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We derive the diffusion process generated by a correlated dichotomous fluctuating variabley starting from
a Liouville-like equation by means of a projection procedure. This approach makes it possible to derive all
statistical properties of the diffusion process from the correlation function of the dichotomous fluctuating
variableFy(t). Of special interest is that the distribution of the times of sojourn in the two states of the
fluctuating process is proportional tod2Fy(t)/dt

2. Furthermore, in the special case whereFy(t) has an inverse
power law, with the indexb ranging from 0 to 1, thus making it nonintegrable, we show analytically that the
statistics of the diffusing variable approximate in the long-time limit thea-stable Lévy distributions. The
departure of the diffusion process of dynamical origin from the ideal condition of the Le´vy statistics is
established by means of a simple analytical expression. We note, first of all, that the characteristic function of
a genuine Le´vy process should be an exponential in time. We evaluate the correction to this exponential and
show it to be expressed by a harmonic time oscillation modulated by the correlation functionFy(t). Since the
characteristic function can be given a spectroscopic significance, we also discuss the relevance of our results
within this context.@S1063-651X~96!08611-4#

PACS number~s!: 02.50.Ey, 05.40.1j

I. INTRODUCTION

The basis of our understanding of statistical physics is the
phenomenological theory of Brownian motion@1# and the
chaotic behavior of nonintegrable Hamiltonian systems@2#.
The statistics in Brownian motion arises from the coupling of
the system of interest to the environment@3#, resulting in
erratic variations in the velocity of the diffusing particle. In
the Hamiltonian case, however, the random fluctuations are
an intrinsic property of the nonlinear system dynamics@4#. If
a dynamical system such as a standard map is fully chaotic,
meaning that all the Kolmogorov-Arnold-Moser tori have
become globally unstable and disintegrated, producing a cha-
otic sea in phase space, then the average energy of the sys-
tem increases linearly in time and the system is as diffusive
as the Brownian particle. This relation between statistics and
dynamics has been known for nearly two decades@5#, but it
is only recently that the connection has been systematically
exploited to provide a dynamical basis for statistical physics.
Bianucciet al. @6# have shown that statistical physics can be
a consequence of the existence of chaotic solutions to low-
dimensional nonlinear dynamical equations thereby blending
the above two points of view.

Concurrently, explaining the phenomenon of anomalous
diffusion in which the mean square amplitude of a process
increases in time ast2H with HÞ1/2 has attracted the atten-
tion of a number of investigators. The description of such
processes using nondiffusive Le´vy statistics has been popular
among a number of researchers@7–9#. This has led to studies
to make the proper connection between Le´vy stable pro-
cesses and certain dynamical systems. One strategy is to use
the fact that chaotic orbits stick to the cantori at the phase
space boundary between stable islands and the chaotic sea in
weakly chaotic systems@10#. Another strategy, adroitly
implemented by Zumofen and Klafter@11#, uses the frame-

work of continuous-time random walks~CTRW’s! to derive
the Lévy stable process. This latter technique has also been
directly applied to the case where the dynamical system is
the standard map@12#. The final strategy that has been de-
veloped uses a master equation, independently of whether or
not the system is Hamiltonian@13#. However, regardless of
the strategy, no one has yet succeeded in deriving the
a-stable Lévy processes using a totally dynamical aprroach.
As an example of totally dynamical approach to diffusion we
have in mind the works of Refs.@14–16# and the more recent
approach of Bianucciet al. @6#. These authors@6# derived a
Fokker-Planck equation, namely, both the diffusion and the
friction term from a microscopic Liouville equation with no
statistical assumptions.

It is not only in the development of the foundations of
statistical physics that one sees an interest in Le´vy stable
processes, but also in the foundations of relativistic quantum
mechanics. Garbaczewski@17# maintains that determining
the dynamical origins of Le´vy processes may be of the same
importance to relativistic quantum mechanics that the dy-
namical derivation of Brownian motion using path integrals
had to nonrelativistic quantum mechanics. A relevant ex-
ample of the latter case is given by Beck@18#, who adopted
the deterministic derivation of Brownian motion as a pos-
sible way of generalizing the nonrelativistic version of quan-
tum mechanics.

It is not only transport that is affected by Le´vy processes
through anomalous diffusion, but relaxation processes as
well. For example, the Maxwell-Zener standard constitutive
equations relating stress to strain have been generalized to
fractional order differential equations in time@19,20#.
Glockle and Nonnenmacher@21# pointed out some relations
of fractional differential equations to CTRW’s of trapping
type leading to the identification of the fractional order pa-
rameter with the index of the inverse power-law waiting-
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time distribution function and the Le´vy index. The complex
susceptibility for the relaxation process can be related to the
Fourier transform of the characteristic function, which if the
relaxation is exponential yields a relaxation time that is a
power of the inverse wave number. The algebraic power of
the wave number is just the Le´vy index.

More generally the characteristic function is more closely
tied to experimentally observable quantities than is the prob-
ability density. This brings us to our final example and the
application developed in this paper, which is magnetic reso-
nance in the presence of a long-range correlated process. We
focus our attention on a dynamical process that in the long-
time region becomes equivalent to ana-stable Lévy process.
The Hamiltonian of interest is

Ĥ5v0ŝx1gŝzŷ1ĤB , ~1!

whereŷ is a bath variable whose dynamics are generated by
the HamiltonianĤB . This model is ubiquitous in physics
and its applications range from magnetic resonance@22#, ex-
citon transport in solids@23# in the two-state version studied
by Kenkre and co-workers@24# to macroscopic manifesta-
tions of quantum mechanics@25#. The usual assumption
made in each of these applications is that the operatorŷ is
the sum of the displacements of the harmonic oscillators in
the bath, so as to result, in the appropriate limit, in a classical
stochastic variable having Gaussian statistics. Here we ex-
plore the consequences of modifying this approach in such a
way that the statistics of the variabley are non-Gaussian.

In the particular case when the natural frequencyv0 in ~1!
is set to zero the average time evolution ofŝx is given by

^ŝx~ t !&5K T expS 2ig\ E
0

t

ŷ~ t8!dt8D L , ~2!

whereT denotes the time ordering of the following exponen-
tial time integration and the displacement operator in the
interaction representation is given by

ŷ~ t ![eiĤ t/\ŷe2 iĤ t/\. ~3!

If we now make the assumption that the displacement
operator can be replaced by a corresponding classical vari-
able, we can define the new variable

x~ t ![E
0

t

y~ t8!dt8, ~4!

so that the average~2! takes the form of a characteristic
function

^ŝx~ t !&5^e2 ikx~ t !&, ~5!

where the Fourier transform variable is given by

k[
2g

\
. ~6!

Thus we see that the average time evolution of thex com-
ponent of the dipole operator corresponds to the characteris-
tic function of the unperturbed process of diffusion of the
dynamical variablex(t). Equation ~5! is the characteristic

function because it is formally the Fourier transform of the
probability density for the variablex

^ŝx~ t !&5E e2 ikxP~x;t !dx; ~7!

however, the probability densityP(x;t), is, by assumption,
not Gaussian. We are particularly interested in the cases
where the statistics are Le´vy stable. In Sec. II we develop the
exact equation of evolution for a dichotomous process hav-
ing correlated fluctuations. In Sec. III we study the case with
no time-scale separation and we show that the resulting
anomalous diffusion coincides, within a given approxima-
tion, with ana-stable Lévy process. In Sec.IV the character-
istic function is shown to separate into two pieces: one the
standard exponential form in time for a Le´vy process and the
other a harmonically modulated inverse power law in time.
Some details of the numerical method used are discussed in
the Appendix.

II. AN EXACT EQUATION FOR DIFFUSION RESULTING
FROM A DICHOTOMOUS FLUCTUATING VARIABLE

We have seen that the motion of thex component of the
dipole is equal to the characteristic function of the diffusion
processx. Let us therefore focus our attention on the unper-
turbed diffusion process. This is described by the equation of
motion

ẋ~ t !5y~ t !. ~8!

From a formal point of view it is convenient to adopt the
Liouville-like picture

]r~x,y,R;t !

]t
5S 2y

]

]x
1ĜD r~x,y,R;t !, ~9!

whereR denotes the set of additional variables necessary to
define the dynamics ofy. In the special case where we adopt
a nonlinear map as a dynamical generator@9,13#, we can
obtain to some extent an erratic behavior fory without in-
troducing additional variables. However, we want to keep
our treatment at a level as general as possible. Thus we adopt
the general notation of~9!. We make only the simplifying
assumption thaty is a dichotomous variable,

y56W. ~10!

From a formal point of view we can imagine the classical
variable y as a sort of operator characterized by the two
eigenstatesu1& and u2&,

ŷu6&56Wu6&. ~11!

We do not set any bias, namely, we want to give the same
statistical weight to the two states. Thus we assume the equi-
librium state to be given by

up0&5
1

A2
~ u1&1u2&). ~12!

Formally this means that the application ofŷ to the equilib-
rium state results in the ‘‘excited’’ state defined by
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up1&5
ŷup0&
W

. ~13!

In general, for a complete description of the dynamical pro-
cess one has to consider more than two states. We write

^yy~ t !&5^p0u ŷeĜtŷup0&5W2^p1ueĜtup1&. ~14!

Due to the dichotomous nature of the variabley we have

^p1ueĜtup1&5 (
mÞ0

^p1um&^mup1&e2Lmt, ~15!

where theum& ’s are eigenstates of the operatorĜ, with ein-
genvalueLm , distinct from up0&, which is the eigenstate
with vanishing eigenvalue~the equilibrium state!. Note that
um50&5up0&. Within the framework of this quantumlike
formalism, it is convenient to define

sm~x,t !5^mur~x,y,R;t !&, ~16!

with m50,1,2, . . . . We areinterpreting the distributionr of
~16! as a sort of ket vectorur&. By multiplying ~9! on the left
by the statesum& we get

]

]t
s0~x;t !52W(

mÞ0

`

am

]

]x
sm~x;t !,

]

]t
sm~x;t !52Wam*

]

]x
s02Lmsm~x;t !, ~17!

with m51,2, . . . , andam5^mu ŷup0&.
By solving the second equation and replacing the solution

into the former equation, we get

]

]t
s0~x;t !5W2(

mÞ0
uamu2E

0

t

dt8e2Lm~ t2t8!
]2

]x2
s0~x;t !.

~18!

From now on we shall focus on the reduced density matrix
s0(x;t) and for the sake of simplicity we shall omit the
subscript 0. Using~14! and ~15! we can rewrite~18! in the
form

]

]t
s~x;t !5E

0

t

dt8^yy~ t2t8!&
]2

]x2
s~x;t !. ~19!

In conclusion, in the dichotomous case we can express the
time evolution of the probability distribution by means of an
exact equation~19!. This is a sort of generalization of the
results obtained by Horstemke and Lefever@26# in the spe-
cial case of an exponential correlation function.

Notice that if we integrate the equation of motion~8!,
under the assumption of stationarity, namely, that the corre-
lation function ^y(t1)y(t2)& depends only onut12t2u, we
find

d

dt
^x2~ t !&52E

0

t

dt8^yy~ t2t8!&1^x2~0!&, ~20!

which coincides with the prescription that one one would
obtain from~19!. This is not surprising since both~19! and
~20! are exact results.

III. THE LE´VY PROCESS
AS A TIME ASYMPTOTIC LIMIT

Let us define now the normalized correlation function

Fy~ t ![
^yy~ t !&

^y2&
~21!

and assume that this function decays to zero without oscilla-
tions making them negative. In this condition, it makes sense
to define the ‘‘microscopic’’ time scale

t[E
0

`

Fy~ t8!dt8. ~22!

If this time scale exists and is a nonzero finite constant, it is
straightforward to show, using the central limit theorem, that
the diffusion process forx taking place at times much larger
thant becomes indistinguishable from an ordinary Brownian
diffusion.

The simplest possible way to extend the analysis beyond
this ordinary condition, and so using the exact equation~19!
to address nontrivial problems, is to assume

Fy~ t !5
A

~A1/b1t !b ,t>0, ~23!

with

0,b,1. ~24!

Note that the form chosen for the correlation function makes
it possible to fulfill the normalization condition

Fy~0!51. ~25!

This condition~24! corresponds to a similar condition al-
ready examined in previous papers@9,13#. However, the
property concerned the waiting-time distribution in one of
the two states of the variabley, u1& andu2&, rather than the
correlation function. The condition~24! corresponds to ex-
tremely extended sojourn times in these states. For this rea-
son, we think that an extremely good approximation to apply
to ~19! is

s~x,t2t8!5
1

2E2`

`

dx8d~Wt82ux2x8u!s~x8,t !. ~26!

For timest8 such thatut8u,^t&, where^t& is the mean so-
journ time in one of the two states,~26! is an exact property.
The relation~26! becomes an approximation only for times
larger than^t&. We shall return to the discussion of^t& in
Sec. IV.

By inserting~26! into ~19! we obtain, with no approxima-
tion,

]

]t
s~x,t !5

1

2

1

WE
2`

`

dx8CS ux2x8u
W Ds~x8,t !, ~27!
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where the functionC(t) is defined by means of

C~ t !5
]2

]t2
^yy~ t !&
W2 . ~28!

What is the physical meaning ofC(t)? Let us consider the
function

c~ t ![
C~ t !

^t&
. ~29!

This is a distribution of times. If we evaluate the mean value
^t& averaging on this distribution we get

^t&5
A1/b

b
~30!

andc(t) fits the normalization condition

E
0

`

dtc~ t !51. ~31!

To assess the nature of this time distribution we use the
relation established by Geisel and co-workers@27#,

Fy~ t !5
1

^t&Et
`

~ t82t !cs~ t8!dt8, ~32!

connecting the correlation functionFy(t) to the distribution
of the sojourn times in the statesu1& and u2&, cs(t). By
differentiating~32! twice we establish that

cs~ t ![
C~ t !

^t&
~33!

and thus reach the conclusion

c~ t ![cs~ t !. ~34!

Note that using~28! and ~23!, we can rewrite~27! as

]

]t
s~x,t !5

b~b11!A

2 E
2`

`

dx8
W11bs~x8,t !

~A1/bW1ux2x8u!b12 .

~35!

This result~35! establishes a direct connection with the Le´vy
processes. Seshadri and West@28# have established that a
centrosymmetric Le´vy stable process, namely, a diffusion
process with a distribution, the Fourier transform~character-
istic function! of which is given by

ŝ~k,t !5e2bukuat, ~36!

obeys the integro-differential equation

]

]t
s~x,t !5b

1

p
sinS pa

2 DG~11a!E
2`

`

dx8
s~x8,t !

ux2x8ub12 .

~37!

Making the plausible assumption that the short-range region
ux2x8u'A1/bW does not contribute to the long-time Le´vy
process,~35! becomes identical to a Le´vy process with

b5
2pb~b11!AWb11

sinS p~b11!

2 DG~b12!

. ~38!

Note that atb51, as it must be, the decay rate becomes
proportional toW2, which can be identified with the mean
quadratic value of the ‘‘velocity’’y. Throughout the whole
anomalous diffusion regime 0,b,1 the dacay rate depends
on a fractional value of the ‘‘temperature.’’ It is interesting
to notice that~20! together with~23! leads to the asymptotic
property:

lim
t→`

^x2~ t !&5Kt2H, ~39!

with

H512
b

2
. ~40!

On the basis of this property one would be led to expect that
the following rescaling will take place:

s~x,t !5
1

td
FS xtdD , t→`, ~41!

with

d5H. ~42!

However, the theoretical results of this section indicate
that the resulting diffusion process is of Le´vy kind. Conse-
quently, the correct rescaling is given by~41! with

d5
1

b11
. ~43!

The numerical results of Figs. 1 and 2 fully support this
prediction. Note that the curves of Fig. 1 are plotted with
respect to the variablej[x/td, with d51/(b11), namely,
by assuming the rescaling~43! to be true, whereas Fig. 2
refers to j[x/td, with d5H, thus implying the rescaling
~42! to hold. By inspection of these figures we see that the
rescaling~42! is ruled out, whereas the rescaling~43! results
in satisfactory agreement with the numerical results.

IV. TIME EVOLUTION
OF THE CHARACTERISTIC FUNCTION

A characteristic function is defined as

C~ t !5^eikx&, ~44!

where^ & denotes the ensemble average. Thus the complex
exponential must be averaged on the stationary distribution
of the process, which is different from~36!. In fact, the
a-stable Lévy process defined by~36! does not take into
account the fact that the distribution must be truncated,
namely, the distribution must be equal to zero forx,2Wt
andx.Wt. In Fig. 1 we see the result of a numerical simu-
lation of the model~8! and~10!. We see that the distributions
are identical to what is predicted by~36! in the interval
2Wt,x,Wt, but there are no tails outside this interval.
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These are substituted by ballistic peaks atx56Wt. The
heigth of these peaks can be evaluated by considering them
as the accumulation of the particles that would be in the tails
if there was no ballistic limitation due to~8!. One may think
that asymptotically the peaks will vanish, but from the res-
caled distributions of Fig. 1 we see that the ratio between
their height and the height of the principal peak atx50 is
actually an increasing function of time. Asymptotically the
peak height is

L~ t !5E
2`

2Wt

s~x,t !dx1E
Wt

`

s~x,t !dx, ~45!

which can be proved to be proportional to the correlation
function of the variabley. In fact, the first expansion of the
Lévy distribution tails iss(x,t)}t/uxub12, so that~45! result
in L(t)}t2b. One can also think about the height of the
peaks as the probability of finding a laminar region~namely,
a region with ally5W or y52W) that is larger thant.
Using the same arguments leading to~29! @27#, it is possible
to prove that this is just the correlation function, namely,

L~ t !5Fy~ t !. ~46!

Now we can evaluate~44! by partitioning the integral in
three pieces. We can write the total characteristic function as

C~ t !5E
2`

`

dxeikxs~x,t !1
L~ t !

2 E
2`

`

dxeikx@d~x1Wt!

1d~x2Wt!#22E
Wt

` dxeikxt

xb12 , ~47!

where the truncated Le´vy process in the tails is substituted
by the ballistic peaks. In the asymptotic regime the last mem-
ber of the right-hand side of~47! is negligible. The first
member is just the Fourier transform ofs(x,t), which is
given by ~36!, and the second member just gives
L(t)cos(kt). Thus, for the characteristic functionC(t) we
can write

C~ t !5e2bukuat1Fy~ t !cos~kt!; ~48!

notice that this form is not valid for short times. For
t,A1/b, however, the peaks that are responsible for the sec-
ond term on the rhs of~47! are the most important contribu-
tion andC(t)5cos(kt).

In Figs. 3~a!–3~d! we see the numerical results for the
characteristic functions for different choices of the model
parameters. We notice that in all cases the first regime is well
fitted by a cosine function, while Eq.~48! also fits well for
intermediate times. The asymptotic regime, in other words, is
attained as soon as it is possible to make a continuous ap-
proximation to the distribution functions@see Fig. 3~a!#. The
cosine behavior is the track of a dichotomous process, due to
the fact that for times smaller than̂t& the distributions
s(x,t) are essentially dominated by the ballistic peaks. No-
tice that Eq.~48! can have a variety of behaviors: in particu-
lar, with a choice of a largeuku value, which according to~6!
means a strong-coupling condition, the first member on the
rhs of ~48! can be made negligible, so that the characteristic
function reduces toFy(t)cos(kt) @see Fig. 3~b!#. On the
other hand, a choice of very smalluku may make the first
term on the rhs of~48! the dominant one for the short- and
intermediate-time regimes. This is especially true whenb is
chosen near unity. In this latter case@see Fig. 3~c!# the char-
acteristic function is almost indistinguishable from an expo-
nential for all the times it can be computed. It has to be said
that even in this case the small contribution of the second
term on the rhs of~48! will sooner or later dominate since
the cosine is modulated with a function that is nonintegrable,
even though it has small numerical values. The property that
the characteristic function in the short-time region is essen-
tially a harmonic function of time, with negligible damping,
is made evident by the results of numerical calculations by

FIG. 1. Rescaled probability distributions for different times.
The solid line refers tot510 000, the long-dashed line to
t51000, the short-dashed linetot5500, the dotted line tot5200,
the long-dash–dotted line tot5100, and the short-dash–dotted line
to t550. The distribution fort510 000 is not varied in this scale.
The other ones have been rescaled according tod51/(b11).

FIG. 2. Same as in Fig. 1, but the rescaling relation is given by
d5H512b/2.
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making suitably extended this initial time region. This can be
done by using very large values ofA, which mean very large
values of^t&. This condition is conveniently illustrated by
Fig. 3~d!.

V. CONCLUDING REMARKS

We have seen, probably in a way more transparent than in
earlier work@13#, that the dynamical realization of Le´vy pro-
cess with a velocityy, with fluctuations whose intensity can-
not exceed a given upper value, implies that the resulting
diffusion equation is strongly non-Markovian. The realiza-
tion of a Lévy process, which is by definition Markovian,
implies that the time nonlocality is turned into a space non-
locality. This is made possible by means of the constraint
~26!, which is based on the fact that for a long period of time
the motion takes place without any change of the velocity
value. It is interesting that Compte recently observed@29#
that the adoption of the continuous-time random-walk
method is essentially equivalent to adopting a generalized,
namely non-Markovian, master equation. The above analysis

makes it easier to understand a further result of Compte@29#,
namely, that it is possible to express the long-time regime in
two equivalent forms, one implying the adoption of the frac-
tional time derivative~and so emphasizing time nonlocality!
and the other a fractional space derivative~and so emphasiz-
ing the space nonlocality or the Le´vy nature of the statistical
process@28#!.

It has to be pointed out, however, that the approach pre-
sented in this paper rests only on dynamical properties and
makes it possible, in principle, to derive the resulting Le´vy
process directly from the equation of motion of the system.
This was already done@6,14–16# in the case of ordinary
diffusion, but all the recent papers on the diffusion processes
faster than ordinary diffusion@11,13# still derive the Lévy
statistics from probabilistic assumptions rather than using
only dynamical properties. Thus the key statistical feature of
all these treatments is the distribution of waiting times in the
two states of the dichotomous variablec(t). Herein, on the
contrary, all the relevant statistical properties of the diffusion
process are expressed in terms of the correlation function
Fy(t), thus establishing a more direct dependence on the
dynamics of the system.

FIG. 3. Different characteristic functions for different parameter choices.~a! b50.5, k50.1, andA is measured to be'0.5 by the
evaluation of the correlation function~not shown here!. The solid line is the numerical evaluation of the characteristic function, while the
dots are a sampling of the function~48! for the corresponding parameters.~b! b50.5, k51.0, andA'0.5. The solid line represents the
numerical evaluation of the characteristic function. The two dotted lines over and under the curve are the correlation function~23! and its
opposite.~c! b50.99,k50.05, andA'1: same as in~a!. ~d! b50.7,k50.1, andA'41.1. The solid line represent the numerical evaluation
of the characteristic function, while the upper dashed curve isA/tb.
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We have to point out that the inverse power-law nature of
the correlation functionFy(t), the asymptotic property stem-
ming from ~23!, is assumed rather than derived from the
equations of motion of the system. However, this is where
our approach has some merit when compared to the current
literature on the derivation of the Le´vy statistics. On the one
hand, the current theoretical treatments of superdiffusion
rests on the inverse power law nature ofc(t) @11–13#. On
the other hand, there are theoretical approaches to the inverse
power law of the waiting function distributionc(t) @30#,
which in the asymptotic time limit is proportional tot2m.
However, the numerical check of these theoretical predic-
tions for dynamical systems such as the kicked rotator is
made difficult by the fact that the computational derivation
of c(t) is much less accurate than the second moment of the
diffusing variable as a function of time@compare, for in-
stance, the functionc(t) as numerically derived in@12# to
the second moment of the angular momentum of the kicked
rotator in @31##. Using our approach the exponentH of the
time asymptotic behavior of the second moment ofx @see Eq.
~20!# is immediately related to the asymptotic properties of
the correlation function̂yy(t)& and through~28!, ~33!, and
~34! to the inverse power law ofc(t) with m5422H. This
relation and the close connection with the Le´vy statistics
seem to be more direct, more concise, and more satisfactory
than any earlier derivation. We think that it also explains
why the velocity model of Zumofen and Klafter@9#, resting
on ~32!, turns out@13# to be the best theoretical approach to
superdiffusion based on random walk arguments.

From the point of view of applications, the method of this
paper affords further benefits, especially if it is applied to
problems of biological significance such as that of the DNA
sequences@32#. A direct calculation ofc(t) in this case from
the experimental data would lead us to define thec(t) cor-
responding to the two-state model of Ref.@9# rather than to
the velocity model of the same authors. This would make
ambiguous the analysis of the data in this case, since the
existence of a dynamical model underlying the DNA se-
quences is a conjecture rather than a established fact@32# and
if this dynamical model exists its nature is unknown. If the
theory developed in this paper is adopted, it is possible to
carry out the analysis of the DNA sequences with no ambi-
guity. Using the prescriptions of Ref.@32# we can evaluate
the correlation functionFy(t), thereby providing a dynami-
cal basis for Le´vy statistics found herein.

A further result of this paper is that, in spite of the fact
that the asymptotic regime of the distribution is very close to
Lévy statistics, the study of the characteristic function might
reveal the strongly non-Markovian nature of the process, as
effectively expressed by~48!. Of special interest is the fact
that even if forb very close to unity, or small values of
uku ~implying a very weak coupling between the precessing
dipole and the fluctuating ‘‘magnetic’’ field!, an almost exact
exponential behavior is obtained, still the slow tails with
b,1 are present. This agrees with the important result of
Lee @33# establishing that a decay process cannot be an exact
exponential and shows that the dynamical derivation of Le´vy
processes is compatible with a rigorous Hamiltonian treat-
ment.

Finally, we want to point out that the results of this paper
might have some interest for the problem of the macroscopic

manifestation of quantum mechanics. According to Zurek
@34# a genuinely irreversible decoherence process must be
perceived as being totally equivalent to a wave function col-
lapse, thereby allowing quantum mechanics to recover clas-
sical mechanics with no need of changing the current version
of this theory. However, this raises two problems. The first
has to do with the earlier mentioned hot issue of how to
derive a rigorously exponential behavior from within ordi-
nary quantum mechanics. Figure 3~c! shows that the identi-
fication of the almost exponential decay of the characteristic
function might be questionable since the exponential-like be-
havior is followed by an invisible slow tail implying the
presence of correlation even after the occurrence of a wave-
function collapse. The second problem has to do with the
fact @35# that the theory of Zurek rests on the assumption that
the environment is faithfully described by ordinary statistical
mechanics. The results of Sec. IV show that as a conse-
quence of rejecting this assumption, the decorrelation pro-
cess might become extremely slow, thereby supporting the
requirement that the environment is driven by ordinary sta-
tistical mechanics. On the other hand, the dynamical eriva-
tion of ordinary statistical mechanics is made possible by the
assumption of time-scale separation between macroscopic
and microscopic variables@6# and this paper can be seen as
an attempt at extending this treatment to the case where the
time-scale separation is not possible.
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APPENDIX

The numerical calculations adopted in this paper to check
the theoretical predictions rest on a dynamical process that is
not generated by a weakly chaotic deterministic map as in
Refs.@9,13#. The possibility of generating a correlation func-
tion with the same time asymptotic properties as in~23! is
now well established not only in the case of the map of
Geisel, Nierwetberg, and Zacherl@36#, but also in the case of
the kicked rotator in the so called accelerating state@12,37#.
However, the direct use of a deterministic map to assess
numerically the time asymptotic properties implies a signifi-
cant computational effort in terms of both computer time and
numerical precision. For this reason, we decided to adopt a
different procedure. First of all, the present treatment rests
directly on the correlation functionFy(t) rather than indi-
rectly through the waiting-time distributionc(t). However
~28! and ~32! show that the two descriptions are equivalent.
To generate a dichotomous process with a givenFy(t) it is
sufficient to generate a random sequence of integers with a
probability distribution given by a discrete approximation of

c~ t !5
~b11!A~b11!/b

~A1/b1t !b12 ; ~A1!

this can be done through a filtered random number generator.
In other words, our dichotomous sequence is given by ran-
domly choosing a number between11 and21 and keeping
the same value fory a number of times that is given by our
filtered random number generator. Then the same operation
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is repeated until the statistics are sufficient for the calcula-
tion. Care is exerted to ensure that at the end of the period of
time spent in one state of the velocityy the probability of
jumping from one to the other state is the same as that of
remaining in the same state. Under this condition~32! is an
exact relation and building up the waiting-time distribution
c(t) ~49! turns out to be equivalent to building up the cor-
relation functionFy(t) ~23!.

The dynamical generator used is therefore not determin-

istic. However, the main point to assess in this paper refers to
the physical consequences of a dynamical generator respon-
sible for the inverse-power-law character of~23!. Once this
is determined, the results are independent of whether the
dynamical generator has a deterministic or a stochastic ori-
gin. Thus, for numerical convenience we have adopted the
second type of dynamical generator. This method of numeri-
cal calculation turned out to be so efficient as to result in the
very regular curves denoted by the solid lines of Fig. 3.
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