o fitted by a cosine function, while E¢48) also fits well for
A(t):f U(X,t)dXJrf a(x,t)dx, (45  intermediate times. The asymptotic regime, in other words, is
- wt attained as soon as it is possible to make a continuous ap-
proximation to the distribution functiorisee Fig. 8a)]. The
cosine behavior is the track of a dichotomous process, due to
the fact that for times smaller thaft) the distributions
o(x,t) are essentially dominated by the ballistic peaks. No-
tice that Eq.(48) can have a variety of behaviors: in particu-
lar, with a choice of a larggk| value, which according t¢6)
means a strong-coupling condition, the first member on the
rhs of (48) can be made negligible, so that the characteristic
function reduces tob (t)coskt) [see Fig. 8)]. On the
other hand, a choice of very smdk| may make the first
term on the rhs 0f48) the dominant one for the short- and
intermediate-time regimes. This is especially true wiseis
chosen near unity. In this latter cdsee Fig. &)] the char-
acteristic function is almost indistinguishable from an expo-
nential for all the times it can be computed. It has to be said
that even in this case the small contribution of the second
1 0 4 0 term on th_e rhs of48) WiII_sooner or later d_omina_te since
t the cosine is modulated with a function that is nonintegrable,
even though it has small numerical values. The property that
the characteristic function in the short-time region is essen-
FIG. 2. Same as in Fig. 1, but the rescaling relation is given bytially a harmonic function of time, with negligible damping,
S=H=1-p/2. is made evident by the results of numerical calculations by

0.01 : ‘ .

0.001¢
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FIG. 3. Different characteristic functions for different parameter choit@sB=0.5, k=0.1, andA is measured to be=0.5 by the
evaluation of the correlation functiamot shown here The solid line is the numerical evaluation of the characteristic function, while the
dots are a sampling of the functiqd8) for the corresponding parametefb) 8=0.5, k=1.0, andA~0.5. The solid line represents the
numerical evaluation of the characteristic function. The two dotted lines over and under the curve are the correlation(2Bheimhits
opposite(c) B=0.99,k=0.05, andA~1: same as iffa). (d) 8=0.7,k=0.1, andA~41.1. The solid line represent the numerical evaluation
of the characteristic function, while the upper dashed curnayi£.

making suitably extended this initial time region. This can bemakes it easier to understand a further result of Corifgg
done by using very large values Af which mean very large namely, that it is possible to express the long-time regime in
values of(t). This condition is conveniently illustrated by two equivalent forms, one implying the adoption of the frac-
Fig. 3(d). tional time derivative(and so emphasizing time nonloca)ity
and the other a fractional space derivatfgsad so emphasiz-

ing the space nonlocality or the \ag nature of the statistical
V. CONCLUDING REMARKS procesizg])_

. . It has to be pointed out, however, that the approach pre-
We have seen, probably in a way more transparent than in > ' ' : :
earlier work[13], that the dynamical realization of g pro- sented in this paper rests only on dynamical properties and

. . ) ; : i makes it possible, in principle, to derive the resulting/y.e
cess with a velocity, with fluctuations whose intensity can- b P P oy

) O ._process directly from the equation of motion of the system.
not exceed a given upper value, implies that the resultlnghiS was already dongs,14—14 in the case of ordinary

diffusion equation is strongly non-Markovian. The realiza- yifysjon, but all the recent papers on the diffusion processes
tion of a Levy process, which is by definition Markovian, faster than ordinary diffusiofl1,13 still derive the Lay
implies that the time nonlocality is turned into a space non-statistics from probabilistic assumptions rather than using
locality. This is made possible by means of the constrainbnly dynamical properties. Thus the key statistical feature of
(26), which is based on the fact that for a long period of timeall these treatments is the distribution of waiting times in the
the motion takes place without any change of the velocitywo states of the dichotomous variablt). Herein, on the
value. It is interesting that Compte recently obsery2€]  contrary, all the relevant statistical properties of the diffusion
that the adoption of the continuous-time random-walkprocess are expressed in terms of the correlation function
method is essentially equivalent to adopting a generalizedp,(t), thus establishing a more direct dependence on the
namely non-Markovian, master equation. The above analysidynamics of the system.
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We have to point out that the inverse power-law nature ofmanifestation of quantum mechanics. According to Zurek
the correlation functiod,(t), the asymptotic property stem- [34] a genuinely irreversible decoherence process must be
ming from (23), is assumed rather than derived from theperceived as being t_otaIIy equivalent to a wave function col-
equations of motion of the system. However, this is wherdapse, thereby allowing quantum mechanics to recover clas-
our approach has some merit when compared to the currefical mechanics with no need of changing the current version
literature on the derivation of the'lg statistics. On the one Of this theory. However, this raises two problems. The first
hand, the current theoretical treatments of superdiffusiofas to do with the earlier mentioned hot issue of how to
rests on the inverse power law natureyft) [11-13. On  derive a rigorously exponential behavior from within ordi-
the other hand, there are theoretical approaches to the inver8a’y quantum mechanics. Figur&cBshows that the identi-
power law of the waiting function distributiomy(t) [30],  fication of the almost exponential decay of the characteristic
which in the asymptotic time limit is proportional to *. function might be questionable since the exponential-like be-
However, the numerical check of these theoretical predichavior is followed by an invisible slow tail implying the
tions for dynamical systems such as the kicked rotator igresence of correlation even after the occurrence of a wave-
made difficult by the fact that the computational derivationfunction collapse. The second problem has to do with the
of y(t) is much less accurate than the second moment of thfCt[35] that the theory of Zurek rests on the assumption that
diffusing variable as a function of timgcompare, for in- the environment is faithfully described by ordinary statistical
stance, the functios(t) as numerically derived ifi12] to mechanics. T_he_result_s of Sec. .IV show that as a conse-
the second moment of the angular momentum of the kicke@uence of rejecting this assumption, the decorrelation pro-
rotator in[31]]. Using our approach the exponentof the ~ C€sS might become extremely slow, thereby supporting the
time asymptotic behavior of the second moment féee Eq. requirement that the environment is driven by ordinary sta-
(20)] is immediately related to the asymptotic properties oftistical mechanics. On the other hand, the dynamical eriva-

the correlation functiorfyy(t)) and through(28), (33), and tion of ordinary statistical mechanics is made possible by the
(34) to the inverse power law ap(t) with w=4—2H. This assumption of time-scale separation between macroscopic

relation and the close connection with théviestatistics ~and microscopic variable$] and this paper can be seen as
seem to be more direct, more concise, and more satisfactof? atempt at extending this treatment to the case where the
than any earlier derivation. We think that it also explainstime-scale separation is not possible.

why the velocity model of Zumofen and Klaftg®], resting

on (32), turns out[13] to be the best theoretical approach to ACKNOWLEDGMENT

superdiffusion based on random walk arguments.

From the point of view of applications, the method of this
paper affords further benefits, especially if it is applied to
problems of biological significance such as that of the DNA
sequencel32]. A direct calculation of(t) in this case from
the experimental data would lead us to define #{€) cor- The numerical calculations adopted in this paper to check
responding to the two-state model of REJ] rather than to  the theoretical predictions rest on a dynamical process that is
the velocity model of the same authors. This would makenot generated by a weakly chaotic deterministic map as in
ambiguous the analysis of the data in this case, since thRefs.[9,13]. The possibility of generating a correlation func-
existence of a dynamical model underlying the DNA se-tion with the same time asymptotic properties ag26) is
quences is a conjecture rather than a established3atand  now well established not only in the case of the map of
if this dynamical model exists its nature is unknown. If the Geisel, Nierwetberg, and Zach¢86], but also in the case of
theory developed in this paper is adopted, it is possible tehe kicked rotator in the so called accelerating sfa&37).
carry out the analysis of the DNA sequences with no ambiHowever, the direct use of a deterministic map to assess
guity. Using the prescriptions of Reff32] we can evaluate numerically the time asymptotic properties implies a signifi-
the correlation functiord,(t), thereby providing a dynami- cant computational effort in terms of both computer time and
cal basis for Ley statistics found herein. numerical precision. For this reason, we decided to adopt a

A further result of this paper is that, in spite of the fact different procedure. First of all, the present treatment rests
that the asymptotic regime of the distribution is very close todirectly on the correlation functio®,(t) rather than indi-
Levy statistics, the study of the characteristic function mightrectly through the waiting-time distributiogk(t). However
reveal the strongly non-Markovian nature of the process, agg) and(32) show that the two descriptions are equivalent.
effectively expressed byA8). Of special interest is the fact To generate a dichotomous process with a gikgit) it is
that even if for3 very close to unity, or small values of sufficient to generate a random sequence of integers with a
[k| (implying a very weak coupling between the precessingrobability distribution given by a discrete approximation of
dipole and the fluctuating “magnetic” fiejdan almost exact

The authors thank the Office of Naval Research for partial
support of this research.

APPENDIX

exponential behavior is obtained, still the slow tails with _(BHDLABTDIE
B<1 are present. This agrees with the important result of P()= (A17B+t)ﬁ+2 ' (A1)

Lee[33] establishing that a decay process cannot be an exact

exponential and shows that the dynamical derivation ofyLe this can be done through a filtered random number generator.

processes is compatible with a rigorous Hamiltonian treatin other words, our dichotomous sequence is given by ran-

ment. domly choosing a number betweenl and—1 and keeping
Finally, we want to point out that the results of this paperthe same value foy a number of times that is given by our

might have some interest for the problem of the macroscopifiltered random number generator. Then the same operation
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is repeated until the statistics are sufficient for the calculaistic. However, the main point to assess in this paper refers to
tion. Care is exerted to ensure that at the end of the period dhe physical consequences of a dynamical generator respon-
time spent in one state of the velociyythe probability of sible for the inverse-power-law character(@B). Once this
jumping from one to the other state is the same as that af determined, the results are independent of whether the
remaining in the same state. Under this condit{®8) is an  dynamical generator has a deterministic or a stochastic ori-
exact relation and building up the waiting-time distribution gin. Thus, for numerical convenience we have adopted the
(1) (49 turns out to be equivalent to building up the cor- second type of dynamical generator. This method of numeri-
relation function® (t) (23). cal calculation turned out to be so efficient as to result in the
The dynamical generator used is therefore not determinvery regular curves denoted by the solid lines of Fig. 3.

[1] N.G. van KampenStochastic Processes in Physics and Chem{20] H. Schiessel, R. Metzler, A. Blumen, and T.F. Nonnenmacher,

istry (North-Holland, Amsterdam, 1981 J. Phys. A28, 6567(1995.

[2] H. Mori, H. Hata, T. Horita, and T. Kobayashi, Suppl. Prog. [21] W.G. Glockle and T.F. Nonnenmacher, J. Stat. Phys.741
Theor. Phys. 99, 11989. (1993.

[3] K. Lindenberg and B.J. WesThe Nonequilibrium Statistical [22] P. Grigolini, V. M. Kenkre, and D. Vitali, Phys. Rev. A3,
Mechanics of Open and Closed SystefW€H New York, 1015(1991).
1990. [23] A. S. Davydov and N. I. Kislukha, Phys. Status SoliBj 59,

[4] E. Ott, Chaos in Dynamical Systent€ambridge University 465 (1973; A. S. Davydov, Usp. Fiz. Nauk SSSR38 603
Press, Cambridge, 1993 (1982 [Sov. Phys. Usp25, 898 (1982]; Biology and Quan-

[5] B.V. Chirikov, Phys. Rep52, 263(1979. tum MechanicgPergamon New York, 1982

[6] M. Bianucci, R. Mannella, B. J. West, and P. Grigolini, Phys. [24] V. M. Kenkre and D. K. Campbell, Phys. Rev. 8}, 4595
Rev. E51, 3002(1995. (1986; V. M. Kenkre and H.-L. Wu,ibid. 39, 6907 (1989;

[7] E. W. Montroll and B.J. West, iffluctuation Phenomenand Phys. Lett. A135 120(1989.
ed., edited by E.W. Montroll and J. L. Levowitz, Studies in [25] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher,
Statistical Mechanics Vol. 7(North-Holland, Amsterdam, A. Garg, and W. Zwerger, Rev. Mod. Phys9, 1 (1987).
1987; E.W. Montroll and M.F. Shlesinger, iRrom Stochas- [26] W. Horsthemke and R. LefeveNoise Induced Transitions,
tics to Hydrodynamigsedited by J. L. Lebowitz and E. W. Theory and Applications in Physics, Chemistry and Biology
Montroll (North-Holland, Amsterdam, 1984 (Springer, Berlin, 198/

[8] M.F. Shlesinger, B.J. West, and J. Klafter, Phys. Rev. 58t. [27] T. Geisel, J. Heldstab, and H. Thomas Z. Phys58 165
1100(1987. (1984.

[9] G. Zumofen and J. Klafter, Phys. Rev.4H, 851 (1993. [28] V. Seshadri and B. J. West, Proc. Natl. Acad. Sci. U.99.

[10] See, for example, M.F. Shlesinger, G. M. Zaslavski, and J. 4051(1982.
Klafter, Nature363 31 (1993. [29] Compte, Phys. Rev. B3, 4191(1996.

[11] G. Zumofen and J. Klafter, Physica A96, 102 (1993; [30] J. D. Meiss and E. Ott, Phys. Rev. Leg5, 2741 (1985;
Physica D69, 436 (1993. Physica D20, 387 (1986.

[12] J. Klafter, G. Zumofen, and M.F. Shlesinger, FractBls389 [31] R. Ishizaki, T. Horita, T. Kobayashi, and H. Mori, Prog. Theor.
(1993; Europhys. Lett25, 565(1994. Phys.85, 1013(1991).

[13] G. Trefan, E. Floriani, B.J. West, and P. Grigolini, Phys. Rev.[32] P. Allegrini, M. Barbi, P. Grigolini, and B.J. West, Phys. Rev.
E 50, 2564(1994). E 52, 5281(1995.

[14] R. V. Jensen, Phys. Rev. 30, 386(1984). [33] H. Lee, Phys. Rev. Letbl, 1227(1983.

[15] T. Geisel and S. Thomae, Phys. Rev. L52f 1936(1984). [34] W. H. Zurek, Phys. Rev. 24, 1516(1981); 26, 1862(1982);

[16] S. Grossman and H. Fujisaka, Phys. Rev26\ 1779(1982 Phys. Today4 (10), 36 (199)).

[17] P. Garbaczewski, ichaos—The Interplay Between Stochastic[35] P. Grigolini, in Chaos—The Interplay between Stochastic and
and Deterministic Behaviouredited by P. Garbaczewski, M. Deterministic BehavioutRef. [17]), p. 101.
Wolf, and A. Weron(Springer-Verlag, Berlin, 1995 [36] T. J. Geisel, J. Nierwetberg, and A. Zacherl, Phys. Rev. Lett.

[18] C. Beck, inChaos-The Interplay Between Stochastic and De- 54, 616 (1985.
terministic BehavioufRef.[17]), p. 3. [37] T. Horita, H. Hata, R. Ishizaki, and H. Moribid. 83, 1065

[19] W.G. Glockle and T.F. Nonnenmacher, Macromolec2ds (1990; R. Ishizaki, H. Hata, T. Horita, and H. Mori, Prog.

6426(1991). Theor. Phys84, 179(1990.



